1
|
El-Mahdy MT, Ali M, Pisam WMM, Abeed AHA. Physiological and molecular analysis of pitaya (Hylocereus polyrhizus) reveal up-regulation of secondary metabolites, nitric oxide, antioxidant defense system, and expression of responsive genes under low-temperature stress by the pre-treatment of hydrogen peroxide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108840. [PMID: 38908352 DOI: 10.1016/j.plaphy.2024.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Low-temperature events are one of the leading environmental cues that considerably reduce plant growth and shift species biodiversity. Hydrogen peroxide (H2O2) is a signaling molecule that has a distinguished role during unfavorable conditions and shows outstanding perspectives in low-temperature stress. Herein, we elucidated the protective role and regulatory mechanism of H2O2 in alleviating the deleterious effects of low-temperature stress in pitaya plants. Micropropagated pitaya plants were cultured in Murashige and Skoog media supplemented with different levels of H2O2 (0, 5, 10, and 20 mM) and then exposed to low-temperature stress (5 °C for 24 h). H2O2 at 10 mM, improved low-temperature stress tolerance by relieving oxidative injuries and ameliorating growth parameters in terms of fresh weight (66.7%), plant length (16.7%), and pigments content viz., chlorophyll a (157.4%), chlorophyll b (209.1%), and carotenoids (225.9%). H2O2 counteracted the low-temperature stress by increasing amino acids (224.7%), soluble proteins (190.5%), and sugars (126.6%). Simultaneously, secondary metabolites like ascorbic acid (ASA), anthocyanins, phenolics, flavonoids, total antioxidant (TOA), and proline were also up-regulated by H2O2 (104.9%, 128.8%, 166.3%, 141.4%, and 436.4%, respectively). These results corresponded to the stimulative role triggered by H2O2 in boosting the activities of catalase (22.4%), ascorbate peroxidase (20.7%), superoxide dismutase (88.4%), polyphenol oxidase (60.7%), soluble peroxidase (23.8%), and phenylalanine ammonia-lyase (57.1%) as well as the expression level of HpCAT, HpAPX, HpSOD, HpPPO, and HpPAL genes, which may help to moderate low-temperature stress. In conclusion, our findings stipulate new insights into the mechanisms by which H2O2 regulates low-temperature stress tolerance in pitaya plants.
Collapse
Affiliation(s)
- Marwa T El-Mahdy
- Department of Pomology, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo, 11753, Egypt.
| | - Walid M M Pisam
- Horticulture Department (Pomology), Faculty of Agriculture, Al-Azhar University, Assiut Branch, Egypt.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
2
|
Sharma V, Garg N. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H 2S system and thiol metabolites in mitigating chromium (Cr (VI)) toxicity in pigeonpea genotypes. Biometals 2024; 37:185-209. [PMID: 37792256 DOI: 10.1007/s10534-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.
Collapse
Affiliation(s)
- Vaishali Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Alsubaie QD, Al-Amri AA, Siddiqui MH, Alamri S. Strigolactone and nitric oxide collaborate synergistically to boost tomato seedling resilience to arsenic toxicity via modulating physiology and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108412. [PMID: 38359557 DOI: 10.1016/j.plaphy.2024.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Arsenic (As) poses a significant environmental threat as a metalloid toxin, adversely affecting the health of both plants and animals. Strigolactones (SL) and nitric oxide (NO) are known to play crucial roles in plant physiology. Therefore, the present experiment was designed to investigate the potential cumulative role of SL (GR24-0.20 μM) and NO (100 μM) in mitigating the adverse effect of AsV (53 μM) by modulating physiological mechanisms in two genotypes of tomato (Riogrand and Super Strain 8). A sample randomized design with four replicates was used to arrange the experimental pots in the growth chamber. 45-d old both tomato cultivars under AsV toxicity exhibited reduced morphological attributes (root and shoot length, root and shoot fresh weight, and root and shoot dry weight) and physiological and biochemical characteristics [chlorophyll (Chl) a and b content, activity of δ-aminolevulinic acid dehydratase activity (an enzyme responsible for Chl biosynthesis), and carbonic anhydrase activity (an enzyme responsible for photosynthesis), and enhanced Chl degradation, overproduction of reactive oxygen species (ROS) and lipid peroxidation due to enhanced malondialdehyde (MDA) content. However, the combined application of SL and NO was more effective in enhancing the tolerance of both varieties to AsV toxicity compared to individual application. The combined application of SL and NO improved growth parameters, biosynthesis of Chls, NO and proline. However, the combined application significantly suppressed cellular damage by inhibiting MDA and overproduction of ROS in leaves and roots, as confirmed by the fluorescent microscopy study and markedly upregulated the antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate dismutase and glutathione reductase) activity. This study provides clear evidence that the combined application of SL and NO supplementation significantly improves the resilience of tomato seedlings against AsV toxicity. The synergistic effect of SL and NO was confirmed by the application of cPTIO (an NO scavenger) with SL and NO. However, further molecular studies could be imperative to conclusively validate the simultaneous role of SL and NO in enhancing plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
4
|
Abeed AHA, Ali M, Eissa MA, Tammam SA. Impact of sewage water irrigation on Datura innoxia grown in sandy loam soil. BMC PLANT BIOLOGY 2022; 22:559. [PMID: 36460955 PMCID: PMC9716744 DOI: 10.1186/s12870-022-03935-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND A potential solution for recycling and reusing the massively produced sewage water (SW) is to irrigate certain plants instead of highly cost recycling treatment. Although the extensive and irrational application of SW may cause environmental pollution thus, continual monitoring of the redox status of the receiver plant and the feedback on its growth under application becomes an emergent instance. The impact of SW, along with well water (WW) irrigation of medicinal plant, Datura innoxia, was monitored by some physio-biochemical indices. RESULTS The SW application amplified the growth, yield, minerals uptake, and quality of D. innoxia plants compared to the WW irrigated plants. The total chlorophyll, carotenoid, non-enzymatic antioxidants, viz. anthocyanin, flavonoids, phenolic compounds, and total alkaloids increased by 85, 38, 81, 50, 19, and 37%, respectively, above WW irrigated plants. The experiment terminated in enhanced leaf content of N, P, and K by 43, 118, and 48%, respectively. Moreover, stimulation of carbon and nitrogen metabolites in terms of proteins, soluble sugars, nitrate reductase (NR) activity, and nitric oxide (NO) content showed significant earliness in flowering time. The SW application improved not only Datura plants' quality but also soil quality. After four weeks of irrigation, the WW irrigated plants encountered nutrient deficiency-induced stress evidenced by the high level of proline, H2O2, and MDA as well as high enzyme capabilities. Application of SW for irrigation of D. innoxia plant showed the improvement of secondary metabolites regulating enzyme phenylalanine ammonia-lyase (PAL), restored proline content, and cell redox status reflecting high optimal condition for efficient cellular metabolism and performance along the experiment duration. CONCLUSIONS These evidences approved the benefits of practicing SW to improve the yield and quality of D. innoxia and the feasibility of generalization on multipurpose plants grown in poor soil.
Collapse
Affiliation(s)
- Amany H. A. Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Genetic Resources, Desert Research Center, Cairo 11753, Egypt, Desert Research Center, Cairo, 11753 Egypt
| | - Mamdouh A. Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526 Egypt
| | - Suzan A. Tammam
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| |
Collapse
|
5
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6544667. [DOI: 10.1093/femsle/fnab162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
|
6
|
Abdelrhim AS, Mazrou YSA, Nehela Y, Atallah OO, El-Ashmony RM, Dawood MFA. Silicon Dioxide Nanoparticles Induce Innate Immune Responses and Activate Antioxidant Machinery in Wheat Against Rhizoctonia solani. PLANTS (BASEL, SWITZERLAND) 2021; 10:2758. [PMID: 34961229 PMCID: PMC8708575 DOI: 10.3390/plants10122758] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 05/10/2023]
Abstract
The phytopathogenic basidiomycetous fungus, Rhizoctonia solani, has a wide range of host plants including members of the family Poaceae, causing damping-off and root rot diseases. In this study, we biosynthesized spherical-shaped silicon dioxide nanoparticles (SiO2 NPs; sized between 9.92 and 19.8 nm) using saffron extract and introduced them as a potential alternative therapeutic solution to protect wheat seedlings against R. solani. SiO2 NPs showed strong dose-dependent fungistatic activity on R. solani, and significantly reduced mycelial radial growth (up to 100% growth reduction), mycelium fresh and dry weight, and pre-, post-emergence damping-off, and root rot severities. Moreover, the impact of SiO2 NPs on the growth of wheat seedlings and their potential mechanism (s) for disease suppression was deciphered. SiO2 NPs application also improved the germination, vegetative growth, and vigor indexes of infected wheat seedlings which indicates no phytotoxicity on treated wheat seedlings. Moreover, SiO2 NPs enhanced the content of the photosynthetic pigments (chlorophylls and carotenoids), induced the accumulation of defense-related compounds (particularly salicylic acid), and alleviated the oxidative stress via stimulation of both enzymatic (POD, SOD, APX, CAT, and PPO) and non-enzymatic (phenolics and flavonoids) antioxidant defense machinery. Collectively, our findings demonstrated the potential therapeutic role of SiO2 NPs against R. solani infection via the simultaneous activation of a multilayered defense system to suppress the pathogen, neutralize the destructive effect of ROS, lipid peroxidation, and methylglyoxal, and maintain their homeostasis within R. solani-infected plants.
Collapse
Affiliation(s)
- Abdelrazek S. Abdelrhim
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minya 61512, Egypt; (A.S.A.); (R.M.E.-A.)
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha 62529, Saudi Arabia; or
- Department of Agriculture Economic, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | - Osama O. Atallah
- Department of Plant Pathology, Zagazig University, Zagazig 44519, Egypt;
| | - Ranya M. El-Ashmony
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minya 61512, Egypt; (A.S.A.); (R.M.E.-A.)
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| |
Collapse
|
7
|
Ghorbani A, Pishkar L, Roodbari N, Pehlivan N, Wu C. Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:337-348. [PMID: 34392046 DOI: 10.1016/j.plaphy.2021.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 05/21/2023]
Abstract
Plants do not always have the genetic capacity to tolerate high levels of arsenic (As), which may not only arrest their growth but pose potential health risks through dietary bioaccumulation. Meanwhile, the interplay between the tomato plants and As-NO-driven molecular cell dynamics is obscure. Accordingly, seedlings were treated with As (10 mg/L) alone or in combination with 100 μM sodium nitroprusside (SNP, NO donor) and 200 μM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger). Sodium nitroprusside immobilized As in the roots and reduced the shoot translocation by up-regulating the transcriptional expression of the PCS, GSH1, MT2, and ABC1. SNP further restored the growth retardation through modulating the chlorophyll and proline metabolism, increasing NO accumulation and stomatal conductance along with clear crosstalk between the antioxidant activity as well as glyoxalase I and II leading to endogenous H2O2 and MG reduction. Higher PCs and glutathione accumulation helped protect photosynthetic apparatus; however, cPTIO reversed the protective effects of SNP, confirming the role of NO in the As toxicity alleviation.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran; College of Horticulture and Gardening, Yangtze University, Jingzhou, China.
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
| | - Nasim Roodbari
- Department of Biology, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
| | - Necla Pehlivan
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Jahan A, Iqbal M, Malik A. Individual Rather Than Simultaneous Priming with Glutathione and Putrescine Reduces Chromium Cr 6+ Toxicity in Contrasting Canola (Brassica napus L.) Cultivars. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:427-432. [PMID: 33837795 DOI: 10.1007/s00128-021-03219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The chromium (Cr6+) toxicity mechanisms have not been fully revealed yet in plants mainly due to its complex electronic chemistry. Both putrescine (PUT) and glutathione (GSH) are reported to be involved in plethora of plant cellular processes. Therefore, we hypothesized that exogenous individual or co-application of PUT and GSH could alleviate the Cr6+ stress in genetically diverse canola cultivars. The seed priming with GSH (0.1 mM) alleviated inhibitory effects of Cr6+ on root growth, and thus plants raised from GSH-treated seed had higher leaf chlorophyll a contents (78, 69 and 82%, in Shiralee, Rainbow and Dunkled cultivar, respectively), carotenoids contents, stem phenolics, root GSH, leaf and root NO concentration. The foliar treatment with PUT caused 37 and 11.9% decrease in the accumulation of Cr in shoot of Shiralee and Dunkled, respectively. Overall, the results suggested that seed priming with GSH regulated leaf photosynthetic pigments to cope with Cr6+ shock at early growth stage whereas foliar treatment with PUT decreased Cr transport to the shoot, and thus increased tolerance at later growth stage irrespective of cultivars.
Collapse
Affiliation(s)
- Almas Jahan
- Department of Botany, Government College University, Faisalabad, Faisalabad, 38030, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University, Faisalabad, Faisalabad, 38030, Pakistan.
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Ahmad P, Alyemeni MN, Wijaya L, Ahanger MA, Ashraf M, Alam P, Paray BA, Rinklebe J. Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124852. [PMID: 33383453 DOI: 10.1016/j.jhazmat.2020.124852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The present study reveals the effect of mercury (Hg) and sodium nitroprusside (SNP) on plant growth and metabolism in soybean cultivars (Pusa-24, Pusa-37and Pusa-40). Mercury stress decreased growth and biomass yield, and gas exchange attributes in all soybean cultivars. External supplementation of SNP mitigated Hg toxicity by improving growth and gas exchange parameters. Electrolyte leakage (EL) increased accompanied with elevated levels of malondialdehyde (MDA) and H2O2 under Hg stress, however, they were found to be reduced in all cultivars upon the exogenous application of SNP. The activities of anti-oxidative enzymes, superoxide dismutase and catalase (SOD and CAT) and those enzymes involved in the ascorbate-glutathione pathway were impaired by Hg stress, but they were regulated by the application of SNP. Accumulation of Hg and NO in the shoots and roots were also regulated by the application of NO. Although, all three cultivars were affected by Hg stress, Pusa-37 was relatively less affected. Mercury stress affected the growth and development of different soybean cultivars, but Pusa-37 being tolerant was less affected. Pusa-37 was found to be more responsive to SNP than Pusa-24, Pusa-40 under Hg toxicity. The external supplementation of SNP could be a sustainable approach to economically utilize Hg affected soils.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
10
|
Dawood MFA, Sohag AAM, Tahjib-Ul-Arif M, Abdel Latef AAH. Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:347-362. [PMID: 33434783 DOI: 10.1016/j.plaphy.2020.12.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/30/2020] [Indexed: 05/20/2023]
Abstract
Regulatory roles of hydrogen sulfide (H2S) under saline-alkaline and/or aniline stress have not been studied yet. In this study, we investigated the insights into saline-alkaline and/or aniline stresses-induced toxicity in artichoke plants and its alleviation by H2S priming. Individual saline-alkaline or aniline stress and their combination reduced plant growth and photosynthetic pigments. Principal component analysis (PCA) revealed that these detrimental impacts were caused by the higher oxidative damage and disruption of osmolyte homeostasis. Interestingly, only aniline stress (25 mg L-1) caused neither oxidative nor osmotic stress thus almost slight growth retarding effects had ensued. On the other hand, the presence of aniline in saline-alkaline conditions exacerbated stress-induced deleterious effects on plants, as evidenced by PCA and heatmap. However, H2S priming markedly eased the stress-induced deleteriousness as evident by enhanced chlorophyll, soluble proteins, soluble carbohydrates and up-regulated water relation in H2S-primmed plants compared with only stressed plants resulting in improved plant phenotypic features. Furthermore, H2S priming enhanced endogenous H2S content, phenylalanine ammonia-lyase, non-enzymatic antioxidants (ascorbic acid, flavonoids, glutathione, α-tocopherol, and anthocyanins) and enzymatic antioxidants (superoxide dismutase, catalase, and ascorbate peroxidase), whereas reduced oxidative stress markers (superoxide, hydrogen peroxide, hydroxyl radical, malondialdehyde, and methylglyoxal) compared with only stressed plants, indicating a protective function of H2S against oxidative damage. The PCA also clarified that H2S-mediated saline-alkaline and/or aniline stress tolerance strongly connected with the improved antioxidant system. Overall, our finding proposed that H2S priming could be an effective technique to mitigate saline-alkaline and/or aniline stress in artichoke, and perhaps in other crop plants.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arafat Abdel Hamed Abdel Latef
- Department of Biology, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
11
|
Dawood MFA, Tahjib-Ul-Arif M, Sohag AAM, Abdel Latef AAH, Ragaey MM. Mechanistic Insight of Allantoin in Protecting Tomato Plants Against Ultraviolet C Stress. PLANTS (BASEL, SWITZERLAND) 2020; 10:E11. [PMID: 33374845 PMCID: PMC7824269 DOI: 10.3390/plants10010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Allantoin ((AT) a purine metabolite)-mediated ultraviolet C (UVC) stress mitigation has not been studied to date. Here, we reported the physicochemical mechanisms of UVC-induced stress in tomato (Solanum lycopersicum L.) plants, including an AT-directed mitigation strategy. UVC stress reduced plant growth and photosynthetic pigments. Heatmap and principal component analysis (PCA) revealed that these toxic impacts were triggered by the greater oxidative damage and disruption of osmolyte homeostasis. However, pre-treatment of AT noticeably ameliorated the stress-induced toxicity as evident by enhanced chlorophyll, soluble protein, and soluble carbohydrate contents in AT-pretreated UVC-stressed plants relative to only stressed plants leading to the improvement of the plant growth and biomass. Moreover, AT pre-treatment enhanced endogenous AT and allantoate content, phenylalanine ammonia-lyase, non-enzymatic antioxidants, and the enzymatic antioxidants leading to reduced oxidative stress markers compared with only stressed plants, indicating the protective effect of AT against oxidative damage. Moreover, PCA displayed that the protective roles of AT strongly associate with the improved antioxidants. On the other hand, post-treatment of AT showed less efficacy in UVC stress mitigation relative to pre-treatment of AT. Overall, this finding illustrated that AT pre-treatment could be an effective way to counteract the UVC stress in tomato, and perhaps in other crop plants.
Collapse
Affiliation(s)
- Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.-U.-A.); (A.A.M.S.)
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.-U.-A.); (A.A.M.S.)
| | - Arafat Abdel Hamed Abdel Latef
- Department of Biology, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Marwa M. Ragaey
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja 72511, Egypt;
| |
Collapse
|
12
|
Khanna RR, Jahan B, Iqbal N, Khan NA, AlAjmi MF, Tabish Rehman M, Khan MIR. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat. J Biotechnol 2020; 325:73-82. [PMID: 33189727 DOI: 10.1016/j.jbiotec.2020.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 01/05/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a newly recognized signaling molecule participating in physiological processes, growth, and development of plants under optimal and stressful environments. In the present reported research, we investigated the role of GABA in imparting salt stress tolerance in wheat (Triticum aestivum L.). Exposure of wheat plants to 100 mM NaCl resulted in increased oxidative stress, glucose content, nitric oxide (NO) production together with reduced growth and photosynthetic traits of plants. Contrarily, GABA application improved nitrogen (N) metabolism, sulfur (S) assimilation, ion homeostasis, growth and photosynthesis under salt stress. Additionally, GABA mitigated oxidative stress induced by salt stress with the increased ascorbate-glutathione cycle and proline metabolism. The study with NO inhibitor, c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide] in GABA experiment suggested that the impact of GABA on improvement of growth and photosynthesis under salt stress was mediated by NO and influenced N and S assimilation and antioxidant systems. The results suggested that the GABA has a significant potential in reversing the salt stress response in wheat plants, and GABA-mediated signals are manifested through NO.
Collapse
Affiliation(s)
| | - Badar Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
13
|
Alamri S, Ali HM, Khan MIR, Singh VP, Siddiqui MH. Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:20-34. [PMID: 32738579 DOI: 10.1016/j.plaphy.2020.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 05/24/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S), versatile signaling molecules, play multiple roles in plant growth, physiological and biochemical processes under heavy metal stress. However, the mechanisms through which NO in association with endogenous H2S mediated hexavalent chromium Cr(VI) toxicity mitigation are still not fully understood. Therefore, we investigated the role of NO and H2S in sulfur (S)-assimilation and the effect of NO on endogenous H2S, and cysteine (Cys) biosynthesis and maintenance of cellular glutathione (GSH) pool in tomato seedlings under Cr(VI) stress. Cr(VI) toxicity caused an increase in reactive oxygen species (ROS; O2•- and H2O2) formation and activity of chlorophyll (Chl) degrading enzyme [Chlorophyllase (Chlase)] and decrease in seedlings growth attributes, Chl a and b content, and activity of Chl synthesizing enzyme [δ-aminolevulinic acid dehydratase (δ-ALAD)], gas exchange parameters, S-assimilation, and Cys and H2S metabolism. An increase in the content of glycinebetaine (GB), total soluble carbohydrates (TSCs) and total phenols (TPls), and decrease in DNA damage and ROS in NO treated seedlings conferred Cr(VI) toxicity tolerance. Under Cr(VI) toxicity conditions, the inclusion of H2S scavenger hypotaurine (HT) in growth medium containing NO validated the role of endogenous H2S in S-assimilation, H2S and Cys and GSH metabolism by withdrawing activity of enzymes involved in S-assimilation [adenosine 5-phosphosulfatereductase (APS-R), ATP-sulfurylase (ATP-S)], in the biosynthesis of H2S [L-cysteine desulfhydrase (L-CD) and D-cysteine desulfhydrase (D-CD)], Cys [O-acetylserin (thiol) lyase (OAST-L)], and GSH [glutamylcysteine synthetase (γ-GCS) and glutathione synthetase (GS)], and in antioxidant system. On the other hand, application of cPTIO [2-(4-32 carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], a NO scavenger and HT diminished the effect of NO on internal H2S levels, Cys and glutathione homeostasis, and S-assimilation, which resulted in poor immunity against oxidative stress induced by Cr(VI) toxicity. The obtained results postulate that NO-induced internal H2S conferred tolerance of tomato seedlings to Cr(VI) toxicity and maintained better photosynthesis process and plant growth.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Iqbal R Khan
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
14
|
Abdel Latef AAH, Dawood MFA, Hassanpour H, Rezayian M, Younes NA. Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide, Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce. BIOLOGY 2020; 9:E172. [PMID: 32709036 PMCID: PMC7408432 DOI: 10.3390/biology9070172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/24/2023]
Abstract
Magnetic fields are an unavoidable physical factor affecting living organisms. Lettuce seeds (Lactuca sativa var. cabitat L.) were subjected to various intensities of the static magnetic field (SMF) viz., MF0 (control), SMF1 (0.44 Tesla (T), SMF2 (0.77 T), and SMF3 (1 T) for three exposure times (1, 2, and 3 h). SMF-treated seedlings showed induction in growth parameters and metabolism comparing to control. All photosynthetic pigments were induced markedly under SMF, especially chlorophyll a. SMF at different intensities boosted osmolytes, non-enzymatic antioxidants, and the phenylalanine ammonia-lyase activity over non-magnetized seedlings. Oxidative damage criteria viz., hydrogen peroxide, superoxide radical, and lipid peroxidation, as well as polyphenol oxidase activity, were kept at low values under SMF-treated seeds relative to control, especially SMF2. Electron donors to antioxidant enzymes including nitrate reductase, nitric oxide, and hydrogen sulfide induced via SMF exposure and consequently the activities of superoxide dismutase, glutathione-S-transferases, catalase, and peroxidases family enzymes were also stimulated under SMF, whatever the intensity or the exposure period applied. All these regulations reflected on the enhancement of lettuce yield production which reached 50% over the control at SMF3. Our findings offered that SMF-seed priming is an innovative and low-cost strategy that can improve the growth, bioactive constituents, and yield of lettuce.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Biology Department, Turabah University College, Turabah Branch, Taif University, Taif 21995, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Halimeh Hassanpour
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran 14665-834, Iran;
| | - Maryam Rezayian
- Department of Plant Biology, and Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran;
| | - Nabil A. Younes
- Horticulture Department, Faculty of Agriculture, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
| |
Collapse
|
15
|
Younes NA, Dawood MFA, Wardany AA. The phyto-impact of fluazinam fungicide on cellular structure, agro-physiological, and yield traits of pepper and eggplant crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18064-18078. [PMID: 32170615 DOI: 10.1007/s11356-020-08289-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/02/2020] [Indexed: 05/27/2023]
Abstract
Fluazinam is a widely used fungicide; most of the available information associated with its impact predominately on birds, invertebrates, mammals, and algae and scarce works studied its impact on crop plants. A two years-field experiments were conducted to study the response of pepper and eggplant to fluazinam at 0, 1, 2, and 3 times of the fluazinam-recommended dose (0, 0.5, 1, and 1.5 mL/L). The results revealed that fluazinam did not cause toxic effect on the tested plants except for temporary decline of shoot weights and lengths after 3 days of fluazinam application. However, fluazinam improved the physiological status of leaves via promoting metabolites, antioxidants, better membrane integrity, and adjustment of the redox status of fluazinam-sprayed plants. The ultrastructure changes of fluazinam-treated leaves associated with increment of chloroplasts' starch granules, giant nucleus, and elevated number of mitochondria. After 35 days of treatments, plant length of fungicide-treated plants was found to be higher than control and flowering time showed significant earliness. Furthermore, the yield traits were increased significantly in response to fluazinam. Our findings suggested that fluazinam-treated plants could initiate an early defense mechanism to mitigate the permanent growth retardation. This study could serve as a matrix for further studies to seek elucidation of plants' response to other doses of fluazinam. Graphical abstract .
Collapse
Affiliation(s)
- Nabil A Younes
- Horticulture Department, Faculty of Agriculture, Al-Azhar University-Assiut Branch, Assiut, Egypt.
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ahmed A Wardany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
16
|
Ahmad P, Alam P, Balawi TH, Altalayan FH, Ahanger MA, Ashraf M. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. CHEMOSPHERE 2020; 244:125480. [PMID: 31821927 DOI: 10.1016/j.chemosphere.2019.125480] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 05/19/2023]
Abstract
The present study was conducted to evaluate the effect of arsenic (As) toxicity and the mitigating role of nitric oxide (NO) donor sodium nitroprusside (SNP) on Vicia faba. Arsenics stress decreased the growth and biomass yield, and photosynthetic pigments, but it enhanced As accumulation. Supplementation of NO enhanced the afore-mentioned parameters except As accumulation which decreased in both shoot and root. Supplementation of NO enhanced the shoot tolerance index (Shoot TI%), root tolerance index (Root TI%) but it declined the As translocation factor (TF). Application of NO alleviated the As-induced decline in net assimilation rate, stomatal conductance, transpiration and leaf relative water content. The levels of proline and glycine betaine (GB) further increased due to NO application, whereas malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL) and methylglyoxal (MG) declined considerably. Activities of enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT) increased under As stress. Supplementation of NO up-regulated the enzymes involved in Asc-Glu cycle and glyoxalase cycle under As toxicity. Another experiment was setup to authenticate whether NO was certainly able to alleviate As toxicity. For this purpose, the NO scavenger [2-(4-carboxy-2 phenyl)-4,4,5,5-tertamethylimidazoline-1-oxyl-3-oxide (cPTIO)] was added to As and NO supplemented plants. Addition of cPTIO to NO supplemented As-treated plants showed the same effect when As alone was supplied to plants. In conclusion, addition of NO to the growth medium maintained the plant performance under As toxicity through modulation of physio-biochemical attributes, antioxidant enzymes, and the Asc-Glu and glyoxalase systems.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia.
| | - Thamer H Balawi
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Fahad H Altalayan
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | | | | |
Collapse
|
17
|
Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. PHYSIOLOGIA PLANTARUM 2020; 168:256-277. [PMID: 30980533 DOI: 10.1111/ppl.12976] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/09/2019] [Accepted: 04/09/2019] [Indexed: 05/03/2023]
Abstract
There seems to be no report in the literature on the effect of melatonin (MT) in relieving the detrimental effects of combined application of salt stress (SS) and iron deficiency (ID). Therefore, the effect of MT on the accumulation/synthesis of endogenous nitric oxide (NO) and hydrogen sulphide (H2 S) and how far these molecules are involved in MT-improved tolerance to the combined application of ID and SS in pepper (Capsicum annuum L) were tested. Hence, two individual trials were set up. The treatments in the first experiment comprised: Control, ID (0.1 mM FeSO4 ), SS (100 mM NaCl) and ID + SS. The detrimental effects of combined stresses were more prominent than those by either of the single stress, with respect to growth, oxidative stress and antioxidant defense attributes. Single stress or both in combination improved the endogenous H2 S and NO, and foliar-applied MT (100 µM) led to a further increase in NO and H2 S levels. In the second experiment, 0.1 mM scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) and that of H2 S, hypotuarine (HT) were applied along with MT to get further evidence whether NO and H2 S are involved in MT-induced tolerance to ID and SS. MT combined with cPTIO and HT under a single or combined stress showed that NO effect was reversed by the NO scavenger, cPTIO, alone but the H2 S effect was inhibited by both scavengers. These findings suggested that tolerance to ID and SS induced by MT may be involved in downstream signal crosstalk between NO and H2 S.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - David Higgs
- Department of Biological & Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mohammed N Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
18
|
Dawood MFA, Azooz MM. Concentration-dependent effects of tungstate on germination, growth, lignification-related enzymes, antioxidants, and reactive oxygen species in broccoli (Brassica oleracea var. italica L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36441-36457. [PMID: 31728946 DOI: 10.1007/s11356-019-06603-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The phyto-impact of tungstate is not frequently studied like other heavy metals especially in the sight of continuous accumulation of tungstate in the agriculture soils and water. Thus, the present study was aimed to investigate the supplementation of various tungstate concentrations (0, 1, 5, 10, 50, and 100) to germination water (mg L-1) or clay soil (mg kg-1) on germination and metabolism of broccoli. Lower concentrations (1-10 mg L-1) accelerated germination process and reciprocally were recorded at the highest one (100 mg L-1). The promoter effect of lower concentrations on seedlings growing on tungstate contaminated soil was underpinned from enhancement of pigments, metabolites, enzymatic and non-enzymatic antioxidants, and nitrate reductase. However, the highest concentration-noxious impacts perceived from oxidative damage and membrane integrity deregulation accompanied with no gain from increment of proline, superoxide dismutase, and glutathione-S-transferase. The depletion of phytochelatins and nitric oxide jointed with the enhancement of peroxidases, polyphenol oxidase, and phenylalanine ammonia-lyase at higher concentration reinforced lignin production which restricted plant growth. The results supported the hormetic effects of tungstate (beneficial at low concentrations and noxious at high concentration) on morphological and physiological parameters of broccoli seedlings. The stimulatory effect of tungstate on metabolic activities could serve as important components of antioxidative defense mechanism against tungstate toxicity.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Mohamed M Azooz
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
19
|
Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 2019; 94:95-107. [PMID: 31707015 DOI: 10.1016/j.niox.2019.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022]
Abstract
Despite numerous reports on the role of nitric oxide (NO) in regulating plants growth and mitigating different environmental stresses, its participation in sulfur (S) -metabolism remains largely unknown. Therefore, we studied the role of NO in S acquisition and S-assimilation in tomato seedlings under low S-stress conditions by supplying NO to the leaves of S-sufficient and S-deficient seedlings. S-starved plants exhibited a substantial decreased in plant growth attributes, photosynthetic pigment chlorophyll (Chl) and other photosynthetic parameters, and activity of enzymes involved in Chl biosynthesis (δ-aminolevulinic acid dehydratase), and photosynthetic processes (carbonic anhydrase and RuBisco). Also, S-deficiency enhanced reactive oxygen species (ROS) (superoxide and hydrogen peroxide) and lipid peroxidation (malondialdehyde) levels in tomato seedlings. Contrarily, foliar supplementation of NO to S-deficient seedlings resulted in considerably reduced ROS formation in leaves and roots, which alleviated low S-stress-induced lipid peroxidation. However, exogenous NO enhanced proline accumulation by increasing proline metabolizing enzyme (Δ1-pyrroline-5-carboxylate synthetase) activity and also increased NO, hydrogen sulfide (a gasotransmitter small signaling molecule) and S uptake, and content of S-containing compounds (cysteine and reduced glutathione). Under S-limited conditions, NO improved S utilization efficiency of plants by upregulating the activity of S-assimilating enzymes (ATP sulfurylase, adenosine 5-phosphosulfate reductase, sulfide reductase and O-acetylserine (thiol) lyase). Under S-deprived conditions, improved S-assimilation of seedlings receiving NO resulted in improved redox homeostasis and ascorbate content through increased NO and S uptake. Application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (an NO scavenger) invalidated the effect of NO and again caused low S-stress-induced oxidative damage, confirming the beneficial role of NO in seedlings under S-deprived conditions. Thus, exogenous NO enhanced the tolerance of tomato seedlings to limit S-triggered oxidative stress and improved photosynthetic performance and S assimilation.
Collapse
|
20
|
Martínez-Medina A, Pescador L, Terrón-Camero LC, Pozo MJ, Romero-Puertas MC. Nitric oxide in plant-fungal interactions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4489-4503. [PMID: 31197351 DOI: 10.1093/jxb/erz289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 05/17/2023]
Abstract
Whilst many interactions with fungi are detrimental for plants, others are beneficial and result in improved growth and stress tolerance. Thus, plants have evolved sophisticated mechanisms to restrict pathogenic interactions while promoting mutualistic relationships. Numerous studies have demonstrated the importance of nitric oxide (NO) in the regulation of plant defence against fungal pathogens. NO triggers a reprograming of defence-related gene expression, the production of secondary metabolites with antimicrobial properties, and the hypersensitive response. More recent studies have shown a regulatory role of NO during the establishment of plant-fungal mutualistic associations from the early stages of the interaction. Indeed, NO has been recently shown to be produced by the plant after the recognition of root fungal symbionts, and to be required for the optimal control of mycorrhizal symbiosis. Although studies dealing with the function of NO in plant-fungal mutualistic associations are still scarce, experimental data indicate that different regulation patterns and functions for NO exist between plant interactions with pathogenic and mutualistic fungi. Here, we review recent progress in determining the functions of NO in plant-fungal interactions, and try to identify common and differential patterns related to pathogenic and mutualistic associations, and their impacts on plant health.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Leyre Pescador
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Granada, Spain
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Laura C Terrón-Camero
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María C Romero-Puertas
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Department of Biochemistry, Cell and Molecular Plant Biology, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
21
|
Kaya C, Akram NA, Ashraf M. Influence of exogenously applied nitric oxide on strawberry (Fragaria × ananassa) plants grown under iron deficiency and/or saline stress. PHYSIOLOGIA PLANTARUM 2019; 165:247-263. [PMID: 30091474 DOI: 10.1111/ppl.12818] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 05/26/2023]
Abstract
A study was carried out to assess the protective effects of exogenously applied nitric oxide (NO) in the form of its donor sodium nitroprusside (SNP) to strawberry seedlings (Fragaria × ananassa cv. Camarosa) grown under iron deficiency (ID), salinity stress or combination of both. The experimental design contained control, 0.1 mM FeSO4 (ID, Fe deficiency); 50 mM NaCl (S, Salinity) and ID + S. Plants were sprayed with 0.1 mM SNP or 0.1 mM sodium ferrocyanide, an analogue of SNP containing no NO. The deleterious effects of ID + S treatments on plant fresh and dry matters, total chlorophyll and chlorophyll fluorescence were more striking than those caused by the ID or S treatment alone. Furthermore, combination of salinity and iron stress exacerbated electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and hydrogen peroxide (H2 O2 ) in plant leaves compared to those in plants grown with either of the single stresses. NO treatment effectively reduced EL, MDA and H2 O2 in plants grown under stress conditions applied singly or in combination. Salt stress alone and with ID reduced the superoxide dismutase (EC1.15.1.1) and catalase (EC 1.11.1.6) activities but increased that of POD (EC 1.17.1.7). Exogenously applied NO led to significant changes in antioxidant enzyme activities in either ID or S than those by ID+S. Overall, exogenously applied NO was more effective in mitigating the stress-induced adverse effects on the strawberry plants exposed to a single stress than those due to the combination of both stresses.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Nudrat A Akram
- Department of Botany, GC University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
22
|
Praveen A, Gupta M. Nitric oxide confronts arsenic stimulated oxidative stress and root architecture through distinct gene expression of auxin transporters, nutrient related genes and modulates biochemical responses in Oryza sativa L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:950-962. [PMID: 29949846 DOI: 10.1016/j.envpol.2018.04.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 05/12/2023]
Abstract
Plants have the ability to adapt themselves under stressed conditions through reprogramming their growth and development. Understanding the mechanisms regulating overall growth of stressed plant is an important issue for plant and environmental biology research. Although the role of NO in modulating arsenic (As) toxicity is known, nitric oxide (NO) induced alteration in auxin and nutrient related transporters during As stress in rice is poorly understood. Experimental results showed that As exposure decreased gene expression level of polar auxin transporter (PIN proteins), and nutrient transporter related genes (AMT, NRT, NiR, PHT, KTP). The improved tolerance induced by As + NO combination is attributed to reduced As accumulation in rice seedlings, improved root architectural changes, overall growth of plant, chlorophyll, protein content, and accumulation of mineral nutrients by reducing the ROS generation. Further, enhanced transcript levels of PIN proteins and mineral nutrition related genes were also observed under As + NO treatment. Additional biochemical data revealed enhanced oxidative stress by increasing the level of antioxidant enzymes, and stress-related parameters. Overall, the study provides an integrated view of plant response during As + NO interaction to change the plant metabolism through different cellular processes.
Collapse
Affiliation(s)
- Afsana Praveen
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India.
| |
Collapse
|
23
|
Chakraborty N, Chandra S, Acharya K. Biochemical basis of improvement of defense in tomato plant against Fusarium wilt by CaCl 2. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:581-596. [PMID: 28878497 PMCID: PMC5567711 DOI: 10.1007/s12298-017-0450-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 05/24/2023]
Abstract
The objective of this study was to investigate the effectiveness of calcium chloride (CaCl2), as potential elicitor, on tomato plants against Fusarium oxysporum f. sp. lycopersici. Foliar application of CaCl2 showed significant reduction of wilt incidence after challenge inoculation. Increased production of defense and antioxidant enzymes was observed in elicitor treated sets over control. Simultaneously, altered amount of phenolic acids were analyzed spectrophotometrically and by using high performance liquid chromatography. Significant induction of defense-related genes expressions was measured by semi-quantitative RT-PCR. Greater lignifications by microscopic analysis were also recorded in elicitor treated plants. Simultaneously, generation of nitric oxide (NO) in elicitor treated plants was confirmed by spectrophotometrically and microscopically by using membrane permeable fluorescent dye. Furthermore, plants treated with potential NO donor and NO modulators showed significant alteration of all those aforesaid defense molecules. Transcript analysis of nitrate reductase and calmodulin gene showed positive correlation with elicitor treatment. Furthermore, CaCl2 treatment showed greater seedling vigor index, mean trichome density etc. The result suggests that CaCl2 have tremendous potential to elicit defense responses as well as plant growth in co-relation with NO, which ultimately leads to resistance against the wilt pathogen.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, 700019 India
- Department of Botany, Scottish Church College, Calcutta, 700006 India
| | - Swarnendu Chandra
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Calcutta, 700019 India
| |
Collapse
|
24
|
Chandra S, Chakraborty N, Panda K, Acharya K. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:298-307. [PMID: 28412634 DOI: 10.1016/j.plaphy.2017.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 05/24/2023]
Abstract
Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease.
Collapse
Affiliation(s)
- Swarnendu Chandra
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Nilanjan Chakraborty
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Koustubh Panda
- Department of Biotechnology, Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
25
|
Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Sci Rep 2016; 6:29164. [PMID: 27404993 PMCID: PMC4941517 DOI: 10.1038/srep29164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/16/2016] [Indexed: 01/19/2023] Open
Abstract
The cross talk among hydrogen peroxide (H2O2), nitric oxide (NO) and UV RESISTANCE LOCUS8 (UVR8) in UV-B-induced anthocyanin accumulation in the hypocotyls of radish sprouts was investigated. The results showed that UV-B irradiation significantly increased the anthocyanin accumulation and the expression of UVR8, and a similar trend appeared in radish sprouts subjected to cadmium, chilling and salt stresses regardless of light source. However, these responses disappeared under dark exposure. These results suggest that abiotic stress-induced anthocyanin accumulation and UVR8 expression were light-dependent. Moreover, abiotic stresses all enhanced the production of H2O2 and exogenous H2O2 addition significantly increased the anthocyanin concentration and UVR8 transcription, while these increases were severely inhibited by addition of dimethylthiourea (DMTU, a chemical trap for H2O2). It seems to suggest that H2O2 played an important role in the anthocyanin biosynthesis. Furthermore, addition of 0.5 mM sodium nitroprusside (SNP, a NO-releasing compound) substantially induced the anthocyanin accumulation, and H2O2-induced anthocyanin accumulation and UVR8 expression were significantly suppressed by co-treatment with 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO, a NO scavenger), which was parallel with the expression of anthocyanin biosynthesis-related transcription factors and structural genes. All these results demonstrate that both H2O2 and NO are involved in UV-B-induced anthocyanin accumulation, and there is a crosstalk between them as well as a classical UVR8 pathway.
Collapse
|
26
|
Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:245-255. [PMID: 26773834 DOI: 10.1016/j.ecoenv.2015.12.026] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) contamination is a serious agricultural and environmental hazard. The study investigates cross-protection roles of putrescine (Put, 0.2 mM) and nitric oxide (sodium nitroprusside; SNP, 1 mM) in conferring Cd (CdCl2, 1.5 mM) tolerance in mung bean (Vigna radiata L. cv. BARI Mung-2) seedlings. Cadmium stress increased root and shoot Cd content, reduced growth, destroyed chlorophyll (chl), modulated proline (Pro) and reduced leaf relative water content (RWC), increased oxidative damage [lipid peroxidation, H2O2 content, O2(∙-) generation rate, lipoxygenase (LOX) activity], methylglyoxal (MG) toxicity. Put and/or SNP reduced Cd uptake, increasd phytochelatin (PC) content, reduced oxidative damage enhancing non-enzymatic antioxidants (AsA and GSH) and activities of enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX)]. Exogenous Put and/or SNP modulated endogenous polyamines, PAs (putrescine, Put; spermidine, Spd; spermine, Spm), and NO; improved glyoxalase system in detoxifying MG and improved physiology and growth where combined application showed better effects which designates possible crosstalk between NO and PAs to confer Cd-toxicity tolerance.
Collapse
Affiliation(s)
- Kamrun Nahar
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Mahabub Alam
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Toshisada Suzuki
- Biomass Chemistry Laboratory, Bioresource Science for Manufacturing, Department of Applied Bioresource Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
27
|
Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Sci Rep 2015; 5:15195. [PMID: 26471771 PMCID: PMC4607973 DOI: 10.1038/srep15195] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/21/2015] [Indexed: 01/07/2023] Open
Abstract
The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant's innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation.
Collapse
|
28
|
Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol 2015; 99:7035-45. [PMID: 25981997 DOI: 10.1007/s00253-015-6651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/19/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Long-term stable cell growth and production of vindoline, catharanthine, and ajmalicine of cambial meristematic cells (CMCs) from Catharanthus roseus were observed after 2 years of culture. C. roseus CMCs were treated with β-cyclodextrin (β-CD) and methyl jasmonate (MeJA) individually or in combination and were cultured both in conventional Erlenmeyer flasks (100, 250, and 500 mL) and in a 5-L stirred hybrid airlift bioreactor. CMCs of C. roseus cultured in the bioreactor showed higher yields of vindoline, catharanthine, and ajmalicine than those cultured in flasks. CMCs of C. roseus cultured in the bioreactor and treated with 10 mM β-CD and 150 μM MeJA gave the highest yields of vindoline (7.45 mg/L), catharanthine (1.76 mg/L), and ajmalicine (58.98 mg/L), concentrations that were 799, 654, and 426 % higher, respectively, than yields of CMCs cultured in 100-mL flasks without elicitors. Quantitative reverse transcription (RT)-PCR showed that β-CD and MeJA upregulated transcription levels of genes related to the biosynthesis of terpenoid indole alkaloids (TIAs). This is the first study to report that β-CD induced the generation of NO, which plays an important role in mediating the production of TIAs in C. roseus CMCs. These results suggest that β-CD and MeJA can enhance the production of TIAs in CMCs of C. roseus, and thus, CMCs of C. roseus have significant potential to be an industrial platform for production of bioactive alkaloids.
Collapse
|
29
|
Zhang Z, Wang J, Chai R, Qiu H, Jiang H, Mao X, Wang Y, Liu F, Sun G. An S-(hydroxymethyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae. PLoS One 2015; 10:e0120627. [PMID: 25793615 PMCID: PMC4368689 DOI: 10.1371/journal.pone.0120627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 11/25/2022] Open
Abstract
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice blast disease. A compatible interaction requires overcoming plant defense responses to initiate colonization during the early infection process. Nitric oxide (NO) plays important roles in defense responses during host-pathogen interactions. Microbes generally protect themselves against NO-induced damage by using enzymes. Here, we characterized an S-(hydroxymethyl)-glutathione dehydrogenase gene in M. oryzae, MoSFA1, the homologs of which are involved in NO metabolism by specifically catalyzing the reduction of S-nitrosoglutathione (GSNO) in yeasts and plants. As expected from the activities of S-(hydroxymethyl)glutathione dehydrogenase in formaldehyde detoxification and GSNO reduction, MoSFA1 deletion mutants were lethal in formaldehyde containing medium, sensitive to exogenous NO and exhibited a higher level of S-nitrosothiols (SNOs) than that of the wild type. Notably, the mutants showed severe reduction of conidiation and appressoria turgor pressure, as well as significantly attenuated the virulence on rice cultivar CO-39. However, the virulence of MoSFA1 deletion mutants on wounded rice leaf was not affected. An infection assay on barley leaf further revealed that MoSFA1 deletion mutants exhibited a lower infection rate, and growth of infectious hyphae of the mutants was retarded not only in primary infected cells but also in expansion from cell to cell. Furthermore, barley leaf cell infected by MoSFA1 deletion mutants exhibited a stronger accumulation of H2O2 at 24 and 36 hpi. MoSFA1 deletion mutants displayed hypersensitivity to different oxidants, reduced activities of superoxide dismutases and peroxidases, and lower glutathione content in cells, compared with the wild type. These results imply that MoSFA1-mediated NO metabolism is important in redox homeostasis in response to development and host infection of M. oryzae. Taken together, this work identifies that MoSFA1 is required for conidiation and contributes to virulence in the penetration and biotrophic phases in M. oryzae.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongyao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
30
|
Singh I, Shah K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. PHYTOCHEMISTRY 2014; 108:57-66. [PMID: 25301663 DOI: 10.1016/j.phytochem.2014.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/07/2014] [Accepted: 09/16/2014] [Indexed: 05/25/2023]
Abstract
Rice seedlings grown under 50 μM cadmium alone or in combination with 5 μM methyl jasmonate were investigated for Cd-induced oxidative injury at 3, 7 and 10 days of treatment. MeJA treatments alone did not have any significant change in antioxidant enzyme activities or levels of H2O2 and O2(·-) in roots/shoots, as compared to controls during 3-10 days. The Cd-stressed plants When supplemented with exogenous MeJA revealed significant and consistent changes in activities of antioxidant enzymes CAT, SOD, POD and GR paralleled with an increased GSH-pools than that in plants subjected to Cd-stress alone. Synthesis of GSH driven by increasing demand for GSH in response to Cd-induced oxidative stress in rice was evident. Increased activity of LOX under Cd-stress was noted. Results suggest enhanced Cd-tolerance, lowered Cd(2+) uptake, an improved membrane integrity and 'switching on' of the JA-biosynthesis by LOX in the Cd-stressed rice roots/shoots exposed to MeJA. Exposure to MeJA improved antioxidant response and accumulation of antioxidants which perhaps lowered the Cd-induced oxidative stress in rice. It is this switching on/off of the JA-biosynthesis and ROS mediated signal transduction pathway involving glutathione homeostasis via GR which helps MeJA to mitigate Cd-induced oxidative injury in rice.
Collapse
Affiliation(s)
- Indra Singh
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi 221 005, India
| | - Kavita Shah
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
31
|
Zhang Y, Yang X, Zeng H, Guo L, Yuan J, Qiu D. Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana. Biotechnol Lett 2014; 36:1069-78. [PMID: 24563295 DOI: 10.1007/s10529-014-1462-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
We previously identified a novel protein elicitor, PebC1, from Botrytis cinerea and described its enhancement of plant growth, drought tolerance and disease resistance in tomato. Here, we have investigated the defense-associated molecular responses in Arabidopsis thaliana after treatment with recombinant PebC1. PebC1 was expressed in Escherichia coli. Recombinant protein treatments improved plant resistance to Botrytis infection and maintained plant defenses for more than 21 days. The purified protein at 10 μg ml(-1) activated extracellular medium alkalization (pH) and reactive oxygen species and nitric oxide generation and also induced defense gene expression. Arabidopsis mutants that are insensitive to salicylic acid had increased resistance to Botrytis infection after PebC1 treatment but PebC1 did not affect the resistance of mutants with jasmonic acid and ethylene transduction pathways. The results suggest that PebC1 can function as an activator of plant disease resistance and can promote disease resistance to Botrytis in A. thaliana through the ethylene signal transduction pathway.
Collapse
Affiliation(s)
- Yunhua Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | | | | | | |
Collapse
|
32
|
Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ. Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:87-95. [PMID: 23896605 DOI: 10.1016/j.plaphy.2013.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/09/2013] [Indexed: 05/24/2023]
Abstract
We performed an experiment to determine how N and C metabolism is involved in the low-temperature tolerance of mycorrhizal rice (Oryza sativa) at different N levels and examined the possible signaling molecules involved in the stress response of mycorrhizal rice. Pot cultures were performed, and mycorrhizal rice growth was evaluated based on treatments at two temperatures (15 °C and 25 °C) and two N levels (20 mg pot(-1) and 50 mg pot(-1)). The arbuscular mycorrhizal fungi (AMF) colonization of rice resulted in different responses of the plants to low and high N levels. The mycorrhizal rice with the low N supplementation had more positive feedback from the symbiotic AMF, as indicated by accelerated N and C metabolism of rice possibly involving jasmonic acid (JA) and the up-regulation of enzyme activities for N and C metabolism. Furthermore, the response of the mycorrhizal rice plants to low temperature was associated with P uptake and nitric oxide (NO).
Collapse
Affiliation(s)
- Zhi-Lei Liu
- Lab of Soil Microbiology and Nutrient Cycle, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Ji-Lin 130102, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
He HY, He LF, Gu MH, Li XF. Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:123-30. [PMID: 22195585 DOI: 10.1016/j.plantsci.2011.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. Whether NO reduces aluminum (Al) toxicity by regulating the levels of endogenous hormones in plants is still unknown. In this study, the effects of NO on Al tolerance and hormonal changes in the root apices of rye and wheat were investigated. Rye was more tolerant to Al stress than wheat according to the results of root elongation and Al content determined. Root inhibition exposed to Al was in relation to Al accumulation in the root apices. Al treatment decreased GA content and increased the values of IAA/GA and ABA/GA. Supplementation of NO donor sodium nitroprusside (SNP) reduced the inhibition of root elongation by increasing GA content and decreasing the values of IAA/GA and IAA/ZR under Al stress. NO scavenger 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide (cPTIO) can reversed SNP alleviating effect on Al toxicity. However, the regulating patterns of NO on the values of ABA/GA, GA/ZR and ABA/(IAA+GA+ZR) were different between rye and wheat. The values of ABA/GA and ABA/(IAA+GA+ZR) increased in rye, but decreased in wheat. The change of GA/ZR value was opposite. These results suggest that NO may reduce Al accumulation in the root apices by regulating hormonal equilibrium to enhance Al-tolerance in plants, which effect is more remarkable in Al-sensitive wheat.
Collapse
Affiliation(s)
- Hu-Yi He
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | | | | | | |
Collapse
|
34
|
LIU LQ, DONG Y, GUAN JF. Effects of Nitric Oxide on the Quality and Pectin Metabolism of Yali Pears During Cold Storage. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60102-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Zhang H, Zhao X, Yang J, Yin H, Wang W, Lu H, Du Y. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. PLANT CELL REPORTS 2011; 30:1153-62. [PMID: 21336582 DOI: 10.1007/s00299-011-1024-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/11/2011] [Accepted: 01/21/2011] [Indexed: 05/16/2023]
Abstract
Chitooligosaccharide (COS) or oligochitosan has been shown to induce tobacco defense responses which are connected with nitric oxide (NO) and OIPK (oligochitosan-induced Ser/Thr protein kinase). The aim of this study was to reveal the relationship between NO production and OIPK pathway in the defense response of tobacco elicited by COS. NO generation was investigated by epidermal strip bioassay and fluorophore microscope using fluorophore diaminofluorescein diacetate (DAF-2DA). Tobacco epidermal cells treated with COS resulted in production of NO, which was first present in chloroplast, then in nucleus, finally in the whole cell; this NO production was sensitive to NO scavenger cPTIO and the mammalian NO synthase (NOS) inhibitor L: -NAME, suggesting that NOS-like enzyme maybe involved in NO generation in tobacco epidermal cells. However, NOS and nitrate reductase (NR, EC 1.6.6.1) inhibitors reduced NO content in tobacco leaves by using NO Assay Kit, suggesting both NOS and NR were involved in NO production in tobacco leaves. Using a pharmacological approach and western blotting, we provide evidence that NO acts upstream of OIPK expression. NO scavenger, NOS inhibitor partly blocked the activation of OIPK and the activities of several defense-related enzymes induced by COS; treatment with NO donor sodium nitroprusside (SNP) induced the activation of OIPK and enhanced the defense systems. The results suggest that COS is able to induce NO generation, which results in up-regulation the activities of some defense-related enzymes through an OIPK-dependent or independent pathway.
Collapse
Affiliation(s)
- Hongyan Zhang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu M, Dong J. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells. ACTA ACUST UNITED AC 2007; 50:799-807. [PMID: 17914641 DOI: 10.1007/s11427-007-0096-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/07/2007] [Indexed: 12/23/2022]
Abstract
Bax, a mammalian pro-apoptotic member of the Bcl-2 family, has been demonstrated to be a potential regulatory factor for plant secondary metabolite biosynthesis recently. To investigate the molecular mechanism of Bax-induced secondary metabolite biosynthesis, we determined the contents of nitric oxide (NO) of the transgenic Catharanthus roseus cells overexpressing a mouse Bax protein and checked the effects of NO specific scavenger 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO) on Bax-induced terpenoid indole alkaloid (TIA) production of the cells. The data showed that overexpression of the mouse Bax in C. roseus cells triggered NO generation of the cells. Treatment of cPITO not only inhibited the Bax-triggered NO burst but also suppressed the Bax-induced TIA production. The results indicated that the mouse Bax might activate the NO signaling in C. roseus cells and induce TIA production through the NO-dependent signal pathway in the cells. Furthermore, the activities of nitric oxide synthase (NOS) were significantly increased in the transgenic Bax cells as compared to those in the control cells, showing that the mouse Bax may induce NOS of C. roseus cells. Treatment of the transgenic Bax cells with NOS inhibitor PBITU blocked both Bax-induced NO generation and TIA production, which suggested that the mouse Bax might trigger NO generation and TIA production through NOS. However, the NOS-like activities and NO generation in the transgenic Bax cells did not match kinetically and the Bax-induced NOS-like activity was much later and lower than NO production. Moreover, the Bax-induced NO generation and TIA production were only partially inhibited by PBITU. Thus, our results suggested that the Bax-induced NO production and secondary metabolite biosynthesis in C. roseus cells was not entirely dependent on NOS or NOS-like enzymes.
Collapse
Affiliation(s)
- MaoJun Xu
- Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China.
| | | |
Collapse
|
37
|
Xu M, Dong J, Zhu M. Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth. suspension cells through a salicylic acid (SA)-dependent and a jasmonic acid (JA)-dependent signal pathway. ACTA ACUST UNITED AC 2006; 49:379-89. [PMID: 16989284 DOI: 10.1007/s11427-006-2010-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthesis was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside (SNP) enhanced puerarin biosynthesis in transgenic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced puerarin accumulation in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute for JA to mediate the elicitor- and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the elicitor-induced puerarin biosynthesis through SA- and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively.
Collapse
Affiliation(s)
- Maojun Xu
- Department of Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | | | | |
Collapse
|
38
|
Xu M, Dong J. Nitric oxide mediates the fungal elicitor-induced taxol biosynthesis of Taxus chinensis suspension cells through the reactive oxygen species-dependent and -independent signal pathways. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2081-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Zhou B, Guo Z, Xing J, Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:3223-8. [PMID: 16263901 DOI: 10.1093/jxb/eri319] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies suggest that abscisic acid (ABA) stimulates the activities of antioxidant enzymes under normal and chilling temperature and enhanced chilling resistance in Stylosanthes guianensis. The objective of this study was to test whether nitric oxide (NO) is involved in the ABA-induced activities of the antioxidant enzymes in Stylosanthes guianensis due to its nature as a second messenger in stress responses. Plants were treated with NO donors, ABA, ABA in combination with NO scavengers or the nitric oxide synthase (NOS) inhibitor and their effects on the activity of antioxidant enzymes and NO production were compared. The results showed that ABA increased the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The effect of ABA on antioxidant enzyme activities was suppressed by the NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA), and the NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO). NO content increased after 5 h of ABA treatment. The NO-scavenger, PTIO, and the NOS-inhibitor, L-NNA, inhibited the accumulation of NO in ABA-treated Stylosanthes guianensis. NO donor treatment enhanced the activities of SOD, CAT, and APX. The results suggested that NO was involved in the ABA-induced activities of SOD, CAT, and APX in Stylosanthes guianensis. ABA triggered NO production that may lead to the stimulation of antioxidant enzyme activities.
Collapse
Affiliation(s)
- Biyan Zhou
- Biotechnology Laboratory for Turfgrass and Forages, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | |
Collapse
|
40
|
Xu MJ, Dong JF, Zhu MY. Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. PLANT PHYSIOLOGY 2005; 139:991-8. [PMID: 16169960 PMCID: PMC1256012 DOI: 10.1104/pp.105.066407] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 05/04/2023]
Abstract
Fungal elicitor prepared from the cell walls of Aspergillum niger induces multiple responses of Hypericum perforatum cells, including nitric oxide (NO) generation, jasmonic acid (JA) biosynthesis, and hypericin production. To determine the role of NO and JA in elicitor-induced hypericin production, we study the effects of NO scavenger 2- to 4-carboxyphenyl-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO), nitric oxide synthase inhibitor S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea, and inhibitors of the octadecanoid pathway on elicitor-induced NO generation, JA biosynthesis, and hypericin production. Pretreatment of the cells with cPITO and JA biosynthesis inhibitors suppresses not only the elicitor-induced NO generation and JA accumulation but also the elicitor-induced hypericin production, which suggests that both NO and JA are involved in elicitor-induced hypericin biosynthesis. S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea and cPITO inhibit both elicitor-induced NO generation and JA biosynthesis, while JA biosynthesis inhibitors do not affect the elicitor-induced NO generation, indicating that JA acts downstream of NO generation and that its biosynthesis is regulated by NO. External application of NO via its donor sodium nitroprusside induces hypericin production in the absence of fungal elicitor. Sodium-nitroprusside-induced hypericin production is blocked by JA biosynthesis inhibitors, showing that JA biosynthesis is essential for NO-induced hypericin production. The results demonstrate a causal relationship between elicitor-induced NO generation, JA biosynthesis, and hypericin production in H. perforatum cells and indicate a sequence of signaling events from NO to hypericin production, within which NO mediates the elicitor-induced hypericin biosynthesis at least partially via a JA-dependent signaling pathway.
Collapse
Affiliation(s)
- Mao-Jun Xu
- State Key Lab of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | | | | |
Collapse
|
41
|
Xu M, Dong J, Zhu M. Effect of nitric oxide on catharanthine production and growth of Catharanthus roseus suspension cells. Biotechnol Bioeng 2005; 89:367-71. [PMID: 15744842 DOI: 10.1002/bit.20334] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sodium nitroprusside (SNP) was used as the donor of nitric oxide (NO) to investigate its effect on catharanthine synthesis and the growth of Catharanthus roseus suspension cells. The results showed that SNP at high concentrations (10.0 and 20.0 mmol/L) stimulated catharanthine formation of C. roseus cells, but inhibited growth of the cells. Low concentrations of SNP (0.1 and 0.5 mmol/L) enhanced the growth of C. roseus cells, but had no effect on catharanthine synthesis. The maximum total catharanthine production was achieved by the addition of 0.5 and 10.0 mmol/L SNP to the cultures at day 0 and day 10, respectively, being about threefold of the control. NO-induced catharanthine production of C. roseus cells was strongly suppressed by jasmonic acid (JA) biosynthesis inhibitor ibuprofen (IBU) and nordihydroguaiaretic (NDGA). The result suggests that the stimulatory role of NO on catharanthine production is partially JA-dependent.
Collapse
Affiliation(s)
- Maojun Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | | | | |
Collapse
|
42
|
Xu M, Dong J. Nitric oxide stimulates indole alkaloid production in Catharanthus roseus cell suspension cultures through a protein kinase-dependent signal pathway. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2005.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Abstract
Plants have four nitric oxide synthase (NOS) enzymes. NOS1 appears mitochondrial, and inducible nitric oxide synthase (iNOS) chloroplastic. Distinct peroxisomal and apoplastic NOS enzymes are predicted. Nitrite-dependent NO synthesis is catalyzed by cytoplasmic nitrate reductase or a root plasma membrane enzyme, or occurs nonenzymatically. Nitric oxide undergoes both catalyzed and uncatalyzed oxidation. However, there is no evidence of reaction with superoxide, and S-nitrosylation reactions are unlikely except during hypoxia. The only proven direct targets of NO in plants are metalloenzymes and one metal complex. Nitric oxide inhibits apoplastic catalases/ascorbate peroxidases in some species but may stimulate these enzymes in others. Plants also have the NO response pathway involving cGMP, cADPR, and release of calcium from internal stores. Other known targets include chloroplast and mitochondrial electron transport. Nitric oxide suppresses Fenton chemistry by interacting with ferryl ion, preventing generation of hydroxyl radicals. Functions of NO in plant development, response to biotic and abiotic stressors, iron homeostasis, and regulation of respiration and photosynthesis may all be ascribed to interaction with one of these targets. Nitric oxide function in drought/abscisic acid (ABA)-induction of stomatal closure requires nitrate reductase and NOS1. Nitric oxide synthasel likely functions to produce sufficient NO to inhibit photosynthetic electron transport, allowing nitrite accumulation. Nitric oxide is produced during the hypersensitive response outside cells undergoing programmed cell death immediately prior to loss of plasma membrane integrity. A plasma membrane lipid-derived signal likely activates apoplastic NOS. Nitric oxide diffuses within the apoplast and signals neighboring cells via hydrogen peroxide (H2O2)-dependent induction of salicylic acid biosynthesis. Response to wounding appears to involve the same NOS and direct targets.
Collapse
Affiliation(s)
- Allan D Shapiro
- Biotechnology Program, Florida Gulf Coast University, Fort Myers Florida 33965-6565, USA
| |
Collapse
|
44
|
Prats E, Mur LAJ, Sanderson R, Carver TLW. Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. hordei. MOLECULAR PLANT PATHOLOGY 2005; 6:65-78. [PMID: 20565639 DOI: 10.1111/j.1364-3703.2004.00266.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
SUMMARY Nonspecific penetration resistance due to papilla formation and race-specific hypersensitive response (HR) can both contribute to Blumeria graminis resistance in barley. Some effective papillae form even in the susceptible cv. Pallas and the isoline P01 carries the additional Mla1 allele conditioning HR. The NO-specific stain DAF-2DA (4,5-diaminofluorescein-2-diacetate) revealed a transient NO generation burst commencing 10 h after inoculation (h.a.i.) in close association with sites of papilla formation in both barley lines. In P01 a burst of NO production throughout some attacked cells was initiated around 10-12 h.a.i. and this preceded whole-cell autofluorescence indicative of HR. The specificity of DAF-2DA staining was demonstrated by the suppression of staining following application of the NO scavenger C-PTIO (1H-imidazol-1-yloxy-2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-3-oxide). In addition, C-PTIO application increased penetration frequencies in both barley lines, indicating a role for NO in papilla-based resistance. Furthermore, C-PTIO application slightly delayed HR in P01 whereas, conversely, application of an NO donor, sodium nitroprusside, slightly accelerated HR in P01 and increased cell death frequency in Pallas. Thus, NO generation is one of the earliest responses of barley epidermal cell defence against B. graminis attack and may be important in both the initiation and the development of effective papillae and cell death due to HR.
Collapse
Affiliation(s)
- Elena Prats
- Institute of Grassland and Environmental Research, Aberystwyth, Ceredigion, SY23 3EB, UK
| | | | | | | |
Collapse
|
45
|
Xu M, Dong J. Elicitor-induced nitric oxide burst is essential for triggering catharanthine synthesis in Catharanthus roseus suspension cells. Appl Microbiol Biotechnol 2004; 67:40-4. [PMID: 15480633 DOI: 10.1007/s00253-004-1737-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/17/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
Elicitor prepared from the cell walls of Penicillium citrinum induced multiple responses in Catharanthus roseus suspension cells, including rapid generation of nitric oxide (NO), sequentially followed by enhancement of catharanthine production by C. roseus cells. Elicitor-induced catharanthine biosynthesis was blocked by NO-specific scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and nitric oxide synthase (NOS) inhibitor S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea (PBITU). PBITU also strongly inhibited elicitor-induced NO generation by C. roseus suspension cells. The inhibiting effect of PBITU on elicitor-induced catharanthine production was reversed by external application of NO via the NO-donor sodium nitroprusside. The results strongly suggested that NO, generated by NOS or NOS-like enzymes in C. roseus suspension cells when treated with the fungal elicitor, was essential for triggering catharanthine synthesis.
Collapse
Affiliation(s)
- Maojun Xu
- College of Food Sciences and Biotechnology and Environmental Engineering, Hangzhou University of Commerce, Hangzhou 310035, China.
| | | |
Collapse
|
46
|
Involvement of NO in fungal elicitor-induced activation of PAL and stimulation of taxol synthesis inTaxus chinensis suspension cells. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03184034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|