1
|
Huang J, Ma Y, Lv Q, Liu Y, Zhang T, Yin F, Shui T. Interactive effects of meteorological factors and air pollutants on hand, foot, and mouth disease in Chengdu, China: a time-series study. BMJ Open 2022; 12:e067127. [PMID: 36450433 PMCID: PMC9716848 DOI: 10.1136/bmjopen-2022-067127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Hand, foot, and mouth disease (HFMD) is a viral infectious disease that poses a substantial threat in the Asia-Pacific region. It is widely reported that meteorological factors are associated with HFMD. However, the relationships between air pollutants and HFMD are still controversial. In addition, the interactive effects between meteorological factors and air pollutants on HFMD remain unknown. To fill this research gap, we conducted a time-series study. DESIGN A time-series study. SETTING AND PARTICIPANTS Daily cases of HFMD as well as meteorological and air pollution data were collected in Chengdu from 2011 to 2017. A total of 184 610 HFMD cases under the age of 15 were included in our study. OUTCOME MEASURES Distributed lag nonlinear models were used to investigate the relationships between HFMD and environmental factors, including mean temperature, relative humidity, SO2, NO2, and PM10. Then, the relative excess risk due to interaction (RERI) and the proportion attributable to interaction were calculated to quantitatively evaluate the interactions between meteorological factors and air pollutants on HFMD. Bivariate response surface models were used to visually display the interactive effects. RESULTS The cumulative exposure-response curves of SO2 and NO2 were inverted 'V'-shaped and 'M'-shaped, respectively, and the risk of HFMD gradually decreased with increasing PM10 concentrations. We found that there were synergistic interactions between mean temperature and SO2, relative humidity and SO2, as well as relative humidity and PM10 on HFMD, with individual RERIs of 0.334 (95% CI 0.119 to 0.548), 0.428 (95% CI 0.214 to 0.642) and 0.501 (95% CI 0.262 to 0.741), respectively, indicating that the effects of SO2 and PM10 on HFMD were stronger under high temperature (>17.3°C) or high humidity (>80.0%) conditions. CONCLUSIONS There were interactive effects between meteorological factors and air pollutants on HFMD. Our findings could provide guidance for targeted and timely preventive and control measures for HFMD.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yue Ma
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Qiang Lv
- Department of Acute Infectious Disease Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yaqiong Liu
- Department of Acute Infectious Disease Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Tao Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Fei Yin
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Tiejun Shui
- Department of Leprosy Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, China
| |
Collapse
|
2
|
Mazuryk O, Stochel G, Brindell M. Variations in Reactive Oxygen Species Generation by Urban Airborne Particulate Matter in Lung Epithelial Cells-Impact of Inorganic Fraction. Front Chem 2021; 8:581752. [PMID: 33392147 PMCID: PMC7773840 DOI: 10.3389/fchem.2020.581752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022] Open
Abstract
Air pollution is associated with numerous negative effects on human health. The toxicity of organic components of air pollution is well-recognized, while the impact of their inorganic counterparts in the overall toxicity is still a matter of various discussions. The influence of airborne particulate matter (PM) and their inorganic components on biological function of human alveolar-like epithelial cells (A549) was investigated in vitro. A novel treatment protocol based on covering culture plates with PM allowed increasing the studied pollutant concentrations and prolonging their incubation time without cell exposure on physical suffocation and mechanical disturbance. PM decreased the viability of A549 cells and disrupted their mitochondrial membrane potential and calcium homeostasis. For the first time, the difference in the reactive oxygen species (ROS) profiles generated by organic and inorganic counterparts of PM was shown. Singlet oxygen generation was observed only after treatment of cells with inorganic fraction of PM, while hydrogen peroxide, hydroxyl radical, and superoxide anion radical were induced after exposure of A549 cells to both PM and their inorganic fraction.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grazyna Stochel
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
3
|
Yu H, Wang Y, Peng Q, Shao Y, Duan C, Zhu Y, Dong S, Li C, Shi Y, Zhang N, Zheng Y, Chen Y, Jiang Q, Zhong P, Zhou Y. Influence of coarse particulate matter on chickenpox in Jiading District, Shanghai, 2009-2018: A distributed lag non-linear time series analysis. ENVIRONMENTAL RESEARCH 2020; 190:110039. [PMID: 32810505 DOI: 10.1016/j.envres.2020.110039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Although the link between ambient air pollution and some infectious diseases has been studied, few studies have explored so far, the relationship between chickenpox and particulate matter. Daily chickenpox counts in Jiading District, Shanghai, were collected from 2009 to 2018. Time series analysis was conducted to describe the trends of the daily number of chickenpox cases and the concentration of particulate matter 10 μm or less (PM10). The distributed lag non-linear model (DLNM) was developed to assess the lag and non-linear relationship between the number of chickenpox cases and PM10 concentration adjusting for meteorological factors and other pollutants. Spatiotemporal scanning was used to detect the clustering of chickenpox cases. There was a concomitant relationship between the number of chickenpox cases and PM10 concentration, especially in the period of high PM10 concentration. DLNM results showed a nonlinear relationship between the number of chickenpox cases and PM10 concentration with the maximum effect of PM10 being lagged for 13-14 days, which was consistent with the average incubation period of chickenpox. PM10 was significantly associated with the daily number of chickenpox cases when above 300 μg/m3. The risk of chickenpox increased with increasing PM10 concentration and the association was strongest at the lag of 14 day (RR = 1.13, 95% CI: 1.04-1.23) for PM10 concentration of 500 μg/m3 versus 50 μg/m3. The study provides evidence that high PM10 concentration increases the risk of chickenpox spreading.
Collapse
Affiliation(s)
- Hongjie Yu
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Yingjian Wang
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Qian Peng
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Yueqin Shao
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Chunmei Duan
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Yefan Zhu
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Shurong Dong
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Chunlin Li
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Ying Shi
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Na Zhang
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Yingyan Zheng
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Qingwu Jiang
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Peisong Zhong
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China.
| | - Yibiao Zhou
- Fudan University School of Public Health, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong an Road, Xuhui District, Shanghai, 200032, China; Fudan University Center for Tropical Disease Research, Building 8, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
4
|
Chiang YC, Li X, Lee CY, Rui J, Hu CW, Yang HJ, Chen SC, Chen T, Su Y, Kuo CY, Hsueh SC. Protective equipment and health education program could benefit students from dust pollution. AIR QUALITY, ATMOSPHERE, & HEALTH 2020; 14:371-380. [PMID: 32963632 PMCID: PMC7499415 DOI: 10.1007/s11869-020-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
In recent years, children living in the downstream of the Choshui River in Taiwan have been exposed to violent dust episodes. For the sake of the health of these children, we aimed to investigate the effectiveness of protective equipment (sand-proof plastic cover and air purifier) installed outside/inside the classrooms on students' pulmonary function and evaluate the health education program for preventing the adverse consequences of exposure to river-dust episodes. Public elementary school students in Yunlin County, which was severely affected by river-dust, were selected as the participants. Study 1 consisted of three-wave follow-up data (801 person-times) in high-/low-dust exposure regions to examine pulmonary function. Study 2 used 147 and 73 students in the high-/low-dust exposure regions, respectively, to establish our health education intervention. Paired t tests, repeated measures ANOVA, and generalized estimating equation were used to analyze the short- and long-term effects. The results showed that the students' pulmonary function in schools that installed protective equipment was improved. The health education (such as the usage of correct masks and our designed PM2.5 full-cover sand-proof clothing) improved the students' cognition and behaviors related to river-dust episodes and yielded both short- and long-term effects. Therefore, we suggest more schools with high-dust exposure to adopt protective equipment and health education program. Our designed PM2.5 full-cover sand-proof clothing can prevent from not only haze but also droplet transmission by infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Yi-Chen Chiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Xian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Chun-Yang Lee
- School of International Business, Xiamen University Tan Kah Kee College, Zhangzhou, Fujian People’s Republic of China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, Republic of China
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Republic of China
| | - Hao-Jan Yang
- Department of Public Health, Chung Shan Medical University, Taichung, Republic of China
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Republic of China
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, Republic of China
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Republic of China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Chung-Yih Kuo
- Department of Public Health, Chung Shan Medical University, Taichung, Republic of China
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Republic of China
| | - Shao-Chieh Hsueh
- Institute of Economics, School of Economics, Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, Fujian People’s Republic of China
| |
Collapse
|
5
|
Tomei F, Ricci S, Giammichele G, Sacco C, Loreti B, Fidanza L, Ricci P, Scala B, Tomei G, Rosati MV. Blood pressure in indoor and outdoor workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:127-136. [PMID: 28843852 DOI: 10.1016/j.etap.2017.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION The aim of our study is to evaluate the changes in systolic and diastolic blood pressure in two occupational categories: outdoor workers (traffic policemen and environment technicians) and indoor workers. MATERIALS AND METHODS The study was conducted comparing the results obtained from three samples of male workers: 175 outdoor traffic policemen, 175 outdoor environment technicians and 175 indoor workers. The outdoor and indoor groups were made comparable by age, length of service, body mass index, alcohol consumption, smoking status. RESULTS The mean values of systolic and diastolic blood pressure were found higher in traffic policemen and technicians than in indoor workers, as well as higher values of systolic blood pressure in traffic policemen than in technicians. CONCLUSIONS The results suggest that outdoor working affects the blood pressure, contributing to an increased cardiovascular risk.
Collapse
Affiliation(s)
- Francesco Tomei
- Spin off of University of Rome "Sapienza" "Sipro", Viale Regina Elena 336, 00161 Rome, Italy.
| | - Serafino Ricci
- Department of Anatomy, Histology, Legal Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy; Department of Anatomy, Histology, Medical-Legal and the Orthopedics, Specialty Scool of Occupational Medicine, Unit of Occupational Medicine, University of Rome "Sapienza", Viale Regina Elena 336, 00161 Rome, Italy
| | - Grazia Giammichele
- Department of Anatomy, Histology, Medical-Legal and the Orthopedics, Specialty Scool of Occupational Medicine, Unit of Occupational Medicine, University of Rome "Sapienza", Viale Regina Elena 336, 00161 Rome, Italy
| | - Carmina Sacco
- Department of Anatomy, Histology, Medical-Legal and the Orthopedics, Specialty Scool of Occupational Medicine, Unit of Occupational Medicine, University of Rome "Sapienza", Viale Regina Elena 336, 00161 Rome, Italy
| | - Beatrice Loreti
- Department of Anatomy, Histology, Medical-Legal and the Orthopedics, Specialty Scool of Occupational Medicine, Unit of Occupational Medicine, University of Rome "Sapienza", Viale Regina Elena 336, 00161 Rome, Italy
| | - Luciana Fidanza
- Department of Anatomy, Histology, Medical-Legal and the Orthopedics, Specialty Scool of Occupational Medicine, Unit of Occupational Medicine, University of Rome "Sapienza", Viale Regina Elena 336, 00161 Rome, Italy
| | - Pasquale Ricci
- Department of Anatomy, Histology, Legal Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| | - Barbara Scala
- Spin off of University of Rome "Sapienza" "Sipro", Viale Regina Elena 336, 00161 Rome, Italy
| | - Gianfranco Tomei
- Department of Psychiatric and Psychological Science, University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Valeria Rosati
- Department of Anatomy, Histology, Medical-Legal and the Orthopedics, Specialty Scool of Occupational Medicine, Unit of Occupational Medicine, University of Rome "Sapienza", Viale Regina Elena 336, 00161 Rome, Italy
| |
Collapse
|
6
|
Doganlar O, Doganlar ZB, Tabakcioglu K. Effects of permissible maximum-contamination levels of VOC mixture in water on total DNA, antioxidant gene expression, and sequences of ribosomal DNA of Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15610-15620. [PMID: 26018283 DOI: 10.1007/s11356-015-4741-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
In this study, we aimed to investigate the mutagenic and carcinogenic potential of a volatile organic compound (VOC) mixture with references to the response of D.melanogaster using selected antioxidant gene expressions, RAPD assay and base-pair change of ribosomal 18S, and the internal transcribed spacer, ITS2 rDNA gene sequences. For this purpose, Drosophila melanogaster Oregon R, reared under controlled conditions on artificial diets, were treated with the mixture of thirteen VOCs, which are commonly found in water in concentrations of 10, 20, 50, and 75 ppb for 1 and 5 days. In the random amplified polymorphic DNA (RAPD) assay, band changes were clearly detected, especially at the 50 and 75 ppb exposure levels, for both treatment periods, and the band profiles exhibited clear differences between the treated and untreated flies with changes in band intensity and the loss/appearance of bands. Quantitative real-time PCR (qRT-PCR) analysis of Mn-superoxide dismutase (Mn-SOD), catalase (CAT) and glutathione-synthetase (GS) expressions demonstrated that these markers responded significantly to VOC-induced oxidative stress. Whilst CAT gene expressions increased linearly with increasing concentrations of VOCs and treatment times, the 50- and 75-ppb treatments caused decreases in GS expressions compared to the control at 5 days. Treatment with VOCs at both exposure times, especially in high doses, caused gene mutation of the 18S and the ITS2 ribosomal DNA. According to this research, we thought that the permissible maximum-contamination level of VOCs can cause genotoxic effect especially when mixed.
Collapse
Affiliation(s)
- Oguzhan Doganlar
- Faculty of Medicine, Department of Medical Biology, Trakya University, Edirne, Turkey.
| | - Zeynep Banu Doganlar
- Faculty of Medicine, Department of Medical Biology, Trakya University, Edirne, Turkey
| | - Kiymet Tabakcioglu
- Faculty of Medicine, Department of Medical Biology, Trakya University, Edirne, Turkey
| |
Collapse
|
7
|
Doganlar O, Doganlar ZB. Effects of a mixture of volatile organic compounds on total DNA and gene expression of heat shock proteins in Drosophila melanogaster. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:395-404. [PMID: 25352441 DOI: 10.1007/s00244-014-0089-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
The genotoxic effects of a mixture of 13 volatile organic compounds (VOCs) on total DNA profiles and the expression of heat shock proteins (HSPs) HSP26, HSP60, HSP70, and HSP83 in fruit fly tissues were examined. Drosophila melanogaster Oregon R(+), reared under controlled conditions on artificial diets, was treated with 13 VOCs commonly found in water at concentrations of 10, 20, 50, and 75 ppb for 1 and 5 days. Band changes were clearly detected in random amplified polymorphic DNA assay, especially at the 50- and 75-ppb exposure levels, for both treatment periods. In addition, there were clear differences in the band profiles of the treated and untreated flies with changes in the band intensity and the loss/appearance of bands. Although the genomic template stability (GTS) exhibited irregular changes at the first day, significant decreases in GTS were observed after 5 days of VOC application. The lowest GTS value (27.77 ± 1.96 %) was detected at the 75-ppb level after 5 days of the treatment. Quantitative real-time polymerase chain reaction analysis showed a significant increase in the relative expression of HSP26 and HSP60 after 1 and 5 days of the treatment, respectively. The expression of HSP70 increased significantly at all treatment concentrations and times. However, the greatest increase in expression level of HSP70 (4.2-fold) occurred at 20 ppb after 5 days of the treatment. HSP83 was the least affected by exposure to the VOCs. We conclude that trace levels of a mixture of VOCs can exert genotoxic effects on both total DNA and HSP levels in Drosophila.
Collapse
Affiliation(s)
- Oguzhan Doganlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, Edirne, Turkey,
| | | |
Collapse
|
8
|
Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3886-907. [PMID: 23985773 PMCID: PMC3799517 DOI: 10.3390/ijerph10093886] [Citation(s) in RCA: 480] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM), at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM₁₀ and PM₂.₅) are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Athanasios Valavanidis
- Department of Chemistry, University of Athens, University Campus Zografou, Athens 15784, Greece.
| | | | | | | |
Collapse
|
9
|
Mantecca P, Farina F, Moschini E, Gallinotti D, Gualtieri M, Rohr A, Sancini G, Palestini P, Camatini M. Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicol Lett 2010; 198:244-54. [DOI: 10.1016/j.toxlet.2010.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
|
10
|
Barlow PG, Brown DM, Donaldson K, MacCallum J, Stone V. Reduced alveolar macrophage migration induced by acute ambient particle (PM10) exposure. Cell Biol Toxicol 2007; 24:243-52. [PMID: 17846904 DOI: 10.1007/s10565-007-9033-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Increased levels of particulate air pollution (PM10) have been implicated as a causal agent in pulmonary disease exacerbation and increased deaths from respiratory and cardiovascular disorders. The exact mechanism by which PM10 drives toxicity in the lung is still unknown, but studies have focused on inhibition of macrophage function and impaired alveolar clearance mechanisms. To assess the effects of PM10 on pulmonary macrophage clearance mechanisms ex vivo, Wistar rats were instilled with 125 or 250 microg of PM10 collected from the North Kensington, London. Control rats were instilled with sterile saline. The rats were sacrificed after 18 h and a bronchoalveolar lavage (BAL) was performed. Macrophages isolated from the BAL fluid were assessed for ability to migrate towards a positive chemoattractant (ZAS) ex vivo and to perform phagocytosis. Macrophages isolated from the PM10-exposed rats showed inhibition of potential to migrate. Macrophage phagocytic ability ex vivo was also significantly reduced by the presence of PM10 inside the cells. This study indicates that acute PM10 exposure diminishes macrophage motility and phagocytosis in a manner that could prove deleterious to particle clearance from the alveolar region of the lung. Decreased particle clearance promotes inflammation, and hence, warrants further investigation in relation to the effects of chronic PM10 exposure on macrophage clearance mechanisms and establishing the mechanisms behind decreased macrophage migration.
Collapse
Affiliation(s)
- Peter G Barlow
- Lung Inflammation Research Group, MRC/University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | |
Collapse
|
11
|
Hutchison GR, Brown DM, Hibbs LR, Heal MR, Donaldson K, Maynard RL, Monaghan M, Nicholl A, Stone V. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation. Respir Res 2005; 6:43. [PMID: 15904485 PMCID: PMC1156955 DOI: 10.1186/1465-9921-6-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/18/2005] [Indexed: 12/04/2022] Open
Abstract
Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6). Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p < 0.05) compared with the closure and pre-closure samples. Wind direction prior to the closure was predominantly from the north, compared to south westerly during the closure and re-opened periods. Of metals analysed, iron was most abundant in the total and acid extract, while zinc was the most prevalent metal in the water-soluble fraction. Elevated markers of inflammation included a significant increase (p < 0.01) in neutrophil cell numbers in the bronchoalveolar lavage of rats instilled with PM10 collected during the reopened period, as well as significant increases in albumin (p < 0.05). Extracts of PM10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p < 0.05) when compared to the control, and these increases when added together approximately equalled the inflammation induced by the whole sample. PM10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant.
Collapse
Affiliation(s)
- Gary R Hutchison
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| | - David M Brown
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| | - Leon R Hibbs
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK
| | - Mathew R Heal
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK
| | - Ken Donaldson
- ELEGI & COLT Research Laboratory, Medical School, University of Edinburgh, UK
| | - Robert L Maynard
- Department of Health UK, Skipton House, 80 London Road, London SE1 6LH, UK
| | - Michelle Monaghan
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| | - Andy Nicholl
- Institute of Occupational Medicine, Research Park North, Riccarton, Edinburgh, EH14 4AP, Scotland, UK
| | - Vicki Stone
- Biomedicine Research Group, Napier University, Edinburgh EH10 5DT, UK
| |
Collapse
|
12
|
Donaldson K, Stone V, Borm PJA, Jimenez LA, Gilmour PS, Schins RPF, Knaapen AM, Rahman I, Faux SP, Brown DM, MacNee W. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 2003; 34:1369-82. [PMID: 12757847 DOI: 10.1016/s0891-5849(03)00150-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review focuses on the potential role that oxidative stress plays in the adverse effects of PM(10). The central hypothesis is that the ability of PM(10) to cause oxidative stress underlies the association between increased exposure to PM(10) and both exacerbations of lung disease and lung cancer. Pulmonary inflammation may also underlie the cardiovascular effects seen following increased PM(10), although the mechanisms of the cardiovascular effects of PM(10) are not well understood. PM(10) is a complex mix of various particle types and several of the components of PM(10) are likely to be involved in the induction of oxidative stress. The most likely of these are transition metals, ultrafine particle surfaces, and organic compounds. In support of this hypothesis, oxidative stress arising from PM(10) has been shown to activate a number of redox-responsive signaling pathways in lung target cells. These pathways are involved in expression of genes that play a role in responses relevant to inflammation and pathological change, including MAPKs, NF-kappaB, AP-1, and histone acetylation. Oxidative stress from particles is also likely to play an important role in the carcinogenic effects associated with PM(10) and hydroxyl radicals from PM(10) cause DNA damage in vitro.
Collapse
Affiliation(s)
- Ken Donaldson
- Colt/ELEGI Laboratories, Centre for Inflammation Research, The University of Edinburgh Medical School, Edinburgh EH8 9AG, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|