1
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
2
|
Stramarkou M, Tzegiannakis I, Christoforidi E, Krokida M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers (Basel) 2024; 16:514. [PMID: 38399892 PMCID: PMC10893451 DOI: 10.3390/polym16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Textile production is a major component of the global industry, with sales of over USD 450 billion and estimations of an 84% increase in their demand in the next 20 years. In recent decades, protective and smart textiles have played important roles in the social economy and attracted widespread popularity thanks to their wide spectrum of applications with properties, such as antimicrobial, water-repellent, UV, chemical, and thermal protection. Towards the sustainable manufacturing of smart textiles, biodegradable, recycled, and bio-based plastics are used as alternative raw materials for fabric and yarn production using a wide variety of techniques. While conventional techniques present several drawbacks, nanofibers produced through electrospinning have superior structural properties. Electrospinning is an innovative method for fiber production based on the use of electrostatic force to create charged threads of polymer solutions. Electrospinning shows great potential since it provides control of the size, porosity, and mechanical resistance of the fibers. This review summarizes the advances in the rapidly evolving field of the production of nanofibers for application in smart and protective textiles using electrospinning and environmentally friendly polymers as raw materials, and provides research directions for optimized smart fibers in the future.
Collapse
Affiliation(s)
- Marina Stramarkou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece; (I.T.); (E.C.); (M.K.)
| | | | | | | |
Collapse
|
3
|
Al Kayal T, Giuntoli G, Cavallo A, Pisani A, Mazzetti P, Fonnesu R, Rosellini A, Pistello M, D’Acunto M, Soldani G, Losi P. Incorporation of Copper Nanoparticles on Electrospun Polyurethane Membrane Fibers by a Spray Method. Molecules 2023; 28:5981. [PMID: 37630233 PMCID: PMC10458218 DOI: 10.3390/molecules28165981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, and thus are often used as antimicrobial agents. In this study, a combined electrospinning/spray technique was employed to fabricate electrospun polyurethane membranes loaded with copper nanoparticles at different surface densities (10, 20, 25, or 30 μg/cm2). This method allows particle deposition onto the surface of the membranes without the use of chemical agents. SEM images showed that polyurethane fibers own homogeneous thickness (around 650 nm), and that spray-deposited copper nanoparticles are evenly distributed. STEM-EDX demonstrated that copper nanoparticles are deposited onto the surface of the fibers and are not covered by polyurethane. Moreover, a uniaxial rupture test showed that particles are firmly anchored to the electrospun fibers. Antibacterial tests against model microorganisms Escherichia coli indicated that the prepared electrospun membranes possess good bactericidal effect. Finally, the antiviral activity against SARS-CoV-2 was about 90% after 1 h of direct contact. The obtained results suggested that the electrospun membranes possess antimicrobial activities and can be used in medical and industrial applications.
Collapse
Affiliation(s)
- Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Giulia Giuntoli
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Aida Cavallo
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Anissa Pisani
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Paola Mazzetti
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Rossella Fonnesu
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Alfredo Rosellini
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Mauro Pistello
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Mario D’Acunto
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy;
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| |
Collapse
|
4
|
Rather AH, Khan RS, Wani TU, Rafiq M, Jadhav AH, Srinivasappa PM, Abdal-Hay A, Sultan P, Rather SU, Macossay J, Sheikh FA. Polyurethane and cellulose acetate micro-nanofibers containing rosemary essential oil, and decorated with silver nanoparticles for wound healing application. Int J Biol Macromol 2023; 226:690-705. [PMID: 36513179 DOI: 10.1016/j.ijbiomac.2022.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
In this study, polyurethane (PU) and cellulose acetate (CA) electrospun fibers encapsulating rosemary essential oil (REO) and adsorbed silver (Ag) nanoparticles (NPs) were fabricated. The biologically inspired materials were analyzed for physicochemical characteristics using scanning electron microscopy, X-ray diffractometer, Fourier transform infrared, thermal gravimetric analysis, X-ray photoelectron spectroscopy, water contact angle, and water uptake studies. Results confirmed the presence of CA and Ag NPs on the PU micro-nanofibers increased the hydrophilicity from 107.1 ± 0.36o to 26.35 ± 1.06o. The water absorption potential increased from 0.07 ± 0.04 for pristine PU fibers to 12.43 ± 0.49 % for fibers with 7 wt% of CA, REO, and Ag NPs. The diffractometer confirmed the 2θ of 38.01°, 44.13o, and 64.33o, corresponding to the diffraction planes of Ag on the fibers. The X-ray photoelectron spectroscopy confirmed microfibers interfacial chemical interaction and surface changes due to CA, REO, and Ag presence. The inhibition tests on Staphylococcus aureus and Escherichia coli indicated that composites are antibacterial in activity. Moreover, synergistic interactions of REO and Ag NPs resulted in superior antibacterial activity. The cell viability and attachment assay showed improved hydrophilicity of the fibers, which resulted in better attachment of cells to the micro-nanofibers, similar to the natural extracellular matrix in the human body.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Taha Umair Wani
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Muheeb Rafiq
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Arvind H Jadhav
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Puneethkumar M Srinivasappa
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Abdalla Abdal-Hay
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt; The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston, QLD 4006, Australia
| | - Phalisteen Sultan
- Department of Cellular and Molecular Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanantnagar, Srinagar 190005, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javier Macossay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States of America
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Umair Wani T, Hamid Rather A, Saleem Khan R, Macossay J, Jadhav AH, Srinivasappa PM, Abdal-hay A, Rather SU, Sheikh FA. Titanium dioxide functionalized multi-walled carbon nanotubes and silver nanoparticles reinforced polyurethane nanofibers as a novel scaffold for tissue engineering applications. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. NANOSCALE RESEARCH LETTERS 2022; 17:114. [PMID: 36437419 PMCID: PMC9702141 DOI: 10.1186/s11671-022-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, silver halide (AgX, X = Cl, Br, I)-based photocatalytic materials have received increasing research attention owing to their excellent visible-light-driven photocatalytic performance for applications in organic pollutant degradation, HER, OER, and biomedical engineering. Ag as a noble metal has a surface plasma effect and can form Schottky junctions with AgX, which significantly promotes electron transport and increases photocatalytic efficiency. Therefore, Ag/AgX can reduce the recombination rate of electrons and holes more than pure AgX, leading to using AgX as a photocatalytic material in biomedical applications. The use of AgX-based materials in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. In this review, we introduce recent developments made in biomedical applications and biosensing diagnostics of AgX (Ag/AgX) photocatalytic materials. In addition, this review also discusses the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| | - Hong Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
7
|
Residual solvent-assisted facile deposition of honeycomb-like silver nanoflakes on the surface of electrospun PAN nanofibers. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Advanced and traditional processing of thermoplastic polyurethane wastes. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Saleem Q, Torabfam M, Kurt H, Yüce M, Bayazit MK. Microwave-promoted continuous flow synthesis of thermoplastic polyurethane–silver nanocomposites and their antimicrobial performance. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study reports a reducing agent-free continuous manufacturing of ∼5 nm silver nanoparticles in a thermoplastic polyurethane matrix using a microwave-promoted fluidic system.
Collapse
Affiliation(s)
- Qandeel Saleem
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
| | - Milad Torabfam
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
| | - Hasan Kurt
- Istanbul Medipol University, School of Engineering and Natural Sciences, Istanbul, 34810, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Nanosolar Plasmonics, Ltd., Kocaeli, 41400, Turkey
| | - Meral Yüce
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul 34956, Turkey
| | - Mustafa Kemal Bayazit
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
11
|
Gharib Khajeh H, Sabzi M, Ramezani S, Jalili AA, Ghorbani M. Fabrication of a wound dressing mat based on Polyurethane/Polyacrylic acid containing Poloxamer for skin tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Ekambaram R, Saravanan S, Selvam N, Dharmalingam S. Statistical optimization of novel acemannan polysaccharides assisted TiO2 nanorods based nanofibers for skin cancer application. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Ashraf R, Maqbool T, Beigh MA, Jadhav AH, Sofi HS, Sheikh FA. Synthesis, characterization, and cell viability of bifunctional medical‐grade polyurethane nanofiber: Functionalization by bone inducing and bacteria ablating materials. J Appl Polym Sci 2021. [DOI: 10.1002/app.50594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Roqia Ashraf
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Tariq Maqbool
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Mushtaq A. Beigh
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Arvind H. Jadhav
- Centre for Nano and Material Science (CNMS) Jain University Bangalore India
| | - Hasham S. Sofi
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Faheem A. Sheikh
- Department of Nanotechnology University of Kashmir Srinagar India
| |
Collapse
|
15
|
Mehdi M, Qiu H, Dai B, Qureshi RF, Hussain S, Yousif M, Gao P, Khatri Z. Green Synthesis and Incorporation of Sericin Silver Nanoclusters into Electrospun Ultrafine Cellulose Acetate Fibers for Anti-Bacterial Applications. Polymers (Basel) 2021; 13:1411. [PMID: 33925468 PMCID: PMC8123900 DOI: 10.3390/polym13091411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Fiber based antibacterial materials have gained an enormous attraction for the researchers in these days. In this study, a novel Sericin Encapsulated Silver Nanoclusters (sericin-AgNCs) were synthesized through single pot and green synthesis route. Subsequently these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate (CA) fibers for assessing the antibacterial performance. The physicochemical properties of sericin-AgNCs/CA composite fibers were investigated by transmission electron microscopy (TEM), field emission electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and wide X-ray diffraction (XRD). The antibacterial properties of sericin-AgNCs/CA composite fibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically evaluated. The results showed that sericin-AgNCs incorporated in ultrafine CA fibers have played a vital role for antibacterial activity. An amount of 0.17 mg/mL sericin-AgNCs to CA fibers showed more than 90% results and elevated upto >99.9% with 1.7 mg/mL of sericin-AgNCs against E. coli. The study indicated that sericin-AgNCs/CA composite confirms an enhanced antibacterial efficiency, which could be used as a promising antibacterial product.
Collapse
Affiliation(s)
- Mujahid Mehdi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (M.M.); (H.Q.); (B.D.); (S.H.); (M.Y.)
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan;
| | - Huihui Qiu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (M.M.); (H.Q.); (B.D.); (S.H.); (M.Y.)
| | - Bing Dai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (M.M.); (H.Q.); (B.D.); (S.H.); (M.Y.)
| | - Raja Fahad Qureshi
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan;
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan
| | - Sadam Hussain
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (M.M.); (H.Q.); (B.D.); (S.H.); (M.Y.)
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan;
| | - Muhammad Yousif
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (M.M.); (H.Q.); (B.D.); (S.H.); (M.Y.)
| | - Peng Gao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (M.M.); (H.Q.); (B.D.); (S.H.); (M.Y.)
| | - Zeeshan Khatri
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan;
| |
Collapse
|
16
|
Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA. Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. Int J Mol Sci 2021; 22:4017. [PMID: 33924640 PMCID: PMC8069027 DOI: 10.3390/ijms22084017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Taha Umair Wani
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Faheem A. Sheikh
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| |
Collapse
|
17
|
A Novel Design of Tri-Layer Membrane with Controlled Delivery of Paclitaxel and Anti-Biofilm Effect for Biliary Stent Applications. NANOMATERIALS 2021; 11:nano11020486. [PMID: 33673016 PMCID: PMC7918081 DOI: 10.3390/nano11020486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Here, we developed a novel biliary stent coating material that is composed of tri-layer membrane with dual function of sustained release of paclitaxel (PTX) anticancer drug and antibacterial effect. The advantages of using electrospinning technique were considered for the even distribution of PTX and controlled release profile from the nanofiber mat. Furthermore, film cast method was utilized to fabricate AgNPs-immobilized PU film to direct the release towards the tumor site and suppress the biofilm formation. The in vitro antibacterial test conducted against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species showed excellent antibacterial effect. The in vitro drug release study confirmed the sustained release of PTX from the tri-layer membrane and the release profile fitted first order with correlation coefficient of R2 = 0.98. Furthermore, the release mechanism was studied using Korsmeyer–Peppas model, revealing that the release mechanism follows Fickian diffusion. Based on the results, this novel tri-layer membrane shows curative potential in clinical development.
Collapse
|
18
|
Lencova S, Zdenkova K, Jencova V, Demnerova K, Zemanova K, Kolackova R, Hozdova K, Stiborova H. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. NANOMATERIALS 2021; 11:nano11020480. [PMID: 33668651 PMCID: PMC7918127 DOI: 10.3390/nano11020480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023]
Abstract
Although nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO3 and chlorhexidine (CHX) were analyzed. Staphylococcus aureus CCM 4516 was used to verify the designed nanomaterials’ inhibition and permeability assays. All functionalized PAs suppressed bacterial growth, and the most effective antimicrobial nanomaterial was evaluated to be PA 12% with 4.0 wt% CHX (inhibition zones: 2.9 ± 0.2 mm; log10 suppression: 8.9 ± 0.0; inhibitory rate: 100.0%). Furthermore, the long-term stability of all functionalized PAs was tested. These nanomaterials can be stored at least nine months after their preparation without losing their antibacterial effect. A filtration apparatus was constructed for testing the retention of PAs. All of the PAs effectively retained the filtered bacteria with log10 removal of 3.3–6.8 and a retention rate of 96.7–100.0%. Surface density significantly influenced the retention efficiency of PAs (p ≤ 0.01), while the effect of fiber diameter was not confirmed (p ≥ 0.05). Due to their stability, retention, and antimicrobial properties, they can serve as a model for medical or filtration applications.
Collapse
Affiliation(s)
- Simona Lencova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
- Correspondence: (S.L.); (H.S.); Tel.: +420-220-44-5196 (S.L.); +420-220-44-5204 (H.S.)
| | - Kamila Zdenkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Klara Zemanova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | - Radka Kolackova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
| | | | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (K.Z.); (K.D.); (K.Z.); (R.K.)
- Correspondence: (S.L.); (H.S.); Tel.: +420-220-44-5196 (S.L.); +420-220-44-5204 (H.S.)
| |
Collapse
|
19
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
20
|
Seo E, Kim H, Bae K, Jung H, Jung H, Lee KJ. Optimizing chemical and mechanical stability of catalytic nanofiber web for development of efficient detoxification cloths against CWAs. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Lencova S, Svarcova V, Stiborova H, Demnerova K, Jencova V, Hozdova K, Zdenkova K. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2277-2288. [PMID: 33284019 DOI: 10.1021/acsami.0c19016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrospun polyamide (PA) nanofibers have great potential for medical applications (in dermatology as antimicrobial compound carriers or surgical sutures). However, little is known about microbial colonization on these materials. Suitable methods need to be chosen and optimized for the analysis of biofilms formed on nanofibers and the influence of their morphology on biofilm formation. We analyzed 11 PA nanomaterials, both nonfunctionalized and functionalized with AgNO3, and tested the formation of a biofilm by clinically relevant bacteria (Escherichia coli CCM 4517, Staphylococcus aureus CCM 3953, and Staphylococcus epidermidis CCM 4418). By four different methods, it was confirmed that all of these bacteria attached to the PAs and formed biofilms; however, it was found that the selected method can influence the outcomes. For studying biofilms formed by the selected bacteria, scanning electron microscopy, resazurin staining, and colony-forming unit enumeration provided appropriate and comparable results. The values obtained by crystal violet (CV) staining were misleading due to the binding of the CV dye to the PA structure. In addition, the effect of nanofiber morphology parameters (fiber diameter and air permeability) and AgNO3 functionalization significantly influenced biofilm maturation. Furthermore, the correlations between air permeability and surface density and fiber diameter were revealed. Based on the statistical analysis, fiber diameter was confirmed as a crucial factor influencing biofilm formation (p ≤ 0.01). The functionalization of PAs with AgNO3 (from 0.1 wt %) effectively suppressed biofilm formation. The PA functionalized with a concentration of 0.1 wt % AgNO3 influenced the biofilm equally as nonfunctionalized PA 8% 2 g/m2. Therefore, biofilm formation could be affected by the above-mentioned morphology parameters, and ultimately, the risk of infections from contaminated medical devices could be reduced.
Collapse
Affiliation(s)
- Simona Lencova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Viviana Svarcova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Hana Stiborova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Katerina Demnerova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, Liberec 1 461 17, Czech Republic
| | | | - Kamila Zdenkova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 3, Prague 6 16628, Czech Republic
| |
Collapse
|
22
|
Zhang Y, Hu J. Robust Effects of Graphene Oxide on Polyurethane/Tourmaline Nanocomposite Fiber. Polymers (Basel) 2020; 13:E16. [PMID: 33374588 PMCID: PMC7793061 DOI: 10.3390/polym13010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
The use of energy therapy including tourmaline/negative ions has gained huge popularity due to their long-standing historical evidence in improving human health and the technology development. However, the limitations of tourmaline based polyurethane fibers including the unsatisfied mechanical properties and negative ions releasing performances hind their further applications for wearable energy therapy. In this study, graphene oxide was modified within the polyurethane/tourmaline nanocomposite and then the wet-spinning method was used to prepare the fibers. As expected, the results proved that polyurethane/tourmaline/graphene oxide fiber had enhanced Young's modulus (8.4 MPa) and tensile stain at break (335%). In addition, the number of released negative ions from polyurethane/tourmaline/graphene oxide fiber was significantly improved 17 times and 1.6 times more than that of neat polyurethane fiber and polyurethane/tourmaline fiber, respectively. Moreover, the releasing number of negative ions was significantly decreased after being applying voltage. We envision that the proposed polyurethane/tourmaline/graphene oxide fiber will provide valuable insights into the development of the wearable energy products.
Collapse
Affiliation(s)
- Yuanchi Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
23
|
Wu X, Li P, Cong L, Yu H, Zhang D, Yue Y, Xu H, Xu K, Zheng X, Wang X. Electrospun poly(vinyl alcohol) nanofiber films containing menthol/β-cyclodextrin inclusion complexes for smoke filtration and flavor retention. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Sofi HS, Akram T, Shabir N, Vasita R, Jadhav AH, Sheikh FA. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111547. [PMID: 33255098 DOI: 10.1016/j.msec.2020.111547] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/10/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023]
Abstract
Cellulose nanofibers, which are troublesome to spin into fibers, can be easily fabricated by post-regeneration of its acetate-derived threads. Cellulose is a natural polymer; it enjoys better biocompatibility, cellular mimicking, and hydrophilic properties than its proportionate analog. Herein, we regenerated acetate-free nanofibers by alkaline de-acetylation of as-spun nanofibers. The resultant cellulose nanofibers previously loaded with hydroxyapatite (HAp) were immobilized using silver (Ag) nanoparticles (NPs) by reduction of adsorbed Ag ions on using sodium borohydride. These amalgamated nanofibers were characterized for SEM, EDX, TEM, FTIR, and hydrophilicity tests revealing the existence of both HAp and Ag NPs in/on the nanofiber scaffolds. The de-acetylation of composite nanofibers resulted in spontaneous hydrophilicity. These nanofibers were cytocompatible, as resolved by MTT assay conducted on chicken embryo fibroblasts. The SEM of the samples after cell culture revealed that these composites allowed a proliferation of the fibroblasts over and within the nanofiber network, and increased concentration of HAp levitated the excessive of apatite formation as well as increased cell growth. The antimicrobial activity of these nanofibers was assessed on E. coli (BL21) and S. aureus, suggesting the potential of de-acetylated nanofibers to restrain bacterial growth. The degradation study for 10, 30, and 60 days indicated degradation of the fibers much is faster in enzymes as compared to degradation in PBS. The results certify that these nanofibers possess enormous potential for soft and hard tissue engineering besides their antimicrobial properties.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Towseef Akram
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar 190001, India
| | - Nadeem Shabir
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar 190001, India
| | - Rajesh Vasita
- Biomaterials and Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Arvind H Jadhav
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, Bangalore 562 112, Karnataka, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
25
|
Almasian A, Najafi F, Eftekhari M, Ardekani MRS, Sharifzadeh M, Khanavi M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111039. [PMID: 32994005 DOI: 10.1016/j.msec.2020.111039] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 04/05/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
In this study, new polyurethane (PU)-based nanofibers wound dressings containing Malva sylvestris extract were prepared and their effect on diabetic wound healing process was evaluated. Different amounts of carboxymethyl cellulose (CMC) were used to improve the absorption ability of wound exudates. The result showed that the usage of 20% w/w CMC in the polymer blend; and producing of nanofibers with an average diameter of 386.5 nm, led to the gradual release of the herbal compound in 85 h and bead-free morphology. Due to the antibacterial activity of wound dressing and wound healing process, the amount of 15% w/w herbal extract was selected as the optimum. For this sample, the fluid absorption was 412.31%. The extract loaded wound dressing samples showed satisfactory effects on Staphylococcus aureus and Escherichia coli bacteria. In vivo wound-healing and histological performance observations indicated that the use of the herbal extract in wound dressing improved wound healing significantly. On day 14, the average healing rate for gauze bandage, PU/CMC, and different amounts of 5, 10, 15 and 20% w/w extract containing wound dressings was 32.1 ± 0.2%, 51.4 ± 0.4%, 71 ± 0.14%, 87.64 ± 1.02%, 95.05 ± 0.24% and 95.11 ± 0.2%, respectively. Compared to the control groups, treatments with extract loaded wound dressings were effective in lowering acute and chronic inflammations. In diabetic rat wounds, collagen deposition and neovascularization were higher in wounds treated with an herbal extract containing wound dressing compared to the wounds treated with a gauze bandage and PU/CMC treated wounds. It can be suggested that this product may be considered as a good dual anti-inflammatory-antimicrobial wound dressing candidate for improving the diabetic wound healing.
Collapse
Affiliation(s)
- Arash Almasian
- Department of Pharmacognosy, Faculty of Pharmacy and Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Shams Ardekani
- Department of Pharmacognosy, Faculty of Pharmacy and Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy and Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Ashraf R, Sofi HS, Akram T, Rather HA, Abdal-Hay A, Shabir N, Vasita R, Alrokayan SH, Khan HA, Sheikh FA. Fabrication of multifunctional cellulose/TiO 2 /Ag composite nanofibers scaffold with antibacterial and bioactivity properties for future tissue engineering applications. J Biomed Mater Res A 2020; 108:947-962. [PMID: 31894888 DOI: 10.1002/jbm.a.36872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
In the present work, a novel strategy was explored to fabricate nanofiber scaffolds consisting of cellulose assimilated with titanium dioxide (TiO2 ) and silver (Ag) nanoparticles (NPs). The concentration of the TiO2 NPs in the composite was adjusted to 1.0, 1.5, and 2.0 wt % with respect to polymer concentration used for the electrospinning of colloidal solutions. The fabricated composite scaffolds were dispensed to alkaline deacetylation using 0.05 M NaOH to remove the acetyl groups in order to generate pure cellulose nanofibers containing TiO2 NPs. Moreover, to augment our nanofiber scaffolds with antibacterial activity, the in situ deposition approach of using Ag NPs was utilized with varied molar concentrations of 0.14, 0.42, and 0.71 M. The physicochemical properties of the nanofibers were identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and contact angle meter studies. This demonstrated the presence of both TiO2 and Ag NPs and complete deacetylation of nanofibers. The antibacterial efficiency of the nanofibers was scrutinized against Escherichia coli and Staphylococcus aureus, revealing proper in situ deposition of Ag NPs and confirming the nanofibers are antibacterial in nature. The biocompatibility of the scaffolds was accustomed using chicken embryo fibroblasts, which confirmed their potential role to be used as wound-healing materials. Furthermore, the fabricated scaffolds were subjected to analysis in simulated body fluid at 37°C to induce mineralization for future osseous tissue integration. These results indicate that fabricated composite nanofiber scaffolds with multifunctional characteristics will have a highest potential as a future candidate for promoting new tissues artificially.
Collapse
Affiliation(s)
- Roqia Ashraf
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Towseef Akram
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| | - Hilal Ahmad Rather
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Abdalla Abdal-Hay
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, Herston, Queensland, Australia
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena, Egypt
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Salman H Alrokayan
- Research Chair for Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A Khan
- Research Chair for Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
27
|
Rajak BL, Kumar R, Gogoi M, Patra S. Antimicrobial Activity of Nanomaterials. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-29207-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Synthesis, Characterization of TiO2 Doped Nanofibres and Investigation on their Antimicrobial Property. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Maleki Dizaj S, Sharifi S, Jahangiri A. Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharm Dev Technol 2019; 24:1187-1199. [PMID: 31424308 DOI: 10.1080/10837450.2019.1656238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology has attracted increasing interest in different aspects of biotechnology. The fabrication of electrospun nanofibers (NFs) containing antibacterial agents for antimicrobial applications has been significantly enhanced in recent years. In the current review, various electrospun NFs with antimicrobial properties were introduced and evaluated. The main focus was on the recent developments and applications of antimicrobial electrospun NFs incorporated with different antimicrobial agents, including metal nanoparticles (NPs), antibiotics, quaternized ammonium compounds, triclosan, herbal extracts, carbon nanomaterials, and antimicrobial biopolymers with inherent antimicrobial properties. The search results revealed that antimicrobial containing electrospun NFs had enhanced antimicrobial performance with various biomedical applications compared to the traditional antimicrobial materials. According to the reported results, most of the studies were of an investigative nature and were mostly based on in vitro tests. Hence, further examination on in vivo clinical performance of these antimicrobial NFs seems necessary. However, these antimicrobial NFs appear to have the potential to achieve clinical usefulness and commercial production in the near future.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Azin Jahangiri
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences , Urmia , Iran
| |
Collapse
|
30
|
Sofi HS, Akram T, Tamboli AH, Majeed A, Shabir N, Sheikh FA. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharm 2019; 569:118590. [PMID: 31381988 DOI: 10.1016/j.ijpharm.2019.118590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
Synthetic polymers, especially those with biocompatible and biodegradable characteristics, may offer effective alternatives for the treatment of severe wounds and burn injuries. Ideally, the scaffold material should induce as little pain as possible, enable quick healing, and direct the growth of defect-free epidermal cells. The best material with this multifunctionality, such as self-healing dressings, should be hydrophilic and have uninterrupted and direct contact with the damaged tissue. In addition, the ideal biomaterial should have some antibacterial properties. In this study, a novel technique was used to fabricate composite electrospun wound-dressing nanofibers composed of polyurethane encasing lavender oil and silver (Ag) nanoparticles (NPs). After electrospinning, the fabricated nanofibers were identified using various techniques, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An abundance of Ag NPs in the fibers decreased the diameter of the fibers while increased concentration of the lavender oil increased the diameter. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) studies showed the presence of the lavender oil and Ag NPs in the fiber dressings. The Ag NPs and lavender oil improved the hydrophilicity of the nanofibers and ensured the proliferation of chicken embryo fibroblasts cultured in-vitro on these fiber dressings. The antibacterial efficiency of the nanofiber dressings was investigated using E. coli and S. aureus, which yielded zones of inhibition of 16.2 ± 0.8 and 5.9 ± 0.5 mm, respectively, indicating excellent bactericidal properties of the dressings. The composite nanofiber dressings have great potential to be used as multifunctional wound dressings; offering protection against external agents as well as promoting the regeneration of new tissue.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Towseef Akram
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Ashif H Tamboli
- Department of Physics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India
| | - Aasiya Majeed
- Department of Biochemistry, Division of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Chatha 180009, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
31
|
Pant B, Park M, Park SJ. One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers (Basel) 2019; 11:E1185. [PMID: 31311153 PMCID: PMC6681108 DOI: 10.3390/polym11071185] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/31/2023] Open
Abstract
A new and straightforward route was proposed to incorporate silver nanoparticles (Ag NPs) into the surface of polyurethane nanofibers (PU NFs). Uniform distribution of in situ formed Ag NPs on the surface of PU NFs was achieved by adding AgNO3 and tannic acid in a PU solution prior to the electrospinning process. The synthesized nanofiber mats were characterized with state-of-the-art techniques and antibacterial performances were tested against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The cytocompatibility and cell behavior were studied by using fibroblast cells. Following this preparation route, Ag/PU NFs can be obtained with excellent antibacterial performance, thus making them appropriate for various applications such as water filtration, wound dressings, etc.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea
| | - Mira Park
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Science, Chonbuk National University, Jeonju 54896, Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea.
| |
Collapse
|
32
|
|
33
|
Ryšánek P, Čapková P, Štojdl J, Trögl J, Benada O, Kormunda M, Kolská Z, Munzarová M. Stability of antibacterial modification of nanofibrous PA6/DTAB membrane during air filtration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:807-813. [PMID: 30606594 DOI: 10.1016/j.msec.2018.11.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/16/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
Stable antimicrobial nanofibrous membrane for air filtration based on polyamide 6 (hereafter PA6) modified by 1-dodecyltrimethylammonium bromide (DTAB) has been prepared by electrospinning using one-step technology, i.e. with modifying antimicrobial agent dissolved in spinning solution. Stability of antibacterial membrane function has been tested by air-blowing test to prove the permanency of chemical composition and antibacterial activity. X-ray diffraction, high-resolution scanning electron microscopy (HRSEM) revealed the effect of modifying agent on structure and morphology of PA6 nanofibres. X-ray photoelectron spectroscopy, electrokinetic analysis and antibacterial tests proved the stability of chemical composition and antibacterial activity after air-blowing tests. Special air-blowing device has been constructed for this purpose. The results prove the applicability so prepared membrane for a long-term air-conditioning.
Collapse
Affiliation(s)
- Petr Ryšánek
- Faculty of Science, J. E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic.
| | - Pavla Čapková
- Faculty of Science, J. E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Jiří Štojdl
- Faculty of Environment, J. E. Purkyně University, Králova výšina 3132/7, 400 96 Ústí nad Labem, Czech Republic
| | - Josef Trögl
- Faculty of Environment, J. E. Purkyně University, Králova výšina 3132/7, 400 96 Ústí nad Labem, Czech Republic
| | - Oldřich Benada
- Faculty of Science, J. E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14 220 Prague 4, Czech Republic
| | - Martin Kormunda
- Faculty of Science, J. E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Zdeňka Kolská
- Faculty of Science, J. E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Marcela Munzarová
- Nanovia, s. r. o., Litvínov, Podkrušnohorská 271, 436 03, Chudeřín, Czech Republic
| |
Collapse
|
34
|
Sofi HS, Ashraf R, Sheikh FA. Experimental Protocol for Culture and Differentiation of Osteoblasts on 3D Abode Using Nanofiber Scaffolds. Methods Mol Biol 2019; 2125:95-108. [PMID: 31004285 DOI: 10.1007/7651_2019_230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nanofibrous structures provide a three-dimensional topography in vivo to allow the attachment, migration, proliferation, and differentiation of the cells in an environment which exactly mimics the native tissue. Herein, we report the standard protocols to carry out the cell culture of human osteoblast on nanofiber scaffolds. We also have described protocols for the determination of cell viability, morphology, mineralization, and phenotypic characterization of the osteoblasts.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Roqia Ashraf
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
35
|
Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:49-78. [DOI: 10.1007/978-981-13-0950-2_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Recent advance in antibacterial activity of nanoparticles contained polyurethane. J Appl Polym Sci 2018. [DOI: 10.1002/app.46997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Jaganathan SK, Mani MP. Single-stage synthesis of electrospun polyurethane scaffold impregnated with zinc nitrate nanofibers for wound healing applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.46942] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Applied Sciences; Ton Duc Thang University; Ho Chi Minh City Vietnam
- IJN-UTM Cardiovascular Engineering Centre, Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skuda 81300 Johor Malaysia
| | - Mohan Prasath Mani
- Faculty of Biosciences and Medical Engineering; Universiti Teknologi Malaysia; Skuda 81300 Johor Malaysia
| |
Collapse
|
38
|
Akia M, Salinas N, Rodriguez C, Gilkerson R, Materon L, Lozano K. Texas Sour Orange Juice Used in Scaffolds for Tissue Engineering. MEMBRANES 2018; 8:E38. [PMID: 29973524 PMCID: PMC6161134 DOI: 10.3390/membranes8030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022]
Abstract
Fine fibers of polyhydroxybutyrate (PHB), a biopolymer, were developed via a centrifugal spinning technique. The developed fibers have an average diameter of 1.8 µm. Texas sour orange juice (SOJ) was applied as a natural antibacterial agent and infiltrated within the fibrous membranes. The antibacterial activity against common Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) was evaluated as well as cell adhesion and viability. The PHB/SOJ scaffolds showed antibacterial activity of up to 152% and 71% against S. aureus and E. coli, respectively. The cell studies revealed a suitable environment for cell growth and cell attachment. The outcome of this study opens up new opportunities for fabrication of fibrous materials for biomedical applications having multifunctional properties while using natural agents.
Collapse
Affiliation(s)
- Mandana Akia
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Nataly Salinas
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Cristobal Rodriguez
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Robert Gilkerson
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Luis Materon
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| |
Collapse
|
39
|
Tamayo L, Acuña D, Riveros AL, Kogan MJ, Azócar MI, Páez M, Leal M, Urzúa M, Cerda E. Porous Nanogold/Polyurethane Scaffolds with Improved Antibiofilm, Mechanical, and Thermal Properties and with Reduced Effects on Cell Viability: A Suitable Material for Soft Tissue Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13361-13372. [PMID: 29627980 DOI: 10.1021/acsami.8b02347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of implants carries on a series of problems, among them infections, poor biocompatibility, high levels of cytotoxicity, and significant mechanical differences between implants and host organs that promote stress shielding effects. These problems indicate that the materials used to make implants must meet essential requirements and high standards for implantations to be successful. In this work, we present the synthesis, characterization and evaluation of the antibiofilm, mechanical, and thermal properties, and cytotoxic effect of a nanocomposite-based scaffold on polyurethane (PU) and gold nanoparticles (AuNPs) for soft tissue applications. The effect of the quantity of AuNPs on the antibacterial activity of nanocomposite scaffolds was evaluated against Staphylococcus epidermidis and Klebsiella spp., with a resulting 99.99% inhibition of both bacteria using a small quantity of nanoparticles. Cytotoxicity was evaluated with the T10 1/2 test against fibroblast cells. The results demonstrated that porous nanogold/PU scaffolds have no toxic effects on fibroblast cells to the 5 day exposition. With respect to mechanical properties, stress-strain curves showed that the compressive modulus and yield strength of PU scaffolds were significantly enhanced by AuNPs (by at least 10 times). This is due to changes in the arrangement of hard segments of PU, which increase the stiffness of the polymer. Thermogravimetric analysis showed that the degradation onset temperature rises with an increase in the quantity of AuNPs. These properties and characteristics demonstrate that porous nanogold/PU scaffolds are suitable material for use in soft tissue implants.
Collapse
Affiliation(s)
- L Tamayo
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Polymers and Macromolecules Center , Universidad Autónoma de Chile , El Llano Subercaseaux 2801 , San Miguel, Santiago 8910060 , Chile
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653 , Santiago 8320000 , Chile
| | - D Acuña
- Departamento de Física , Universidad de Santiago , Av. Ecuador 3493 , Santiago 8320000 , Chile
| | - A L Riveros
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santos Dumont 964, Casilla 233 , Santiago 8320000 , Chile
| | - M J Kogan
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santos Dumont 964, Casilla 233 , Santiago 8320000 , Chile
| | - M I Azócar
- Departamento de Química de los Materiales, Facultad de Química y Biología , Universidad de Santiago de Chile , Av. L. B. O'Higgins 3363, Casilla 40, Correo 33 , Santiago 8320000 , Chile
| | - M Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología , Universidad de Santiago de Chile , Av. L. B. O'Higgins 3363, Casilla 40, Correo 33 , Santiago 8320000 , Chile
| | - M Leal
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653 , Santiago 8320000 , Chile
| | - M Urzúa
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653 , Santiago 8320000 , Chile
| | - E Cerda
- Departamento de Física , Universidad de Santiago , Av. Ecuador 3493 , Santiago 8320000 , Chile
| |
Collapse
|
40
|
Pant B, Park M, Ojha GP, Kim DU, Kim HY, Park SJ. Electrospun salicylic acid/polyurethane composite nanofibers for biomedical applications. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1376200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Bishweshwar Pant
- Department of Chemistry, Inha University, Incheon, Republic of Korea
| | - Mira Park
- Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | - Gunendra Prasad Ojha
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Dae-Up Kim
- Korea Institute of Industrial Technology, Jeonju, South Korea
| | - Hak-Yong Kim
- Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, Republic of Korea
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, Republic of Korea
| |
Collapse
|
41
|
Kiliç E, Yakar A, Pekel Bayramgil N. Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 29:8. [PMID: 29275508 DOI: 10.1007/s10856-017-6013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Polyurethane (PU) and doxorubicine loaded-PU nanofiber mats were prepared by the electrospinning technique. The effect of some system and process parameters including flow rate, distance from collector, and concentration of solution on the size and morphology of nanofibers was investigated. The size, morphology and drug content of nanofiber mats were followed by scanning electron microscopy (SEM). FTIR and TGA methods were used for structural and thermal characterization, and DSC was also used for determining the form of drug within nanofiber mat. Doxorubicine release kinetics were studied in two different pHs (4.5 and 7.5) for two drug content and it was observed that there is an inverse correlation between the amounts of drug loaded and released.
Collapse
Affiliation(s)
- Esra Kiliç
- Faculty of Science, Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Arzu Yakar
- Department of Chemical Engineering, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Nursel Pekel Bayramgil
- Faculty of Science, Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
42
|
Abstract
Food packaging is an integral component of the global food supply chain, protecting food from dirt, chemical contaminants and microorganisms, and helping to maintain food quality during transport and storage. Much of this packaging relies on modern polymeric materials, which have been developed to help control the exposure of products to light, oxygen and moisture. These have the benefits of being lightweight, cost-effective, reusable, recyclable and resistant to chemical and physical damage. Although traditional polymeric materials can fulfill many of these requirements, efforts continue to maintain or improve packaging performance while reducing the use of raw materials, waste and costs. The use of nanotechnology to produce nanocomposite materials has great promise to improve the characteristics of food packaging, but many of the products are still in their infancy. Only a relatively small number of nanoenabled products have entered the market and many, but not all, occupy niche markets. This chapter briefly describes the areas where nanomaterials have been used in research and commercial products to improve mechanical and barrier properties and to create active and intelligent packaging materials. It also addresses the regulation of nanomaterials in food contact applications and migration when evaluating the safety of these materials.
Collapse
Affiliation(s)
- Susana Addo Ntim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| | - Gregory O. Noonan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| |
Collapse
|
43
|
Kim HJ, Han SW, Joshi MK, Kim CS. Fabrication and characterization of silver nanoparticle-incorporated bilayer electrospun–melt-blown micro/nanofibrous membrane. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1255615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Han Joo Kim
- Department of Convergence Technology Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | - Sang Won Han
- Sun Jin Tech. Company, Jeollabukdo, Republic of Korea
| | - Mahesh Kumar Joshi
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Republic of Korea
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
44
|
Khodkar F, Golshan Ebrahimi N. Preparation and properties of antibacterial, biocompatible core-shell fibers produced by coaxial electrospinning. J Appl Polym Sci 2017. [DOI: 10.1002/app.44979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fatemeh Khodkar
- Chemical Engineering Faculty, Polymer Engineering Department; Tarbiat Modares University; P. O. Box No. 14115-114 Tehran Iran
| | - Nadereh Golshan Ebrahimi
- Chemical Engineering Faculty, Polymer Engineering Department; Tarbiat Modares University; P. O. Box No. 14115-114 Tehran Iran
| |
Collapse
|
45
|
Shekh MI, Patel NN, Patel KP, Patel RM, Ray A. Nano silver-embedded electrospun nanofiber of poly(4-chloro-3-methylphenyl methacrylate): use as water sanitizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5701-5716. [PMID: 28039633 DOI: 10.1007/s11356-016-8254-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Water contaminated with microorganisms causes numerous diseases and is a major concern for public health. In search of a simple material which can provide clean water free from pathogens, nanofibers of poly(4-chloro-3-methylphenyl methacrylate, abbreviated as CMPMA, and nano Ag-doped poly(CMPMA) composite nanofibers were used to decontaminate water from microorganisms such as Escherichia coli and Bacillus subtilis. Nanofibers were prepared by electrospinning. X-ray diffraction (XRD) and transmission electron microscopy (TEM) provide the diameters of the Ag nanoparticles which are in the range 18-21 and 13-18 nm. The diameter of the poly(CMPMA) and nano Ag-doped poly(CMPMA) composite nanofiber is seen to vary between 400 and 700 nm with the change of the processing parameters. Optimum parameters for uniform nanofibers have been obtained. The morphology of the fibers is derived from scanning electron microscopy (SEM). The superiority of the nano Ag-doped poly(CMPMA) composite nanofiber was established.
Collapse
Affiliation(s)
- Mehdihasan I Shekh
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Nirmal N Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Kaushal P Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India.
| | - Rajnikant M Patel
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Arabinda Ray
- Department of Advanced Organic Chemistry, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| |
Collapse
|
46
|
Jiang J, Li L, Li K, Li G, You F, Zuo Y, Li Y, Li J. Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1584-98. [PMID: 27501157 DOI: 10.1080/09205063.2016.1221699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Solving the issue of infection associated with implanted bone substitutes is one of the modern challenges of the biomedical engineering field. The purpose of this study was to develop a novel porous scaffold with sufficient antibacterial activity for bone repair or regeneration. Porous nanohydroxyapatite/polyurethane (n-HA/PU) composite scaffolds containing different amounts of silver phosphate particles were prepared through the in situ foaming method. Subsequently, their physicochemical properties, antibacterial abilities, and preliminary cytocompatibilities were evaluated. The results indicated that the porosity and mechanical properties of the n-HA/PU scaffolds incorporated with Ag3PO4 did not change significantly compared to n-HA/PU scaffold without Ag3PO4. The release of Ag(+) was time and concentration dependent, increasing with the immersion time and Ag3PO4 percentage in the scaffolds. A continuous Ag(+) release can last more than 3 weeks. The antibacterial tests and cytocompatibility evaluation revealed that n-HA/PU scaffolds with 3 wt% Ag3PO4 (n-HA/PU3) exhibit stronger antimicrobial effects as well as satisfactory cytocompatibility. The n-HA/PU3 scaffolds may hold great potential for application in the field of bone regeneration, especially for infection-associated bone defect repair.
Collapse
Affiliation(s)
- Jiaxing Jiang
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Limei Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Kuankuan Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Gen Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Fu You
- b Division of Biomedical Engineering , College of Engineering, University of Saskatchewan , Saskatoon , Canada
| | - Yi Zuo
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Yubao Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Jidong Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| |
Collapse
|
47
|
Maharjan B, Joshi MK, Tiwari AP, Park CH, Kim CS. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. J Mech Behav Biomed Mater 2016; 65:66-76. [PMID: 27552600 DOI: 10.1016/j.jmbbm.2016.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
Silver nanoparticles embedded within a nanofibrous polymer matrix have significant attention in recent years as an antimicrobial wound dressing materials. Herein, we have fabricated a novel Ag-polyurethane-zein hybrid nanofibrous scaffold for wound dressing applications. AgNPs were synthesized in-situ via reduction of silver nitrate in electrospinning solution. Varying mass composition of the components showed the pronounced effect on the morphology and physicochemical properties of the composite fibers. Field-Emission Scanning Electron Microscopy (FESEM) images revealed that PU and zein with mass ratio 2:1 produced the bead-free continuous and uniformly distributed nanofibers. Fourier-transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Thermogravimetric Analysis (TGA) confirmed the well interaction between component polymers. Compared to the pristine PU nanofibers, composite fibers showed enhanced tensile strength, young׳s modulus and surface wettability. The antibacterial capacity of the nanofibrous membrane was evaluated against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains via a zone of inhibition test, and the results showed high antibacterial performance for Ag incorporated composite mat. Experimental results of cell viability assay and microscopic imaging revealed that as-fabricated scaffolds have an excellent ability for fibroblast cell adhesion, proliferation and growth. Overall, as-fabricated antibacterial natural/synthetic composite scaffold can be a promising substrate for repairing skin defects.
Collapse
Affiliation(s)
- Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Mahesh Kumar Joshi
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Arjun Prasad Tiwari
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea; Eco-friendly Machine Parts Design Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
48
|
Torres-Giner S, Pérez-Masiá R, Lagaron JM. A review on electrospun polymer nanostructures as advanced bioactive platforms. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24274] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Rocío Pérez-Masiá
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| |
Collapse
|
49
|
J. del Valle L, Franco L, Katsarava R, Puiggalí J. Electrospun biodegradable polymers loaded with bactericide agents. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.1.52] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
50
|
Dolina J, Dvořák L, Lederer T, Vacková T, Mikmeková Š, Šlouf M, Černík M. Characterisation of morphological, antimicrobial and leaching properties of in situ prepared polyurethane nanofibres doped with silver behenate. RSC Adv 2016. [DOI: 10.1039/c6ra03614g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PU nanofibersin situdoped with silver nanoparticles were prepared using free-surface electrospinning and no post-treatment. Nanofibres with silver behenate exhibited homogenous morphology, strong antimicrobial properties and low silver leaching.
Collapse
Affiliation(s)
- Jan Dolina
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| | - Lukáš Dvořák
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| | - Tomáš Lederer
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| | - Taťana Vacková
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Prague 6
- Czech Republic
| | - Šárka Mikmeková
- Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic
- Brno
- Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Prague 6
- Czech Republic
| | - Miroslav Černík
- Centre for Nanomaterials
- Advanced Technologies and Innovation
- Technical University of Liberec
- Liberec
- Czech Republic
| |
Collapse
|