1
|
Tsiolaki PL, Louros NN, Zompra AA, Hamodrakas SJ, Iconomidou VA. Unraveling the aggregation propensity of human insulin C-peptide. Biopolymers 2017; 108. [PMID: 27257781 DOI: 10.1002/bip.22882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 12/27/2022]
Abstract
Over the last 20 years, proinsulin C-peptide emerged as an important player in various biological events. Much time and effort has been spent in exploring all functional features of C-peptide and recording its implications in Diabetes mellitus. Only a few studies, though, have addressed C-peptide oligomerization and link this procedure with Diabetes. The aim of our work was to examine the aggregation propensity of C-peptide, utilizing Transmission Electron Microscopy, Congo Red staining, ATR-FTIR, and X-ray fiber diffraction at a 10 mg ml-1 concentration. Our experimental work clearly shows that C-peptide self-assembles into amyloid-like fibrils and therefore, the aggregation propensity of C-peptide is a characteristic novel feature that should be related to physiological and also pathological conditions. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 108: 1-8, 2017.
Collapse
Affiliation(s)
- Paraskevi L Tsiolaki
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | - Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | | | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| |
Collapse
|
2
|
Landreh M, Johansson J, Wahren J, Jörnvall H. The structure, molecular interactions and bioactivities of proinsulin C-peptide correlate with a tripartite molecule. Biomol Concepts 2015; 5:109-18. [PMID: 25372746 DOI: 10.1515/bmc-2014-0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 12/20/2022] Open
Abstract
Many biological roles have been assigned to proinsulin C-peptide over the years. Some appear surprisingly disparate and sometimes even contradictory, like chaperone-like actions and depository tendencies. This review summarizes recently reported biomolecular interactions of the peptide and presents how they correlate with structural and functional aspects into a partitioned molecular architecture. At the structural level, the C-peptide sequence and fold can be subdivided into three distinct parts ('tripartite'). At the functional level, its chaperone-like abilities, self-assembly, and membrane interactions, as well as interactions with relevant proteins can be separately ascribed to these three segments. At the biological level, the assignments are compatible with the suggested roles of C-peptide in granular insulin storage, chaperone-like activities on insulin oligomers, possible depository tendencies, and proposed receptor interactions. Finally, the assignments give interesting parallels to further bioactive peptides, including glucagon and neurotensin. Provided pharmaceutical and clinical trials are successfully completed, the present interpretations should supply mechanistic explanations on C-peptide as a bioactive compound of importance in health and diabetes.
Collapse
|
3
|
Yosten GLC, Maric-Bilkan C, Luppi P, Wahren J. Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab 2014; 307:E955-68. [PMID: 25249503 PMCID: PMC4254984 DOI: 10.1152/ajpendo.00130.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri;
| | - Christine Maric-Bilkan
- Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Patrizia Luppi
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and Cebix Inc., Karolinska Institutet Science Park, Solna, Sweden
| |
Collapse
|
4
|
pH-Dependent Interaction between C-Peptide and Phospholipid Bicelles. JOURNAL OF BIOPHYSICS 2012; 2012:185907. [PMID: 22848213 PMCID: PMC3405660 DOI: 10.1155/2012/185907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/22/2012] [Indexed: 12/20/2022]
Abstract
C-peptide is the connecting peptide between the A and B chains of insulin in proinsulin. In this paper, we investigate the interaction between C-peptide and phospholipid bicelles, by circular dichroism and nuclear magnetic resonance spectroscopy, and in particular the pH dependence of this interaction. The results demonstrate that C-peptide is largely unstructured independent of pH, but that a weak structural induction towards a short stretch of β-sheet is induced at low pH, corresponding to the isoelectric point of the peptide. Furthermore, it is demonstrated that C-peptide associates with neutral phospholipid bicelles as well as acidic phospholipid bicelles at this low pH. C-peptide does not undergo a large structural rearrangement as a consequence of lipid interaction, which indicates that the folding and binding are uncoupled. In vivo, local variations in environment, including pH, may cause C-peptide to associate with lipids, which may affect the aggregation state of the peptide.
Collapse
|
5
|
Affiliation(s)
- John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet,Stockholm, Sweden.
| | | | | |
Collapse
|
6
|
Lind J, Lindahl E, Perálvarez-Marín A, Holmlund A, Jörnvall H, Mäler L. Structural features of proinsulin C-peptide oligomeric and amyloid states. FEBS J 2010; 277:3759-68. [PMID: 20738396 DOI: 10.1111/j.1742-4658.2010.07777.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The formation and structure of proinsulin C-peptide oligomers has been investigated by PAGE, NMR spectroscopy and dynamic light scattering. The results obtained show that C-peptide forms oligomers of different sizes, and that their formation and size distribution is altered by salt and divalent metal ions, which indicates that the aggregation process is mediated by electrostatic interactions. It is further demonstrated that the size distribution of the C-peptide oligomers, in agreement with previous studies, is altered by insulin, which supports a physiologically relevant interaction between these two peptides. A small fraction of oligomers has previously been suggested to be in equilibrium with a dominant fraction of soluble monomers, and this pattern also is observed in the present study. The addition of modest amounts of sodium dodecyl sulphate at low pH increases the relative amount of oligomers, and this effect was used to investigate the details of both oligomer formation and structure by a combination of biophysical techniques. The structural properties of the SDS-induced oligomers, as obtained by thioflavin T fluorescence, CD spectroscopy and IR spectroscopy, demonstrate that soluble aggregates are predominantly in β-sheet conformation, and that the oligomerization process shows characteristic features of amyloid formation. The formation of large, insoluble, β-sheet amyloid-like structures will alter the equilibrium between monomeric C-peptide and oligomers. This leads to the conclusion that the oligomerization of C-peptide may be relevant also at low concentrations.
Collapse
Affiliation(s)
- Jesper Lind
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius laboratory, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Scholz B, Sköld K, Kultima K, Fernandez C, Waldemarson S, Savitski MM, Söderquist M, Borén M, Stella R, Andrén P, Zubarev R, James P. Impact of temperature dependent sampling procedures in proteomics and peptidomics--a characterization of the liver and pancreas post mortem degradome. Mol Cell Proteomics 2010; 10:M900229MCP200. [PMID: 20110281 DOI: 10.1074/mcp.m900229-mcp200] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Little is known about the nature of post mortem degradation of proteins and peptides on a global level, the so-called degradome. This is especially true for nonneural tissues. Degradome properties in relation to sampling procedures on different tissues are of great importance for the studies of, for instance, post translational modifications and/or the establishment of clinical biobanks. Here, snap freezing of fresh (<2 min post mortem time) mouse liver and pancreas tissue is compared with rapid heat stabilization with regard to effects on the proteome (using two-dimensional differential in-gel electrophoresis) and peptidome (using label free liquid chromatography). We report several proteins and peptides that exhibit heightened degradation sensitivity, for instance superoxide dismutase in liver, and peptidyl-prolyl cis-trans isomerase and insulin C-peptides in pancreas. Tissue sampling based on snap freezing produces a greater amount of degradation products and lower levels of endogenous peptides than rapid heat stabilization. We also demonstrate that solely snap freezing related degradation can be attenuated by subsequent heat stabilization. We conclude that tissue sampling involving a rapid heat stabilization step is preferable to freezing with regard to proteomic and peptidomic sample quality.
Collapse
Affiliation(s)
- Birger Scholz
- Department of Pharmaceutical Biosciences, Division of Toxicology, BMC, Box 594, SE-75124 Uppsala University, and Department of Medical Sciences, Clinical Pharmacology, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jörnvall H, Lindahl E, Astorga-Wells J, Lind J, Holmlund A, Melles E, Alvelius G, Nerelius C, Mäler L, Johansson J. Oligomerization and insulin interactions of proinsulin C-peptide: Threefold relationships to properties of insulin. Biochem Biophys Res Commun 2010; 391:1561-6. [DOI: 10.1016/j.bbrc.2009.12.125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022]
|
9
|
Keltner Z, Meyer JA, Johnson EM, Palumbo AM, Spence DM, Reid GE. Mass spectrometric characterization and activity of zinc-activated proinsulin C-peptide and C-peptide mutants. Analyst 2009; 135:278-88. [PMID: 20098759 DOI: 10.1039/b917600d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous reports have demonstrated an active role for proinsulin C-peptide in ameliorating chronic complications associated with diabetes mellitus. It has been recently reported that some of these activities are dependent upon activation of C-peptide with certain metal ions, such as Fe(II), Cr(III) or Zn(II). In an effort to gain a greater understanding of the structure/function dependence of the peptide-metal interactions responsible for this activity, a series of experiments involving the use of electrospray ionization (ESI), matrix assisted laser desorption/ionization (MALDI) and collision-induced dissociation-tandem mass spectrometry (CID-MS/MS) of C-peptide in the presence or absence of Zn(II) have been carried out. Additionally, various C-peptide mutants with alanine substitution at individual aspartic acid or glutamic acid residues throughout the C-peptide sequence were analyzed. CID-MS/MS of wild type C-peptide in the presence of Zn(II) indicated multiple sites for metal binding, localized at acidic residues within the peptide sequence. Mutations of individual acidic residues did not significantly affect this fragmentation behavior, suggesting that no single acidic residue is critical for binding. However, ESI-MS analysis revealed an approximately 50% decrease in relative Zn(II) binding for each of the mutants compared to the wild type sequence. Furthermore, a significant decrease in activity was observed for each of the Zn(II)-activated mutant peptides compared to the wild type C-peptide, indicated by measurement of ATP released from erythrocytes, with a 75% decrease observed for the Glu27 mutant. Additional studies on the C-terminal pentapeptide of C-peptide EGSLQ, as well as a mutant C-terminal pentapeptide sequence AGSLQ, revealed that substitution of the glutamic acid residue resulted in a complete loss of activity, implicating a central role for Glu27 in Zn(II)-mediated C-peptide activity.
Collapse
Affiliation(s)
- Zachary Keltner
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
10
|
Oran PE, Jarvis JW, Borges CR, Nelson RW. C-peptide microheterogeneity in type 2 diabetes populations. Proteomics Clin Appl 2009; 4:106-11. [PMID: 21137020 DOI: 10.1002/prca.200800249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 08/11/2009] [Accepted: 09/24/2009] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of this study was to investigate naturally occurring C-peptide microheterogeneity in healthy and type 2 diabetes (T2D) populations. EXPERIMENTAL DESIGN MS immunoassays capable of simultaneously detecting intact C-peptide and variant forms were applied to plasma samples from 48 healthy individuals and 48 individuals diagnosed with T2D. RESULTS Common throughout the entire sample set were three previously unreported variations of C-peptide. The relative contribution of one variant, subsequently identified as C-peptide (3-31), was found to be more abundant in the T2D population as compared to the healthy population. Dipeptidyl peptidase IV is suspected to be responsible for this particular cleavage product, which is consistent with the pathophysiology of T2D. CONCLUSIONS AND CLINICAL RELEVANCE C-peptide does not exist in the human body as a single molecular species. It is qualitatively more heterogeneous than previously thought. These results lay a foundation for future studies devoted to a comprehensive understanding of C-peptide and its variants in healthy and diabetic populations.
Collapse
Affiliation(s)
- Paul E Oran
- The Biodesign Institute at Arizona State University, Tempe, 85287, USA
| | | | | | | |
Collapse
|
11
|
Palmer IM, Schutte AE, Huisman HW. Ethnic and gender differences regarding the insulin-blood pressure relationship. Diabetes Res Clin Pract 2009; 85:102-10. [PMID: 19443068 DOI: 10.1016/j.diabres.2009.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/22/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022]
Abstract
Ageing is associated with increased insulin and C-peptide levels. Due to a lack of data, our first aim was to establish whether this also holds true for Africans from South Africa. Our second aim was to determine whether an association between insulin/C-peptide levels and blood pressure exist within an African and Caucasian population with increasing age, as well as to establish gender differences. African men and women (N=260) and Caucasian men and women (N=369) were recruited and stratified into age groups (18-35 years, 36-45 years and >45 years). ANCOVAs and partial correlations were performed. Results showed opposing changes in insulin/C-peptide levels of African and Caucasian men with increasing age. Insulin/C-peptide tended to decrease in African men, whereas insulin tended to increase and C-peptide increased significantly (p=0.03) in Caucasian men. Despite similar obesity levels, the oldest African women had significantly lower insulin (p<0.01) and C-peptide (p<0.01) levels compared to their Caucasian counterparts. In conclusion, insulin/C-peptide levels tended to decrease in the African population with increasing age. Despite significantly lower levels of insulin, blood pressure levels of African men seems to be affected more detrimentally compared to their Caucasian counterparts, leaving them more vulnerable for the development of cardiovascular diseases.
Collapse
Affiliation(s)
- I M Palmer
- Hypertension in Africa Research Team, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | | | | |
Collapse
|
12
|
Meyer JA, Froelich JM, Reid GE, Karunarathne WKA, Spence DM. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter. Diabetologia 2008; 51:175-82. [PMID: 17965850 PMCID: PMC2779700 DOI: 10.1007/s00125-007-0853-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 09/07/2007] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Proinsulin C-peptide has been implicated in reducing complications associated with diabetes and also in improving blood flow. We hypothesised that incubation of erythrocytes with C-peptide would improve the ability of these cells to release ATP, a stimulus for nitric oxide production. METHODS Erythrocytes obtained from rabbits (n = 11) and both healthy and type 2 diabetic humans (n = 7) were incubated with C-peptide in the absence and presence of Fe2+ and Cr3+, and the resulting ATP release was measured via chemiluminescence. This release was also measured in the presence and absence of phloretin, an inhibitor of GLUT1, and also of mannose, a glycolysis inhibitor. To determine glucose transport, 14C-labelled glucose was added to erythrocytes in the presence and absence of the C-peptide-metal complex and the aforementioned inhibitors. RESULTS The release of ATP from the erythrocytes of patients with diabetes increased from 64 +/- 13 to 260 +/- 39 nmol/l upon incubation of the cells in C-peptide. The C-peptide activity was dependent upon binding to Fe2+, which was extended upon binding to Cr3+. The increase in ATP release from the erythrocytes is due to metal-activated C-peptide stimulation of glucose transfer into the erythrocytes via the GLUT1 transporter. In the presence of C-peptide complexed to Cr3+, the amount of glucose transferred into the erythrocyte increased by 31%. CONCLUSIONS/INTERPRETATION When complexed to Fe2+ or Cr3+, C-peptide has the ability to promote ATP release from erythrocytes. This release is due to an increase in glucose transport through GLUT1.
Collapse
Affiliation(s)
- J A Meyer
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
13
|
Wahren J, Ekberg K, Jörnvall H. C-peptide is a bioactive peptide. Diabetologia 2007; 50:503-9. [PMID: 17235526 DOI: 10.1007/s00125-006-0559-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/24/2006] [Indexed: 11/24/2022]
Affiliation(s)
- J Wahren
- Department of Molecular Medicine and Surgery, Karolinska Hospital, 171 76, Stockholm, Sweden.
| | | | | |
Collapse
|
14
|
Mares-Guia TR, Maigret B, Martins NF, Maia ALT, Vilela L, Ramos CHI, Neto LJ, Juliano MA, dos Mares-Guia ML, Santoro MM. Molecular dynamics and circular dichroism studies of human and rat C-peptides. J Mol Graph Model 2006; 25:532-42. [PMID: 16750642 DOI: 10.1016/j.jmgm.2006.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 03/11/2006] [Accepted: 03/12/2006] [Indexed: 10/24/2022]
Abstract
Proinsulin C-peptide has been recently described as an endogenous peptide hormone, responsible for important physiological functions others than its role in proinsulin processing. Accumulating evidences that C-peptide exerts beneficial effects in the treatment of long term complications of patients with type 1 diabetes mellitus indicate that this molecule may be administered together with insulin in future therapies. Despite its clear pharmacological interest, the secondary and three-dimensional (3D) structures of human C-peptide are still points of controversy. In the present work we report molecular dynamics (MD) simulations of human, rat I and rat II C-peptides. A common experimental strategy applied to all peptides consisted of homology building followed by multinanosecond MD simulations in vacuum and water. Circular dichroism (CD) experiments of each peptide in the absence and presence of 2,2,2-trifluoroethanol (TFE) were performed to support validation of the theoretical models. A multiple sequence alignment of 23 known mammalian C-peptides was constructed to identify significant conserved sites that would be important for the maintenance of secondary and tertiary structures. The analysis of the molecular dynamics trajectories for the human, rat I and rat II molecules have shown quite different general behavior, being the human C-peptide more flexible than the two others. Human and rat C-peptides exhibit very stable turn-like structures at the middle and C-terminal regions, which have been described as potential active sites of C-peptides. Human C-peptide also presented a short alpha-helix throughout the MD, which was not found in the rat molecules. CD data is in very good agreement with the MD results and both methods were able to identify a greater structural stability and potential in rat C-peptides when compared to the human C-peptide. The simulation results are discussed and validated in the light of multiple sequence alignment, recent experimental data from the literature and our own CD experiments.
Collapse
Affiliation(s)
- Thiago Rennó Mares-Guia
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shafqat J, Melles E, Sigmundsson K, Johansson BL, Ekberg K, Alvelius G, Henriksson M, Johansson J, Wahren J, Jörnvall H. Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci 2006; 63:1805-11. [PMID: 16845606 PMCID: PMC2773842 DOI: 10.1007/s00018-006-6204-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Using surface plasmon resonance (SPR) and electrospray mass spectrometry (ESI-MS), proinsulin C-peptide was found to influence insulin-insulin interactions. In SPR with chip-bound insulin, C-peptide mixed with analyte insulin increased the binding, while alone C-peptide did not. A control peptide with the same residues in random sequence had little effect. In ESI-MS, C-peptide lowered the presence of insulin hexamer. The data suggest that C-peptide promotes insulin disaggregation. Insulin/insulin oligomer muM dissociation constants were determined. Compatible with these findings, type 1 diabetic patients receiving insulin and C-peptide developed 66% more stimulation of glucose metabolism than when given insulin alone. A role of C-peptide in promoting insulin disaggregation may be important physiologically during exocytosis of pancreatic beta-cell secretory granulae and pharmacologically at insulin injection sites. It is compatible with the normal co-release of C-peptide and insulin and may contribute to the beneficial effect of C-peptide and insulin replacement in type 1 diabetics.
Collapse
Affiliation(s)
- J. Shafqat
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - E. Melles
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - K. Sigmundsson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Present Address: Departments of Cancer & ImmunoBiology, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - B. -L. Johansson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - K. Ekberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - G. Alvelius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - M. Henriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - J. Johansson
- Department of Molecular Biosciences, Swedish University of Agricultural Sciences, The Biomedical Centre, 751 23 Uppsala, Sweden
| | - J. Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - H. Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Tam J, Diamond J, Maysinger D. Dual-action peptides: a new strategy in the treatment of diabetes-associated neuropathy. Drug Discov Today 2006; 11:254-60. [PMID: 16580602 DOI: 10.1016/s1359-6446(05)03722-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral neuropathy is one of the most common and debilitating complications of type 1 and type 2 diabetes mellitus. Recent studies have shown that several small, non-neural peptides possess neurotrophic activity and exert beneficial effects on nervous system function in experimental and clinical diabetes. Two of these, C-peptide and islet neogenesis-associated protein peptide, are derived from pancreatic proteins and use related signal transduction mechanisms. Derivatives of erythropoietin possess similar properties in the nervous system. As a group, these peptides are of increasing interest as leads to potential new approaches in the treatment of diabetes-associated neuropathies and other neurodegenerative conditions. This review addresses the recent advances made with these peptides in the context of diabetic neuropathy, and highlights similarities and differences in their mechanisms of action from the perspective of combination therapy.
Collapse
Affiliation(s)
- Joseph Tam
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, Montreal, QC, Canada H3G 1Y6
| | | | | |
Collapse
|
17
|
Tsimaratos M. [Physiological effects of the connecting peptide]. Arch Pediatr 2006; 12:442-8. [PMID: 15808437 DOI: 10.1016/j.arcped.2004.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 06/21/2004] [Indexed: 11/17/2022]
Abstract
Insulin-dependent diabetic (IDDM) patients present significantly altered Na,K-ATPase activity in several organs, including kidney. Particularly in kidney tubule, Na,K-ATPase alteration occurs together with changes in glomerular filtration rate, the first step of IDDM-induced renal failure. The latter is a major cause of morbidity and mortality in IDDM patients. The C-peptide of proinsulin is important for the biosynthesis of insulin but has for a long time been considered to be biologically inert. Recent studies have demonstrated that replacement of C-peptide to normal physiological concentrations in IDDM patients either on a short-term basis (1-3 hours) or on a prolonged administration (1-3 months) was accompanied by improvements in renal glomerular and tubular function. Animal studies have shown that most of the renal tubular effects of C-peptide may in part be explained by its ability to stimulate Na,K-ATPase activity. In conclusion, these combined findings indicate that C-peptide is a biologically active hormone. The possibility that C-peptide therapy in IDDM patients may be beneficial should be considered. The present review focuses on: 1) Making a point about C-peptide-induced tubular effects on the basis of clinical and experimental experiments, and 2) precising the molecular mechanisms involved in C-peptide-induced tubular Na,K-ATPase effects.
Collapse
Affiliation(s)
- M Tsimaratos
- Service de pédiatrie multidisciplinaire, hôpital d'Enfants de la Timone, 13385 Marseille cedex 05, France.
| |
Collapse
|
18
|
Abstract
The C-peptide of proinsulin is important for the biosynthesis of insulin, but has been considered for a long time to be biologically inert. Recent studies in diabetic patients have stimulated a new debate about its possible regulatory role, suggesting that it is a hormonally active peptide. We describe structural studies of the C-peptide using 2D NMR spectroscopy. In aqueous solution, the NOE patterns and chemical shifts indicate that the ensemble is a nonrandom structure and contains substructures with defined local conformations. These are more clearly visible in 50% H2O/50% 2,2,2-trifluoroethanol. The N-terminal region (residues 2-5) forms a type I beta-turn, whereas the C-terminal region (residues 27-31) presents the most well-defined structure of the whole molecule including a type III'beta-turn. The C-terminal pentapeptide (EGSLQ) has been suggested to be responsible for chiral interactions with an as yet uncharacterized, probably a G-protein-coupled, receptor. The three central regions of the molecule (residues 9-12, 15-18 and 22-25) show tendencies to form beta-bends. We propose that the structure described here for the C-terminal pentapeptide is consistent with the previously postulated CA knuckle, believed to represent the active site of the C-peptide of human proinsulin.
Collapse
|
19
|
Abstract
OBJECTIVES During the past decade, numerous studies in both humans and animals have demonstrated that C-peptide, although not influencing blood sugar control, might play a role in preventing and potentially reversing some of the chronic complications of type 1 diabetes. The aim of this paper is to present an up-to-date review of C-peptide, focusing on its role in insulin biosynthesis and in the classification of diabetes mellitus, as well as its potential clinical applications. METHODS AND RESULTS The relevant literature cited in the MEDLINE database shows that the measurement of C-peptide production combined with screening for the presence of islet-cell and other autoantibodies seems to exert an important role in the accurate differentiation between patients with type 1 and type 2 diabetes. Also, both experimental and clinical data provide evidence suggesting that combined replacement of insulin and C-peptide has potential therapeutic value in patients with type 1 diabetes. CONCLUSIONS Further study in this area is warranted, but the findings that pancreas transplants promote the reversal of diabetic neuropathy and stabilization of diabetic retinopathy and that both pancreas and islet transplants lead to the reversal of diabetic nephropathy lend credence to the concept that combined replacement of insulin and C-peptide may more effectively mitigate the inexorable progression of diabetes-related complications.
Collapse
Affiliation(s)
- Ruy G Marques
- Department of General Surgery, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
20
|
Abstract
In contrast to earlier views, new data indicate that proinsulin C-peptide exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. C-peptide in nanomolar concentrations binds specifically to cell membranes, probably to a G-protein coupled receptor. Ca(2+)- and MAP-kinase dependent signalling pathways are activated, resulting in stimulation of Na(+), K(+)-ATPase and endothelial nitric oxide (NO) synthase, two enzyme systems known to be deficient in diabetes. C-peptide may also interact synergistically with insulin signal transduction. Studies in intact animals and in patients with type 1 diabetes have demonstrated multifaceted effects. Thus, C-peptide administration in streptozotocin-diabetic animals results in normalization of diabetes-induced glomerular hyperfiltration, reduction of urinary albumin excretion and diminished glomerular expansion. The former two effects have also been observed in type 1 diabetes patients given C-peptide in replacement dose for up to 3 months. Peripheral nerve function and structure are likewise influenced by C-peptide administration; sensory and motor nerve conduction velocities increase and nerve structural changes are diminished or reversed in diabetic rats. In patients with type 1 diabetes, beneficial effects have been demonstrated on sensory nerve conduction velocity, vibration perception and autonomic nerve function. C-peptide also augments blood flow in several tissues in type 1 diabetes via its stimulation of endothelial NO release, emphasizing a role for C-peptide in maintaining vascular homeostasis. Continued research is needed to establish whether, among the hormones from the islets of Langerhans, C-peptide is the ugly duckling that--nearly 40 years after its discovery--may prove to be an endogenous peptide hormone of importance in the treatment of diabetic long-term complications.
Collapse
Affiliation(s)
- John Wahren
- Section of Clinical Physiology, Department of Surgical Sciences, Karolinska Institute, N1:05, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
21
|
Grabielle-Madelmont C, Lesieur S, Ollivon M. Characterization of loaded liposomes by size exclusion chromatography. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 56:189-217. [PMID: 12834977 DOI: 10.1016/s0165-022x(03)00059-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on the use of conventional (SEC) and high performance (HPSEC) size exclusion chromatography for the analysis of liposomes. The suitability of both techniques is examined regarding the field of liposome applications. The potentiality of conventional SEC is strongly improved by using a HPLC system associated to gel columns with a size selectivity range allowing liposome characterization in addition to particle fractionation. Practical aspects of size exclusion chromatography are described and a methodology based on HPSEC coupled to multidetection modes for on-line analysis of liposomes via label or substance encapsulation is presented. Examples of conventional SEC and HPSEC applications are described which concern polydispersity, size and encapsulation stability, bilayer permeabilization, liposome formation and reconstitution, incorporation of amphiphilic molecules. Size exclusion chromatography is a simple and powerful technique for investigation of encapsulation, insertion/interaction of substances from small solutes (ions, surfactants, drugs, etc.) up to large molecules (proteins, peptides and nucleic acids) in liposomes.
Collapse
Affiliation(s)
- Cécile Grabielle-Madelmont
- Equipe Physico-chimie des Systèmes Polyphasés, UMR CNRS 8612, Université Paris-Sud, Châtenay-Malabry Cedex 92296, France.
| | | | | |
Collapse
|
22
|
Johansson J, Ekberg K, Shafqat J, Henriksson M, Chibalin A, Wahren J, Jörnvall H. Molecular effects of proinsulin C-peptide. Biochem Biophys Res Commun 2002; 295:1035-40. [PMID: 12135597 DOI: 10.1016/s0006-291x(02)00721-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proinsulin C-peptide has been held to be merely a by-product in insulin biosynthesis, but recent reports show that it elicits both molecular and physiological effects, suggesting that it is a hormonally active peptide. Specific binding of C-peptide to the plasma membranes of intact cells and to detergent-solubilised cells has been shown, indicating the existence of a cell surface receptor for C-peptide. C-peptide elicits a number of cellular responses, including Ca(2+) influx, activation of mitogen-activated protein (MAP) kinases, of Na(+),K(+)-ATPase, and of endothelial NO synthase. The pentapeptide EGSLQ, corresponding to the C-terminal five residues of human C-peptide, mimics several of the effects of the full-length peptide. The pentapeptide displaces cell membrane-bound C-peptide, elicits transient increase in intracellular Ca(2+) concentration and stimulates MAP kinase signalling pathways and Na(+),K(+)-ATPase. The Glu residue of the pentapeptide is essential for displacement of the full-length C-peptide, and free Glu can partly displace bound C-peptide, suggesting that charge interactions are important for receptor binding. Many C-peptide effects, such as phosphorylation of MAP-kinases ERK 1 and 2, stimulation of Na(+),K(+)-ATPase and increases in intracellular calcium concentrations are inhibited by pertussis toxin, supporting interaction of C-peptide with a G-protein-coupled receptor. However, all C-peptide effects cannot be explained in this manner, and it is possible that additional interactions are involved. Combined, the available observations show that C-peptide is biologically active and suggest a molecular model for its physiological effects.
Collapse
Affiliation(s)
- Jan Johansson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wahren J, Ekberg K, Samnegård B, Johansson BL. C-peptide: a new potential in the treatment of diabetic nephropathy. Curr Diab Rep 2001; 1:261-6. [PMID: 12643208 DOI: 10.1007/s11892-001-0044-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-peptide is formed in the biosynthesis of insulin and the two peptides are subsequently released in equimolar amounts to the circulation. C-peptide has long been considered to be without physiologic effects. Recent data now demonstrate that C-peptide in the nanomolar concentration range binds specifically to cell surfaces, probably to G protein-coupled receptors, with subsequent activation of Ca(2+)-dependent intracellular signaling pathways and stimulation of Na+, K(+)-ATPase activities. C-peptide replacement in animal models of type 1 diabetes results in diminished hyperfiltration, improved functional reserve, reduction of urinary albumin excretion, and prevention of glomerular and renal hypertrophy. Administration of C-peptide to physiologic concentrations in patients with type 1 diabetes and incipient nephropathy for periods of 3 hours to 3 months is accompanied by reduced glomerular hyperfiltration and filtration fraction, and diminished urinary albumin excretion. C-peptide replacement together with insulin therapy may be beneficial in type 1 diabetes patients with nephropathy.
Collapse
Affiliation(s)
- J Wahren
- Department of Surgical Sciences, Karolinska Hospital, Stockholm SE 171 76, Sweden.
| | | | | | | |
Collapse
|
24
|
Pramanik A, Ekberg K, Zhong Z, Shafqat J, Henriksson M, Jansson O, Tibell A, Tally M, Wahren J, Jörnvall H, Rigler R, Johansson J. C-Peptide Binding to Human Cell Membranes: Importance of Glu27. Biochem Biophys Res Commun 2001; 284:94-8. [PMID: 11374876 DOI: 10.1006/bbrc.2001.4917] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its established role in proinsulin folding, C-peptide has a function in regulation of cellular activity. The 31-residue peptide influences renal, vascular, and metabolic functions in patients with insulin-dependent diabetes mellitus. Binding to cells has been demonstrated for C-peptide, which can be displaced by its C-terminal pentapeptide. We have now used fluorescence correlation spectroscopy to investigate structural requirements on the pentapeptide part for C-peptide binding. All pentapeptide residues, E(27)GSLQ(31), were individually replaced with Ala and the capacity of the resulting peptides to displace rhodamine-labelled full-length human C-peptide from human renal tubular cell membranes was determined. This showed that Glu27 is essential for displacement, while replacement of Gly28 with Ala has little effect, and replacement of any of the three most C-terminal residues had intermediate effects. Morevover, free Glu displaces full-length C-peptide to about 50%, while free Ala, C-peptide(1-26), and the truncated pentapeptide, corresponding to the tetrapeptide G(28)SLG(31), have no displacing capacity. The peptides EVARQ (corresponding to the rat C-terminal pentapeptide) and ELGGGPGAG (corresponding to positions 11-19 of human C-peptide) do not displace human C-peptide. These results indicate that Glu27 of C-peptide is critically involved in binding to cellular targets.
Collapse
Affiliation(s)
- A Pramanik
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Henriksson M, Pramanik A, Shafqat J, Zhong Z, Tally M, Ekberg K, Wahren J, Rigler R, Johansson J, Jörnvall H. Specific binding of proinsulin C-peptide to intact and to detergent-solubilized human skin fibroblasts. Biochem Biophys Res Commun 2001; 280:423-7. [PMID: 11162533 DOI: 10.1006/bbrc.2000.4135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proinsulin C-peptide exerts physiological effects on kidney and nerve function, but the mechanisms involved remain incompletely understood. Using fluorescence correlation spectroscopy, we have studied binding of rhodamine-labelled human C-peptide to intact human skin fibroblasts and to detergent-solubilised extracts of fibroblasts, K-562, and IEC-6 cells. Specificity was shown by displacement of rhodamine-labelled human C-peptide with unlabelled human C-peptide. C-peptide was found to bind to the cell membranes of intact fibroblasts with an association constant of 3 x 10(9) M(-1), giving full saturation at about 0.9 nM, close to the physiological C-peptide plasma concentration. Treatment of all investigated cells with the zwitter-ionic detergent Chaps was found to release macromolecules that bind specifically to C-peptide. The binding in Chaps extracts of fibroblasts was sensitive to time but remained reproducible for up to 2 h at room temperature. Lysophosphatidylcholine, Triton X-100, beta-octylglucopyranoside, SDS, or cholate gave extracts with only low or nonspecific binding. It is concluded that C-peptide binding components can be solubilised from cells, and that Chaps appears to be a suitable detergent.
Collapse
Affiliation(s)
- M Henriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wahren J, Ekberg K, Johansson J, Henriksson M, Pramanik A, Johansson BL, Rigler R, Jörnvall H. Role of C-peptide in human physiology. Am J Physiol Endocrinol Metab 2000; 278:E759-68. [PMID: 10780930 DOI: 10.1152/ajpendo.2000.278.5.e759] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-peptide of proinsulin is important for the biosynthesis of insulin but has for a long time been considered to be biologically inert. Data now indicate that C-peptide in the nanomolar concentration range binds specifically to cell surfaces, probably to a G protein-coupled surface receptor, with subsequent activation of Ca(2+)-dependent intracellular signaling pathways. The association rate constant, K(ass), for C-peptide binding to endothelial cells, renal tubular cells, and fibroblasts is approximately 3. 10(9) M(-1). The binding is stereospecific, and no cross-reaction is seen with insulin, proinsulin, insulin growth factors I and II, or neuropeptide Y. C-peptide stimulates Na(+)-K(+)-ATPase and endothelial nitric oxide synthase activities. Data also indicate that C-peptide administration is accompanied by augmented blood flow in skeletal muscle and skin, diminished glomerular hyperfiltration, reduced urinary albumin excretion, and improved nerve function, all in patients with type 1 diabetes who lack C-peptide, but not in healthy subjects. The possibility exists that C-peptide replacement, together with insulin administration, may prevent the development or retard the progression of long-term complications in type 1 diabetes.
Collapse
Affiliation(s)
- J Wahren
- Department of Surgical Sciences, Section of Clinical Physiology, Karolinska Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|