1
|
Barton JP, Rajkoomar E, Mann JK, Murakowski DK, Toyoda M, Mahiti M, Mwimanzi P, Ueno T, Chakraborty AK, Ndung'u T. Modelling and in vitro testing of the HIV-1 Nef fitness landscape. Virus Evol 2019; 5:vez029. [PMID: 31392033 PMCID: PMC6680064 DOI: 10.1093/ve/vez029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An effective vaccine is urgently required to curb the HIV-1 epidemic. We have previously described an approach to model the fitness landscape of several HIV-1 proteins, and have validated the results against experimental and clinical data. The fitness landscape may be used to identify mutation patterns harmful to virus viability, and consequently inform the design of immunogens that can target such regions for immunological control. Here we apply such an analysis and complementary experiments to HIV-1 Nef, a multifunctional protein which plays a key role in HIV-1 pathogenesis. We measured Nef-driven replication capacities as well as Nef-mediated CD4 and HLA-I down-modulation capacities of thirty-two different Nef mutants, and tested model predictions against these results. Furthermore, we evaluated the models using 448 patient-derived Nef sequences for which several Nef activities were previously measured. Model predictions correlated significantly with Nef-driven replication and CD4 down-modulation capacities, but not HLA-I down-modulation capacities, of the various Nef mutants. Similarly, in our analysis of patient-derived Nef sequences, CD4 down-modulation capacity correlated the most significantly with model predictions, suggesting that of the tested Nef functions, this is the most important in vivo. Overall, our results highlight how the fitness landscape inferred from patient-derived sequences captures, at least in part, the in vivo functional effects of mutations to Nef. However, the correlation between predictions of the fitness landscape and measured parameters of Nef function is not as accurate as the correlation observed in past studies for other proteins. This may be because of the additional complexity associated with inferring the cost of mutations on the diverse functions of Nef.
Collapse
Affiliation(s)
- John P Barton
- Departments of Chemical Engineering, Physics, and Chemistry, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Dariusz K Murakowski
- Departments of Chemical Engineering, Physics, and Chemistry, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mako Toyoda
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | - Takamasa Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Arup K Chakraborty
- Departments of Chemical Engineering, Physics, and Chemistry, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| |
Collapse
|
2
|
Abstract
Latent viral reservoirs in long-living cell populations are the main obstacle to a cure of HIV/AIDS. HIV-1 latency is controlled by the activation status of infected cells and their ability to return to a resting phenotype associated with silencing of viral gene expression. These cellular features are not just determined by the host since HIV-1 has evolved sophisticated mechanisms to alter cellular activation and survival to its advantage. Especially the HIV-1 accessory proteins Nef and Vpu exert numerous activities to promote viral replication and immune evasion affecting the size and preservation of the viral reservoir. Here, we review how antagonistic and synergistic functions of Nef and Vpu might affect HIV-1 latency. We also discuss whether these two accessory factors represent suitable targets to improve the ‘shock and kill’ cure strategy.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| | - Smitha Srinivasachar
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| |
Collapse
|
3
|
Kmiec D, Akbil B, Ananth S, Hotter D, Sparrer KMJ, Stürzel CM, Trautz B, Ayouba A, Peeters M, Yao Z, Stagljar I, Passos V, Zillinger T, Goffinet C, Sauter D, Fackler OT, Kirchhoff F. SIVcol Nef counteracts SERINC5 by promoting its proteasomal degradation but does not efficiently enhance HIV-1 replication in human CD4+ T cells and lymphoid tissue. PLoS Pathog 2018; 14:e1007269. [PMID: 30125328 PMCID: PMC6117100 DOI: 10.1371/journal.ppat.1007269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/30/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
SERINC5 is a host restriction factor that impairs infectivity of HIV-1 and other primate lentiviruses and is counteracted by the viral accessory protein Nef. However, the importance of SERINC5 antagonism for viral replication and cytopathicity remained unclear. Here, we show that the Nef protein of the highly divergent SIVcol lineage infecting mantled guerezas (Colobus guereza) is a potent antagonist of SERINC5, although it lacks the CD4, CD3 and CD28 down-modulation activities exerted by other primate lentiviral Nefs. In addition, SIVcol Nefs decrease CXCR4 cell surface expression, suppress TCR-induced actin remodeling, and counteract Colobus but not human tetherin. Unlike HIV-1 Nef proteins, SIVcol Nef induces efficient proteasomal degradation of SERINC5 and counteracts orthologs from highly divergent vertebrate species, such as Xenopus frogs and zebrafish. A single Y86F mutation disrupts SERINC5 and tetherin antagonism but not CXCR4 down-modulation by SIVcol Nef, while mutation of a C-proximal di-leucine motif has the opposite effect. Unexpectedly, the Y86F change in SIVcol Nef had little if any effect on viral replication and CD4+ T cell depletion in preactivated human CD4+ T cells and in ex vivo infected lymphoid tissue. However, SIVcol Nef increased virion infectivity up to 10-fold and moderately increased viral replication in resting peripheral blood mononuclear cells (PBMCs) that were first infected with HIV-1 and activated three or six days later. In conclusion, SIVcol Nef lacks several activities that are conserved in other primate lentiviruses and utilizes a distinct proteasome-dependent mechanism to counteract SERINC5. Our finding that evolutionarily distinct SIVcol Nefs show potent anti-SERINC5 activity supports a relevant role of SERINC5 antagonism for viral fitness in vivo. Our results further suggest this Nef function is particularly important for virion infectivity under conditions of limited CD4+ T cell activation. The accessory protein Nef promotes primate lentiviral replication and enhances the pathogenicity of HIV-1 by mechanisms of immune evasion and enhancing viral infectivity and replication. Here, we show that the evolutionarily most isolated primate lentivirus SIVcol lacks several otherwise conserved Nef functions. Nevertheless, SIVcol Nef potently antagonizes SERINC5, a recently discovered inhibitor of viral infectivity, by down-modulating it from the cell surface and inducing its proteasomal degradation. We identified Y86 in SIVcol Nef as a key determinant of SERINC5 antagonism. Efficient counteraction of SERINC5 did not increase HIV-1 replication in preactivated CD4+ T cells and in ex vivo infected lymphoid tissue but had modest enhancing effects when resting PBMCs were first infected and activated six days later. Evolution of high anti-SERINC5 activity by SIVcol Nef supports a relevant role of this antagonism in vivo, for instance by enhancing virion infectivity under conditions of limited T cell activation.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Bengisu Akbil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Integrative Virology, CIID, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Birthe Trautz
- Department of Infectious Diseases, Integrative Virology, CIID, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ahidjo Ayouba
- TransVIHMI, Institut de Recherche pour le Développement, University of Montpellier, INSERM, Montpellier, France
| | - Martine Peeters
- TransVIHMI, Institut de Recherche pour le Développement, University of Montpellier, INSERM, Montpellier, France
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Ontario, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Ontario, Canada
| | - Vânia Passos
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, CIID, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- * E-mail:
| |
Collapse
|
4
|
Felli C, Vincentini O, Silano M, Masotti A. HIV-1 Nef Signaling in Intestinal Mucosa Epithelium Suggests the Existence of an Active Inter-kingdom Crosstalk Mediated by Exosomes. Front Microbiol 2017. [PMID: 28642743 PMCID: PMC5462933 DOI: 10.3389/fmicb.2017.01022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human intestinal mucosal surface represents the first defense against pathogens and regulates the immune response through the combination of epithelial cell (EC) functions and immunological factors. ECs act as sensors of luminal stimuli and interact with the immune cells through signal-transduction pathways, thus representing the first barrier that HIV-1 virus encounters during infection. In particular, the HIV-1 Nef protein plays a crucial role in viral invasion and replication. Nef is expressed early during viral infection and interacts with numerous cellular proteins as a scaffold/adaptor. Nef is localized primarily to cellular membranes and affects several signaling cascades in infected cells modulating the expression of cell surface receptors critical for HIV-1 infection and transmission, also accompanied by the production of specific cytokines and progressive depletion of CD4+ T cells. At the intestinal level, Nef contributes to affect the mucosal barrier by increasing epithelial permeability, that results in the translocation of microbial antigens and consequently in immune system activation. However, the pathological role of Nef in mucosal dysfunction has not been fully elucidated. Interestingly, Nef is secreted also within exosomes and contributes to regulate the intercellular communication exploiting the vesicular trafficking machinery of the host. This can be considered as a potential inter-kingdom communication pathway between virus and humans, where viral Nef contributes to modulate and post-transcriptionally regulate the host gene expression and immune response. In this mini-review we discuss the effects of HIV-1 Nef protein on intestinal epithelium and propose the existence of an inter-kingdom communication process mediated by exosomes.
Collapse
Affiliation(s)
- Cristina Felli
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital - Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Olimpia Vincentini
- Unit of Human Nutrition and Health, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità - Italian National Institute of HealthRome, Italy
| | - Marco Silano
- Unit of Human Nutrition and Health, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità - Italian National Institute of HealthRome, Italy
| | - Andrea Masotti
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital - Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| |
Collapse
|
5
|
Shinya E, Shimizu M, Owaki A, Paoletti S, Mori L, De Libero G, Takahashi H. Hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2) are involved in the down-regulation of CD1a lipid antigen presentation by HIV-1 Nef in dendritic cells. Virology 2015; 487:285-95. [PMID: 26584215 DOI: 10.1016/j.virol.2015.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DCs) play a major role in in vivo pathogenesis of HIV-1 infection. Therefore, DCs may provide a promising strategy to control and eventually overcome the fatal infection. Especially, immature DCs express all CD1s, the non-MHC lipid antigen -presenting molecules, and HIV-1 Nef down-regulates CD1 expression besides MHC. Moreover, CD1d-restricted CD4(+) NKT cells are infected by HIV-1, reducing the number of these cells in HIV-1-infected individuals. To understand the exact role of DCs and CD1-mediated immune response during HIV-1 infection, Nef down-regulation of CD1a-restricted lipid/glycolipid Ag presentation in iDCs was analyzed. We demonstrated the involvement of the association of Nef with hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2), and that Hck, which is expressed strongly in iDCs, augmented this mutual interaction. Hck might be another therapeutic target to preserve the function of HIV-1 infected DCs, which are potential reservoirs of HIV-1 even after antiretroviral therapy.
Collapse
Affiliation(s)
- Eiji Shinya
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Atsuko Owaki
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| | - Samantha Paoletti
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo city, Tokyo 113-8602, Japan
| |
Collapse
|
6
|
Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ(1-42) secretion in SH-SY5Y neural cells. J Neurovirol 2015; 22:179-90. [PMID: 26407718 DOI: 10.1007/s13365-015-0383-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
In the era of combined antiretroviral therapy (CART), many of the complications due to HIV-1 infection have diminished. One exception is HIV-associated neurocognitive disorder (HAND). HAND is a spectrum of disorders in cognitive function that ranges from asymptomatic disease to severe dementia (HAD). The milder form of HAND has actually remained the same or slightly increased in prevalence in the CART era. Even in individuals who have maintained undetectable HIV RNA loads, viral proteins such as Nef and Tat can continue to be expressed. In this report, we show that Nef protein and nef messenger RNA (mRNA) are packaged into exosomes that remain in circulation in patients with HAD. Plasma-derived Nef exosomes from patients with HAD have the ability to interact with the neuroblastoma cell line SH-SY5Y and deliver nef mRNA. The mRNA can induce expression of Nef in target cells and subsequently increase expression and secretion of beta-amyloid (Aβ) and Aβ peptides. Increase secretion of amyloid peptide could contribute to cognitive impairment seen in HAND.
Collapse
|
7
|
Saxena R, Gupta S, Singh K, Mitra K, Tripathi AK, Tripathi RK. Proteomic profiling of SupT1 cells reveal modulation of host proteins by HIV-1 Nef variants. PLoS One 2015; 10:e0122994. [PMID: 25874870 PMCID: PMC4395413 DOI: 10.1371/journal.pone.0122994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/26/2015] [Indexed: 01/14/2023] Open
Abstract
Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1) through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01) in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1), VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61) and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein expression in T cells by HIV-1 Nef variants.
Collapse
Affiliation(s)
- Reshu Saxena
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Sudipti Gupta
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Kavita Singh
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Kalyan Mitra
- Electron Microscopy Lab, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
| | - Anil Kumar Tripathi
- Department of Medicine, King George’s Medical University, Chowk, Lucknow, India
| | - Raj Kamal Tripathi
- Toxicology division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, India
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Heigele A, Camerini D, van't Wout AB, Kirchhoff F. Viremic long-term nonprogressive HIV-1 infection is not associated with abnormalities in known Nef functions. Retrovirology 2014; 11:13. [PMID: 24495362 PMCID: PMC3927655 DOI: 10.1186/1742-4690-11-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/26/2014] [Indexed: 11/12/2022] Open
Abstract
Background A small minority of HIV-1-infected individuals show low levels of immune activation and do not develop immunodeficiency despite high viral loads. Since the accessory viral Nef protein modulates T cell activation and plays a key role in the pathogenesis of AIDS, we investigated whether specific properties of Nef may be associated with this highly unusual clinical outcome of HIV-1 infection. Findings Comprehensive functional analyses of sequential HIV-1 strains from three viremic long-term non-progressors (VNP) showed that they encode full-length Nef proteins that are capable of modulating CD4, CD28, CD8ß, MHC-I and CD74 cell surface expression. Similar to Nef proteins from HIV-1-infected individuals with progressive infection (P-Nefs) and unlike Nefs from simian immunodeficiency viruses (SIVs) that do not cause chronic immune activation and disease in their natural simian hosts, VNP-Nefs were generally unable to down-modulate TCR-CD3 cell surface expression to block T cell activation and apoptosis. On average, VNP-Nefs suppressed NF-AT activation less effectively than P-Nefs and were slightly less active in enhancing NF-κB activity. Finally, we found that VNP-Nefs increased virion infectivity and enhanced HIV-1 replication and cytopathicity in primary human cells and in ex vivo infected lymphoid tissues. Conclusions Our results show that nef alleles from VNPs and progressors of HIV-1 infection show only modest differences in established functions. Thus, the lack of chronic immune activation and disease progression in HIV-1-infected VNPs is apparently not associated with unusual functional properties of the accessory viral Nef protein.
Collapse
Affiliation(s)
| | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
10
|
Zhu X, Guo Y, Yao S, Yan Q, Xue M, Hao T, Zhou F, Zhu J, Qin D, Lu C. Synergy between Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling pathway. Oncogene 2013; 33:1986-96. [PMID: 23604117 DOI: 10.1038/onc.2013.136] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/04/2013] [Accepted: 02/28/2013] [Indexed: 12/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma (KS), which is the most common AIDS-associated malignancy. KS is characterized by neovascularization and spindle cell proliferation. The interaction between HIV-1 and KSHV has a central role in promoting the aggressive manifestations of KS in AIDS patients; however, the pathogenesis underlying AIDS-related KS (AIDS-KS) remains unknown. Herein, we examined the potential of HIV-1 negative factor (Nef) to impact KSHV viral interleukin-6 (vIL-6)-induced angiogenesis and tumorigenesis. In vitro experiments showed that exogenous Nef penetrated vIL-6-expressing endothelial cells. Both internalized and ectopic expression of Nef in endothelial cells and fibroblasts synergized with vIL-6 to promote vascular tube formation and cell proliferation. Using a chicken chorioallantoic membrane (CAM) model, we demonstrated that Nef synergistically promotes vIL-6-induced angiogenesis and tumorigenesis. Animal experiments further showed that Nef facilitates vIL-6-induced angiogenesis and tumor formation in athymic nu/nu mice. Mechanistic studies indicated that Nef synergizes with vIL-6 to enhance angiogenesis and tumorigenesis by activating the AKT pathway in the CAM model, as well as nude mice. LY294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), significantly impaired the ability of Nef to promote vIL-6-induced tumorigenesis in an allograft model of nude mice. Our data provide first-line evidence that Nef may contribute to the pathogenesis underlying AIDS-KS in synergy with vIL-6. These novel findings also suggest that targeting the PI3K/AKT signal may be a potentially effective therapeutic approach in AIDS-KS patients.
Collapse
Affiliation(s)
- X Zhu
- 1] State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China [2] Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, PR China [3] Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China [4] Department of Laboratory Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, PR China
| | - Y Guo
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - S Yao
- Medical School, Quzhou College of Technology, Quzhou, PR China
| | - Q Yan
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - M Xue
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - T Hao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - F Zhou
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - J Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - D Qin
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - C Lu
- 1] State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China [2] Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, PR China [3] Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
11
|
Pal S, Mishra M, Sudhakar DR, Siddiqui MH. In-silico designing of a potent analogue against HIV-1 Nef protein and protease by predicting its interaction network with host cell proteins. J Pharm Bioallied Sci 2013; 5:66-73. [PMID: 23559827 PMCID: PMC3612342 DOI: 10.4103/0975-7406.106572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/07/2012] [Accepted: 08/20/2012] [Indexed: 11/05/2022] Open
Abstract
Background: HIV-1 has numerous proteins encoded within its genome, which acquaints it with the required arsenal to establish a favorable host cell environment suitable for viral replication and pathogenesis. Among these proteins, one protein that is indispensable and ambiguous is the Nef protein. Aim: Interaction of Nef protein with different host-cell protein was predicted and subsequently the down regulation of cluster of differentiation 4 (CD4) was targeted through designing of inhibitors of Nef protein for either preventing or if not at least delaying pathogenesis. Materials and Methods: The interaction network of Nef protein with host-cell proteins were predicted by PIMRider. Analogue of Lopinavir were prepared and evaluated considering all factors affecting the drug stability and toxicity. Finally Docking simulation were performed using an Auto-Dock Tool 4.0. Results: In the interaction network of Nef protein with different host-cell proteins it was found out that 22 host cell proteins are involved in the interaction and execution of different types of functions in host cell but these functions are altered with the interaction with the Nef protein. After extensive and controlled in silico analysis it has been observed that the analogue LOPI1 binds to Nef protein (2NEF) at CD4 interacting site residues giving minimum binding energy of –7.68 Kcal/mole, low Ki value of 2.34 μM, maximum number of hydrogen bonds (8), good absorption, distribution, metabolism and excretion properties, and less toxicity in comparison with the standard Lopinavir against HIV1 protease (1HPV). Conclusion: The newly designed analogue (LOPI1) is showing significant in silico interaction with Nef protein and protease and can be taken forward as a potent drug lead, which may finally emerge out to be even better than the standard Lopinavir.
Collapse
Affiliation(s)
- Shikha Pal
- Department of Bioinformatics, UIET, CSJM University, Kanpur, Uttar Pradesh, India
| | | | | | | |
Collapse
|
12
|
Markle TJ, Philip M, Brockman MA. HIV-1 Nef and T-cell activation: a history of contradictions. Future Virol 2013; 8. [PMID: 24187576 DOI: 10.2217/fvl.13.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HIV-1 Nef is a multifunctional viral protein that contributes to higher plasma viremia and more rapid disease progression. Nef appears to accomplish this, in part, through modulation of T-cell activation; however, the results of these studies over the past 25 years have been inconsistent. Here, the history of contradictory observations related to HIV-1 Nef and its ability to modulate T-cell activation is reviewed, and recent reports that may help to explain Net's apparent ability to both inhibit and activate T cells are highlighted.
Collapse
Affiliation(s)
- Tristan J Markle
- Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada
| | | | | |
Collapse
|
13
|
Singh P, Agnihotri SK, Tewari MC, Kumar S, Sachdev M, Tripathi RK. HIV-1 Nef breaches placental barrier in rat model. PLoS One 2012; 7:e51518. [PMID: 23240037 PMCID: PMC3519864 DOI: 10.1371/journal.pone.0051518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
The vertical transmission of HIV-1 from the mother to fetus is known, but the molecular mechanism regulating this transmission is not fully characterized. The fetus is highly protected by the placenta, which does not permit microbial pathogens to cross the placental barrier. In the present study, a rat model was established to observe the effect of HIV-1 protein Nef on placental barrier. Evans blue dye was used to assay permeability of placental barrier and fourteen day pregnant Sprague Dawley rats were injected intravenously with 2% Evans blue dye along with various concentrations of recombinant Nef. After an hour, animals were sacrificed and dye migration was observed through the assimilation of peripheral blood into fetus. Interestingly, traces of recombinant Nef protein were detected in the embryo as well as amniotic fluid and amniotic membrane along with placenta and uterus. Our study indicates that recombinant HIV-1-Nef protein breaches the placental barrier and allows the migration of Evans blue dye to the growing fetus. Further the concentration of Nef protein in blood is directly proportional to the intensity of dye migration and to the amount of Nef protein detected in uterus, placenta, amniotic membrane, amniotic fluid and embryo. Based on this study, it can be concluded that the HIV-1 Nef protein has a direct effect on breaching of the placental barrier in the model we have established in this study. Our observations will be helpful to understand the molecular mechanisms related to this breach of placental barrier by Nef in humans and may be helpful to identify specific Nef inhibitors.
Collapse
Affiliation(s)
- Poonam Singh
- Toxicology Division, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Saurabh Kumar Agnihotri
- Endocrinology Division, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Mahesh Chandra Tewari
- Endocrinology Division, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Sadan Kumar
- Toxicology Division, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Monika Sachdev
- Endocrinology Division, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
- * E-mail: (MS); (RK)
| | - Raj Kamal Tripathi
- Toxicology Division, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
- * E-mail: (MS); (RK)
| |
Collapse
|
14
|
Corró G, Rocco CA, De Candia C, Catano G, Turk G, Mangano A, Aulicino PC, Bologna R, Sen L. Genetic and functional analysis of HIV type 1 nef gene derived from long-term nonprogressor children: association of attenuated variants with slow progression to pediatric AIDS. AIDS Res Hum Retroviruses 2012; 28:1617-26. [PMID: 22583022 DOI: 10.1089/aid.2012.0020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among persons infected by HIV-1, the rate of progression to AIDS is multifactorial being affected by host and viral factors, including the HIV-encoded negative factor (Nef). Our aim was to define whether variations in the nef gene as well as its functions may be associated with slower HIV disease course in infected children. The proviral HIV-1 nef gene was cloned, sequenced, and compared in children with contrasting disease course: 10 long-term nonprogressors (LTNP) and six rapid progressor (RP). The CD4 and MHC-I down-modulation ability of nef alleles derived from LTNP and RP children was analyzed. We observed that only one of our 10 LTNP had a protective genetic background, and out of them, 40% had defective nef genes, carrying substitutions at the (AWLEAQ(56-61)) and the (Rxx(22-24)) domains, and that those alleles were unable of down-regulate CD4 and MHC-I. The emergence or presence of Nef L58V substitution was associated with viral attenuation, indicated by a reduction in HIV viral loads, a persistent preservation of CD4(+) T cell counts, and lack of AIDS-related symptoms. Our results demonstrate that HIV-1 perinatally infected children carrying functionally defective nef HIV-1 strains have prolonged asymptomatic phases without therapy, suggesting a relevant role of CD4 and MHC-I down-modulation Nef domains on in vivo HIV-1 pathogenesis and pediatric immunodeficiency outcome.
Collapse
Affiliation(s)
- Guillermo Corró
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría “Prof. Dr. Juan P. Garran,” Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Carlos A Rocco
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría “Prof. Dr. Juan P. Garran,” Buenos Aires, Argentina
| | - Cristian De Candia
- National Reference Center for AIDS, University of Buenos Aires, Buenos Aires, Argentina
| | - Gabriel Catano
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System and Department of Medicine, University of Texas Health Science Care at San Antonio, San Antonio, Texas
| | - Gabriela Turk
- National Reference Center for AIDS, University of Buenos Aires, Buenos Aires, Argentina
| | - Andrea Mangano
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría “Prof. Dr. Juan P. Garran,” Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula C. Aulicino
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría “Prof. Dr. Juan P. Garran,” Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Rosa Bologna
- Servicio de Infectología, Hospital de Pediatría “Prof. Dr. Juan P. Garrahan,” Buenos Aires, Argentina
| | - Luisa Sen
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría “Prof. Dr. Juan P. Garran,” Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
15
|
Qin X, Yao J, Yang F, Nie J, Wang Y, Liu PC. Human immunodeficiency virus type 1 Nef in human monocyte-like cell line THP-1 expands treg cells via toll-like receptor 2. J Cell Biochem 2012; 112:3515-24. [PMID: 21845735 DOI: 10.1002/jcb.23318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD4(+) CD25(+) regulatory T cells (Tregs) represent a unique T-cell lineage that is endowed with the ability to actively suppress immune responses in order to inhibit pathogenic damage resulting from over activation of the immune system. In human immunodeficiency virus-1 (HIV-1) infection, suppression of the immune response by Tregs appears to play an opposing role that promotes chronic viral infection. Treg expansion is known as a marker of the severity of HIV infection and as a potential prognostic marker of disease progression. HIV-1 Nef is one of the earliest expressed viral regulatory genes whose expression may play an important role in regulating Treg cells. We established a THP-1 cell line stably expressing HIV-1 Nef and showed that Nef protein was a potent factor for increasing Treg numbers in vitro. We further found that TLR2 plays a critical role in the increase in Treg cells induced by Nef using TLR2-specific siRNA. Our results suggest new strategies for therapeutic and preventive interventions of HIV infection.
Collapse
Affiliation(s)
- Xiaolin Qin
- Institute of Molecular Biology of Three Gorges University, Yichang 443002, Hubei Province, P.R. China
| | | | | | | | | | | |
Collapse
|
16
|
Barbagallo MS, Birch KE, Deacon NJ, Mosse JA. Potential control of human immunodeficiency virus type 1 asp expression by alternative splicing in the upstream untranslated region. DNA Cell Biol 2012; 31:1303-13. [PMID: 22455394 DOI: 10.1089/dna.2011.1585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The negative-sense asp open reading frame (ORF) positioned opposite to the human immunodeficiency virus type 1 (HIV-1) env gene encodes the 189 amino acid, membrane-associated ASP protein. Negative-sense transcription, regulated by long terminal repeat sequences, has been observed early in HIV-1 infection in vitro. All subtypes of HIV-1 were scanned to detect the negative-sense asp ORF and to identify potential regulatory sequences. A series of highly conserved upstream short open reading frames (sORFs) was identified. This potential control region from HIV-1(NL4-3), containing six sORFs, was cloned upstream of the reporter gene EGFP. Expression by transfection of HEK293 cells indicated that the introduction of this sORF region inhibits EGFP reporter expression; analysis of transcripts revealed no significant changes in levels of EGFP mRNA. Reverse transcriptase-polymerase chain reaction analysis (RT-PCR) further demonstrated that the upstream sORF region undergoes alternative splicing in vitro. The most abundant product is spliced to remove sORFs I to V, leaving only the in-frame sORF VI upstream of asp. Sequence analysis revealed the presence of typical splice donor- and acceptor-site motifs. Mutation of the highly conserved splice donor and acceptor sites modulates, but does not fully relieve, inhibition of EGFP production. The strong conservation of asp and its sORFs across all HIV-1 subtypes suggests that the asp gene product may have a role in the pathogenesis of HIV-1. Alternative splicing of the upstream sORF region provides a potential mechanism for controlling expression of the asp gene.
Collapse
Affiliation(s)
- Michael S Barbagallo
- School of Applied Sciences and Engineering, Monash University, Churchill, Australia.
| | | | | | | |
Collapse
|
17
|
Quaranta MG, Vincentini O, Felli C, Spadaro F, Silano M, Moricoli D, Giordani L, Viora M. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity. PLoS One 2011; 6:e23442. [PMID: 21858117 PMCID: PMC3152569 DOI: 10.1371/journal.pone.0023442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line. Methodology/Principal Findings We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepitelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade. Conclusion/Significance Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
UNLABELLED Chlamydiae are well known for their species specificity and tissue tropism, and yet the individual species and strains show remarkable genomic synteny and share an intracellular developmental cycle unique in the microbial world. Only a relatively few chlamydial genes have been linked to specific disease or tissue tropism. Here we show that chlamydial species associated with human infections, Chlamydia trachomatis and C. pneumoniae, exhibit unique requirements for Src-family kinases throughout their developmental cycle. Utilization of Src-family kinases by C. trachomatis includes tyrosine phosphorylation of the secreted effector Tarp during the entry process, a functional role in microtubule-dependent trafficking to the microtubule organizing center, and a requirement for Src-family kinases for successful initiation of development. Nonhuman chlamydial species C. caviae and C. muridarum show none of these requirements and, instead, appear to be growth restricted by the activities of Src-family kinases. Depletion of Src-family kinases triggers a more rapid development of C. caviae with up to an 800% increase in infectious progeny production. Collectively, the results suggest that human chlamydial species have evolved requirements for tyrosine phosphorylation by Src-family kinases that are not seen in other chlamydial species. The requirement for Src-family kinases thus represents a fundamental distinction between chlamydial species that would not be readily apparent in genomic comparisons and may provide insights into chlamydial disease association and species specificity. IMPORTANCE Chlamydiae are well known for their species specificity and tissue tropism as well as their association with unique diseases. A paradox in the field relates to the remarkable genomic synteny shown among chlamydiae and the very few chlamydial genes linked to specific diseases. We have found that different chlamydial species exhibit unique requirements for Src-family kinases. These differing requirements for Src-family kinases would not be apparent in genomic comparisons and appear to be a previously unrecognized distinction that may provide insights to guide research in chlamydial pathogenesis.
Collapse
|
19
|
Neri F, Giolo G, Potestà M, Petrini S, Doria M. The HIV-1 Nef protein has a dual role in T cell receptor signaling in infected CD4+ T lymphocytes. Virology 2010; 410:316-26. [PMID: 21176845 DOI: 10.1016/j.virol.2010.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/31/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The phenotypic changes that are induced by immune activation in CD4(+) T lymphocytes provide an optimal environment for efficient HIV-1 replication in these cells. The pathogenic Nef protein of HIV-1 modulates the T cell receptor (TCR) signaling, but whether this has a positive or negative effect on cellular activation is a matter of debate. Here we have investigated the response to TCR stimulation of primary CD4(+) T lymphocytes infected with wt or Nef-deficient HIV-1. Results show that, in freshly isolated quiescent T cells, Nef superinduces NFAT and IL-2 production bypassing early TCR effector molecules. Conversely, the early phosphorylation of PLC-γ1, the induction of NFAT, and the expression of IL-2 are impaired by Nef in sub-optimally activated/resting T cells. Our data indicate that Nef has a dual role in the modulation of TCR signaling aimed at favoring HIV-1 replication and spread in both quiescent and metabolically active CD4(+) T lymphocytes.
Collapse
Affiliation(s)
- Francesca Neri
- Laboratory of Immunoinfectivology, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | | | | | | | | |
Collapse
|
20
|
Bergonzini V, Calistri A, Salata C, Del Vecchio C, Sartori E, Parolin C, Palù G. Nef and cell signaling transduction: a possible involvement in the pathogenesis of human immunodeficiency virus-associated dementia. J Neurovirol 2010; 15:238-48. [PMID: 19455469 DOI: 10.1080/13550280902939748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Although the introduction of highly active antiretroviral therapy (HAART) has resulted in a significant decrease of acquired immunodeficiency syndrome (AIDS) morbidity and mortality, the prevalence of human immunodeficiency virus (HIV)-associated dementia (HAD) has actually risen, due to the increasing life expectancy of the infected subjects. To date, several aspects of the HAD pathogenesis remain to be dissected. In particular, the viral-cellular protein interplay is still under investigation. Given their specific features, two viral proteins, Tat and Nef, have been mainly hypothesized to play a role in HIV neuropathology. Here we show that HIV-1 Nef has an effect on the transcriptional levels of a cellular protein, anaplastic lymphoma kinase (ALK), that is preferentially expressed in the central and peripheral nervous system at late embryonic stages. By its overexpression along with Nef, the authors demonstrate ALK ability to influence, at least in the U87MG astrocytic glioma cells, the mytogen-activated protein kinase (MAP-K)-dependent pathway. Moreover, although in the absence of a physical direct interaction, Nef and ALK activate matrix metalloproteinases (MMPs), which are likely to contribute to blood-brain barrier (BBB) damage in HAD. Finally, in the in vitro model of glioblastoma cells adopted, Nef and ALK show similar effects by increasing different cytochines/chemokines that may be relevant for HAD pathogenesis. If confirmed in vivo, these data may indicate that, thanks to its ability to interfere with specific cellular pathways involved in BBB damage and in central nervous system (CNS) integrity, Nef, along with specific cellular counterparts, could be one of the viral players implicated in HAD development.
Collapse
Affiliation(s)
- Valeria Bergonzini
- Department of Histology, Microbiology, and Medical Biotechnologies, Division of Microbiology and Virology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Borjabad A, Brooks AI, Volsky DJ. Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 2010; 5:44-62. [PMID: 19697136 PMCID: PMC3107560 DOI: 10.1007/s11481-009-9167-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/27/2009] [Indexed: 12/17/2022]
Abstract
Astrocytes are the major cellular component of the central nervous system (CNS), and they play multiple roles in brain development, normal brain function, and CNS responses to pathogens and injury. The functional versatility of astrocytes is linked to their ability to respond to a wide array of biological stimuli through finely orchestrated changes in cellular gene expression. Dysregulation of gene expression programs, generally by chronic exposure to pathogenic stimuli, may lead to dysfunction of astrocytes and contribute to neuropathogenesis. Here, we review studies that employ functional genomics to characterize the effects of HIV-1 and viral pathogenic proteins on cellular gene expression in astrocytes in vitro. We also present the first microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. In spite of different experimental conditions and microarray platforms used, comparison of the astrocyte array data sets reveals several common gene-regulatory changes that may underlie responses of these cells to HIV-1 and its proteins. We also compared the transcriptional profiles of astrocytes with those obtained in analyses of brain tissues of patients with HIV-1 dementia and macaques infected with simian immunodeficiency virus (SIV). Notably, many of the gene characteristics of responses to HIV-1 in cultured astrocytes were also altered in HIV-1 or SIV-infected brains. Functional genomics, in conjunction with other approaches, may help clarify the role of astrocytes in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, 432 West 58th Street, Antenucci Building, Room 709, New York, NY 10019, USA
| | | | | |
Collapse
|
22
|
Rato S, Maia S, Brito PM, Resende L, Pereira CF, Moita C, Freitas RP, Moniz-Pereira J, Hacohen N, Moita LF, Goncalves J. Novel HIV-1 knockdown targets identified by an enriched kinases/phosphatases shRNA library using a long-term iterative screen in Jurkat T-cells. PLoS One 2010; 5:e9276. [PMID: 20174665 PMCID: PMC2822867 DOI: 10.1371/journal.pone.0009276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/29/2010] [Indexed: 12/20/2022] Open
Abstract
HIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells. Here, we focused on the discovery of kinases and phosphatases that are essential for HIV-1 replication but dispensable for cell viability. We performed an iterative screen in Jurkat T-cells with a short-hairpin-RNA (shRNA) library highly enriched for human kinases and phosphatases. We identified 14 new proteins essential for HIV-1 replication that do not affect cell viability. These proteins are described to be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. Moreover, we show that the proteins under study are important in an early step of HIV-1 infection before viral integration, whereas some of them affect viral transcription/translation. This study brings new insights for the complex interplay of HIV-1/host cell and opens new possibilities for antiviral strategies.
Collapse
Affiliation(s)
- Sylvie Rato
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sara Maia
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Paula M. Brito
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Leonor Resende
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Carina F. Pereira
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Moita
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Rui P. Freitas
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - José Moniz-Pereira
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Nir Hacohen
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Luis Ferreira Moita
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Joao Goncalves
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
23
|
Kumawat K, Pathak SK, Spetz AL, Kundu M, Basu J. Exogenous Nef is an inhibitor of Mycobacterium tuberculosis-induced tumor necrosis factor-alpha production and macrophage apoptosis. J Biol Chem 2010; 285:12629-37. [PMID: 20068037 DOI: 10.1074/jbc.m109.073320] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) impairs tumor necrosis factor-alpha (TNF-alpha)-mediated macrophage apoptosis induced by Mycobacterium tuberculosis (Mtb). HIV Nef protein plays an important role in the pathogenesis of AIDS. We have tested the hypothesis that exogenous Nef is a factor that inhibits TNF-alpha production/apoptosis in macrophages infected with Mtb. We demonstrate that Mtb and Nef individually trigger TNF-alpha production in macrophages. However, TNF-alpha production is dampened when the two are present simultaneously, probably through cross-regulation of the individual signaling pathways leading to activation of the TNF-alpha promoter. Mtb-induced TNF-alpha production is abrogated upon mutation of the Ets, Egr, Sp1, CRE, or AP1 binding sites on the TNF-alpha promoter, whereas Nef-mediated promoter activation depends only on the CRE and AP1 binding sites, pointing to differences in the mechanisms of activation of the promoter. Mtb-dependent promoter activation depends on the mitogen-activated kinase (MAPK) kinase kinase ASK1 and on MEK/ERK signaling. Nef inhibits ASK1/p38 MAPK-dependent Mtb-induced TNF-alpha production probably by inhibiting binding of ATF2 to the TNF-alpha promoter. It also inhibits MEK/ERK-dependent Mtb-induced binding of FosB to the promoter. Nef-driven TNF-alpha production occurs in an ASK1-independent, Rac1/PAK1/p38 MAPK-dependent, and MEK/ERK-independent manner. The signaling pathways used by Mtb and Nef to trigger TNF-alpha production are therefore distinctly different. In addition to attenuating Mtb-dependent TNF-alpha promoter activation, Nef also reduces Mtb-dependent TNF-alpha mRNA stability probably through its ability to inhibit ASK1/p38 MAPK signaling. These results provide new insight into how HIV Nef probably exacerbates tuberculosis infection by virtue of its ability to dampen Mtb-induced TNF-alpha production.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | | | | | | | | |
Collapse
|
24
|
Arhel N, Lehmann M, Clauss K, Nienhaus GU, Piguet V, Kirchhoff F. The inability to disrupt the immunological synapse between infected human T cells and APCs distinguishes HIV-1 from most other primate lentiviruses. J Clin Invest 2009; 119:2965-75. [PMID: 19759518 DOI: 10.1172/jci38994] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/22/2009] [Indexed: 12/31/2022] Open
Abstract
Viruses that infect T cells, including those of the lentivirus genus, such as HIV-1, modulate the responsiveness of infected T cells to stimulation by interacting APCs in a manner that renders the T cells more permissive for viral replication. HIV-1 and other primate lentiviruses use their Nef proteins to manipulate the T cell/APC contact zone, the immunological synapse (IS). It is known that primate lentiviral Nef proteins differ substantially in their ability to modulate cell surface expression of the TCR-CD3 and CD28 receptors critical for the formation and function of the IS. However, the impact of these differences in Nef function on the interaction and communication between virally infected T cells and primary APCs has not been investigated. Here we have used primary human cells to show that Nef proteins encoded by HIV-2 and most SIVs, which downmodulate cell surface expression of TCR-CD3, disrupt formation of the IS between infected T cells and Ag-presenting macrophages or DCs. In contrast, nef alleles from HIV-1 and its simian precursor SIVcpz failed to suppress synapse formation and events downstream of TCR signaling. Our data suggest that most primate lentiviruses disrupt communication between virally infected CD4+ Th cells and APCs, whereas HIV-1 and its SIV precursor have largely lost this capability. The resulting differences in the levels of T cell activation and apoptosis may play a role in the pathogenesis of AIDS.
Collapse
Affiliation(s)
- Nathalie Arhel
- Institute of Molecular Virology, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Zhang S, Hisatsune C, Matsu-Ura T, Mikoshiba K. G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1,4,5-triphosphate receptor-mediated Ca2+ signal regulation. J Biol Chem 2009; 284:29158-69. [PMID: 19706611 DOI: 10.1074/jbc.m109.041509] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) is an intracellular IP(3)-gated calcium (Ca(2+)) release channel and plays important roles in regulation of numerous Ca(2+)-dependent cellular responses. Many intracellular modulators and IP(3)R-binding proteins regulate the IP(3)R channel function. Here we identified G-protein-coupled receptor kinase-interacting proteins (GIT), GIT1 and GIT2, as novel IP(3)R-binding proteins. We found that both GIT1 and GIT2 directly bind to all three subtypes of IP(3)R. The interaction was favored by the cytosolic Ca(2+) concentration and it functionally inhibited IP(3)R activity. Knockdown of GIT induced and accelerated caspase-dependent apoptosis in both unstimulated and staurosporine-treated cells, which was attenuated by wild-type GIT1 overexpression or pharmacological inhibitors of IP(3)R, but not by a mutant form of GIT1 that abrogates the interaction. Thus, we conclude that GIT inhibits apoptosis by modulating the IP(3)R-mediated Ca(2+) signal through a direct interaction with IP(3)R in a cytosolic Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Songbai Zhang
- Calcium Oscillation Project, International Cooperative Research Project-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
26
|
Pulliam L. HIV regulation of amyloid beta production. J Neuroimmune Pharmacol 2009; 4:213-7. [PMID: 19288202 DOI: 10.1007/s11481-009-9151-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/25/2009] [Indexed: 11/29/2022]
Abstract
The use of antiretroviral therapy for HIV infection has extended the survival of individuals living with HIV. However, the effects of chronic HIV infection and aging are introducing another facet of HIV complications. HIV therapy can calm the immune system and lower viral replication to undetectable but the virus is still present. In the brain, amyloid beta (Abeta) increases during normal aging but Abeta accumulation appears to accelerate in HIV infection. HIV Tat protein inhibits the major Abeta-degrading enzyme neprilysin with the cysteine-rich domain of Tat being essential for this inhibition. In this minireview, we also include new data that the beta chemokine, CCL2/MCP-1, associated with HIV migration to the brain, also causes an increase in Abeta. These findings may explain the continued cognitive dysfunction found in HIV-infected individuals controlled on antiviral therapy.
Collapse
Affiliation(s)
- Lynn Pulliam
- Veterans Affair Medical Center, San Francisco, University of California, San Francisco, CA 94121, USA.
| |
Collapse
|
27
|
Abstract
During HIV infection, the perturbation of the adaptive and innate immune responses contributes to the progressive immunosuppression leading to an increased susceptibility to opportunistic infections and neoplastic diseases. Several impairments observed in HIV-infected patients include a gradual loss of CD4(+) T cells, CD8(+) T cell dysfunction, and a decreased number and function of natural killer (NK) cells. Moreover, a functional impairment and variation in the number of DC and B cells were observed during HIV infection. HIV-1 codes for proteins, including the accessory Nef proteins, that interacting with immune cells may contribute to AIDS pathogenesis. Here, we review the recent progress on the immunomodulatory effect of the accessory Nef protein and its role in the pathogenesis of HIV-1 infection. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
28
|
Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, Heydarian M, Fu S, McCaffrey T, Meiri E, Ayash-Rashkovsky M, Gilad S, Bentwich Z, Kashanchi F. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 2009; 6:18. [PMID: 19220914 PMCID: PMC2654423 DOI: 10.1186/1742-4690-6-18] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/16/2009] [Indexed: 12/23/2022] Open
Abstract
Background RNA interference is a gene regulatory mechanism that employs small RNA molecules such as microRNA. Previous work has shown that HIV-1 produces TAR viral microRNA. Here we describe the effects of the HIV-1 TAR derived microRNA on cellular gene expression. Results Using a variation of standard techniques we have cloned and sequenced both the 5' and 3' arms of the TAR miRNA. We show that expression of the TAR microRNA protects infected cells from apoptosis and acts by down-regulating cellular genes involved in apoptosis. Specifically, the microRNA down-regulates ERCC1 and IER3, protecting the cell from apoptosis. Comparison to our cloned sequence reveals possible target sites for the TAR miRNA as well. Conclusion The TAR microRNA is expressed in all stages of the viral life cycle, can be detected in latently infected cells, and represents a mechanism wherein the virus extends the life of the infected cell for the purpose of increasing viral replication.
Collapse
Affiliation(s)
- Zachary Klase
- The Department of Microbiology, Immunology and Tropical Medicine program, The George Washington University School of Medicine, Washington, District of Columbia 20037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Arhel NJ, Kirchhoff F. Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr Top Microbiol Immunol 2009; 339:147-75. [PMID: 20012528 DOI: 10.1007/978-3-642-02175-6_8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The HIV and SIV Nef accessory proteins are potent enhancers of viral persistence and accelerate progression to AIDS in HIV-1-infected patients and non-human primate models. Although relatively small (27-35 kD), Nef can interact with a multitude of cellular factors and induce complex changes in trafficking, signal transduction, and gene expression that together converge to promote viral replication and immune evasion. In particular, Nef recruits several immunologically relevant cellular receptors to the endocytic machinery to reduce the recognition and elimination of virally infected cells by the host immune system, while simultaneously interacting with various kinases to promote T cell activation and viral replication. This review provides an overview on selected Nef interactions with host cell proteins, and discusses their possible relevance for viral spread and pathogenicity.
Collapse
Affiliation(s)
- Nathalie J Arhel
- Institute of Virology, Universitätsklinikum Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
30
|
Chaudhry A, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S. HIV-1 Nef Induces a Rab11-Dependent Routing of Endocytosed Immune Costimulatory Proteins CD80 and CD86 to the Golgi. Traffic 2008; 9:1925-35. [DOI: 10.1111/j.1600-0854.2008.00802.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
A two-pronged mechanism for HIV-1 Nef-mediated endocytosis of immune costimulatory molecules CD80 and CD86. Cell Host Microbe 2008; 1:37-49. [PMID: 18005680 DOI: 10.1016/j.chom.2007.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/21/2006] [Accepted: 01/18/2007] [Indexed: 12/14/2022]
Abstract
The Nef protein of HIV-1 mediates immune evasion by relocating major histocompatibility complex (MHC) molecules and the immune costimulatory molecules CD80 and CD86 away from the monocytic cell surface. We describe a two-pronged mechanism by which Nef removes CD80 and CD86 from the cell surface. While MHCI, CD80, and CD86 are all internalized via a dynamin-independent pathway, the endocytic mechanism used for costimulatory molecules is distinct from MHCI relocation. Nef expression results in the activation and actin-dependent translocation of Src kinase to the cell periphery. At the cell surface, Src promotes Rac activation via TIAM, a guanine nucleotide exchange factor for Rac. Nef also binds to the cytosolic tails of CD80 and CD86, triggering their endocytosis via Rac-based actin polymerization. These data reveal the use of an unusual molecular mechanism triggered in the host cell by HIV to affect its viral immune evasion strategy and suggest approaches for its subversion.
Collapse
|
32
|
Gómez-Icazbalceta G, Huerta L, Soto-Ramirez LE, Larralde C. Extracellular HIV-1 Nef protein modulates lytic activity and proliferation of human CD8+ T lymphocytes. Cell Immunol 2008; 250:85-90. [PMID: 18358457 DOI: 10.1016/j.cellimm.2008.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/01/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
The effect of extracellular HIV Nef (exNef) protein on the induction of lytic activity and proliferation of CD8+T lymphocytes from 18 donors was studied. At 10 ng/ml, exNef-induced a 2- to 8-fold enhancement of basal lytic activity in cells from all donors in an allogeneic induction assay, whereas it was ineffective at 100ng/ml. The extent of enhancement was inversely correlated with the basal level of lytic activity without exNef. Only in combination with PHA did both exNef concentrations stimulate proliferation, and in a manner inversely related to the effect of PHA alone. Thus, concentrations of exNef commonly found in sera of HIV-infected patients were found to modulate the induction of lytic activity and proliferation of CD8+ T lymphocytes in vitro, to an extent strongly dependent on the quite variable responsiveness of each donor. These findings point to Nef as a potential agent for modulating CD8+ T cell function in pathogenesis and therapy.
Collapse
Affiliation(s)
- G Gómez-Icazbalceta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, AP 70228, C.P. 04510, Mexico City, México.
| | | | | | | |
Collapse
|
33
|
Seaton KE, Smith CD. N-Myristoyltransferase isozymes exhibit differential specificity for human immunodeficiency virus type 1 Gag and Nef. J Gen Virol 2008; 89:288-296. [PMID: 18089753 DOI: 10.1099/vir.0.83412-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Myristoylation of the human immunodeficiency virus type 1 (HIV-1) proteins Gag and Nef by N-myristoyltransferase (NMT) is a key process in retroviral replication and virulence, yet remains incompletely characterized. Therefore, the roles of the two isozymes, NMT1 and NMT2, in myristoylating Gag and Nef were examined using biochemical and molecular approaches. Fluorescently labelled peptides corresponding to the N terminus of HIV-1 Gag or Nef were myristoylated by recombinant human NMT1 and NMT2. Kinetic analyses indicated that NMT1 and NMT2 had 30- and 130-fold lower K(m )values for Nef than Gag, respectively. Values for K(cat) indicated that, once Gag or Nef binds to the enzyme, myristoylation by NMT1 and NMT2 proceeds at comparable rates. Furthermore, the catalytic efficiencies for the processing of Gag by NMT1 and NMT2 were equivalent. In contrast, NMT2 had approximately 5-fold higher catalytic efficiency for the myristoylation of Nef than NMT1. Competition experiments confirmed that the Nef peptide acts as a competitive inhibitor for the myristoylation of Gag. Experiments using full-length recombinant Nef protein also indicated a lower K(m) for Nef myristoylation by NMT2 than NMT1. Small interfering RNAs were used to selectively deplete NMT1 and/or NMT2 from HEK293T cells expressing a recombinant Nef-sgGFP fusion protein. Depletion of NMT1 had minimal effect on the intracellular distribution of Nef-sgGFP, whereas depletion of NMT2 altered distribution to a diffuse, widespread pattern, mimicking that of a myristoylation-deficient mutant of Nef-sgGFP. Together, these findings indicate that Nef is preferentially myristoylated by NMT2, suggesting that selective inhibition of NMT2 may provide a novel means of blocking HIV virulence.
Collapse
Affiliation(s)
- Kelly E Seaton
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Charles D Smith
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC, USA.,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
34
|
Joseph SK, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 2008; 12:951-68. [PMID: 17294082 DOI: 10.1007/s10495-007-0719-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) serve to discharge Ca(2+) from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca(2+)-dependent apoptosis. In particular we focus on the regulation of IP(3)Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP(3)Rs in apoptosis may be independent of their ion-channel function. The role of IP(3)Rs in delivering Ca(2+) to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.
Collapse
Affiliation(s)
- Suresh K Joseph
- Department of Pathology & Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
35
|
HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007; 8:63. [PMID: 17663774 PMCID: PMC1955452 DOI: 10.1186/1471-2199-8-63] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/30/2007] [Indexed: 12/27/2022] Open
Abstract
Background RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA. Results In this study we investigated the possibility that the HIV-1 TAR element, a hairpin structure of ~50 nucleotides found at the 5' end of the HIV viral mRNA, is recognized by the RNAi machinery and processed to yield a viral miRNA. We show that the protein Dicer, the enzyme responsible for cleaving miRNA and siRNA from longer RNA sequences, is expressed in CD4+ T-cells. Interestingly, the level of expression of Dicer in monocytes is sub-optimal, suggesting a possible role for RNAi in maintaining latency in T-cells. Using a biotin labeled TAR element we demonstrate that Dicer binds to this structure. We show that recombinant Dicer is capable of cleaving the TAR element in vitro and that TAR derived miRNA is present in HIV-1 infected cell lines and primary T-cell blasts. Finally, we show that a TAR derived miRNA is capable of regulating viral gene expression and may be involved in repressing gene expression through transcriptional silencing. Conclusion HIV-1 TAR element is processed by the Dicer enzyme to create a viral miRNA. This viral miRNA is detectable in infected cells and appears to contribute to viral latency.
Collapse
|
36
|
Quaranta MG, Napolitano A, Sanchez M, Giordani L, Mattioli B, Viora M. HIV-1 Nef impairs the dynamic of DC/NK crosstalk: different outcome of CD56(dim) and CD56(bright) NK cell subsets. FASEB J 2007; 21:2323-34. [PMID: 17431094 DOI: 10.1096/fj.06-7883com] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) and natural killer (NK) cells are essential components of the innate immunity and play a critical role in the first phase of host defense against infection. Interactions between DCs and NK cells have been demonstrated in a variety of settings, with evidence emerging of complex bidirectional crosstalk between the two cell types. The accessory HIV-1 Nef protein is a crucial determinant for viral replication and pathogenesis. We previously demonstrated that Nef, hijacking DC functional activity, subverts the DC arm of immune response to escape the adaptive immune attack. Here, we monitor the effect of Nef on the outcome of the innate immune response, focusing on the impact of Nef on DC/NK crosstalk. We demonstrate that Nef up-regulates the ability of DCs to stimulate the immunoregulatory NK cells (CD56(bright)) as assessed by the activated phenotype, up-regulation of their proliferative response and INF-gamma release. On the other hand, Nef-pulsed DCs inhibit cytotoxic NK cells (CD56(dim)), as assessed by the reduced HLA-DR surface expression, reduced proliferation and cytotoxic activity. Moreover, in the presence of Nef-pulsed DCs, we found a significant up-regulation of TNF-alpha secretion and a significant reduction of IL-10, GM-CSF, MIP-1alpha and RANTES secretion. Our findings suggest that the Nef-induced dysregulation in the DC/NK cell crosstalk may represent a potential mechanism through which HIV escapes innate immune surveillance.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Porichis F, Vlata Z, Hatzidakis G, Spandidos DA, Krambovitis E. HIV-1 gp120/V3-derived epitopes promote activation-induced cell death to superantigen-stimulated CD4+/CD45RO+ T cells. Immunol Lett 2007; 108:97-102. [PMID: 17141881 DOI: 10.1016/j.imlet.2006.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/03/2006] [Accepted: 11/05/2006] [Indexed: 01/07/2023]
Abstract
The third hypervirable (V3) domain of the HIV-1 envelope glycoprotein gp120 has been implicated in HIV pathogenesis via co-receptor usage of chemokine receptors CCR5 and CXCR4. As the protagonist cell populations in the asymptomatic phase of HIV-1 infection are infected macrophages and effector/memory (CD45RO+) CD4+ T cells that express CCR5, we established an in vitro model using human primary monocyte-derived macrophages and lymphocytes to investigate the role of V3 in affecting antigen presentation. We used staphylococcal enterotoxin A (SEA) as a superantigen at a low concentration of 1ng/ml, to activate naïve CD4+ T cells. Exposure of cells to SEA and lipoV3-liposomes increased the percentage of CD4+/CD45RO+/CCR5+ T cell population as compared to cells treated with SEA and plain liposomes. A consequent decrease of the percentage of CD4+/CD45RO+/CXCR4+ subset was observed. The V3-mediated activation was competitively inhibited by soluble V3-derived peptides with higher cationic charge. V3 enhanced also apoptosis as demonstrated by flow cytometry and intracellular calcium ion assays. These results reinforce the postulation that V3 alters the antigen presentation function itself, independent of specific antigens, thus leading to an enhanced activation-induced cell death (AICD) of responding T cells.
Collapse
Affiliation(s)
- Filippos Porichis
- Department of Applied Biochemistry and Immunology, Institute of Molecular Biology and Biotechnology, Vassilika Vouton, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
38
|
Quaranta MG, Mattioli B, Giordani L, Viora M. The immunoregulatory effects of HIV‐1 Nef on dendritic cells and the pathogenesis of AIDS. FASEB J 2006; 20:2198-208. [PMID: 17077296 DOI: 10.1096/fj.06-6260rev] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DC) play a crucial role in the generation and regulation of immunity, and their interaction with HIV is relevant in the pathogenesis of AIDS favoring both the initial establishment and spread of the infection and the development of antiviral immunity. HIV-1 Nef is an essential factor for efficient viral replication and pathogenesis, and several studies have been addressed to assess the possible influence of endogenous or exogenous Nef on DC biology. Our findings and other reported data described in this review demonstrate that Nef subverts DC biology interfering with phenotypical, morphological, and functional DC developmental programs, thus representing a viral tool underlying AIDS pathogenesis. This review provides an overview on the mechanism by which Nef, hijacking DC functional activity, may favor both the replication of HIV-1 and the escape from immune surveillance. Overall, the findings described here may contribute to the understanding of Nef function, mechanism of action, and cellular partners. Further elucidation of genes induced through Nef signaling in DC could reveal pathways used by DC to drive HIV spread and will be critical to identify therapeutic strategies to bias the DC system toward activation of antiviral immunity instead of facilitating virus dissemination.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
39
|
Lehmann MH, Masanetz S, Kramer S, Erfle V. HIV-1 Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner. J Cell Sci 2006; 119:4520-30. [PMID: 17046994 DOI: 10.1242/jcs.03231] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV-associated dementia (HAD) correlates with infiltration of monocytes into the brain. The accessory HIV-1 negative factor (Nef) protein, which modulates several signaling pathways, is constitutively present in persistently infected astroctyes. We demonstrated that monocytes responded with chemotaxis when subjected to cell culture supernatants of nef-expressing astrocytic U251MG cells. Using a protein array, we identified CC chemokine ligand 2/monocyte chemotactic protein-1 (CCL2/MCP-1) as a potential chemotactic factor mediating this phenomenon. CCL2/MCP-1 upregulation by Nef was further confirmed by ribonuclease protection assay, RT-PCR and ELISA. By applying neutralizing antibodies against CCL2/MCP-1 and using CCR2-deficient monocytes, we confirmed CCL2/MCP-1 as the exclusive factor secreted by nef-expressing astrocytes capable of attracting monocytes. Additionally, we showed that Nef-induced CCL2/MCP-1 expression depends on the myristoylation moiety of Nef and requires functional calmodulin. In summary, we suggest that Nef-induced CCL2/MCP-1 expression in astrocytes contributes to infiltration of monocytes into the brain, and thereby to progression of HAD.
Collapse
Affiliation(s)
- Michael H Lehmann
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|
40
|
Yadav A, Pati S, Nyugen A, Barabitskaja O, Mondal P, Anderson M, Gallo RC, Huso DL, Reid W. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation. Virology 2006; 353:357-65. [PMID: 16828835 DOI: 10.1016/j.virol.2006.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/12/2006] [Accepted: 05/22/2006] [Indexed: 01/19/2023]
Abstract
Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the alpha/beta T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells.
Collapse
Affiliation(s)
- Anjana Yadav
- Division of Basic Science, Institute of Human Virology, University of Maryland, Rm #S616, 725, West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Thoulouze MI, Sol-Foulon N, Blanchet F, Dautry-Varsat A, Schwartz O, Alcover A. Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 2006; 24:547-61. [PMID: 16713973 DOI: 10.1016/j.immuni.2006.02.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 02/08/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
HIV-1-infected lymphocytes improperly respond to T cell antigen receptor (TCR) stimulation. To document this phenomenon, we studied the capacity of HIV-1-infected lymphocytes to form immunological synapses. We show here that HIV-1-infected T cells poorly conjugated with antigen-presenting cells, and when they formed conjugates, the synapses were abnormal. TCR and Lck accumulated in the recycling endosomal compartment, and their clustering at the synapse was severely reduced. These phenomena were, to a large extent, caused by Nef, a viral protein affecting intracellular trafficking and signaling pathways. Concomitantly, in HIV-infected cells, tyrosine phosphorylation at the synapse and the patterns of tyrosine phosphorylated proteins were disturbed in a Nef-dependent manner. These findings underscore the importance of Lck and TCR endosomal trafficking in synapse formation and early T cell signaling. Alteration of endocytic and signaling networks at the immunological synapse likely impacts the function and fate of HIV-1-infected cells.
Collapse
Affiliation(s)
- Maria Isabel Thoulouze
- Unité de Biologie Cellulaire des Lymphocytes, Centre National de la Recherche Scientifique Unité de Recherche Associée-1930, Institut Pasteur, 25-28 rue Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
42
|
Anson DS, Dunning KR. Codon-optimized reading frames facilitate high-level expression of the HIV-1 minor proteins. Mol Biotechnol 2005; 31:85-8. [PMID: 16118417 DOI: 10.1385/mb:31:1:085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have constructed reading frames for the HIV-1 YU-2 minor proteins Vpr, Vpu, Vif and Nef that are codon-optimized for high-level expression in mammalian cells. We show that, in the absence of the Rev/Rev-response element system, these codon-optimized reading frames result in greatly increased levels of expression of the corresponding proteins in cell culture systems when compared with the native reading frame. Northern blot analysis shows that the increase in expression found with the codon-optimized reading frames is largely owing to increased steady-state mRNA levels.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Codon
- Gene Expression
- Gene Expression Regulation, Viral
- Gene Products, nef/biosynthesis
- Gene Products, nef/genetics
- Gene Products, vif/biosynthesis
- Gene Products, vif/genetics
- Gene Products, vpr/biosynthesis
- Gene Products, vpr/genetics
- Genes, nef
- Genes, vif
- Genes, vpr
- Genes, vpu
- HIV-1/genetics
- HIV-1/metabolism
- Human Immunodeficiency Virus Proteins
- RNA, Messenger/biosynthesis
- Reading Frames
- Viral Regulatory and Accessory Proteins/biosynthesis
- Viral Regulatory and Accessory Proteins/genetics
- nef Gene Products, Human Immunodeficiency Virus
- vif Gene Products, Human Immunodeficiency Virus
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- D S Anson
- Department of Genetic Medicine, Children, Youth, and Women's Health Service, 72 King William Road, North Adelaide, Australia.
| | | |
Collapse
|
43
|
Raney A, Kuo LS, Baugh LL, Foster JL, Garcia JV. Reconstitution and molecular analysis of an active human immunodeficiency virus type 1 Nef/p21-activated kinase 2 complex. J Virol 2005; 79:12732-41. [PMID: 16188976 PMCID: PMC1235864 DOI: 10.1128/jvi.79.20.12732-12741.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Nef activation of p21-activated kinase 2 (PAK-2) was recapitulated in a cell-free system consisting of in vitro-transcribed RNA, rabbit reticulocyte lysate, and microsomal membranes on the basis of the following observations: (i) Nef associated with a kinase endogenous to the rabbit reticulocyte lysate that was identified as PAK-2, (ii) Nef-associated kinase activity was detected with Nefs from HIV-1(SF2), HIV-1(YU2), and SIV(mac239), (iii) kinase activation was not detected with a myristoylation-defective Nef (HIV-1(SF2)NefG2A) or with a Nef defective in PAK-2 activation but fully competent in other Nef functions (HIV-1(SF2)NefF195I), and (iv) Nef-associated kinase activation required activated endogenous p21 GTPases (Rac1 or Cdc42). The cell-free system was used to analyze the mechanism of Nef activation of PAK-2. First, studies suggest that the p21 GTPases may act transiently to enhance Nef activation of PAK-2 in vitro. Second, addition of wortmannin to the cell-free system demonstrated that Nef activation of PAK-2 does not require PI 3-kinase activity. Third, ultracentrifugation analysis revealed that whereas the majority of Nef and PAK-2 partitioned to the supernatant, Nef-associated PAK-2 activity partitioned to the membrane-containing pellet as a low-abundance complex. Lastly, Nef activation of PAK-2 in vitro requires addition of microsomal membranes either during or after translation of the Nef RNA. These results are consistent with a model in which activation of PAK-2 by Nef occurs by recruiting PAK-2 to membranes. As demonstrated herein, the cell-free system is a new and important tool in the investigation of the mechanism of PAK-2 activation by Nef.
Collapse
Affiliation(s)
- Alexa Raney
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, 75390-9113, USA
| | | | | | | | | |
Collapse
|
44
|
Kramer-Hämmerle S, Hahn A, Brack-Werner R, Werner T. Elucidating effects of long-term expression of HIV-1 Nef on astrocytes by microarray, promoter, and literature analyses. Gene 2005; 358:31-8. [PMID: 15958282 DOI: 10.1016/j.gene.2005.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 04/26/2005] [Accepted: 05/10/2005] [Indexed: 11/22/2022]
Abstract
The challenge of microarray analysis is to unveil the biological mechanisms behind the chip data. Due to the sometimes counteracting influences of de novo transcription, RNA processing and degradation, the discovery of any particular mechanism is difficult. Therefore, a combination of data- and knowledge-driven analysis appears to be the best way to attack the problem. We analyzed human astrocytes stably expressing the HIV-1 nef gene by microarray analyses to elucidate the effects of constitutive HIV-1 Nef expression on the transcriptome of astrocytes. Statistical evaluation of microarray results revealed small clusters of genes specifically up-regulated by native Nef protein in contrast to astrocytes expressing a non-myristoylated Nef variant. At least three significantly overrepresented gene ontology groups (small GTPase signaling, regulation of apoptosis and lipid metabolism) were detected. The JAK/STAT pathway was clearly associated with those genes. This finding agreed well with a literature-based approach, where a network was derived by combined literature and promoter sequence analysis. Promoter organization suggested potentially coordinated transcriptional regulation of some of these genes. Both results were in line with previously reported phenotypic changes.
Collapse
|
45
|
Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 2005; 111:194-213. [PMID: 15885841 DOI: 10.1016/j.virusres.2005.04.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The availability of highly active antiretroviral therapies (HAART) has not eliminated HIV-1 infection of the central nervous system (CNS) or the occurrence of HIV-associated neurological problems. Thus, the neurobiology of HIV-1 is still an important issue. Here, we review key features of HIV-1-cell interactions in the CNS and their contributions to persistence and pathogenicity of HIV-1 in the CNS. HIV-1 invades the brain very soon after systemic infection. Various mechanisms have been proposed for HIV-1 entry into the CNS. The most favored hypothesis is the migration of infected cells across the blood-brain barrier ("Trojan horse" hypothesis). Virus production in the CNS is not apparent before the onset of AIDS, indicating that HIV-1 replication in the CNS is successfully controlled in pre-AIDS. Brain macrophages and microglia cells are the chief producers of HIV-1 in brains of individuals with AIDS. HIV-1 enters these cells by the CD4 receptor and mainly the CCR5 coreceptor. Various in vivo and cell culture studies indicate that cells of neuroectodermal origin, particularly astrocytes, may also be infected by HIV-1. These cells restrict virus production and serve as reservoirs for HIV-1. A limited number of studies suggest restricted infection of oligodendrocytes and neurons, although infection of these cells is still controversial. Entry of HIV-1 into neuroectodermal cells is independent of the CD4 receptor, and a number of different cell-surface molecules have been implicated as alternate receptors of HIV-1. HIV-1-associated injury of the CNS is believed to be caused by numerous soluble factors released by glial cells as a consequence of HIV-1 infection. These include both viral and cellular factors. Some of these factors can directly induce neuronal injury and death by interacting with receptors on neuronal membranes (neurotoxic factors). Others can activate uninfected cells to produce inflammatory and neurotoxic factors and/or promote infiltration of monocytes and T-lymphocytes, thus amplifying the deleterious effects of HIV-1 infection. CNS responses to HIV-1 infection also include mechanisms that enhance neuronal survival and strengthen crucial neuronal support functions. Future challenges will be to develop strategies to prevent HIV-1 spread in the brain, bolster intrinsic defense mechanisms of the brain and to elucidate the impact of long-term persistence of HIV-1 on CNS functions in individuals without AIDS.
Collapse
Affiliation(s)
- Susanne Kramer-Hämmerle
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Chan KS, Verardi PH, Legrand FA, Yilma TD. Nef from pathogenic simian immunodeficiency virus is a negative factor for vaccinia virus. Proc Natl Acad Sci U S A 2005; 102:8734-9. [PMID: 15930136 PMCID: PMC1142211 DOI: 10.1073/pnas.0503542102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nef gene of human and simian immunodeficiency viruses (HIV and SIV) is important for pathogenicity and maintenance of high virus loads. We previously reported that recombinant vaccinia viruses (rVVs) expressing nef from attenuated SIVmac1A11 (vNef1A11) produced typical plaques on thymidine kinase-deficient 143B cells, whereas rVVs expressing nef derived from the pathogenic SIVmac239 (vNef157) formed plaques with altered morphology. Here, we show that vNef157 is attenuated in normal and nude mice, whereas the pathogenicity of vNef1A11 is similar to that of a control virus. Thus, Nef157 is an attenuating factor in the vaccinia virus (VV) system, contrasting sharply with its function in lentiviruses. We also show that Nef157 inhibits VV cell-to-cell spread, causing formation of atypical plaques regardless of thymidine kinase deficiency, neoplasticity, and species of the infected cell line. We hypothesized that Nef157 interferes with VV spread by association with actin, but no direct colocalization of Nef and the cytoskeletal actin network was detected. Instead, higher levels of Nef157 protein were observed, although mRNAs for both nef genes were produced at comparable levels. Thus, the mechanism behind such Nef157 protein accumulation and Nef157-mediated VV attenuation could be related to the process that causes an opposite effect in its native SIV system, making SIVmac239 more pathogenic than SIVmac1A11.
Collapse
Affiliation(s)
- Kenneth S Chan
- International Laboratory of Molecular Biology for Tropical Disease Agents, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
47
|
Parreira R, Pádua E, Piedade J, Venenno T, Paixão MT, Esteves A. Genetic analysis of human immunodeficiency virus type 1nef in portugal: Subtyping, identification of mosaic genes, and amino acid sequence variability. J Med Virol 2005; 77:8-16. [PMID: 16032733 DOI: 10.1002/jmv.20408] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extending our previous genetic characterization of human immunodeficiency virus type 1 (HIV-1) strains circulating in Portugal, we here report the first phylogenetic and putative amino acid sequence variability analyses of nef accessory gene. Viral sequences (n = 53) were amplified by nested PCR from proviral DNA purified from peripheral blood mononuclear cells of HIV-1 infected individuals (n = 49). Phylogenetic inference analysis demonstrated a distribution of the viral sequences between subtypes A (sub-subtype A1), B, D, F (sub-subtype F1), G, H, and J, with subtypes G and B accounting altogether for more than half of the genotypes found. A significant number of the proviral DNA sequences analyzed (18.4%) were shown to correspond to intragenic nef recombinants, with the majority having the typical CRF02_AG nef structure. In addition, three novel intragenic recombinant structures were found (B/G/B, CRF02_AG/H, and D/G). From phylogenetic analysis, it was concluded that part of the non-recombinant nef genes might have actually been amplified from mosaic viruses: CRF06_cpx, CRF14_BG, and a new envA/nefJ recombinant. While comparing all the putative Nef sequences, significant amino acid sequence variability was observed. However, most of the described nef functional motifs were relatively well conserved in the majority of the sequences analyzed and numerous amino acid changes fell outside these regions. The results presented unambiguously endorse the high level of complexity of HIV-1 epidemics in Portugal.
Collapse
Affiliation(s)
- Ricardo Parreira
- Unidade de Virologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
48
|
Lawson VA, Silburn KA, Gorry PR, Paukovic G, Purcell DFJ, Greenway AL, McPhee DA. Apoptosis induced in synchronized human immunodeficiency virus type 1-infected primary peripheral blood mononuclear cells is detected after the peak of CD4+ T-lymphocyte loss and is dependent on the tropism of the gp120 envelope glycoprotein. Virology 2004; 327:70-82. [PMID: 15327899 DOI: 10.1016/j.virol.2004.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/02/2004] [Accepted: 06/07/2004] [Indexed: 01/08/2023]
Abstract
Disease progression in human immunodeficiency virus type-1 (HIV-1)-infected individuals is frequently accompanied by declining CD4 cell numbers and the acquisition of a T-tropic (X4) or dual tropic (R5X4) phenotype. Understanding the mechanism of CD4 cell loss in HIV-1 infection is essential for the development of effective therapeutic strategies. In this study, donor populations of peripheral blood mononuclear cells (PBMCs) were selected for their ability to support an equivalent acute infection by both R5 and X4 virus phenotypes. This demonstrated that CD4+ T-lymphocyte loss was due to the gp120 region of Env and was replication independent. Furthermore, apoptosis was only detected in cells infected with an X4 virus after the majority of CD4+ T-lymphocyte loss had occurred. These observations indicate that the CD4+ T-lymphocyte loss in an X4 HIV-1 infection is not directly mediated by apoptosis, although apoptosis may be induced in the remaining cell population as a consequence of this CD4+ T-lymphocyte loss.
Collapse
Affiliation(s)
- Victoria A Lawson
- AIDS Cellular Biology Laboratory, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Quaranta MG, Mattioli B, Giordani L, Viora M. HIV‐1 Nef equips dendritic cells to reduce survival and function of CD8
+
T cells: a mechanism of immune evasion. FASEB J 2004; 18:1459-61. [PMID: 15240562 DOI: 10.1096/fj.04-1633fje] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The accessory HIV-1 Nef protein is a crucial determinant for viral replication and pathogenesis. During HIV infection, loss of immune control in the setting of a strong and broad HIV-specific T-lymphocyte response, leads to a lethal outcome through AIDS. Moreover, dysfunction of dendritic cells (DCs) may contribute to the immune suppression associated with AIDS progression. We recently demonstrated that exogenous Nef selectively activates immature DCs manipulating their phenotypical, morphological, and functional developmental program. Here, we tracked whether Nef, targeting DCs, could be involved in the dysregulation of CD8+ T cell responses. We found that Nef inhibits the capacity of DCs to prime alloreactive CD8+ T cell responses down-regulating their proliferation and functional competence. This coincides with the induction of CD8+ T cell apoptosis. Nef oversees apoptotic killing of CD8+ T cells up-regulating TNF-alpha and FasL production by DCs and interfering with the death receptor pathway in CD8+ T cells and thus activating caspase 8. Our findings suggest that Nef may contribute to the immune evasion associated with HIV-1 infection, subverting DC biology. This may help explain the pleiotropic function that Nef plays during infection and makes this protein an attractive target for preventive and therapeutic intervention.
Collapse
|
50
|
Smith JM, Amara RR, McClure HM, Patel M, Sharma S, Yi H, Chennareddi L, Herndon JG, Butera ST, Heneine W, Ellenberger DL, Parekh B, Earl PL, Wyatt LS, Moss B, Robinson HL. Multiprotein HIV type 1 clade B DNA/MVA vaccine: construction, safety, and immunogenicity in Macaques. AIDS Res Hum Retroviruses 2004; 20:654-65. [PMID: 15242543 DOI: 10.1089/0889222041217419] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a simian/human immunodeficiency virus (SHIV) vaccine consisting of priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia Ankara (rMVA) has successfully controlled a virulent SHIV challenge in a macaque model. In this, and the accompanying paper, we report on the construction and testing of a Gag-Pol-Env DNA/MVA vaccine for HIV-1/AIDS. The DNA vaccine, pGA2/JS2, expresses aggregates of Gag proteins and includes safety mutations that render it integration, reverse transcription, and packaging defective. The rMVA vaccine, MVA/HIV 48, is integration and reverse transcription defective and has a truncated Env to enhance expression on the plasma membrane. In a study in rhesus macaques, priming with pGA2/JS2 and boosting with MVA/HIV 48 raised high frequencies of T cells for Gag and Env and lower frequencies of T cells for PR, RT, and Tat. Stimulations with five peptide pools for Gag and seven peptide pools for Env revealed epitopes for cellular immune responses throughout Gag and Env. On average, CD4 T cells from the vaccinated animals recognized 7.1 peptide pools and CD8 T cells, 3.2 peptide pools. Both the height and the breadth of the elicited cellular response provide hope that this multiprotein DNA/MVA vaccine will successfully control clade B isolates of HIV-1, as well as contribute to the control of other clades and recombinant forms of HIV-1/AIDS.
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/analysis
- Gene Deletion
- Gene Products, env/immunology
- Gene Products, gag/immunology
- Genes, env
- Genes, gag
- Genes, pol
- HIV Antibodies/blood
- HIV Infections/prevention & control
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- HIV-1/immunology
- Immunization, Secondary
- Macaca mulatta
- Point Mutation
- Protein Structure, Tertiary
- Recombination, Genetic
- Simian Immunodeficiency Virus/genetics
- Vaccination
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- James M Smith
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|