1
|
Kumar S, Song K, Wang J, Baghel MS, Wong P, Cao X, Wan M. Serum Amyloid P Secreted by Bone Marrow Adipocytes Drives Skeletal Amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608092. [PMID: 39211279 PMCID: PMC11361041 DOI: 10.1101/2024.08.15.608092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The accumulation of amyloid fibrils has been identified in tissues outside the brain, yet little is understood about the formation of extracerebral amyloidosis and its impact on the aging process of these organs. Here, we demonstrate that both transgenic mice modeling Alzheimer's disease (AD) and naturally aging mice exhibit accumulated senescent bone marrow adipocytes (BMAds), accompanied by amyloid deposits surrounding the BMAds. Senescent BMAds acquire a secretory phenotype, resulting in a marked increase in the secretion of serum amyloid P component (SAP), also known as pentraxin 2 (PTX2). SAP/PTX2 colocalizes with amyloid deposits around senescent BMAds in vivo and is sufficient to promote the formation of insoluble amyloid deposits from soluble Aβ peptides in in vitro and ex vivo 3D BMAd-based culture experiments. Additionally, Combined treatment with SAP/PTX2 and Aβ peptides promotes osteoclastogenesis but inhibits osteoblastogenesis of the precursor cells. Transplantation of senescent BMAds into the bone marrow cavity of healthy young mice is sufficient to induce bone loss. Finally, pharmacological depletion of SAP/PTX2 from aged mice abolishes bone marrow amyloid deposition and effectively rescues the low bone mass phenotype. Thus, senescent BMAds, through the secretion of SAP/PTX2, contribute to the age-associated development of skeletal amyloidosis and resultant bone deficits.
Collapse
|
2
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Wang Y, Chen W, Ding S, Wang W, Wang C. Pentraxins in invertebrates and vertebrates: From structure, function and evolution to clinical applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105064. [PMID: 37734429 DOI: 10.1016/j.dci.2023.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The immune system is divided into two broad categories, consisting of innate and adaptive immunity. As recognition and effector factors of innate immunity and regulators of adaptive immune responses, lectins are considered to be important defense chemicals against microbial pathogens, cell trafficking, immune regulation, and prevention of autoimmunity. Pentraxins, important members of animal lectins, play a significant role in protecting the body from pathogen infection and regulating inflammatory reactions. They can recognize and bind to a variety of ligands, including carbohydrates, lipids, proteins, nucleic acids and their complexes, and protect the host from pathogen invasion by activating the complement cascade and Fcγ receptor pathways. Based on the primary structure of the subunit, pentraxins are divided into short and long pentraxins. The short pentraxins are comprised of C-reactive protein (CRP) and serum amyloid P (SAP), and the most important member of the long pentraxins is pentraxin 3 (PTX3). The CRP and SAP exist in both vertebrates and invertebrates, while the PTX3 may be present only in vertebrates. The major ligands and functions of CRP, SAP and PTX3 and three activation pathways involved in the complement system are summarized in this review. Their different characteristics in various animals including humans, and their evolutionary trees are analyzed. The clinical applications of CRP, SAP and PTX3 in human are reviewed. Some questions that remain to be understood are also highlighted.
Collapse
Affiliation(s)
- Yuying Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
4
|
Levitte S, Peale FV, Jhun I, McBride J, Neighbors M. Local Pentraxin-2 Deficit Is a Feature of Intestinal Fibrosis in Crohn's Disease. Dig Dis Sci 2023:10.1007/s10620-023-07909-1. [PMID: 36884186 DOI: 10.1007/s10620-023-07909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Pentraxin-2 (PTX-2) is a homo-pentameric plasma protein showing evidence of antifibrotic activity in Phase 2 clinical trials in idiopathic pulmonary fibrosis (IPF). Whether PTX-2 plays a role in other fibrotic diseases, including intestinal fibrosis which commonly occurs in inflammatory bowel disease (IBD), remains unknown. AIMS This study aimed to qualitatively and quantitatively assess PTX-2 expression in fibrostenotic Crohn's disease (FCD) and determine whether expression is correlated with postsurgical restenosis. METHODS Immunohistochemistry was performed in histologic sections of small bowel resected from patients with fibrostenotic Crohn's disease (FCD), comparing strictured segments with adjacent surgical margins from the same patient. Ileal resections from patients without inflammatory bowel disease were examined as controls. RESULTS PTX-2 signal was analyzed in 18 patients with FCD and 15 patients without IBD and localized predominantly to submucosal vasculature, including arterial subendothelium and internal elastic lamina, and perivascular connective tissue. PTX-2 signal in the surgical margins from patients with FCD strictures (where tissue architecture was normal) was consistently lower than non-IBD samples. Fibrostenotic regions showed increased PTX-2 signal relative to surgical margins from the same patient in 14/15 paired samples. Submucosal/mural PTX-2 signal in fibrostenotic tissue was lower in patients who subsequently experienced re-stenosis (P = 0.015). CONCLUSIONS This exploratory study is the first analysis of PTX-2 within the intestine, and demonstrates that PTX-2 signal is reduced in the architecturally normal bowel of patients with FCD. Lower submucosal PTX-2 levels in patients with re-stenosis raises the possibility of a protective role of PTX-2 in intestinal fibrosis.
Collapse
Affiliation(s)
- Steven Levitte
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, 750 Welch Rd Ste 116, Palo Alto, CA, 94304, USA.
| | - Franklin V Peale
- Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Iny Jhun
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Jacqueline McBride
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Margaret Neighbors
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
5
|
Serum amyloid P component and pro-platelet basic protein in extracellular vesicles or serum are novel markers of liver fibrosis in chronic hepatitis C patients. PLoS One 2022; 17:e0271020. [PMID: 35797333 PMCID: PMC9262231 DOI: 10.1371/journal.pone.0271020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) contain proteins, mRNAs, and microRNAs, and their cargos have emerged as novel diagnostic markers in various diseases. We aimed to discover novel and noninvasive biomarkers of liver fibrosis by proteomic analysis using serum EVs in patients with chronic hepatitis C. We performed shotgun proteomics using serum EVs isolated from 54 patients with histologically assessed liver fibrosis. Shotgun proteomics identified a total of 974 proteins, and 445 proteins were detected in more than half of the patients. Among them, a total of 9 proteins were identified as proteins that tended to increase or decrease with liver fibrosis with a significance of p<0.005 and that were different between F1-2 patients and F3-4 patients with a significance of p<0.01. Among the 9 proteins, targeted proteomics using serum EVs isolated from the sera of another 80 patients with histologically assessed liver fibrosis verified that serum amyloid P component (SAP) and pro-platelet basic protein (PPBP) levels in EVs significantly decreased with the progression of liver fibrosis and were significantly lower in F3-4 patients than in F1-2 patients. The diagnostic accuracies of SAP and PPBP in EVs for the liver fibrosis stage were comparable to those of type IV collagen 7S, hyaluronic acid, and the fibrosis-4 index (FIB-4 index). Moreover, serum SAP and PPBP levels correlated with the levels in EVs, and the ability of serum SAP and PPBP to diagnose liver fibrosis stage was also comparable to the abilities of type IV collagen 7S, hyaluronic acid, and the FIB-4 index. In conclusion, proteomic analysis of serum EVs identified SAP and PPBP as candidate biomarkers for predicting liver fibrosis in patients with chronic hepatitis C. In addition, SAP and PPBP levels in serum are strongly correlated with those in EVs and could represent markers of liver fibrosis.
Collapse
|
6
|
Yang J, Zhou J, Zhou J, Wang H, Sun Z, Zhu X, He Y, Wong AHC, Liu F, Wang G. Serum amyloid P component level is associated with clinical response to escitalopram treatment in patients with major depressive disorder. J Psychiatr Res 2022; 146:172-178. [PMID: 34995992 DOI: 10.1016/j.jpsychires.2021.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
Serum amyloid P component (SAP) is a universal constituent of human amyloid deposits, which has been implicated in Alzheimer's disease and major depressive disorder (MDD). However, the relationship between SAP level and depression severity remains obscure. The aims of this study were to investigate how SAP is involved in depression and to explore the association between SAP level and antidepressant treatment response. Patients with MDD (n = 85) who received escitalopram monotherapy for 8-12 weeks were selected from a multicenter open-label randomized clinical trial. The same number of healthy controls was recruited. Depression severity was measured according to the Hamilton Depression Rating Scale (HAMD-17) at baseline and weeks 4, 8, and 12. The plasma levels of SAP were measured at baseline, week 2 and week 12. As a result, baseline levels of SAP were significantly higher in depressed patients than in control subjects (p < 0.001). SAP levels at baseline were negatively associated with depression severity after escitalopram treatment (p < 0.05), and the changes in SAP levels from baseline to week 12 were highly correlated with the severity of depressive symptoms based on the HAMD-17 score (p < 0.05). Interestingly, treatment with escitalopram significantly decreased the plasma levels of SAP in females, but not in males. Altogether, our results suggest that SAP not only involved in the pathobiology of depression but also mediates the action of antidepressant medications.
Collapse
Affiliation(s)
- Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Jia Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Haixia Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Fang Liu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China.
| |
Collapse
|
7
|
Malicek D, Wittig I, Luger S, Foerch C. Proteomics-Based Approach to Identify Novel Blood Biomarker Candidates for Differentiating Intracerebral Hemorrhage From Ischemic Stroke-A Pilot Study. Front Neurol 2022; 12:713124. [PMID: 34975707 PMCID: PMC8719589 DOI: 10.3389/fneur.2021.713124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: A reliable distinction between ischemic stroke (IS) and intracerebral hemorrhage (ICH) is required for diagnosis-specific treatment and effective secondary prevention in patients with stroke. However, in resource-limited settings brain imaging, which is the current diagnostic gold standard for this purpose, is not always available in time. Hence, an easily accessible and broadly applicable blood biomarker-based diagnostic test differing stroke subtypes would be desirable. Using an explorative proteomics approach, this pilot study aimed to identify novel blood biomarker candidates for distinguishing IS from ICH. Material and Methods: Plasma samples from patients with IS and ICH were drawn during hospitalization and were analyzed by using liquid chromatography/mass spectrometry. Proteins were identified using the human reference proteome database UniProtKB, and label-free quantification (LFQ) data were further analyzed using bioinformatic tools. Results: Plasma specimens of three patients with IS and four patients with ICH with a median National Institute of Health Stroke Scale (NIHSS) of 12 [interquartile range (IQR) 10.5–18.5] as well as serum samples from two healthy volunteers were analyzed. Among 495 identified protein groups, a total of 368 protein groups exhibited enough data points to be entered into quantitative analysis. Of the remaining 22 top-listed proteins, a significant difference between IS and ICH was found for Carboxypeptidase N subunit 2 (CPN2), Coagulation factor XII (FXII), Plasminogen, Mannan-binding lectin serine protease 1, Serum amyloid P-component, Paraoxonase 1, Carbonic anhydrase 1, Fibulin-1, and Granulins. Discussion: In this exploratory proteomics-based pilot study, nine candidate biomarkers for differentiation of IS and ICH were identified. The proteins belong to the immune system, the coagulation cascade, and the apoptosis system, respectively. Further investigations in larger cohorts of patients with stroke using additional biochemical analysis methods, such as ELISA or Western Blotting are now necessary to validate these markers, and to characterize diagnostic accuracy with regard to the development of a point-of-care-system for use in resource-limited areas.
Collapse
Affiliation(s)
- David Malicek
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sebastian Luger
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Ma J, Liu Q, White JR. Novel methods to determine complement activation in human serum induced by the complex of Dezamizumab and serum amyloid P. J Biol Chem 2021; 297:101136. [PMID: 34461096 PMCID: PMC8463879 DOI: 10.1016/j.jbc.2021.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Lack of simple and robust methods to determine complement activation in human serum induced by antigen–antibody complexes is a major hurdle for monitoring therapeutic antibody drug quality and stability. Dezamizumab is a humanized IgG1 monoclonal antibody that binds to serum amyloid P component (SAP) for potential treatment of systemic amyloidosis. The mechanism of action of Dezamizumab includes the binding of SAP, complement activation through classical pathway, and phagocytosis; however, the steps in this process cannot be easily monitored. We developed two novel methods to determine Dezamizumab-SAP complex-induced complement activation. Complement component 3 (C3) depletion was detected by homogeneous time-resolved fluorescence (HTRF), and C3a desArg fragment, formed after the cleavage of C3 to yield C3a followed by removal of its C-terminal arginine residue, was determined using Meso Scale Discovery (MSD) technology. We found that the presence of both Dezamizumab and SAP was required for complement activation via both methods. The optimal molar ratio of Dezamizumab:SAP was 6:1 in order to obtain maximal complement activation. The relative potency from both methods showed a good correlation to Dezamizumab-SAP-dependent complement component 1q (C1q) binding activity in Dezamizumab thermal-stressed samples. Both SAP and C1q binding, as determined by surface plasmon resonance and the two complement activation potency methods described here, reflect the mechanism of action of Dezamizumab. We conclude that these methods can be used to monitor Dezamizumab quality for drug release and stability testing, and the novel potency methods reported here can be potentially used to evaluate complement activity induced by other antigen–antibody complexes.
Collapse
Affiliation(s)
- Jianhong Ma
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA.
| | - Qi Liu
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA
| | - John R White
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA
| |
Collapse
|
9
|
Wang W, Wu L, Wu X, Li K, Li T, Xu B, Liu W. Combined analysis of serum SAP and PRSS2 for the differential diagnosis of CD and UC. Clin Chim Acta 2020; 514:8-14. [PMID: 33333044 DOI: 10.1016/j.cca.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease. Crone's disease (CD) and ulcerative colitis (UC) are types of IBD. There is a need for a more accurate, noninvasive biomarker to distinguish CD from UC. PURPOSE To verify the diagnostic value of combined serum trypsin 2 (PRSS2) and serum amyloid P component (SAP) evaluation in distinguishing CD from UC. METHODS The subjects included 28 normal controls (NC) as well as 44 UC, 72CD, 16 colorectal cancer (CRC), 10 colorectal polyps, and 10 cancer cases. Serum SAP, PRSS2, CRP, and CEA were measured and compared. RESULTS The concentration of CEA in CRC and other gastrointestinal tumors was significantly higher than that in UC, CD, and colorectal polyps. The concentration of CRP was significantly higher in UC and CD than that in the healthy group, but there were no significant differences when compared to the intestinal polyp group. Serum PRSS2 concentration was significantly higher in the UC and CD groups than that in the colorectal polyp group, and the average serum concentration of SAP in CD was significantly higher compared to UC. In patients with colorectal polyps, there was no correlation between PRSS2 and CRP. ROC curve analysis showed that the AUC of PRSS2 used to distinguish IBD patients from healthy controls or colorectal polyp patients was 0.730 and 0.774, respectively. The AUC of SAP used to distinguish CD from UC was 0.706. The AUC of combined PRSS2 and SAP was not different from the AUC for individual SAP. Finally, we demonstrated that the expression of SAP in CD patient tissues was significantly higher than that in UC patients. CONCLUSION The combined analysis of serum SAP and PRSS2 has differential diagnostic value for CD and UC.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200435, China
| | - Lixia Wu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xuan Wu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ke Li
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tianming Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bei Xu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Weiwei Liu
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200435, China; Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200071, China.
| |
Collapse
|
10
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, Kasselman LJ, Glass AD, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Molecular mechanisms and potential treatment approaches. Respir Investig 2020; 58:320-335. [PMID: 32487481 DOI: 10.1016/j.resinv.2020.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with high mortality that commonly occurs in middle-aged and older adults. IPF, characterized by a decline in lung function, often manifests as exertional dyspnea and cough. Symptoms result from a fibrotic process driven by alveolar epithelial cells that leads to increased migration, proliferation, and differentiation of lung fibroblasts. Ultimately, the differentiation of fibroblasts into myofibroblasts, which synthesize excessive amounts of extracellular matrix proteins, destroys the lung architecture. However, the factors that induce the fibrotic process are unclear. Diagnosis can be a difficult process; the gold standard for diagnosis is the multidisciplinary conference. Practical biomarkers are needed to improve diagnostic and prognostic accuracy. High-resolution computed tomography typically shows interstitial pneumonia with basal and peripheral honeycombing. Gas exchange and diffusion capacity are impaired. Treatments are limited, although the anti-fibrotic drugs pirfenidone and nintedanib can slow the progression of the disease. Lung transplantation is often contraindicated because of age and comorbidities, but it improves survival when successful. The incidence and prevalence of IPF has been increasing and there is an urgent need for improved therapies. This review covers the detailed cellular and molecular mechanisms underlying IPF progression as well as current treatments and cutting-edge research into new therapeutic targets.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - David Grossfeld
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Heather A Renna
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Priya Agarwala
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Peter Spiegler
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Lora J Kasselman
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Amy D Glass
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Joshua DeLeon
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Allison B Reiss
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| |
Collapse
|
11
|
Colston JM, Peñataro Yori P, Moulton LH, Paredes Olortegui M, Kosek PS, Rengifo Trigoso D, Siguas Salas M, Schiaffino F, François R, Fardus-Reid F, Swann JR, Kosek MN. Penalized regression models to select biomarkers of environmental enteric dysfunction associated with linear growth acquisition in a Peruvian birth cohort. PLoS Negl Trop Dis 2019; 13:e0007851. [PMID: 31730639 PMCID: PMC6881068 DOI: 10.1371/journal.pntd.0007851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/27/2019] [Accepted: 10/16/2019] [Indexed: 12/02/2022] Open
Abstract
Environmental enteric dysfunction (EED) is associated with chronic undernutrition. Efforts to identify minimally invasive biomarkers of EED reveal an expanding number of candidate analytes. An analytic strategy is reported to select among candidate biomarkers and systematically express the strength of each marker’s association with linear growth in infancy and early childhood. 180 analytes were quantified in fecal, urine and plasma samples taken at 7, 15 and 24 months of age from 258 subjects in a birth cohort in Peru. Treating the subjects’ length-for-age Z-score (LAZ-score) over a 2-month lag as the outcome, penalized linear regression models with different shrinkage methods were fitted to determine the best-fitting subset. These were then included with covariates in linear regression models to obtain estimates of each biomarker’s adjusted effect on growth. Transferrin had the largest and most statistically significant adjusted effect on short-term linear growth as measured by LAZ-score–a coefficient value of 0.50 (0.24, 0.75) for each log2 increase in plasma transferrin concentration. Other biomarkers with large effect size estimates included adiponectin, arginine, growth hormone, proline and serum amyloid P-component. The selected subset explained up to 23.0% of the variability in LAZ-score. Penalized regression modeling approaches can be used to select subsets from large panels of candidate biomarkers of EED. There is a need to systematically express the strength of association of biomarkers with linear growth or other outcomes to compare results across studies. Childhood undernutrition is widespread throughout the world and has severe, long-lasting health impacts. Substances measured in blood, urine and stool could be used as biomarkers to identify children undergoing growth failure before these impacts occur. However, it is not yet known which of the many markers that can be identified are accurate and clinically useful predictors of poor growth in infants and children. This study used a large number of candidate biomarkers of immune activation, metabolism and hormones and applied statistical methods to narrow them down from 110 different substances, to the 36 best predictors of growth in 258 Peruvian infants. It also estimated how large the effect of each of these markers was on height two months later. The biomarker with the largest effect was transferrin, a glycoprotein that can be measured in blood samples. 15-month old children with elevated transferrin were around two thirds of a centimeter taller on average at 17 months than those with low levels. Transferrin and other proteins, glycoproteins, hormones and antibodies that this study identified, can be measured easily and affordably in standard laboratories making them feasible to be used broadly as prognostic markers as part of child health and nutrition programs in under-resourced settings.
Collapse
Affiliation(s)
- Josh M. Colston
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | | | - Peter S. Kosek
- Oregon Neurosurgery, Eugene, Oregon, United States of America
| | | | | | - Francesca Schiaffino
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Ruthly François
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Fahmina Fardus-Reid
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jonathan R. Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Pilling D, Gomer RH. The Development of Serum Amyloid P as a Possible Therapeutic. Front Immunol 2018; 9:2328. [PMID: 30459752 PMCID: PMC6232687 DOI: 10.3389/fimmu.2018.02328] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects of the innate immune system. SAP inhibits the differentiation of monocyte-derived fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this minireview, we describe how these effects of SAP have led to its possible use as a therapeutic, and how modulating SAP effects might be used for other therapeutics. Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal fibrosis are associated with 30-45% of deaths in the US. Fibrosis involves both fibrocyte differentiation and profibrotic macrophage differentiation, and possibly because SAP inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI) involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model. Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing SAP from wound fluid speeds wound healing in animal models, and blocking SAP binding to one of its receptors makes cultured macrophages more aggressive toward tuberculosis bacteria. These results suggest that modulating pentraxin signaling might be useful for a variety of diseases.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Abstract
The phylogenetically ancient, pentraxin family of plasma proteins, comprises C-reactive protein (CRP) and serum amyloid P component (SAP) in humans and the homologous proteins in other species. They are composed of five, identical, non-covalently associated protomers arranged with cyclic pentameric symmetry in a disc-like configuration. Each protomer has a calcium dependent site that mediates the particular specific ligand binding responsible for all the rigorously established functional properties of these proteins. No genetic deficiency of either human CRP or SAP has been reported, nor even any sequence polymorphism in the proteins themselves. Although their actual functions in humans are therefore unknown, gene deletion studies in mice demonstrate that both proteins can contribute to innate immunity. CRP is the classical human acute phase protein, routinely measured in clinical practice worldwide to monitor disease activity. Human SAP, which is not an acute phase protein, is a universal constituent of all human amyloid deposits as a result of its avid specific binding to amyloid fibrils of all types. SAP thereby contributes to amyloid formation and persistence in vivo. Whole body radiolabelled SAP scintigraphy safely and non-invasively localizes and quantifies systemic amyloid deposits, and has transformed understanding of the natural history of amyloidosis and its response to treatment. Human SAP is also a therapeutic target, both in amyloidosis and Alzheimer's disease. Our drug, miridesap, depletes SAP from the blood and the brain and is currently being tested in the DESPIAD clinical trial in Alzheimer's disease. Meanwhile, the obligate therapeutic partnership of miridesap, to deplete circulating SAP, and dezamizumab, a humanized monoclonal anti-SAP antibody that targets residual SAP in amyloid deposits, produces unprecedented removal of amyloid from the tissues and improves organ function. Human CRP binds to dead and damaged cells in vivo and activates complement and this can exacerbate pre-existing tissue damage. The adverse effects of CRP are completely abrogated by compounds that block its binding to autologous ligands and we are developing CRP inhibitor drugs. The present personal and critical perspective on the pentraxins reports, for the first time, the key role of serendipity in our work since 1975. (345 words).
Collapse
Affiliation(s)
- Mark. B. Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
14
|
Kelly BJ, Lautenbach E, Nachamkin I, Coffin SE, Gerber JS, Fuchs BD, Garrigan C, Han X, Bilker WB, Wise J, Tolomeo P, Han JH. Combined Biomarkers Predict Acute Mortality Among Critically Ill Patients With Suspected Sepsis. Crit Care Med 2018; 46:1106-1113. [PMID: 29912095 PMCID: PMC6010038 DOI: 10.1097/ccm.0000000000003137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Sepsis is associated with high early and total in-hospital mortality. Despite recent revisions in the diagnostic criteria for sepsis that sought to improve predictive validity for mortality, it remains difficult to identify patients at greatest risk of death. We compared the utility of nine biomarkers to predict mortality in subjects with clinically suspected bacterial sepsis. DESIGN Cohort study. SETTING The medical and surgical ICUs at an academic medical center. SUBJECTS We enrolled 139 subjects who met two or more systemic inflammatory response syndrome (systemic inflammatory response syndrome) criteria and received new broad-spectrum antibacterial therapy. INTERVENTIONS We assayed nine biomarkers (α-2 macroglobulin, C-reactive protein, ferritin, fibrinogen, haptoglobin, procalcitonin, serum amyloid A, serum amyloid P, and tissue plasminogen activator) at onset of suspected sepsis and 24, 48, and 72 hours thereafter. We compared biomarkers between groups based on both 14-day and total in-hospital mortality and evaluated the predictive validity of single and paired biomarkers via area under the receiver operating characteristic curve. MEASUREMENTS AND MAIN RESULTS Fourteen-day mortality was 12.9%, and total in-hospital mortality was 29.5%. Serum amyloid P was significantly lower (4/4 timepoints) and tissue plasminogen activator significantly higher (3/4 timepoints) in the 14-day mortality group, and the same pattern held for total in-hospital mortality (Wilcoxon p ≤ 0.046 for all timepoints). Serum amyloid P and tissue plasminogen activator demonstrated the best individual predictive performance for mortality, and combinations of biomarkers including serum amyloid P and tissue plasminogen activator achieved greater predictive performance (area under the receiver operating characteristic curve > 0.76 for 14-d and 0.74 for total mortality). CONCLUSIONS Combined biomarkers predict risk for 14-day and total mortality among subjects with suspected sepsis. Serum amyloid P and tissue plasminogen activator demonstrated the best discriminatory ability in this cohort.
Collapse
Affiliation(s)
- Brendan J. Kelly
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ebbing Lautenbach
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan E. Coffin
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jeffrey S. Gerber
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Barry D. Fuchs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Garrigan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xiaoyan Han
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Warren B. Bilker
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacqueleen Wise
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Pam Tolomeo
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Jennifer H. Han
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
15
|
Wei L, Wang Y, Lin L, Zhang L, Shi Y, Xiang P, Cao S, Shen M, Yang P. Identification of potential serum biomarkers of acute paraquat poisoning in humans using an iTRAQ quantitative proteomic. RSC Adv 2018; 8:10598-10609. [PMID: 35540476 PMCID: PMC9078879 DOI: 10.1039/c7ra12956d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/28/2019] [Accepted: 03/07/2018] [Indexed: 12/18/2022] Open
Abstract
Paraquat (PQ) poisoning has high mortality rates in many countries. Due to it readily being absorbed through the gastrointestinal tract and rapidly excreted in the urine, few biomarkers possess satisfactory specificity and sensitivity in diagnostic and forensic practices. To investigate serum biomarkers in patients with PQ poisoning, pooled sera was analyzed using a proteomic approach based on iTRAQ coupled LC-MS/MS. Of the 413 proteins identified with high confidence, 81 were found to be differentially expressed (1.5-fold change) in the sera of patients with PQ poisoning. The differential expression pattern of 4 of these proteins was validated by enzyme-linked immunosorbent assay (ELISA) in clinical samples. A sera sample from a PQ poisoning patient has shown relatively increased abundance of S100A8 and S100A9. The overexpression of S100A8 and S100A9 was further validated in the lung tissue of PQ-treated rat associated with lung damage. Meanwhile, we identified another two down-expressed proteins, transferrin receptor protein 1 (TfR1) and serum amyloid P-component (SAP), which may be also practicable in human clinical samples as PQ poisoning serum biomarkers. Furthermore, receiver operating characteristic curve analysis confirmed that the expression levels of S100 alarmins, TfR1 and SAP in patient serum could provide a discriminatory diagnostic test for predicting PQ poisoning in patients. Therefore, our results suggest that increased serum levels of S100 alarmins and decreased serum levels of TfR1 and SAP may constitute potential biomarkers for the prediction of PQ poisoning in humans, and might be novel therapeutic targets in PQ poisoning.
Collapse
Affiliation(s)
- Liming Wei
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
- Shanghai Songjiang District Central Hospital Shanghai China
| | - Yi Wang
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| | - Ling Lin
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| | - Lei Zhang
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice Shanghai China
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice Shanghai China
| | - Shujun Cao
- Shanghai Songjiang District Central Hospital Shanghai China
| | - Min Shen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice Shanghai China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| |
Collapse
|
16
|
An Improved Method for the Sensitive Detection of Shiga Toxin 2 in Human Serum. Toxins (Basel) 2018; 10:toxins10020059. [PMID: 29385045 PMCID: PMC5848160 DOI: 10.3390/toxins10020059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Shiga toxins (Stx) released by Stx-producing E. coli (STEC) are virulence factors that are most closely associated with hemolytic uremic syndrome (HUS), a life-threatening complication of intestinal infections by STEC. Stx have to enter into the circulatory system before they are delivered to target organs and cause damage. The presence of Stx in sera could be a risk indicator for HUS development. However, the detection of Stx, particularly Stx2, has been difficult due to the presence of Stx2-binding components in human serum. Here, we report new ELISA-based methods for the detection of Stx1 and Stx2 in human serum and the effect of guanidinium chloride on enhancing the sensitivity for the detection of Stx2. The recovery rate for Stx2 was 62% when Stx2-spiked serum samples were treated with guanidinium chloride at a concentration of 200 mM, in contrast to 17% without guanidinium chloride treatment. The effectiveness of guanidinium chloride treatment for the detection of Stx2 in human serum was validated using sera from STEC-infected patients. Coimmunoprecipitation results indicated a specific physical interaction between Stx2 and the human serum amyloid P component (HuSAP) in human serum samples. Our in vitro study demonstrated that the inhibition from HuSAP alone for the detection of Stx2 was only 20%, much less than 69.6% from human serum at Stx2 level 10 ng/mL, suggesting that there may be other factors that bind Stx2 in human serum. This study indicates that treatment of serum samples with guanidinium chloride may be useful for the early and sensitive detection of Stx2 in sera of STEC-infected patients, so preventive measures can be adopted in a timely manner.
Collapse
|
17
|
Klotz SA, Sobonya RE, Lipke PN, Garcia-Sherman MC. Serum Amyloid P Component and Systemic Fungal Infection: Does It Protect the Host or Is It a Trojan Horse? Open Forum Infect Dis 2016; 3:ofw166. [PMID: 27704020 PMCID: PMC5047411 DOI: 10.1093/ofid/ofw166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
It is a striking observation that tissue of patients invaded by the deep mycoses often lacks evidence of an inflammatory response. This lack of host response is often attributed to neutropenia secondary to chemotherapy. However, systematic studies do not support this simplistic explanation. However, invasive fungal lesions are characterized by abundant fungal functional amyloid, which in turn is bound by serum amyloid P component (SAP). We postulate that SAP is important in the local immune response in invasive fungal infections. The interaction between fungal functional amyloid, SAP, and the immune response in deep mycoses is discussed.
Collapse
Affiliation(s)
| | | | - Peter N Lipke
- Department of Biology , City University of New York at Brooklyn
| | | |
Collapse
|
18
|
Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S, Knez L, Bozinovic K, Harris DM, Spaeth EL, Post SM, Multani AS, Rampal RK, Ahn J, Levine RL, Creighton CJ, Kantarjian HM, Estrov Z. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J Exp Med 2016; 213:1723-40. [PMID: 27481130 PMCID: PMC4995084 DOI: 10.1084/jem.20160283] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023] Open
Abstract
Estrov and collaborators examine the role of fibrocytes in primary myelofibrosis and propose a novel therapeutic approach. Primary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF. In this study, we show that BM from patients with PMF harbors an abundance of clonal, neoplastic collagen- and fibronectin-producing fibrocytes. Immunodeficient mice transplanted with myelofibrosis patients’ BM cells developed a lethal myelofibrosis-like phenotype. Treatment of the xenograft mice with the fibrocyte inhibitor serum amyloid P (SAP; pentraxin-2) significantly prolonged survival and slowed the development of BM fibrosis. Collectively, our data suggest that neoplastic fibrocytes contribute to the induction of BM fibrosis in PMF, and inhibiting fibrocyte differentiation with SAP may interfere with this process.
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Taghi Manshouri
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77433
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kate J Newberry
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sanja Prijic
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Liza Knez
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Ksenija Bozinovic
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - David M Harris
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Erika L Spaeth
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sean M Post
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Asha S Multani
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Raajit K Rampal
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jihae Ahn
- Human Oncology and Pathogenesis Program, Gerstner Sloan Kettering School of Biomedical Sciences, New York, NY 10065
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Chad J Creighton
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Hagop M Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zeev Estrov
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
19
|
Ozawa D, Nomura R, Mangione PP, Hasegawa K, Okoshi T, Porcari R, Bellotti V, Naiki H. Multifaceted anti-amyloidogenic and pro-amyloidogenic effects of C-reactive protein and serum amyloid P component in vitro. Sci Rep 2016; 6:29077. [PMID: 27380955 PMCID: PMC4933921 DOI: 10.1038/srep29077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/10/2016] [Indexed: 01/07/2023] Open
Abstract
C-reactive protein (CRP) and serum amyloid P component (SAP), two major classical pentraxins in humans, are soluble pattern recognition molecules that regulate the innate immune system, but their chaperone activities remain poorly understood. Here, we examined their effects on the amyloid fibril formation from Alzheimer’s amyloid β (Aβ) (1-40) and on that from D76N β2-microglobulin (β2-m) which is related to hereditary systemic amyloidosis. CRP and SAP dose-dependently and substoichiometrically inhibited both Aβ(1-40) and D76N β2-m fibril formation in a Ca2+-independent manner. CRP and SAP interacted with fresh and aggregated Aβ(1-40) and D76N β2-m on the fibril-forming pathway. Interestingly, in the presence of Ca2+, SAP first inhibited, then significantly accelerated D76N β2-m fibril formation. Electron microscopically, the surface of the D76N β2-m fibril was coated with pentameric SAP. These data suggest that SAP first exhibits anti-amyloidogenic activity possibly via A face, followed by pro-amyloidogenic activity via B face, proposing a model that the pro- and anti-amyloidogenic activities of SAP are not mutually exclusive, but reflect two sides of the same coin, i.e., the B and A faces, respectively. Finally, SAP inhibits the heat-induced amorphous aggregation of human glutathione S-transferase. A possible role of pentraxins to maintain extracellular proteostasis is discussed.
Collapse
Affiliation(s)
- Daisaku Ozawa
- Life Science Unit, Tenure-Track Program for Innovative Research, University of Fukui, Fukui 910-1193, Japan
| | - Ryo Nomura
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Kazuhiro Hasegawa
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tadakazu Okoshi
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Hironobu Naiki
- Department of Molecular Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
20
|
Kolstoe SE, Jenvey MC, Purvis A, Light ME, Thompson D, Hughes P, Pepys MB, Wood SP. Interaction of serum amyloid P component with hexanoyl bis(D-proline) (CPHPC). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2232-40. [PMID: 25084341 PMCID: PMC4118831 DOI: 10.1107/s1399004714013455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022]
Abstract
Under physiological conditions, the pentameric human plasma protein serum amyloid P component (SAP) binds hexanoyl bis(D-proline) (R-1-{6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl}pyrrolidine-2-carboxylic acid; CPHPC) through its D-proline head groups in a calcium-dependent interaction. Cooperative effects in binding lead to a substantial enhancement of affinity. Five molecules of the bivalent ligand cross-link and stabilize pairs of SAP molecules, forming a decameric complex that is rapidly cleared from the circulation by the liver. Here, it is reported that X-ray analysis of the SAP complex with CPHPC and cadmium ions provides higher resolution detail of the interaction than is observed with calcium ions. Conformational isomers of CPHPC observed in solution by HPLC and by X-ray analysis are compared with the protein-bound form. These are discussed in relation to the development of CPHPC to provide SAP depletion for the treatment of amyloidosis and other indications.
Collapse
Affiliation(s)
- Simon E. Kolstoe
- Laboratory of Protein Crystallography, Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine (Royal Free Campus), University College London, Rowland Hill Street, London NW3 2PF, England
| | - Michelle C. Jenvey
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, England
| | - Alan Purvis
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, England
| | - Mark E. Light
- UK National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, England
| | - Darren Thompson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, England
| | - Peter Hughes
- Laboratory of Protein Crystallography, Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine (Royal Free Campus), University College London, Rowland Hill Street, London NW3 2PF, England
| | - Mark B. Pepys
- Laboratory of Protein Crystallography, Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine (Royal Free Campus), University College London, Rowland Hill Street, London NW3 2PF, England
| | - Stephen P. Wood
- Laboratory of Protein Crystallography, Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine (Royal Free Campus), University College London, Rowland Hill Street, London NW3 2PF, England
| |
Collapse
|
21
|
Jin Y, Bu S, Zhang J, Yuan Q, Manabe T, Tan W. Native protein mapping and visualization of protein interactions in the area of human plasma high-density lipoprotein by combining nondenaturing micro 2DE and quantitative LC-MS/MS. Electrophoresis 2014; 35:2055-64. [PMID: 24668886 DOI: 10.1002/elps.201300628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 02/02/2023]
Abstract
A human plasma sample was subjected to nondenaturing micro 2DE and a gel area (5 mm × 18 mm) that includes high-density lipoprotein (HDL) was cut into 1 mm × 1 mm squares, then the proteins in the 90 gel pieces were analyzed by quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data. Totally 154 proteins were assigned in the 90 gel pieces and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The map of apolipoprotein (Apo) A-I showed a wide apparent mass distribution characteristic to HDL and was compared with the maps of the other 153 proteins. Eleven proteins showed maps of wide distribution that overlapped with the map of Apo A-I, and all have been reported to be the components of HDL. Further, seven minor proteins associated with HDL were detected at the gel positions of high Apo A-I quantity. These results for the first time visualized the localization of HDL apolipoproteins on a nondenaturing 2DE gel and strongly suggested their interactions.
Collapse
Affiliation(s)
- Ya Jin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
22
|
Cox N, Pilling D, Gomer RH. Serum amyloid P: a systemic regulator of the innate immune response. J Leukoc Biol 2014; 96:739-43. [PMID: 24804675 DOI: 10.1189/jlb.1mr0114-068r] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The pentraxin SAP reduces neutrophil adhesion to ECM proteins, inhibits the differentiation of monocytes into fibrocytes, attenuates profibrotic macrophages, activates the complement pathway, and promotes phagocytosis of cell debris. Together, these effects of SAP regulate key aspects of inflammation and set a threshold for immune cell activation. Here, we present a review of SAP biology with an emphasis on SAP receptor interactions and how the effect of SAP on monocytes and macrophages has been explored to develop this protein as a therapeutic for renal and lung injuries. We also discuss how there remain many unanswered questions about the role of SAP in innate immunity.
Collapse
Affiliation(s)
- Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
de la Torre R, Peña E, Vilahur G, Slevin M, Badimon L. Monomerization of C-reactive protein requires glycoprotein IIb-IIIa activation: pentraxins and platelet deposition. J Thromb Haemost 2013; 11:2048-58. [PMID: 24119011 DOI: 10.1111/jth.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Pentraxins are inflammatory mediators linked to cardiovascular disease; however, their role in thrombosis remains to be fully elucidated. AIMS We investigated the role of pentraxins in thrombus formation on different vascular substrates under flow conditions. METHODS Native C-reactive protein (nCRP) and serum amyloid P (SAP) effects on thrombosis were evaluated under flow conditions on substrates placed in flat perfusion chambers. nCRP and dissociated monomeric CRP (mCRP) distributions were visualized by use of confocal microscopy. The effects of nCRP on vascular substrates were tested in the Badimon chamber. RESULTS mCRP, but not nCRP, induced a significant activation in platelet deposition, whereas SAP induced an activation only on fibrinogen-coated substrates. The effects of CRP on platelet deposition were significantly reduced by statin treatment. mCRP resulting from recirculation of blood containing nCRP over a thrombogenic vessel wall induced increased platelet deposition. Blocking glycoprotein IIb-IIIa prevented the effects of CRP dissociation and significantly reduced platelet deposition. Annexin V treatment did not block monomerization of CRP on activated platelets. CONCLUSIONS Under flow conditions, platelet deposited on all tested biological substrates support nCRP dissociation into mCRP. The effect is dependent on the thrombogenic potency of the substrate to trigger initial platelet deposition. Exposure of glycoprotein IIb-IIIa in the platelet surface supports nCRP dissociation. CRP monomerization was not dependent on the aminophospholipid exposed on the surface of activated platelets. The dissociated mCRP is trapped in the growing platelet aggregate and stimulates further platelet deposition. SAP increases platelet deposition only on fibrin monolayers. Therefore, pentraxins induce a platelet activation effect linking inflammation and thrombosis.
Collapse
Affiliation(s)
- R de la Torre
- Cardiovascular Research Center (CSIC-ICCC), Institut Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Hospital de Sant Pau-UAB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
Du Clos TW. Pentraxins: structure, function, and role in inflammation. ISRN INFLAMMATION 2013; 2013:379040. [PMID: 24167754 PMCID: PMC3791837 DOI: 10.1155/2013/379040] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
The pentraxins are an ancient family of proteins with a unique architecture found as far back in evolution as the Horseshoe crab. In humans the two members of this family are C-reactive protein and serum amyloid P. Pentraxins are defined by their sequence homology, their pentameric structure and their calcium-dependent binding to their ligands. Pentraxins function as soluble pattern recognition molecules and one of the earliest and most important roles for these proteins is host defense primarily against pathogenic bacteria. They function as opsonins for pathogens through activation of the complement pathway and through binding to Fc gamma receptors. Pentraxins also recognize membrane phospholipids and nuclear components exposed on or released by damaged cells. CRP has a specific interaction with small nuclear ribonucleoproteins whereas SAP is a major recognition molecule for DNA, two nuclear autoantigens. Studies in autoimmune and inflammatory disease models suggest that pentraxins interact with macrophage Fc receptors to regulate the inflammatory response. Because CRP is a strong acute phase reactant it is widely used as a marker of inflammation and infection.
Collapse
Affiliation(s)
- Terry W. Du Clos
- The Department of Veterans Affairs Medical Center, Research Service 151, 1501 San Pedro SE, Albuquerque, NM 87108, USA
- Department of Internal Medicine, The University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| |
Collapse
|
25
|
Crawford JR, Pilling D, Gomer RH. FcγRI mediates serum amyloid P inhibition of fibrocyte differentiation. J Leukoc Biol 2012; 92:699-711. [PMID: 22493081 DOI: 10.1189/jlb.0112033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrotic diseases, such as cardiac and pulmonary fibrosis, have a poor prognosis with no FDA approved therapies. Monocyte-derived, fibroblast-like cells, called fibrocytes, participate in the formation of fibrotic lesions. The conserved pentraxin protein SAP inhibits fibrocyte differentiation in cell culture, and injections of SAP significantly reduce fibrosis in several animal models. SAP binds to the receptors for the Fc portion of IgG (FcγR) and has been crystallized bound to FcγRIIa (CD32a). The in vivo activity of SAP appears to be dependent on the FcRγ. We find that mutagenesis of the residues critical for SAP binding to FcγRIIa only moderately decreases the ability of SAP to inhibit fibrocyte differentiation. In murine cells, deletion of FcRγ or FcγRI (CD64) significantly reduced sensitivity to SAP. Deletion of the combination of FcγRIIb, FcγRIIIa, and FcγRIV did not significantly affect sensitivity to SAP, whereas deletion of just the inhibitory receptor FcγRIIb (CD32b) increased sensitivity to SAP. In human cells, siRNA-mediated reduction of FcRγ or FcγRI levels significantly decreased sensitivity to SAP, whereas reduction of FcγRIIb levels increased sensitivity to SAP. These observations suggest that SAP, at least in part, uses FcγRI and FcRγ to inhibit fibrocyte differentiation.
Collapse
Affiliation(s)
- Jeffrey R Crawford
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
26
|
Pilling D, Gomer RH. Differentiation of circulating monocytes into fibroblast-like cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 904:191-206. [PMID: 22890933 DOI: 10.1007/978-1-61779-943-3_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monocytes are produced in the bone marrow and enter the blood. They generally leave the blood and enter a tissue, and then become macrophages. In healing wounds, circulating monocytes also enter the tissue and instead of becoming macrophages, can differentiate into fibroblast-like cells called fibrocytes. Fibrocytes are also present in the lesions associated with fibrosing diseases such as congestive heart failure, end stage kidney disease, and pulmonary fibrosis. We have found that culturing blood monocytes, or white blood cell preparations containing monocytes, in serum-free media permits some of the monocytes to differentiate into fibrocytes within 5 days, and that this differentiation is inhibited by the blood plasma protein serum amyloid P.
Collapse
|
27
|
Mikolajek H, Kolstoe SE, Pye VE, Mangione P, Pepys MB, Wood SP. Structural basis of ligand specificity in the human pentraxins, C-reactive protein and serum amyloid P component. J Mol Recognit 2011; 24:371-7. [PMID: 21360619 DOI: 10.1002/jmr.1090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The normal physiological roles of the phylogenetically conserved human plasma proteins C-reactive protein (CRP) and serum amyloid P component (SAP) are not known. Novel drugs targeting their ligand specificities are in clinical development as both proteins have significant pathophysiological effects, SAP in promoting amyloidosis and CRP in exacerbating ischemic injury. Both proteins bind to phosphoethanolamine and we show here that, under physiological conditions, phosphoethanolamine is bound with higher affinity by human SAP than by human CRP. An explanation is provided by X-ray crystal structures that show SAP residue Tyr74 allowing additional hydrophobic protein-ligand interactions compared with the equivalent Thr76 of CRP. Docking simulations show many more low energy positions for phosphoethanolamine bound by CRP than by SAP and are consistent with the crystallographic and functional binding results. These fundamental observations on structure-activity relationships will aid the design of improved pentraxin targeting drugs.
Collapse
Affiliation(s)
- Halina Mikolajek
- Laboratory of Protein Crystallography, Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
28
|
SAP suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Immunol Cell Biol 2011; 90:388-95. [PMID: 21647172 DOI: 10.1038/icb.2011.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated disease of the central nervous system. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report that SAP-transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35-55 in complete Freund's adjuvant, SAP-transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However, in SAP-Knockout mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild type to SAP-transgenic mice, or transfer of SAP-transgenic Ag-restimulated T cells to control mice, induced milder EAE. T cells from MOG-primed SAP-transgenic mice showed weak proliferative responses. Furthermore, in SAP-transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of interleukin-2 stimulated by P-selectin and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin.
Collapse
|
29
|
Castaño AP, Lin SL, Surowy T, Nowlin BT, Turlapati SA, Patel T, Singh A, Li S, Lupher ML, Duffield JS. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med 2010; 1:5ra13. [PMID: 20368175 DOI: 10.1126/scitranslmed.3000111] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New therapies that target chronic inflammation with fibrosis are urgently required. Increasing evidence points to innate activation of inflammatory cells in driving chronic organ fibrosis. Serum amyloid P is a naturally circulating soluble pattern recognition receptor, a member of the family of pentraxin proteins. It links danger-associated molecular pattern recognition to Fc gamma receptor-mediated phagocytosis. Here we show that fibrosis progression in the mouse kidney is significantly inhibited by therapeutic administration of human serum amyloid P, regulated by activating Fc gamma receptors, and dependent on inflammatory monocytes and macrophages, but not fibrocytes. Human serum amyloid P-mediated inhibition of mouse kidney fibrosis correlated with specific binding of human serum amyloid P to cell debris and with subsequent suppression of inflammatory monocytes and kidney macrophages in vitro and in vivo, and was dependent on regulated binding to activating Fc gamma receptors and interleukin-10 expression. These studies uncover previously unidentified roles for Fc gamma receptors in sterile inflammation and highlight serum amyloid P as a potential antifibrotic therapy through local generation of interleukin-10.
Collapse
Affiliation(s)
- Ana P Castaño
- Laboratory of Inflammation Research, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The amyloid hypothesis indicates that protein misfolding is at the root of many neurodegenerative disorders. Small molecules targeting the formation, clearance, aggregation to toxic oligomers or SOD (superoxide dismutase)-like activities of Aβ (amyloid β-peptide) 1–42 have provided encouraging candidates for AD (Alzheimer's disease) medicines in animal models, although none have yet proved to be effective in human trials. We have been investigating approaches to treat systemic amyloidoses, conditions that show common features with some CNS (central nervous system) disorders. For TTR (transthyretin) amyloidosis, we are seeking small molecule compounds that stabilize the amyloidogenic protein and either prevent its structural transition to the crossed β fibres deposited in diseased tissues, or promote its clearance from circulation. Effective stabilizer compounds that simultaneously bind to both thyroxine-binding sites have been developed. A more generic approach involves targeting the plasma glycoprotein SAP (serum amyloid P component). This protein recognizes the misfolded polypeptide structures of amyloid deposits wherever they occur, and acts as a powerful anti-opsonin. We have developed a bivalent drug called CPHPC {(R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]-pyrrolidine-2-carboxylic acid} that cross-links pairs of pentameric SAP molecules and causes their rapid elimination from the circulation. This strategy raises the prospect of encouraging natural mechanisms to clear amyloid and recent work suggests that this approach extends to the CNS.
Collapse
|
31
|
Bergsma D, Chen S, Buchweitz J, Gerszten R, Haab BB. Antibody-array interaction mapping, a new method to detect protein complexes applied to the discovery and study of serum amyloid P interactions with kininogen in human plasma. Mol Cell Proteomics 2009; 9:446-56. [PMID: 20023212 DOI: 10.1074/mcp.m900418-mcp200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions are fundamentally important in biological processes, but the existing analytical tools have limited ability to sensitively and precisely measure the dynamic composition of protein complexes in biological samples. We report here the development of antibody-array interaction mapping (AAIM) to address that need. We used AAIM to probe interactions among a set of 48 proteins in serum and found several known interactions as well potentially novel interactions, including multiprotein clusters of interactions. A novel interaction initially identified between the innate immune system protein C-reactive protein and the inflammatory protein kininogen (KNG) was confirmed in subsequent experiments to involve serum amyloid P instead of its highly related family member, C-reactive protein. AAIM was used in a variety of formats to further study this interaction. In vitro studies confirmed the ability of the purified proteins to interact and revealed a zinc dependence of the interaction. Studies using plasma samples collected longitudinally following a controlled myocardial infarction revealed no consistent changes in the serum amyloid P-KNG interaction levels but consistent changes in KNG activation and interactions with plasma prekallikrein. These results demonstrate a versatile platform for measuring the dynamic composition of protein complexes in biological samples that should have value for studies of normal and disease-related signaling networks, multiprotein clusters, or enzymatic cascades.
Collapse
Affiliation(s)
- Derek Bergsma
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | |
Collapse
|
32
|
Gomer RH, Pilling D, Kauvar LM, Ellsworth S, Ronkainen SD, Roife D, Davis SC. A serum amyloid P-binding hydrogel speeds healing of partial thickness wounds in pigs. Wound Repair Regen 2009; 17:397-404. [PMID: 19660048 DOI: 10.1111/j.1524-475x.2009.00482.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During wound healing, some circulating monocytes enter the wound, differentiate into fibroblast-like cells called fibrocytes, and appear to then further differentiate into myofibroblasts, cells that play a key role in collagen deposition, cytokine release, and wound contraction. The differentiation of monocytes into fibrocytes is inhibited by the serum protein serum amyloid P (SAP). Depleting SAP at a wound site thus might speed wound healing. SAP binds to some types of agarose in the presence of Ca(2+). We found that human SAP binds to an agarose with a K(D) of 7 x 10(-8) M and a B(max) of 2.1 microg SAP/mg wet weight agarose. Mixing this agarose 1 : 5 w/v with 30 microg/mL human SAP (the average SAP concentration in normal serum) in a buffer containing 2 mM Ca(2+) reduced the free SAP concentration to approximately 0.02 microg/mL, well below the concentration that inhibits fibrocyte differentiation. Compared with a hydrogel dressing and a foam dressing, dressings containing this agarose and Ca(2+) significantly increased the speed of wound healing in partial thickness wounds in pigs. This suggests that agarose/Ca(2+) dressings may be beneficial for wound healing in humans.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bassi N, Zampieri S, Ghirardello A, Tonon M, Zen M, Cozzi F, Doria A. Pentraxins, anti-pentraxin antibodies, and atherosclerosis. Clin Rev Allergy Immunol 2009; 37:36-43. [PMID: 19016000 DOI: 10.1007/s12016-008-8098-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Atherosclerosis is a disease of the vascular wall, which predominantly affects large and medium-sized arteries. It represents a leading cause of morbidity and mortality in the Western world. In the last few decades, it has been clearly shown that immune system plays a relevant role in atherogenesis. The effectors of both innate and adaptive immunity, including immune cells, cell or soluble receptors, cytokines, chemokines, complement components or coagulation systems, and autoantibodies are able to modulate atherosclerosis. Among proteins belonging to innate immunity, the highly conserved pentraxin family, which encompass C-reactive protein (CRP), serum amyloid P (SAP), and the long pentraxin 3 (PTX3) seems to be directly involved in the induction and progression of atherosclerosis. By immunohistochemical staining, pentraxins were found within the atherosclerotic plaques where they could play a key role interacting with atherogenic-modified lipoproteins, favoring the formation of foam cells, and exerting a proinflammatory action. Pentraxin serum levels have been shown to be associated with clinical and subclinical atherosclerosis in general population. Antibodies against pentraxins have been demonstrated in patients with autoimmune diseases, but their role in atherogenesis is still controversial.
Collapse
Affiliation(s)
- N Bassi
- Department of Medical and Surgical Sciences, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Molecular dissection of Alzheimer's disease neuropathology by depletion of serum amyloid P component. Proc Natl Acad Sci U S A 2009; 106:7619-23. [PMID: 19372378 DOI: 10.1073/pnas.0902640106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
New therapeutic approaches in Alzheimer's disease are urgently needed. The normal plasma protein, serum amyloid P component (SAP), is always present in cerebrospinal fluid (CSF) and in the pathognomonic lesions of Alzheimer's disease, cerebrovascular and intracerebral Abeta amyloid plaques and neurofibrillary tangles, as a result of its binding to amyloid fibrils and to paired helical filaments, respectively. SAP itself may also be directly neurocytotoxic. Here, in this unique study in Alzheimer's disease of the bis(d-proline) compound, (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), we observed depletion of circulating SAP and also remarkable, almost complete, disappearance of SAP from the CSF. We demonstrate that SAP depletion in vivo is caused by CPHPC cross-linking pairs of SAP molecules in solution to form complexes that are immediately cleared from the plasma. We have also solved the structure of SAP complexed with phosphothreonine, its likely ligand on hyperphosphorylated tau protein. These results support further clinical study of SAP depletion in Alzheimer's disease and potentially other neurodegenerative diseases.
Collapse
|
35
|
Gisladottir B, Gudmundsdottir S, Brown L, Jonsson ZO, Magnadottir B. Isolation of two C-reactive protein homologues from cod (Gadus morhua L.) serum. FISH & SHELLFISH IMMUNOLOGY 2009; 26:210-219. [PMID: 19081733 DOI: 10.1016/j.fsi.2008.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 05/27/2023]
Abstract
Pentraxins are important molecules in innate defence and play a role in the acute phase response of both mammals and fish. Isolation of cod pentraxins by affinity chromatography using phosphorylcholine agarose revealed two pentraxin-like proteins, referred to as PI and PII proteins. These varied in their overall charge, pentameric and subunit molecular size, glycosylation and N-terminal amino acid sequences. The PI protein was homologous with the CRP-like pentraxin previously described in cod whereas the PII protein was a new CRP homologue, which was characterized by substantial individual heterogeneity with regard to subunit size and relative density. The results indicate considerable genetic variations in the cod pentraxins.
Collapse
Affiliation(s)
- Berglind Gisladottir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
36
|
Naik-Mathuria B, Pilling D, Crawford JR, Gay AN, Smith CW, Gomer RH, Olutoye OO. Serum amyloid P inhibits dermal wound healing. Wound Repair Regen 2008; 16:266-73. [PMID: 18318811 DOI: 10.1111/j.1524-475x.2008.00366.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits differentiation of monocytes into fibrocytes. Thus, we hypothesized that the addition of exogenous SAP would hinder the normal wound healing process. Excisional murine dorsal wounds were either injected with SAP (intradermal group) or the mice were treated with systemic SAP (intraperitoneal group) and compared with animals treated with vehicle. Grossly, SAP-treated wounds closed slower than respective controls in both groups. Histologically, the contraction rate was slower in SAP-treated wounds in both groups and the reepithelialization rate was slower in the intraperitoneal group. Furthermore, significantly less myofibroblasts expressing alpha-smooth muscle actin were noted in the intraperitoneal group wounds compared with controls. These data suggest that SAP delays normal murine dermal wound healing, probably due to increased inhibition of fibrocyte differentiation, and ultimately a decreased wound myofibroblast population. SAP may provide a potential therapeutic target to prevent or limit excessive fibrosis associated with keloid or hypertrophic scar formation. Furthermore, SAP removal from wound fluid could potentially accelerate the healing of chronic, nonhealing wounds.
Collapse
Affiliation(s)
- Bindi Naik-Mathuria
- Michael E. DeBakey Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030-2399, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, Gomer RH. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. THE JOURNAL OF IMMUNOLOGY 2007; 179:4035-44. [PMID: 17785842 PMCID: PMC4482349 DOI: 10.4049/jimmunol.179.6.4035] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fibrotic diseases such as scleroderma, severe chronic asthma, pulmonary fibrosis, and cardiac fibrosis kill tens of thousands of people each year in the U.S. alone. Growing evidence suggests that in fibrotic lesions, a subset of blood monocytes enters the tissue and differentiates into fibroblast-like cells called fibrocytes, causing tissue dysfunction. We previously found that a plasma protein called serum amyloid P (SAP) inhibits fibrocyte differentiation in vitro. Bleomycin treatment is a standard model for pulmonary fibrosis, and causes an increase in collagen, fibrocytes, and leukocytes in the lungs, and a decrease in peripheral blood hemoglobin oxygen saturation. We find that injections of rat SAP in rats reduce all of the above bleomycin-induced changes, suggesting that the SAP injections reduced the bleomycin-induced pulmonary fibrosis. We repeated these studies in mice, and find that injections of murine SAP decrease bleomycin-induced pulmonary fibrosis. To confirm the efficacy of SAP treatment, we used a delayed treatment protocol using SAP from day 7 to 13 only, and then measured fibrosis at day 21. Delayed SAP injections also reduce the bleomycin-induced decrease in peripheral blood hemoglobin oxygen saturation, and an increase in lung collagen, leukocyte infiltration, and fibrosis. Our data suggest the possibility that SAP may be useful as a therapy for pulmonary fibrosis in humans.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Rostagno A, Lashley T, Ng D, Meyerson J, Braendgaard H, Plant G, Bojsen-Møller M, Holton J, Frangione B, Revesz T, Ghiso J. Preferential association of serum amyloid P component with fibrillar deposits in familial British and Danish dementias: Similarities with Alzheimer's disease. J Neurol Sci 2007; 257:88-96. [PMID: 17374542 DOI: 10.1016/j.jns.2007.01.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two hereditary forms of cerebrovascular amyloidosis, familial British and Danish dementias (FBD and FDD), share striking similarities with Alzheimer's disease (AD) despite structural differences among their amyloid subunits (ABri in FBD, ADan in FDD, and Abeta in AD). Neuropathological lesions in these disorders include neurofibrillary tangles, parenchymal amyloid and pre-amyloid deposits and overwhelming cerebral amyloid angiopathy co-localizing with reactive microglia and multiple amyloid associated proteins including activation products of the complement cascade. Immunohistochemical analysis of FBD and FDD brain lesions unveiled the presence of serum amyloid P-component (SAP) primarily associated with thioflavin positive amyloid deposits in spite of the significant pre-amyloid burden existing in both disorders. Using affinity chromatography and ELISA binding assays we demonstrated specific, calcium-dependent, saturable, high affinity binding interactions between SAP and ABri/ADan peptides, with dissociation constant values in the sub-nanomolar range and within the same order of magnitude as those resulting from the interaction of SAP with Alzheimer's Abeta1-40 and Abeta1-42. The preferential association of SAP with fibrillar amyloid lesions and not with non-fibrillar pre-amyloid deposits is puzzling, suggesting that SAP modulates the assembly and stability of the final fibril rather than participating in the early steps of protein misfolding and oligomerization.
Collapse
Affiliation(s)
- Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Heegaard NHH, He X, Blomberg LG. Binding of Ca2+, Mg2+, and heparin by human serum amyloid P component in affinity capillary electrophoresis. Electrophoresis 2006; 27:2609-15. [PMID: 16817162 DOI: 10.1002/elps.200600005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human serum amyloid P component (SAP) is a glycoprotein circulating in the blood and found in association with all types of amyloid (malfolded potein aggregates) examined so far. Despite uncertainties regarding the precise function of SAP in vivo, the lectin-like properties of this Ca(2+)-activated protein with affinity for anionic saccharides and malfolded proteins are well known. The propensity to form homomeric penta- or decamers in solution and the selfaggregation in the presence of Ca(2+) as well as the tendency of SAP to attach to uncoated fused silica have precluded the analysis of SAP by microelectrophoretic methods. We now work out conditions to characterize the binding of Ca(2+) and Mg(2+) and the binding of heparin to SAP in the presence of divalent metal ions by ACE. The results show a strong binding of heparin (sub-muM apparent dissociation constants) even in the abscence of Ca(2+) at low ionic strength, pH 8.2. Also, a selective interaction with Ca(2+) compared with Mg(2+) is demonstrated. The approach will further the use of microelectrophoretic methods to examine the interactions of SAP with ligands of putative pathophysiological relevance such as lipopolysaccharides and misfolded proteins.
Collapse
Affiliation(s)
- Niels H H Heegaard
- Department of Autoimmunology, Statens Serum Institut, Copenhagen S, Denmark.
| | | | | |
Collapse
|
40
|
Stibenz D, Gräfe M, Debus N, Hasbach M, Bahr I, Graf K, Fleck E, Thanabalasingam U, Bührer C. Binding of human serum amyloid P componentto L-selectin. Eur J Immunol 2006; 36:446-56. [PMID: 16421944 DOI: 10.1002/eji.200425360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serum concentrations of soluble L-selectin by far exceed those of other soluble adhesion molecules, and serum soluble L-selectin concentrations are remarkably stable upon prolonged storage. We present evidence for Ca(2+)-dependent binding interactions between human serum amyloid P (SAP), a proteolysis-resistant pentraxin glycoprotein, and L-selectin, as shown by surface plasmon resonance measurements, protein band shift assays in a native PAGE system, and after SDS-PAGE and membrane transfer. Monoclonal antibodies to L-selectin strongly reduced binding of biotinylated SAP to L-selectin-IgG chimeras immobilized on microtiter plates. As binding was reduced by prior glycopeptidase F treatment of L-selectin but not of SAP, it appears to be based on SAP lectin domain interactions with N-linked L-selectin carbohydrates. In freshly prepared human lymphocytes, SAP incubation induced expression of a beta2 integrin neoepitope associated with high-affinity binding. This was partially blocked by pre-incubation with Fab fragments of two anti-L-selectin antibodies. In flow chamber experiments, SAP inhibited the adherence of human neutrophils to activated endothelium under shear stress. Thus, SAP binds to human L-selectin and affects L-selectin-dependent leukocyte-endothelial interactions.
Collapse
Affiliation(s)
- Dietger Stibenz
- Department of Neonatology, Charité Virchow Hospital, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ho JGS, Kitov PI, Paszkiewicz E, Sadowska J, Bundle DR, Ng KKS. Ligand-assisted aggregation of proteins. Dimerization of serum amyloid P component by bivalent ligands. J Biol Chem 2005; 280:31999-2008. [PMID: 16036920 DOI: 10.1074/jbc.m504403200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A comprehensive series of solution and crystallographic studies reveal how simple, achiral, bivalent ligands of the cyclic pyruvate of glycerol promote face-to-face complex formation of the pentraxin, serum amyloid P component (SAP) into decamers. SAP, a protein of the human innate immune system, is universally present in amyloids, including cerebral amyloid deposits found in the brain of Alzheimer disease patients. Removal of SAP through a specific aggregation mechanism mediated by multivalent ligands appears to provide therapeutic benefit in the progression of this disease. Crystallographic studies reveal that in our novel series of ligands only the methyl and carboxylate moieties of the pyruvate ketal directly interact with the protein, but the geometric constraints imposed by the tether dictate which of two chair conformations are adopted by the pyruvate dioxane ring. Solution studies, as interpreted through a simple thermodynamic model, account for the distribution of pentameric and decameric bound states at different ligand concentrations and indicate that differences in the flexibility of the tether determine the geometry and stability of the specific aggregates formed between SAP and two different bivalent ligands. The factors affecting the design of ligands promoting face-to-face protein dimerization as well as potential biological implications are discussed.
Collapse
Affiliation(s)
- Jason G S Ho
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Garlanda C, Bottazzi B, Bastone A, Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 2005; 23:337-66. [PMID: 15771574 DOI: 10.1146/annurev.immunol.23.021704.115756] [Citation(s) in RCA: 641] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C reactive protein, the first innate immunity receptor identified, and serum amyloid P component are classic short pentraxins produced in the liver. Long pentraxins, including the prototype PTX3, are expressed in a variety of tissues. Some long pentraxins are expressed in the brain and some are involved in neuronal plasticity and degeneration. PTX3 is produced by a variety of cells and tissues, most notably dendritic cells and macrophages, in response to Toll-like receptor (TLR) engagement and inflammatory cytokines. PTX3 acts as a functional ancestor of antibodies, recognizing microbes, activating complement, and facilitating pathogen recognition by phagocytes, hence playing a nonredundant role in resistance against selected pathogens. In addition, PTX3 is essential in female fertility because it acts as a nodal point for the assembly of the cumulus oophorus hyaluronan-rich extracellular matrix. Thus, the prototypic long pentraxin PTX3 is a multifunctional soluble pattern recognition receptor at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Istituto di Ricerche Farmacologiche Mario Negri, 20157 Milan, Italy.
| | | | | | | |
Collapse
|
43
|
Pilling D, Buckley CD, Salmon M, Gomer RH. Inhibition of fibrocyte differentiation by serum amyloid P. THE JOURNAL OF IMMUNOLOGY 2004; 171:5537-46. [PMID: 14607961 PMCID: PMC4482350 DOI: 10.4049/jimmunol.171.10.5537] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wound healing and the dysregulated events leading to fibrosis both involve the proliferation and differentiation of fibroblasts and the deposition of extracellular matrix. Whether these fibroblasts are locally derived or from a circulating precursor population is unclear. Fibrocytes are a distinct population of fibroblast-like cells derived from peripheral blood monocytes that enter sites of tissue injury to promote angiogenesis and wound healing. We have found that CD14(+) peripheral blood monocytes cultured in the absence of serum or plasma differentiate into fibrocytes within 72 h. We purified the factor in serum and plasma that prevents the rapid appearance of fibrocytes, and identified it as serum amyloid P (SAP). Purified SAP inhibits fibrocyte differentiation at levels similar to those found in plasma, while depleting SAP reduces the ability of plasma to inhibit fibrocyte differentiation. Compared with sera from healthy individuals and patients with rheumatoid arthritis, sera from patients with scleroderma and mixed connective tissue disease, two systemic fibrotic diseases, were less able to inhibit fibrocyte differentiation in vitro and had correspondingly lower serum levels of SAP. These results suggest that low levels of SAP may thus augment pathological processes leading to fibrosis. These data also suggest mechanisms to inhibit fibrosis in chronic inflammatory conditions, or conversely to promote wound healing.
Collapse
Affiliation(s)
- Darrell Pilling
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005
| | - Christopher D. Buckley
- Department of Rheumatology, Rheumatology Research Group, University of Birmingham/Medical Research Council Centre for Immune Regulation, Medical School, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Mike Salmon
- Department of Rheumatology, Rheumatology Research Group, University of Birmingham/Medical Research Council Centre for Immune Regulation, Medical School, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Richard H. Gomer
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005
- Address correspondence and reprint requests to: Dr. Richard H. Gomer, Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, TX 77005-1892.
| |
Collapse
|
44
|
Sen JW, Recke C, Rahbek L, Skogstrand K, Heegaard NHH. Structural, quantitative and functional comparison of amyloid P component in sera from patients with systemic lupus erythematosus and healthy donors. Scand J Immunol 2002; 56:645-51. [PMID: 12472678 DOI: 10.1046/j.1365-3083.2002.01178.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serum amyloid P component (SAP) is a serum protein that has a function as opsonin and is known to bind nuclear material with high affinity. Quantitative and/or qualitative deficiencies in SAP may possibly lead to the impairment of normal homoeostatic mechanisms of tissue turnover. Thus, SAP knockout mice display systemic lupus erythematosus (SLE)-like manifestations such as nephritis and circulating antinuclear antibodies. In the present study, we investigated whether there are changes in the structure, function or serum levels of SAP in serum from SLE patients as compared with those from healthy donors. We found that SAP in SLE sera has the same molecular mass as that of in the sera of normal individuals, when analysed by online immunoaffinity reversed phase mass spectrometry. Also, the serum levels of SAP did not differ significantly between the two groups. Finally, as an estimate of function, SAP from SLE patients appeared to have the same affinity for heparin and nucleosomes as SAP from normal individuals, when analysed by crossed affinity immunoelectrophoresis and enzyme-linked immunosorbent capture assay (ELISA). In conclusion, the data do not support alterations in the levels, structure or function of SAP circulating in SLE patients.
Collapse
Affiliation(s)
- J W Sen
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
45
|
Thompson D, Pepys MB, Tickle I, Wood S. The structures of crystalline complexes of human serum amyloid P component with its carbohydrate ligand, the cyclic pyruvate acetal of galactose. J Mol Biol 2002; 320:1081-6. [PMID: 12126626 DOI: 10.1016/s0022-2836(02)00514-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two monoclinic (P2(1)) crystal forms of human serum amyloid P component (SAP) in complex with the 4,6-pyruvate acetal of beta-D-galactose (MObetaDG) were prepared. Structure analysis by molecular replacement and refinement at 2.2A resolution revealed that crystal form 1 (a=95.76A, b=70.53A, c=103.41A, beta=96.80 degrees) contained a pentamer in the asymmetric unit with a structure very similar to that of the published search model. The mode of ligand co-ordination was also similar except that four of the five subunits showed bound ligand with an additional H-bond between O1 of the galactose and the side-chain of Lys79. One sub-unit showed no bound ligand and a vacant calcium site close to a crystal contact. The 2.6A resolution structure of crystal form 2 (a=118.60A, b=109.10A, c=120.80A and beta=95.16 degrees ) showed ten sub-units in the asymmetric unit, all with two bound calcium ions and ligand. The most extensive protein-protein interactions between pentamers describe an AB face-to-face interaction involving 15 ion pairs that sandwiches five molecules of bound MObetaDG at the interface.
Collapse
Affiliation(s)
- D Thompson
- School of Biological Science, University of Southampton, Bassett Crescent East, Hampshire, UK.
| | | | | | | |
Collapse
|
46
|
Sen JW, Heegaard NHH. Serum amyloid p component does not circulate in complex with C4-binding protein, fibronectin or any other major protein ligand. Scand J Immunol 2002; 56:85-93. [PMID: 12100475 DOI: 10.1046/j.1365-3083.2002.01109.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serum amyloid P component (SAP) is a pentameric plasma protein associated with all known kinds of amyloid. The normal physiological function of the protein has not been fully elucidated but it may be involved in clearance of cellular debris and in innate immunity. An important clue to its normal function is the identity of ligands bound to SAP in the circulation. It has been reported that all SAP is complexed with C4-binding protein (C4bp) but other studies have not been able to confirm this. We here study this issue by a combination of crossed immunoelectrophoresis (CIE), size exclusion chromatography, and native polyacrylamide electrophoresis and we show that SAP in serum - analysed under native analysis conditions and free of immobilizing antibodies - does not have any major protein ligand. However, when the protein is aggregated by immobilized antibodies, C4bp and fibronectin clearly bind to SAP. If circulating SAP under normal circumstances bind any protein ligand in vivo, our results strongly suggest that this only occurs to a minor extent.
Collapse
Affiliation(s)
- J W Sen
- Department of Autoimmunology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | | |
Collapse
|
47
|
Hernaiz MJ, LeBrun LA, Wu Y, Sen JW, Linhardt RJ, Heegaard NHH. Characterization of heparin binding by a peptide from amyloid P component using capillary electrophoresis, surface plasmon resonance and isothermal titration calorimetry. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2860-7. [PMID: 12071948 DOI: 10.1046/j.1432-1033.2002.02964.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synthetic peptides based on amino-acid residues 27-38 of human serum amyloid P component represent a novel type of heparin binders as they do not contain clusters of basic amino acids or other known features associated with protein or peptide heparin binding. Here, we characterize the binding using capillary electrophoresis (CE), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). By CE, heparin-binding activity was readily apparent for both a regular peptide and a slightly N-terminally modified form, while a sequence-scrambled peptide had no measurable binding. Dissociation constants in the 1-15 microm range were estimated, but only a minor part of the binding isotherm was covered by the experiments. SPR measurements using immobilized peptides verified heparin binding, the range of the binding constants, and the reduced binding of the sequence-scrambled peptide. Structurally defined heparin oligosaccharides were used to establish that while the tetrasaccharide is too small to exhibit strong binding, little difference in binding strength is observed between hexa- and tetradeca-saccharides. These experiments also confirmed the almost complete lack of activity of the sequence-scrambled peptide. The amino-acid sequence-dependent binding and the importance of a disulfide bond in the peptide were verified by ITC, but the experimental conditions had to be modified because of peptide precipitation and ITC yielded significantly weaker binding constants than the other methods. While the precise function of the peptide in the intact protein remains unclear, the results confirm the specificity of the glycosaminoglycan interaction with regard to peptide sequence by applying two additional biophysical techniques and showing that the N-terminal part of the peptide may be modified without changing the heparin binding capabilities.
Collapse
Affiliation(s)
- Maria J Hernaiz
- Division of Medicinal and Natural Products Chemistry, Department of Chemistry, University of Iowa, USA
| | | | | | | | | | | |
Collapse
|
48
|
Pepys MB, Herbert J, Hutchinson WL, Tennent GA, Lachmann HJ, Gallimore JR, Lovat LB, Bartfai T, Alanine A, Hertel C, Hoffmann T, Jakob-Roetne R, Norcross RD, Kemp JA, Yamamura K, Suzuki M, Taylor GW, Murray S, Thompson D, Purvis A, Kolstoe S, Wood SP, Hawkins PN. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 2002; 417:254-9. [PMID: 12015594 DOI: 10.1038/417254a] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The normal plasma protein serum amyloid P component (SAP) binds to fibrils in all types of amyloid deposits, and contributes to the pathogenesis of amyloidosis. In order to intervene in this process we have developed a drug, R-1-[6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid, that is a competitive inhibitor of SAP binding to amyloid fibrils. This palindromic compound also crosslinks and dimerizes SAP molecules, leading to their very rapid clearance by the liver, and thus produces a marked depletion of circulating human SAP. This mechanism of drug action potently removes SAP from human amyloid deposits in the tissues and may provide a new therapeutic approach to both systemic amyloidosis and diseases associated with local amyloid, including Alzheimer's disease and type 2 diabetes.
Collapse
Affiliation(s)
- M B Pepys
- Centre for Amyloidosis and Acute Phase Proteins, Department of Medicine, Royal Free and University College Medical School, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Horváth A, Andersen I, Junker K, Lyck Fogh-Schultz B, Holm Nielsen E, Gizurarson S, Andersen O, Kármán J, Rajnavölgyi E, Erdei A, Svehag SE. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies. Antiviral Res 2001; 52:43-53. [PMID: 11530187 DOI: 10.1016/s0166-3542(01)00158-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro. These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating antibodies against SAP were not detected. Preincubation of virus (A/Japan/57) with SAP prevented primary infection of mice and development of antiviral antibodies. After a single intranasal administration of SAP (40 microg) 1 h before primary infection with virus (2LD(50)), nine out of 10 mice survived on day 10 and these mice approached normal body weight, whereas control mice (one out of five surviving on day 10) died. The data provide evidence of the potential of intranasally administered SAP for prophylactic treatment of influenza A virus infections in humans.
Collapse
Affiliation(s)
- A Horváth
- Department of Immunology, L.Eötvös University, Göd, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Noursadeghi M, Bickerstaff MC, Gallimore JR, Herbert J, Cohen J, Pepys MB. Role of serum amyloid P component in bacterial infection: protection of the host or protection of the pathogen. Proc Natl Acad Sci U S A 2000; 97:14584-9. [PMID: 11121061 PMCID: PMC18962 DOI: 10.1073/pnas.97.26.14584] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serum amyloid P component (SAP) binds to Streptococcus pyogenes, and we show here that it also binds to Neisseria meningitidis, including a lipopolysaccharide (LPS)-negative mutant, and to rough variants of Escherichia coli. Surprisingly, this binding had a powerful antiopsonic effect both in vitro and in vivo, reducing phagocytosis and killing of bacteria. Furthermore, SAP knockout mice survived lethal infection with S. pyogenes and rough E. coli J5, organisms to which SAP binds. The susceptibility of SAP(-/-) mice was fully restored by injection of isolated human SAP. However, SAP(-/-) mice were more susceptible than wild-type animals to lethal infection with E. coli O111:B4, a smooth strain to which SAP does not bind, suggesting that SAP also has some host defense function. Although SAP binds to LPS in vitro, SAP(-/-) mice were only marginally more susceptible to lethal LPS challenge, and injection of large amounts of human SAP into wild-type mice did not affect sensitivity to LPS, indicating that SAP is not a significant modulator of LPS toxicity in vivo. In contrast, the binding of SAP to pathogenic bacteria enabled them to evade neutrophil phagocytosis and display enhanced virulence. Abrogation of this molecular camouflage is thus potentially a novel therapeutic approach, and we show here that administration to wild-type mice of (R)-1-[6-(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine -2- carboxylic acid, a drug that inhibits SAP binding, significantly prolonged survival during lethal infection with E. coli J5.
Collapse
Affiliation(s)
- M Noursadeghi
- Centre for Amyloidosis and Acute Phase Proteins, Department of Medicine, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | | | | | | | | | |
Collapse
|