1
|
da Silva Prudêncio R, Sousa AKD, Silva DMM, Santos Ferreira JD, Rocha DML, Almeida VPAD, Silva Sousa JJD, Sousa SG, da Silva TML, Dos Santos Carvalho A, Cruz Júnior JSD, Alves EHP, Vasconcelos DFP, Bezerra RDS, França Dourado FD, Oliveira ALD, Cabral WF, Souza de Almeida Leite JRD, da Silva DA, Nascimento Junior EBD, Brito TVD, Aguiar Magalhães DD, Barbosa ALDR. Structural characterization of a sulfated polysaccharide from Gracilariadomingensis and potential anti-inflammatory and antinociceptive effects. Carbohydr Res 2025; 547:109322. [PMID: 39550806 DOI: 10.1016/j.carres.2024.109322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Seaweeds are natural sources of sulfated polysaccharides (SPs), biopolymers with remarkable pharmacological properties, including biological actions capable of attenuating components of the inflammatory process such as edema, cytokines, cell migration and pain. Our results confirm that SPs obtained from Gracilaria domingensis (SP-GD) are agarans, primarily composed of residues of β-d-galactopyranose 6-sulfate and 3,6-anhydro-α-l-galactopyranose. Specifically, SP-GD at a dose of 10 mg/kg was effective in significantly reducing paw edema induced by carrageenan or histamine, serotonin, bradykinin, 48/80 and prostaglandin E2. SP-GD (10 mg/kg) was also able to reduce neutrophil migration and the activity of the myeloperoxidase enzyme in carrageenan-induced peritonitis, as well as conserve glutathione concentration and reduce malondialdehyde levels in the animals' peritoneal fluid. Furthermore, it showed antinociceptive action in the abdominal writhing test induced by acetic acid and in the paw licking test induced by formalin. Thus, the results obtained allow us to infer that SPs extracted from G. domingensis at a dose of 10 mg/kg have anti-inflammatory effects by reducing neutrophil migration and modulating the activity of vasoactive mediators and antinociceptive effects by acting, at least in part, through a peripheral mechanism dependent on the negative modulation of inflammatory mediators.
Collapse
Affiliation(s)
- Rafael da Silva Prudêncio
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Antonio Kleiton de Sousa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Denise Mayara Melo Silva
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Jayro Dos Santos Ferreira
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Danyela Maria Leal Rocha
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | | | - João Janilson da Silva Sousa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Stefany Guimarães Sousa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Tino Marcos Lino da Silva
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - André Dos Santos Carvalho
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - José Simião da Cruz Júnior
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Even Herlany Pereira Alves
- Laboratory of Histological Analysis and Preparation (LAPHis), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | | | - Roosevelt D S Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina, Piaui, Brazil
| | - Flaviane de França Dourado
- Research Center on Biodiversity and Biotechnology (BIOTEC) Parnaiba Delta Federal University, UFDPar, Parnaiba, Piaui, Brazil
| | - Aline Lima de Oliveira
- Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Wanessa Feliz Cabral
- Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasilia, Brasilia, Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC) Parnaiba Delta Federal University, UFDPar, Parnaiba, Piaui, Brazil
| | | | - Tarcísio Vieira de Brito
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - Diva de Aguiar Magalhães
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil
| | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Parnaiba Delta Federal University (UFDPar), Parnaiba, Piaui, Brazil.
| |
Collapse
|
2
|
Lin W, Chen H, Chen X, Guo C. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants (Basel) 2024; 13:132. [PMID: 38275657 PMCID: PMC10812636 DOI: 10.3390/antiox13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase, mainly expressed in neutrophils and, to a lesser extent, in monocytes. MPO is known to have a broad bactericidal ability via catalyzing the reaction of Cl- with H2O2 to produce a strong oxidant, hypochlorous acid (HOCl). However, the overproduction of MPO-derived oxidants has drawn attention to its detrimental role, especially in diseases characterized by acute or chronic inflammation. Broadly speaking, MPO and its derived oxidants are involved in the pathological processes of diseases mainly through the oxidation of biomolecules, which promotes inflammation and oxidative stress. Meanwhile, some researchers found that MPO deficiency or using MPO inhibitors could attenuate inflammation and tissue injuries. Taken together, MPO might be a promising target for both prognostic and therapeutic interventions. Therefore, understanding the role of MPO in the progress of various diseases is of great value. This review provides a comprehensive analysis of the diverse roles of MPO in the progression of several diseases, including cardiovascular diseases (CVDs), neurodegenerative diseases, cancers, renal diseases, and lung diseases (including COVID-19). This information serves as a valuable reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Wei Lin
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Huili Chen
- Center of System Pharmacology and Pharmacometrics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
3
|
Pinheiro AV, Petrucci GN, Dourado A, Pires I. Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread. Animals (Basel) 2023; 13:3392. [PMID: 37958147 PMCID: PMC10648213 DOI: 10.3390/ani13213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Throughout the course of oncological disease, the majority of patients require surgical, anaesthetic and analgesic intervention. However, during the perioperative period, anaesthetic agents and techniques, surgical tissue trauma, adjuvant drugs for local pain and inflammation and other non-pharmacological factors, such as blood transfusions, hydration, temperature and nutrition, may influence the prognosis of the disease. These factors significantly impact the oncologic patient's immune response, which is the primary barrier to tumour progress, promoting a window of vulnerability for its dissemination and recurrence. More research is required to ascertain which anaesthetics and techniques have immunoprotective and anti-tumour effects, which will contribute to developing novel anaesthetic strategies in veterinary medicine.
Collapse
Affiliation(s)
- Ana Vidal Pinheiro
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
| | - Gonçalo N. Petrucci
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Amândio Dourado
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
| | - Isabel Pires
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
4
|
Cao J, Kong W, Cheng G, Xu Z. Role of mTORC1 Signaling in Regulating the Immune Function of Granulocytes in Teleost Fish. Int J Mol Sci 2023; 24:13745. [PMID: 37762047 PMCID: PMC10530975 DOI: 10.3390/ijms241813745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Granulocytes are crucial innate immune cells that have been extensively studied in teleost fish. Studies in mammals have revealed that mechanistic target of rapamycin complex 1 (mTORC1) signaling acts as a significant immune regulatory hub, influencing granulocyte immune function. To investigate whether mTORC1 signaling also regulates the immune function of granulocytes in teleost fish, we established a model of RAPA inhibition of the mTORC1 signaling pathway using granulocytes from largemouth bass (Micropterus salmoides). Our results demonstrated that inhibition of mTORC1 signaling promoted autophagy and apoptosis of granulocytes while inhibiting cell proliferation. Moreover, inhibition of the mTORC1 signaling pathway enhanced the phagocytosis capacity of granulocytes. Collectively, our findings revealed the evolutionarily conserved role of the mTORC1 signaling pathway in regulating granulocyte responses, thus providing novel insights into the function of granulocytes in teleost fish.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (G.C.)
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Gaofeng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (G.C.)
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
5
|
Wang SW, Zhang Q, Lu D, Fang YC, Yan XC, Chen J, Xia ZK, Yuan QT, Chen LH, Zhang YM, Nan FJ, Xie X. GPR84 regulates pulmonary inflammation by modulating neutrophil functions. Acta Pharmacol Sin 2023:10.1038/s41401-023-01080-z. [PMID: 37016043 PMCID: PMC10072043 DOI: 10.1038/s41401-023-01080-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
Acute lung injury (ALI) is an acute, progressive hypoxic respiratory failure that could develop into acute respiratory distress syndrome (ARDS) with very high mortality rate. ALI is believed to be caused by uncontrolled inflammation, and multiple types of immune cells, especially neutrophils, are critically involved in the development of ALI. The treatment for ALI/ARDS is very limited, a better understanding of the pathogenesis and new therapies are urgently needed. Here we discover that GPR84, a medium chain fatty acid receptor, plays critical roles in ALI development by regulating neutrophil functions. GPR84 is highly upregulated in the cells isolated from the bronchoalveolar lavage fluid of LPS-induced ALI mice. GPR84 deficiency or blockage significantly ameliorated ALI mice lung inflammation by reducing neutrophils infiltration and oxidative stress. Further studies reveal that activation of GPR84 strongly induced reactive oxygen species production from neutrophils by stimulating Lyn, AKT and ERK1/2 activation and the assembly of the NADPH oxidase. These results reveal an important role of GPR84 in neutrophil functions and lung inflammation and strongly suggest that GPR84 is a potential drug target for ALI.
Collapse
Affiliation(s)
- Si-Wei Wang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Dan Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - You-Chen Fang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Ci Yan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jing Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Kan Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian-Ting Yuan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lin-Hai Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | - Fa-Jun Nan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Xu X, Wu Y, Xu S, Yin Y, Ageno W, De Stefano V, Zhao Q, Qi X. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb J 2022; 20:63. [PMID: 36224604 PMCID: PMC9555260 DOI: 10.1186/s12959-022-00421-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Neutrophil extracellular traps (NETs) may be associated with the development of thrombosis. Experimental studies have confirmed the presence of NETs in thrombi specimens and potential role of NETs in the mechanisms of thrombosis. Clinical studies also have demonstrated significant changes in the levels of serum or plasma NETs biomarkers, such as citrullinated histones, myeloperoxidase, neutrophil elastase, nucleosomes, DNA, and their complexes in patients with thrombosis. This paper aims to comprehensively review the currently available evidence regarding the change in the levels of NETs biomarkers in patients with thrombosis, summarize the role of NETs and its biomarkers in the development and prognostic assessment of venous thromboembolism, coronary artery diseases, ischemic stroke, cancer-associated thromboembolism, and coronavirus disease 2019-associated thromboembolism, explore the potential therapeutic implications of NETs, and further discuss the shortcomings of existing NETs biomarkers in serum and plasma and their detection methods.
Collapse
Affiliation(s)
- Xiangbo Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Shixue Xu
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Yue Yin
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Valerio De Stefano
- Department of Radiological and Hematological Sciences, Catholic University, Fondazione Policlinico A. Gemelli IRCCS, Section of Hematology, Rome, Italy
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China. .,Department of Pharmacy, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China.
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (the Teaching School of Shenyang Pharmaceutical University), Shenyang, China. .,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
7
|
Signaling Pathways Associated with Chronic Wound Progression: A Systems Biology Approach. Antioxidants (Basel) 2022; 11:antiox11081506. [PMID: 36009225 PMCID: PMC9404828 DOI: 10.3390/antiox11081506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Previously we have shown that several oxidative stress-driven pathways in cutaneous chronic wounds are dysregulated in the first 48 h post-wounding. Here, we performed an RNASeq analysis of tissues collected up to day 20 after wounding, when we have determined full chronicity is established. Weighted Gene Correlation Network Analysis was performed in R segregating the genes into 14 modules. Genes in the modules significantly correlated (p < 0.05) to early and full chronicity were used for pathway analysis using pathfindR. In early chronicity, we observed enrichment of several pathways. Dysregulation of Ephrin/Eph signaling leads to growth cone collapse and impairs neuronal regeneration. Adra2b and Adra2a overexpression in early and full chronicity, respectively, decreased cAMP production and impaired re-epithelialization and granulation tissue formation. Several pathways involving a Smooth-muscle-actin (Acta1) were also enriched with Acta1 overexpression contributing to impaired angiogenesis. During full chronicity, the ‘JAK-STAT’ pathway was suppressed undermining host defenses against infection. Wnt signaling was also suppressed, impairing re-epithelialization and granulation tissue formation. Biomarkers of cancer such as overexpression of SDC1 and constitutive activation of ErbB2/HER2 were also identified. In conclusion, we show that during progression to full chronicity, numerous signaling pathways are dysregulated, including some related to carcinogenesis, suggesting that chronic wounds behave much like cancer. Experimental verification in vivo could identify candidates for treatment of chronic wounds.
Collapse
|
8
|
Oyeleke MB, Owoyele BV. Saponins and flavonoids from Bacopa floribunda plant extract exhibit antioxidant and anti-inflammatory effects on amyloid beta 1-42-induced Alzheimer's disease in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114997. [PMID: 35033624 DOI: 10.1016/j.jep.2022.114997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bacopa floribunda (BF), a locally available plant has been employed traditionally as memory enhancer in Southwestern, Nigeria. It has been utilized in traditional and Ayurvedic medicine as brain tonic for enhancing memory, anti-aging and forestalling series of psychological disorders. However, there is a dearth of scientific information on the mechanism(s) of action of important phytochemicals from BF extract on dementia. AIM OF THE STUDY Alzheimer's disease, the commonest form of dementia has been postulated to triple by 2050 as a result of increase in life expectancy. This study therefore assessed and compared the possible mechanism(s) of action of flavonoids and saponins from BF on Amyloid beta (Aβ1-42)-induced dementia in male BALB/c mice. MATERIALS AND METHODS Eighty (80) healthy BALB/c mice divided into 10 groups (n = 8) were given a single bilateral ICV injection of Aβ1-42 or normal saline. Graded doses of Saponins and flavonoids (50, 100 and 200 mg/kg) were used as treatment for 21 days. Hippocampal homogenates were assayed for the levels of antioxidants, oxidative stress and neuroinflammatory markers. In vitro antioxidant activity of flavonoids and saponins were equally assessed using standard procedures. The extent of microglial activation was quantified through immunohistochemistry procedure. RESULTS Aβ1-42 successfully caused a spike in hippocampal levels of MDA, IL1β, TNF-α including MPO levels and invariably decreased antioxidant activities. Likewise an increase in reactive microglia (microgliosis) was observed. However, crude saponins and flavonoids from BF were able to suppress microgliosis, oxidative stress and neuroinflammation induced by Aβ1- 42 and were observed to be more effective at higher doses of saponins (100 mg/kg and 200 mg/kg) and flavonoid (100 mg/kg). CONCLUSIONS Phytochemicals from BF efficiently exhibited dose dependent alleviation of some symptoms associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Mosunmola Busayo Oyeleke
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, P.M.B, 5454, Ado-Ekiti, Nigeria; Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| | - Bamidele Victor Owoyele
- Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| |
Collapse
|
9
|
Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ. Neutrophil degranulation and myocardial infarction. Cell Commun Signal 2022; 20:50. [PMID: 35410418 PMCID: PMC8996539 DOI: 10.1186/s12964-022-00824-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) is one of the most common cardiac emergencies with high morbidity and is a leading cause of death worldwide. Since MI could develop into a life-threatening emergency and could also seriously affect the life quality of patients, continuous efforts have been made to create an effective strategy to prevent the occurrence of MI and reduce MI-related mortality. Numerous studies have confirmed that neutrophils play important roles in inflammation and innate immunity, which provide the first line of defense against microorganisms by producing inflammatory cytokines and chemokines, releasing reactive oxygen species, and degranulating components of neutrophil cytoplasmic granules to kill pathogens. Recently, researchers reported that neutrophils are closely related to the severity and prognosis of patients with MI, and neutrophil to lymphocyte ratio in post-MI patients had predictive value for major adverse cardiac events. Neutrophils have been increasingly recognized to exert important functions in MI. Especially, granule proteins released by neutrophil degranulation after neutrophil activation have been suggested to involve in the process of MI. This article reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Video abstract
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
10
|
Askari H, Rahimian A, Aminian M. Purification and Biochemical Characterization of Two Anionic Peroxidase Isoenzymes from Raphanus sativus L. var niger Roots. Appl Biochem Biotechnol 2022; 194:2219-2235. [DOI: 10.1007/s12010-021-03736-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
|
11
|
Basu P, Kim JH, Saeed S, Martins-Green M. Using systems biology approaches to identify signalling pathways activated during chronic wound initiation. Wound Repair Regen 2021; 29:881-898. [PMID: 34536049 DOI: 10.1111/wrr.12963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Chronic wounds are a significant health problem worldwide. However, nothing is known about how chronic wounds initiate and develop. Here we use a chronic wound model in diabetic mice and a Systems Biology Approach using nanoString nCounter technology and weighted gene correlation network analysis (WGCNA), with tissues collected at 6, 12, 24 and 48 h post-wounding, to identify metabolic signalling pathways involved in initiation of chronicity. Normalized counts obtained from the nanoString nCounter Mouse Metabolic Panel were used for the WGCNA, which groups genes into co-expression modules to visualize the correlation network. Genes with significant module membership and gene trait significance (p < 0.05) were used to identify signalling pathways that are important for the development of chronicity. The pathway analysis using the Reactome database showed stabilization of PTEN, which down-regulates PI3K/AKT1, which in turn down-regulates Nrf2, as shown by ELISA, thus disabling antioxidant production, resulting in high oxidative stress levels. We find that pathways involved in inflammation, including those that generate pro-inflammatory lipids derived from arachidonic acid metabolism, IFNγ and catecholamines, occur. Moreover, HIF3α is over-expressed, potentially blocking Hif1α and preventing activation of growth factors and cytokines that promote granulation tissue formation. We also find that FGF1 is under-expressed, while thrombospondin-1 is over-expressed, resulting in decreased angiogenesis, a process that is critical for healing. Finally, enzymes involved in glycolysis are down-regulated, resulting in decreased production of pyruvate, a molecule critical for ATP production, leading to extensive cell death and wound paralysis. These findings offer new avenues of study that may lead to the development of novel treatments of CW to be administered right after debridement.
Collapse
Affiliation(s)
- Proma Basu
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Jane Hannah Kim
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Shayan Saeed
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | | |
Collapse
|
12
|
Abu-Khudir R, Ibrahim WM, Shams ME, Salama AF. Trehalose alleviates doxorubicin-induced cardiotoxicity in female Swiss albino mice by suppression of oxidative stress and autophagy. J Biochem Mol Toxicol 2021; 35:e22859. [PMID: 34328254 DOI: 10.1002/jbt.22859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Clinically, the use of doxorubicin (DOX) is limited due to DOX-induced cardiotoxicity (DIC). The current study aimed to evaluate the cardioprotective effect of trehalose (TRE) against DIC in a female Swiss albino mouse model. Mice were divided into five experimental groups: Gp. I: saline control group (200 μl/mouse saline three times per week for 3 weeks day after day), Gp. II: DOX-treated group (2 mg/kg body weight three times per week for 3 weeks day after day), Gp. III: TRE group (200 μg/mouse three times per week for 3 weeks day after day), Gp. IV: DOX + TRE cotreatment group (animals were coadministered with DOX and TRE as in Gp. II and III, respectively), and Gp. V: DOX + TRE posttreatment group (animals were treated with DOX as in Gp. II followed by treatment with TRE as in Gp. III). DOX-treated mice showed significant elevation in cardiac injury biomarkers (lactate dehydrogenase, creatine kinase isoenzyme-MB, and cardiac troponin I), cardiac oxidative stress (OS) markers (malondialdehyde and myeloperoxidase), and cardiac levels of autophagy-related protein 5. Moreover, DOX significantly reduced the levels of total antioxidant capacity and activities of catalase and glutathione S-transferase. In contrast, TRE treatment of DOX-administered mice significantly improved almost all of the above-mentioned assessed parameters. Furthermore, histopathological changes of cardiac tissues observed in mice treated with TRE in combination with DOX were significantly improved as compared to DOX-treated animals. Taken together, the present study provides evidence that TRE has cardioprotective effects against DIC, which is likely mediated via suppression of OS and autophagy.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed E Shams
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Afrah F Salama
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Lal R, Dhaliwal J, Dhaliwal N, Dharavath RN, Chopra K. Activation of the Nrf2/HO-1 signaling pathway by dimethyl fumarate ameliorates complete Freund's adjuvant-induced arthritis in rats. Eur J Pharmacol 2021; 899:174044. [PMID: 33745959 DOI: 10.1016/j.ejphar.2021.174044] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
The nuclear factor erythroid 2-related factor (Nrf2) signaling pathway has recently emerged as a novel therapeutic target in treating various diseases. Therefore, the present study aimed to assess the protective role of the Nrf2 activator, dimethyl fumarate (DMF) in the complete Freund's adjuvant (CFA)- induced arthritis model. DMF (25, 50, and 100 mg/kg) and dexamethasone (2 mg/kg) were orally administered for 14 days. Pain-related tests, paw volume, and arthritic scores were measured weekly. Serum TNF-α, IL-1β, cyclic citrullinated peptide (CCP), C-reactive protein (CRP), and rheumatoid factor (RF) levels were estimated. Nitrite, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), catalase (CAT), and myeloperoxidase (MPO) levels were also evaluated. NF-κB, Nrf2, HO-1, and COX-2 levels were estimated in the joint tissue. DMF treatment exerted anti-arthritic activity by enhancing the nociceptive threshold, improving arthritis scores, and reducing paw edema. Also, DMF suppressed changes in oxidative stress markers and inflammatory mediators and enhanced Nrf2 and HO-1 levels in CFA-injected rats. These findings indicate that the anti-arthritic activity of DMF may be mediated by the activation of the Nrf2/HO-1 pathway, which reduced oxidative damage and inflammation.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Navneet Dhaliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Sharma AK, Shukla SK, Kalonia A, Shaw P, Khanna K, Gupta R, Yashavarddhan MH, Bhatnagar A. Evaluation of decontamination efficacy of electrolytically generated hypochlorous acid for vesicating agent: A multimodel Study. Curr Pharm Biotechnol 2021; 23:287-299. [PMID: 33719970 DOI: 10.2174/1389201022666210311140922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sulfur Mustard is a strong vesicant and chemical warfare agent that imposes toxicity to the lungs, eyes, and skin after accidental or intended exposure. OBJECTIVES The current study was intended to explore in vitro and in vivo decontamination properties of electrolytically generated HOCl (hypochlorous acid) against CEES (2-chloroethyle ethyle sulphide), a known sulfur mustard simulant & vesicating agent. METHODS In vitro studies were carried out using UV spectroscopy and GC-MS methods. In vivo studies were perfomred in Strain A and immune compromised mice by subcutaneous as well as prophylactic topical administrion of HOCl pretreated CEES. The blister formation and mortality were considered as end-point. Histopathological study was conducted on skin samples by H & E method. DNA damage studies measuring γ-H2AX and ATM has been carried out in human blood using flow cytometry. Anti-bacterial action was tested by employing broth micro dilution methods. Comparative study was also carried out with known oxidizing agents. RESULTS The topical application of pre-treated CEES at 5, 30 min and 1 h time points showed significant (p<0.001) inhibition of blister formation. DNA damage study showed reduced mean flourences intensity of DSBs nearly 17-20 times, suggesting that HOCl plays a protective role against DNA damage. Histopathology showed no sign of necrosis in the epidermis upto 5 min although moderate changes were observed at 30 min. Pretreated samples were analyzed for detection of reaction products with m/z value of 75.04, 69.08, 83.93, 85.95, 123.99, 126.00, and 108.97. HOCl showed strong bactericidal effect at 40 ppm. The absorbance spectra of HOCl treated CEES showed lowered peaks in comparison to CEES alone and other oxidizing agents Conclusion: In a nutshell, our results signify the decontamination role of HOCl for biological surface application.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Sandeep Kumar Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Kushagra Khanna
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Richa Gupta
- Graphic Era Deemed to be University, Dehradun. India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Assem Bhatnagar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| |
Collapse
|
15
|
Borbély É, Hunyady Á, Pohóczky K, Payrits M, Botz B, Mócsai A, Berger A, Szőke É, Helyes Z. Hemokinin-1 as a Mediator of Arthritis-Related Pain via Direct Activation of Primary Sensory Neurons. Front Pharmacol 2021; 11:594479. [PMID: 33519457 PMCID: PMC7839295 DOI: 10.3389/fphar.2020.594479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023] Open
Abstract
The tachykinin hemokinin-1 (HK-1) is involved in immune cell development and inflammation, but little is known about its function in pain. It acts through the NK1 tachykinin receptor, but several effects are mediated by a yet unidentified target. Therefore, we investigated the role and mechanism of action of HK-1 in arthritis models of distinct mechanisms with special emphasis on pain. Arthritis was induced by i.p. K/BxN serum (passive transfer of inflammatory cytokines, autoantibodies), intra-articular mast cell tryptase or Complete Freund's Adjuvant (CFA, active immunization) in wild type, HK-1- and NK1-deficient mice. Mechanical- and heat hyperalgesia determined by dynamic plantar esthesiometry and increasing temperature hot plate, respectively, swelling measured by plethysmometry or micrometry were significantly reduced in HK-1-deleted, but not NK1-deficient mice in all models. K/BxN serum-induced histopathological changes (day 14) were also decreased, but early myeloperoxidase activity detected by luminescent in vivo imaging increased in HK-1-deleted mice similarly to the CFA model. However, vasodilation and plasma protein extravasation determined by laser Speckle and fluorescent imaging, respectively, were not altered by HK-1 deficiency in any models. HK-1 induced Ca2+-influx in primary sensory neurons, which was also seen in NK1-deficient cells and after pertussis toxin-pretreatment, but not in extracellular Ca2+-free medium. These are the first results showing that HK-1 mediates arthritic pain and cellular, but not vascular inflammatory mechanisms, independently of NK1 activation. HK-1 activates primary sensory neurons presumably via Ca2+ channel-linked receptor. Identifying its target opens new directions to understand joint pain leading to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Éva Borbély
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ágnes Hunyady
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztina Pohóczky
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Maja Payrits
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Éva Szőke
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
16
|
Qiu D, Zhang L, Zhan J, Yang Q, Xiong H, Hu W, Ji Q, Huang J. Hyperglycemia Decreases Epithelial Cell Proliferation and Attenuates Neutrophil Activity by Reducing ICAM-1 and LFA-1 Expression Levels. Front Genet 2020; 11:616988. [PMID: 33414814 PMCID: PMC7785031 DOI: 10.3389/fgene.2020.616988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Delayed repair is a serious public health concern for diabetic populations. Intercellular adhesion molecule 1 (ICAM-1) and Lymphocyte function-associated antigen 1 (LFA-1) play important roles in orchestrating the repair process. However, little is known about their effects on endothelial cell (EC) proliferation and neutrophil activity in subjects with hyperglycemia (HG). We cultured ECs and performed a scratch-closure assay to determine the relationship between ICAM-1 and EC proliferation. Specific internally labeled bacteria were used to clarify the effects of ICAM-1 and LFA-1 on neutrophil phagocytosis. Transwell assay and fluorescence-activated cell sorting analysis evaluated the roles of ICAM-1 and LFA-1 in neutrophil recruitment. ICAM-1+/+ and ICAM-1-/- mice were used to confirm the findings in vivo. The results demonstrated that HG decreased the expression of ICAM-1, which lead to the low proliferation of ECs. HG also attenuated neutrophil recruitment and phagocytosis by reducing the expression of ICAM-1 and LFA-1, which were strongly associated with the delayed repair.
Collapse
Affiliation(s)
- Dongxu Qiu
- Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Xiangya Hospital, Central South University, Changsha, China
| | - Junkun Zhan
- Department of Geriatrics, The Second Hospital of Xiangya, Hunan, China
| | - Qiong Yang
- Department of Geriatrics, The Second Hospital of Xiangya, Hunan, China
| | - Hongliang Xiong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weitong Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiao Ji
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone Exert Antinociceptive Activity in the Tail-Flick and Formalin Test in Rodents and Reveal Reduced Gastrotoxicity. Int J Mol Sci 2020; 21:ijms21249685. [PMID: 33353118 PMCID: PMC7766312 DOI: 10.3390/ijms21249685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the availability of the current drug arsenal for pain management, there is still a clinical need to identify new, more effective, and safer analgesics. Based on our earlier study, newly synthesized 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 10b and 13b, seem to be promising as potential analgesics. The current study was designed to investigate whether novel derivatives attenuate nociceptive response in animals subjected to thermal or chemical noxious stimulus, and to compare this effect to reference drugs. The antinociceptive effect of novel compounds was studied using the tail-flick and formalin test. Pretreatment with novel compounds at all studied doses increased the latency time in the tail-flick test and decreased the licking time during the early phase of the formalin test. New derivatives given at the medium and high doses also reduced the late phase of the formalin test. The achieved results indicate that new derivatives dose-dependently attenuate nociceptive response in both models of pain and exert a lack of gastrotoxicity. Both studied compounds act more efficiently than indomethacin, but not morphine. Compound 13b at the high dose exerts the greatest antinociceptive effect. It may be due to the reduction of nociceptor sensitization via prostaglandin E2 and myeloperoxidase levels decrease.
Collapse
|
18
|
Hinnouho GM, Wessells KR, Barffour MA, Sayasone S, Arnold CD, Kounnavong S, Hess SY. Impact of Different Strategies for Delivering Supplemental Zinc on Selected Fecal Markers of Environmental Enteric Dysfunction among Young Laotian Children: A Randomized Controlled Trial. Am J Trop Med Hyg 2020; 103:1416-1426. [PMID: 32618258 PMCID: PMC7543857 DOI: 10.4269/ajtmh.20-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The objective of this study was to assess the impact of different strategies for delivering supplemental zinc on fecal myeloperoxidase (MPO), neopterin (NEO), and calprotectin (CAL) among young Laotian children. In a double-blind controlled trial, children aged 6-23 months were randomized to receive either daily preventive zinc (PZ) tablets (7 mg/day), daily micronutrient powder (MNP; containing 10 mg zinc and 14 other micronutrients), therapeutic zinc (TZ) supplements for diarrhea treatment (20 mg/day for 10 days), or daily placebo powder and followed for ∼36 weeks. Stool samples were collected at baseline and endline. Fecal MPO, NEO, and CAL concentrations were determined in a randomly selected subsample of 720 children using commercially available ELISA kits. At baseline, the mean age was 14.1 ± 4.9 months and prevalence of stunting was 39%. The endline prevalence of stunting was 43%; there was no overall treatment effect on physical growth in the parent trial. At endline, the mean (95% CI) MPO in the PZ group was 1,590 [1,396; 1,811] ng/mL and did not differ from that in the MNP (1,633 [1,434; 1,859] ng/mL), TZ (1,749 [1,535; 1,992] ng/mL), and control (1,612 [1,415; 1,836] ng/mL) groups (P = 0.749). Similarly, there was no overall treatment effect on NEO and CAL concentrations (P = 0.226 and 0.229, respectively). In this population, the provision of PZ or TZ supplements or MNP had no impact on growth or environmental enteric dysfunction (EED) as assessed by fecal MPO, NEO, and CAL. Additional research is needed to better understand the etiology and proposed mechanisms of EED pathogenesis.
Collapse
Affiliation(s)
- Guy-Marino Hinnouho
- Helen Keller International, Washington, District of Columbia.,Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| | - K Ryan Wessells
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| | - Maxwell A Barffour
- Public Health Program, College of Health and Human Services, Missouri State University, Springfield, Missouri.,Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| | - Somphou Sayasone
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Charles D Arnold
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| | - Sengchanh Kounnavong
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Sonja Y Hess
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| |
Collapse
|
19
|
Zhang E, Zhao X, MA H, Luo D, Hu Y, Hou L, Luo Z. A subanesthetic dose of sevoflurane combined with oxygen exerts bactericidal effects and prevents lung injury through the nitric oxide pathway during sepsis. Pharmacotherapy 2020; 127:110169. [DOI: 10.1016/j.biopha.2020.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
20
|
Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 138:111240. [PMID: 32145352 DOI: 10.1016/j.fct.2020.111240] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic drug, which can cause severe liver injury after an overdose. The intracellular signaling mechanisms of APAP-induced cell death such as reactive metabolite formation, mitochondrial dysfunction and nuclear DNA fragmentation have been extensively studied. Hepatocyte necrosis releases damage-associated molecular patterns (DAMPs) which activate cytokine and chemokine formation in macrophages. These signals activate and recruit neutrophils, monocytes and other leukocytes into the liver. While this sterile inflammatory response removes necrotic cell debris and promotes tissue repair, the capability of leukocytes to also cause tissue injury makes this a controversial topic. This review summarizes the literature on the role of various DAMPs, cytokines and chemokines, and the pathophysiological function of Kupffer cells, neutrophils, monocytes and monocyte-derived macrophages, and NK and NKT cells during APAP hepatotoxicity. Careful evaluation of results and experimental designs of studies dealing with the inflammatory response after APAP toxicity provide very limited evidence for aggravation of liver injury but support of the hypothesis that these leukocytes promote tissue repair. In addition, many cytokines and chemokines modulate tissue injury by affecting the intracellular signaling events of cell death rather than toxicity of leukocytes. Reasons for the controversial results in this area are also discussed.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
21
|
Darwish RS, Shawky E, Hammoda HM, Harraz FM. A new thin-layer chromatography–direct bioautography assay for the qualitative and quantitative determination of peroxidase inhibitors in plant extracts. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-019-00004-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Carbone F, Bonaventura A, Montecucco F. Neutrophil-Related Oxidants Drive Heart and Brain Remodeling After Ischemia/Reperfusion Injury. Front Physiol 2020; 10:1587. [PMID: 32116732 PMCID: PMC7010855 DOI: 10.3389/fphys.2019.01587] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
The inflammatory response associated with myocardial and brain ischemia/reperfusion injury (IRI) is a critical determinant of tissue necrosis, functional organ recovery, and long-term clinical outcomes. In the post-ischemic period, reactive oxygen species (ROS) are involved in tissue repair through the clearance of dead cells and cellular debris. Neutrophils play a critical role in redox signaling due to their early recruitment and the large variety of released ROS. Noteworthy, ROS generated during IRI have a relevant role in both myocardial healing and activation of neuroprotective pathways. Anatomical and functional differences contribute to the responses in the myocardial and brain tissue despite a significant gene overlap. The exaggerated activation of this signaling system can result in adverse consequences, such as cell apoptosis and extracellular matrix degradation. In light of that, blocking the ROS cascade might have a therapeutic implication for cardiomyocyte and neuronal loss after acute ischemic events. The translation of these findings from preclinical models to clinical trials has so far failed because of differences between humans and animals, difficulty of agents to penetrate into specific cellular organs, and specifically unravel oxidant and antioxidant pathways. Here, we update knowledge on ROS cascade in IRI, focusing on the role of neutrophils. We discuss evidence of ROS blockade as a therapeutic approach for myocardial infarction and ischemic stroke.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Marcinkiewicz J, Walczewska M. Neutrophils as Sentinel Cells of the Immune System: A Role of the MPO-halide-system in Innate and Adaptive Immunity. Curr Med Chem 2019; 27:2840-2851. [PMID: 31424363 DOI: 10.2174/0929867326666190819123300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/14/2019] [Accepted: 07/28/2019] [Indexed: 01/24/2023]
Abstract
For decades, neutrophils were generally regarded as the cells of innate immunity with proinflammatory and phagocytic properties involved in a dual activity, beneficial (antimicrobial) and detrimental (tissue damage). Importantly, until the discovery of toll-like receptors (TLRs), a role of neutrophils in adaptive immunity was limited to the effector stage of humoral response and phagocytosis of opsonized antigens. Moreover, in common opinion, neutrophils, as well as the entire innate immune system, were not functionally associated with adaptive immunity. At the time we demonstrated protein chlorination by HOCl, the major product of neutrophil MPO-halide system enhances protein immunogenicity. Based on this discovery, we proposed, as the first, a new role for neutrophils as APC-accessory cells involved in the induction stage of adaptive immunity. Thereafter, we developed our theory concerning the role of neutrophils as the cells which link innate and adaptive immunity. We proposed that protein modification by HOCl may act as a neutrophildependent molecular tagging system, by which sentinel dendritic cells can faster recognise pathogen- derived antigens. Contemporaneously, it was demonstrated that taurine, the most abundant free amino acid in neutrophil cytosol and the major scavenger of HOCl, is a part of the oxidantantioxidant network and is responsible for the regulation and termination of acute inflammation. Moreover, it has been described, that taurine chloramine (TauCl), the physiological products of the reaction of HOCl with taurine, show anti-microbial and anti-inflammatory properties. In this review, the role of HOCl, taurine and TauCl in innate and adaptive immunity will be discussed.
Collapse
Affiliation(s)
| | - Maria Walczewska
- Chair of Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
24
|
Topical anti-inflammatory activity in TPA-induced mouse ear edema model and in vitro antibacterial properties of Cordia alba flowers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-018-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
The Perennial Use of the Green Fluorescent Protein Marker in a Live Vaccinia Virus Ankara Recombinant Platform Shows No Acute Adverse Effects in Mice. Braz J Microbiol 2019; 50:347-355. [PMID: 30877662 DOI: 10.1007/s42770-019-00067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023] Open
Abstract
Recombinant virus vectors represent a promising strategy for vaccine research. Among available viral vectors, members of the Poxviridae family-especially the modified Vaccinia virus Ankara (MVA)-stand out as immunogenic and safe vaccine platforms. Because MVA usually does not produce plaques in cell culture, visible selection markers such as the green fluorescent protein (GFP) are frequently incorporated into the constructions in order to facilitate the recognition of recombinants. However, these genetic markers have to be removed before any clinical trial. Here, we evaluated the acute responses generated in mice immunized with a MVA vector in which the GFP marker was not removed. We observed no differences in neutrophil, monocyte, or total leucocyte recruitment among animals inoculated with MVA or MVA-GFP. Likewise, there were no differences in neutrophil activation between mice groups. Hepatic functions were not altered in either MVA or MVA-GFP-inoculated mice, and we observed no histopathological alterations in different tissues from virus-inoculated animals. In conclusion, the presence of GFP is innocuous to immunized animals and do not alter acute physiopathological responses to the MVA vector. We suggest that keeping the GFP marker may be a good strategy for vaccine development, production, and evaluation.
Collapse
|
26
|
Liu Z, Xu Q, Yang Q, Cao J, Wu C, Peng H, Zhang X, Chen J, Cheng G, Wu Y, Shi R, Zhang G. Vascular peroxidase 1 is a novel regulator of cardiac fibrosis after myocardial infarction. Redox Biol 2019; 22:101151. [PMID: 30844643 PMCID: PMC6402381 DOI: 10.1016/j.redox.2019.101151] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is the most important mechanism contributing to cardiac remodeling after myocardial infarction (MI). VPO1 is a heme enzyme that uses hydrogen peroxide (H2O2) to produce hypochlorous acid (HOCl). Our previous study has demonstrated that VPO1 regulates myocardial ischemic reperfusion and renal fibrosis. We investigated the role of VPO1 in cardiac fibrosis after MI. The results showed that VPO1 expression was robustly upregulated in the failing human heart with ischemic cardiomyopathy and in a murine model of MI accompanied by severe cardiac fibrosis. Most importantly, knockdown of VPO1 by tail vein injection of VPO1 siRNA significantly reduced cardiac fibrosis and improved cardiac function and survival rate. In VPO1 knockdown mouse model and cardiac fibroblasts cultured with TGF-β1, VPO1 contributes to cardiac fibroblasts differentiation, migration, collagen I synthesis and proliferation. Mechanistically, the fibrotic effects following MI of VPO1 manifested partially through HOCl formation to activate Smad2/3 and ERK1/2. Thus, we conclude that VPO1 is a crucial regulator of cardiac fibrosis after MI by mediating HOCl/Smad2/3 and ERK1/2 signaling pathways, implying a promising therapeutic target in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Zhaoya Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qixin Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Cao
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huihui Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Chen
- Department of Humanistic Nursing, Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Yueheng Wu
- Department of Cardiovascular Medicine, Guangdong General Hospital, Guangzhou, Guangdong China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Anti-TNF- α Therapy Suppresses Proinflammatory Activities of Mucosal Neutrophils in Inflammatory Bowel Disease. Mediators Inflamm 2018; 2018:3021863. [PMID: 30595666 PMCID: PMC6282128 DOI: 10.1155/2018/3021863] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Neutrophils have been found to play an important role in the pathogenesis of inflammatory bowel disease (IBD), and anti-TNF-α mAb (i.e., infliximab) therapy is demonstrated to be effective in the induction of clinical remission and mucosal healing in these patients. However, how anti-TNF-α mAb regulates the functions of neutrophils is still unknown. Herein, we found that anti-TNF-α therapy significantly downregulated infiltration of neutrophils in inflamed mucosa of IBD patients. Importantly, anti-TNF-α mAb could inhibit neutrophils to produce proinflammatory mediators, such as ROS, calprotectin, IL-8, IL-6, and TNF-α. These data indicate that TNF-α plays a critical role in the induction of mucosal inflammatory response, and that blockade of TNF-α modulates intestinal homeostasis through balancing immune responses of neutrophils.
Collapse
|
28
|
Wang Y, Hong F, Li D, Qi J, Liu X. A novel strategy for evaluation of natural products acting on the myeloperoxidase/hypochlorous acid system by combining high-performance liquid chromatography-photodiode array detection-chemiluminescence and ultrafiltration-mass spectrometry techniques. J Sep Sci 2018; 41:4222-4232. [DOI: 10.1002/jssc.201800658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Wang
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Fang Hong
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Dapeng Li
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Jin Qi
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Xuming Liu
- School of Life Science and Technology; China Pharmaceutical University; Nanjing P. R. China
| |
Collapse
|
29
|
Zhang F, Feng R, Fang W, Shi Y, An L, Yang G. Cytochemical characterization of peripheral blood cell populations of two Cyprinidae, Carassius auratus and Ctenopharyngodon idellus. Anat Histol Embryol 2018; 48:22-32. [PMID: 30353570 DOI: 10.1111/ahe.12407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 01/16/2023]
Abstract
Fish are the most diverse species of all vertebrate groups, and their blood cells have shown variable characteristics in terms of morphology. Cytochemical staining for enzyme activity in blood leukocytes will help assess the immune function of fish. We characterize blood cells from crucian carp (Carassius auratus) and grass carp (Ctenopharyngodon idellus) by using a Diff-Quick stain as well as different cytochemical methods. Blood specimens obtained from crucian carp and grass carp were evaluated after cytochemical staining for acid phosphatase (ACP), alkaline phosphatase (ALP), naphthol AS chloroacetate esterase (AS-DNCE), naphthyl acetate esterase (NAE), α-naphthyl butyrate esterase (NBE), peroxidase (MPO) and periodic acid-Schiff's reaction (PAS) using commercial kits. Blood cell types were evaluated based on their morphological characteristics and the presence or absence of specific chromogen. The expression pattern of enzymes was similar between the two Cyprinidae and was also broadly consistent with other fish species. However, there were some interesting differences detected between crucian carp and grass carp, including naphthol AS chloroacetate esterase activity in monocytes, peroxidase activity and location in thrombocytes. The ACP, ALP and MPO expressions of different leukocytes of the two Cyprinidae were evaluated by Image Pro Plus and were analysed for statistical significant differences. This investigation provides basic haematology and enzyme activity analyses for crucian carp and grass carp and serves as an approach to evaluating the immune response of fish.
Collapse
Affiliation(s)
- Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ranran Feng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Fang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanhui Shi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
30
|
Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med Sci (Basel) 2018; 6:medsci6020033. [PMID: 29669993 PMCID: PMC6024665 DOI: 10.3390/medsci6020033] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) belongs to the family of heme-containing peroxidases, produced mostly from polymorphonuclear neutrophils. The active enzyme (150 kDa) is the product of the MPO gene located on long arm of chromosome 17. The primary gene product undergoes several modifications, such as the removal of introns and signal peptides, and leads to the formation of enzymatically inactive glycosylated apoproMPO which complexes with chaperons, producing inactive proMPO by the insertion of a heme moiety. The active enzyme is a homodimer of heavy and light chain protomers. This enzyme is released into the extracellular fluid after oxidative stress and different inflammatory responses. Myeloperoxidase is the only type of peroxidase that uses H₂O₂ to oxidize several halides and pseudohalides to form different hypohalous acids. So, the antibacterial activities of MPO involve the production of reactive oxygen and reactive nitrogen species. Controlled MPO release at the site of infection is of prime importance for its efficient activities. Any uncontrolled degranulation exaggerates the inflammation and can also lead to tissue damage even in absence of inflammation. Several types of tissue injuries and the pathogenesis of several other major chronic diseases such as rheumatoid arthritis, cardiovascular diseases, liver diseases, diabetes, and cancer have been reported to be linked with MPO-derived oxidants. Thus, the enhanced level of MPO activity is one of the best diagnostic tools of inflammatory and oxidative stress biomarkers among these commonly-occurring diseases.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, AlQassim, P.O. Box 6699, Buraidah 51452, Saudi Arabia.
| |
Collapse
|
31
|
Vanhamme L, Zouaoui Boudjeltia K, Van Antwerpen P, Delporte C. The other myeloperoxidase: Emerging functions. Arch Biochem Biophys 2018; 649:1-14. [PMID: 29614255 DOI: 10.1016/j.abb.2018.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a member of the mammalian peroxidase family. It is mainly expressed in neutrophils, monocytes and macrophages. As a catalyzer of reactive oxidative species and radical species formation, it contributes to neutrophil bactericidal activity. Nevertheless MPO invalidation does not seem to have major health consequences in affected individuals. This suggests that MPO might have alternative functions supporting its conservation during evolution. We will review the available data supporting these non-canonical functions in terms of tissue specific expression, function and enzymatic activity. Thus, we discuss its cell type specific expression. We review in between others its roles in angiogenesis, endothelial (dys-) function, immune reaction, and inflammation. We summarize its pathological actions in clinical conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium; Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium.
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
32
|
Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8459402. [PMID: 29118897 PMCID: PMC5651112 DOI: 10.1155/2017/8459402] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch. Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.
Collapse
|
33
|
Tranah TH, Vijay GKM, Ryan JM, Abeles RD, Middleton PK, Shawcross DL. Dysfunctional neutrophil effector organelle mobilization and microbicidal protein release in alcohol-related cirrhosis. Am J Physiol Gastrointest Liver Physiol 2017; 313. [PMID: 28642299 PMCID: PMC5625135 DOI: 10.1152/ajpgi.00112.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patients with alcohol-related cirrhosis (ALD) are prone to infection. Circulating neutrophils in ALD are dysfunctional and predict development of sepsis, organ dysfunction, and survival. Neutrophil granules are important effector organelles containing a toxic array of microbicidal proteins, whose controlled release is required to kill microorganisms while minimizing inflammation and damage to host tissue. We investigated the role of these granular responses in contributing to immune disarray in ALD. Neutrophil granular content and mobilization were measured by flow cytometric quantitation of cell-surface/intracellular markers, [secretory vesicles (CD11b), secondary granules (CD66b), and primary granules (CD63; myeloperoxidase)] before and after bacterial stimulation in 29 patients with ALD cirrhosis (15 abstinent; 14 actively drinking) compared with healthy controls (HC). ImageStream Flow Cytometry characterized localization of granule subsets within the intracellular and cell-surface compartments. The plasma cytokine environment was analyzed using ELISA/cytokine bead array. Circulating neutrophils were primed in the resting state with upregulated surface expression of CD11b (P = 0.0001) in a cytokine milieu rich in IL-8 (P < 0.001) and lactoferrin (P = 0.035). Neutrophils showed exaggerated mobilization to the cell surface of primary granules at baseline (P = 0.001) and in response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine (P = 0.009) and Escherichia coli (P = 0.0003) in ALD. There was no deficit in granule content or mobilization to the cell membrane in any granule subset observed. Paradoxically, active alcohol consumption abrogated the hyperresponsive neutrophil granular responses compared with their abstinent counterparts. Neutrophils are preprimed at baseline with augmented effector organelle mobilization in response to bacterial stimulation; neutrophil degranulation is not a mechanism leading to innate immunoparesis in ALD.NEW & NOTEWORTHY Neutrophil granule release is dysregulated in patients with alcohol-related cirrhosis (ALD) with augmented effector organelle mobilization and microbiocidal protein release. Neutrophil granules are upregulated in ALD at baseline and demonstrate augmented responses to bacterial challenge. The granular responses in ALD did not contribute to the observed functional deficit in innate immunity but rather were dysregulated and hyperresponsive, which may induce bystander damage to host tissue. Paradoxically, active alcohol consumption abrogated the excessive neutrophil granular responses to bacterial stimulus compared with their abstinent counterparts.
Collapse
Affiliation(s)
- Thomas H. Tranah
- Institute of Liver Studies and Transplantation, King’s College London School of Medicine at King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Godhev K. Manakkat Vijay
- Institute of Liver Studies and Transplantation, King’s College London School of Medicine at King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Jennifer M. Ryan
- Institute of Liver Studies and Transplantation, King’s College London School of Medicine at King’s College Hospital, Denmark Hill, London, United Kingdom
| | - R. Daniel Abeles
- Institute of Liver Studies and Transplantation, King’s College London School of Medicine at King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Paul K. Middleton
- Institute of Liver Studies and Transplantation, King’s College London School of Medicine at King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Debbie L. Shawcross
- Institute of Liver Studies and Transplantation, King’s College London School of Medicine at King’s College Hospital, Denmark Hill, London, United Kingdom
| |
Collapse
|
34
|
Skarżyńska E, Żytyńska-Daniluk J, Lisowska-Myjak B. Correlations between ceruloplasmin, lactoferrin and myeloperoxidase in meconium. J Trace Elem Med Biol 2017; 43:58-62. [PMID: 27903408 DOI: 10.1016/j.jtemb.2016.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Oxidative stress and the generation of reactive oxygen/nitrogen species has a known significant impact on intrauterine fetal growth and the risk of metabolic diseases in adulthood. Compounds accumulated in fetal meconium may be a source of information about the oxidoreductive status during the intrauterine development. Three metal-containing proteins ceruloplasmin (CP), lactoferrin (LF) and myeloperoxidase (MPO) constitute the complementary panel modulating oxidative stress. The aim of this study was to assess the concentrations of these proteins and their correlations in meconium from healthy neonates. METHODS The CP, LF and MPO concentrations were determined using ELISA Kits. All serial meconium portions (n=80) were collected from healthy full-term neonates (n=19). RESULTS The mean±SD concentrations [μg/g] in meconium samples were as follows: CP 312.4±229.7 (range 52.2-1076), LF 45.6±78.9 (range 1.7-511.4), MPO 1.8±1.7 (range 0.02-8.8) with statistically significant correlations between CP vs. LF (R=0.459, p=0.00009) and LF vs. MPO (R=0.354, p=0.0013). A statistically significant increase in the concentrations (p<0.05) between the first and the last meconium portions was found for LF (p=0.027) and for MPO (p=0.0006). CONCLUSIONS Strong correlations between the meconium concentrations of CP, LF and MPO indicate a possible role of these complementary proteins in maintaining homeostasis of the intrauterine environment of the fetus. CP, LF and MPO measured in meconium may serve as biomarkers for assessment of impairment of oxidative balance during intrauterine life with its potential impact on disease development in adulthood.
Collapse
Affiliation(s)
- Ewa Skarżyńska
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland.
| | - Joanna Żytyńska-Daniluk
- Clinical Department of Obstetrics, Female Diseases and Gynaecological Oncology, Central Clinical Hospital of the Ministry of the Interior, Warsaw, Poland
| | - Barbara Lisowska-Myjak
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Lycopene rich extract from red guava ( Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int 2017; 99:959-968. [DOI: 10.1016/j.foodres.2017.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
|
36
|
Cruz-Baquero A, Cárdenas Jaramillo LM, Gutiérrez-Meza M, Jarillo-Luna RA, Campos-Rodríguez R, Rivera-Aguilar V, Miliar-García A, Pacheco-Yepez J. Different behavior of myeloperoxidase in two rodent amoebic liver abscess models. PLoS One 2017; 12:e0182480. [PMID: 28796788 PMCID: PMC5552100 DOI: 10.1371/journal.pone.0182480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The protozoan Entamoeba histolytica is the etiological agent of amoebiasis, which can spread to the liver and form amoebic liver abscesses. Histological studies conducted with resistant and susceptible models of amoebic liver abscesses (ALAs) have established that neutrophils are the first cells to contact invasive amoebae at the lesion site. Myeloperoxidase is the most abundant enzyme secreted by neutrophils. It uses hydrogen peroxide secreted by the same cells to oxidize chloride ions and produce hypochlorous acid, which is the most efficient microbicidal system of neutrophils. In a previous report, our group demonstrated that myeloperoxidase presents amoebicidal activity in vitro. The aim of the current contribution was to analyze in vivo the role of myeloperoxidase in a susceptible (hamsters) and resistant (Balb/c mice) animal models of ALAs. In liver samples of hamsters and mice inoculated intraportally with Entamoeba histolytica trophozoites, the number of neutrophils in ALAs was determined by enzymatic activity. The presence of myeloperoxidase was observed by staining, and its expression and activity were quantified in situ. A significant difference existed between the two animal models in the number of neutrophils and the expression and activity of myeloperoxidase, which may explain the distinct evolution of amoebic liver abscesses. Hamsters and mice were treated with an MPO inhibitor (4-aminobenzoic acid hydrazide). Hamsters treated with ABAH showed no significant differences in the percentage of lesions or in the percentage of amoebae damaged compared with the untreated hamsters. ABAH treated mice versus untreated mice showed larger abscesses and a decreased percentage of damaged amoebae in these lesion at all stages of evolution. Further studies are needed to elucidate the host and amoebic mechanisms involved in the adequate or inadequate activation and modulation of myeloperoxidase.
Collapse
Affiliation(s)
- Andrea Cruz-Baquero
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Luz María Cárdenas Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Manuel Gutiérrez-Meza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Rosa Adriana Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Víctor Rivera-Aguilar
- Departamento de Microbiología, UBIPRO, FES-Iztacala, UNAM, CP, Tlanepantla, Estado de México, México
| | - Angel Miliar-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Judith Pacheco-Yepez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
- * E-mail:
| |
Collapse
|
37
|
Yogalingam G, Lee AR, Mackenzie DS, Maures TJ, Rafalko A, Prill H, Berguig GY, Hague C, Christianson T, Bell SM, LeBowitz JH. Cellular Uptake and Delivery of Myeloperoxidase to Lysosomes Promote Lipofuscin Degradation and Lysosomal Stress in Retinal Cells. J Biol Chem 2017; 292:4255-4265. [PMID: 28115520 DOI: 10.1074/jbc.m116.739441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
Neutrophil myeloperoxidase (MPO) catalyzes the H2O2-dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N-retinylidene-N-retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N-retinylidene-N-retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death.
Collapse
Affiliation(s)
- Gouri Yogalingam
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Amanda R Lee
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Donald S Mackenzie
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Travis J Maures
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Agnes Rafalko
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Heather Prill
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Geoffrey Y Berguig
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Chuck Hague
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Terri Christianson
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Sean M Bell
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| | - Jonathan H LeBowitz
- From the Department of Research, BioMarin Pharmaceutical, Inc., San Rafael, California, 94901
| |
Collapse
|
38
|
Francis A, Bosio E, Stone SF, Fatovich DM, Arendts G, Nagree Y, Macdonald SPJ, Mitenko H, Rajee M, Burrows S, Brown SGA. Neutrophil activation during acute human anaphylaxis: analysis of MPO and sCD62L. Clin Exp Allergy 2017; 47:361-370. [DOI: 10.1111/cea.12868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 12/01/2022]
Affiliation(s)
- A. Francis
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - E. Bosio
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - S. F. Stone
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
| | - D. M. Fatovich
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
| | - G. Arendts
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department, Fiona Stanley Hospital; Murdoch WA Australia
| | - Y. Nagree
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department, Fiona Stanley Hospital; Murdoch WA Australia
- Emergency Department; Fremantle Hospital; Fremantle WA Australia
| | - S. P. J. Macdonald
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department; Armadale Kelmscott Memorial Hospital; Mount Nasura WA Australia
| | - H. Mitenko
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department; South West Health Campus; Bunbury WA Australia
| | - M. Rajee
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Emergency Department; Austin Hospital; Heidelberg VIC Australia
| | - S. Burrows
- School of Medicine & Pharmacology; University of Western Australia; Perth WA Australia
| | - S. G. A. Brown
- Centre for Clinical Research in Emergency Medicine; Harry Perkins Institute of Medical Research; Perth WA Australia
- Discipline of Emergency Medicine; School of Primary; Aboriginal and Rural Health Care; University of Western Australia; Crawley WA Australia
- Emergency Department; Royal Perth Hospital; Perth WA Australia
- Emergency Department; Royal Hobart Hospital; Hobart TAS Australia
| |
Collapse
|
39
|
Takayama C, de-Faria FM, de Almeida ACA, Dunder RJ, Manzo LP, Socca EAR, Batista LM, Salvador MJ, Souza-Brito ARM, Luiz-Ferreira A. Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.09.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Jiang D, Muschhammer J, Qi Y, Kügler A, de Vries JC, Saffarzadeh M, Sindrilaru A, Beken SV, Wlaschek M, Kluth MA, Ganss C, Frank NY, Frank MH, Preissner KT, Scharffetter-Kochanek K. Suppression of Neutrophil-Mediated Tissue Damage-A Novel Skill of Mesenchymal Stem Cells. Stem Cells 2016; 34:2393-406. [PMID: 27299700 PMCID: PMC5572139 DOI: 10.1002/stem.2417] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and regeneration. Though of prime interest, their potentially protective role on neutrophil-induced tissue damage, associated with high morbidity and mortality, has not been explored in sufficient detail. Here we report the therapeutic skill of MSCs to suppress unrestrained neutrophil activation and to attenuate severe tissue damage in a murine immune-complex mediated vasculitis model of unbalanced neutrophil activation. MSC-mediated neutrophil suppression was due to intercellular adhesion molecule 1-dependent engulfment of neutrophils by MSCs, decreasing overall neutrophil numbers. Similar to MSCs in their endogenous niche of murine and human vasculitis, therapeutically injected MSCs via upregulation of the extracellular superoxide dismutase (SOD3), reduced super-oxide anion concentrations and consequently prevented neutrophil death, neutrophil extracellular trap formation and spillage of matrix degrading neutrophil elastase, gelatinase and myeloperoxidase. SOD3-silenced MSCs did not exert tissue protective effects. Thus, MSCs hold substantial therapeutic promise to counteract tissue damage in conditions with unrestrained neutrophil activation.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Jana Muschhammer
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Yu Qi
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Andrea Kügler
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Juliane C de Vries
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Mona Saffarzadeh
- Department of Biochemistry, School of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Seppe Vander Beken
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | | | - Natasha Y Frank
- Department of Medicine, Boston VA Healthcare System, West Roxbury, Massachusetts, USA.,Division of Genetics, Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Markus H Frank
- Division of Genetics, Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Transplant Research Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Klaus T Preissner
- Department of Biochemistry, School of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | | |
Collapse
|
41
|
Nardi GM, Farias Januario AG, Freire CG, Megiolaro F, Schneider K, Perazzoli MRA, Do Nascimento SR, Gon AC, Mariano LNB, Wagner G, Niero R, Locatelli C. Anti-inflammatory Activity of Berry Fruits in Mice Model of Inflammation is Based on Oxidative Stress Modulation. Pharmacognosy Res 2016; 8:S42-9. [PMID: 27114691 PMCID: PMC4821106 DOI: 10.4103/0974-8490.178642] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. OBJECTIVE The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). MATERIALS AND METHODS Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. RESULTS High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. CONCLUSION These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this study were the investigation and comparison of chemical composition, antioxidant activity "in vitro" and "in vivo" and anti inflammatory property of berry fruits bought dry form.In summary, two main findings can be addressed with this study: (1) Berry fruits presented antioxidant and anti inflammatory activities "in vitro" and "in vivo"; (2) the extracts of GOJI, CRAN, and BLUE modulate the inflammatory process by different mechanisms.
Collapse
Affiliation(s)
- Geisson Marcos Nardi
- Laboratory of Pharmacology, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | | | - Cassio Geremia Freire
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | - Fernanda Megiolaro
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | - Kétlin Schneider
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | | | - Scheley Raap Do Nascimento
- Laboratory of Pharmacology, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | - Ana Cristina Gon
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Luísa Nathália Bolda Mariano
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Glauber Wagner
- Laboratory of Infectious and Parasitic Diseases, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | - Rivaldo Niero
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Claudriana Locatelli
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| |
Collapse
|
42
|
De Carvalho Bertozo L, Morgon NH, De Souza AR, Ximenes VF. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative. Biomolecules 2016; 6:biom6020023. [PMID: 27110829 PMCID: PMC4919918 DOI: 10.3390/biom6020023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 01/21/2023] Open
Abstract
Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k2) for the reactions between Tau-NHBr and tryptophan (7.7 × 102 M−1s−1), melatonin (7.3 × 103 M−1s−1), serotonin (2.9 × 103 M−1s−1), dansylglycine (9.5 × 101 M−1s−1), tetramethylbenzidine (6.4 × 102 M−1s−1) and H2O2 (3.9 × M−1s−1) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 104 M−1s−1, pH 7.0, 9.5 × 10 M−1s−1 and pH 9.0, 1.7 × 10 M−1s−1), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr2). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H2O2. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines.
Collapse
Affiliation(s)
- Luiza De Carvalho Bertozo
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil.
| | - Nelson Henrique Morgon
- Department of Chemistry, Institute of Chemistry, Campinas State University (UNICAMP), Campinas 13083-861, Brazil.
| | | | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil.
| |
Collapse
|
43
|
Prata MDMG, Havt A, Bolick DT, Pinkerton R, Lima A, Guerrant RL. Comparisons between myeloperoxidase, lactoferrin, calprotectin and lipocalin-2, as fecal biomarkers of intestinal inflammation in malnourished children. ACTA ACUST UNITED AC 2016; 2:134-139. [PMID: 27746954 PMCID: PMC5061054 DOI: 10.15761/jts.1000130] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fecal biomarkers have emerged as important tools to assess intestinal inflammation and enteropathy. The aim of this study was to investigate the correlations between the fecal markers, myeloperoxidase (MPO), lactoferrin (FL), calprotectin (FC) and lipocalin-2 (Lcn-2), and to compare differences by breastfeeding status as well as normalization by fecal protein or by fecal weight. Simultaneous, quantitative MPO, FL, FC and Lcn-2, levels were determined in frozen fecal specimens collected from 78 children (mean age 15.2 ± 5.3 months) in a case-control study of childhood malnutrition in Brazil. The biomarker concentrations were measured by enzymelinked immunosorbent assay. The correlations among all biomarkers were significant (P<0.01). There were stronger correlations of fecal MPO with fecal lactoferrin and calprotectin, with lower, but still highly significant correlations of all 3 inflammatory biomarkers with Lcn-2 likely because the latter may also reflect enterocyte damage as well as neutrophil presence. Furthermore, the biomarker results with protein normalized compared to simple fecal weight normalized values showed only a slightly better correlation suggesting that the added cost and time for protein normalization added little to carefully measured fecal weights as denominators. In conclusion, fecal MPO correlates tightly with fecal lactoferrin and calprotectin irrespective of breastfeeding status and provides a common, available biomarker for comparison of human and animal model studies.
Collapse
Affiliation(s)
- Mara de Moura Gondim Prata
- Department of Physiology and Pharmacology and INCT-Biomedicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A Havt
- Department of Physiology and Pharmacology and INCT-Biomedicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - D T Bolick
- Center for Global Health, Division of Infectious Diseases and International Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - R Pinkerton
- Department of Physiology and Pharmacology and INCT-Biomedicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Aam Lima
- Department of Physiology and Pharmacology and INCT-Biomedicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Physiology and Pharmacology and INCT-Biomedicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
44
|
Carceller MC, Guillén MI, Ferrándiz ML, Alcaraz MJ. Paracrine in vivo inhibitory effects of adipose tissue-derived mesenchymal stromal cells in the early stages of the acute inflammatory response. Cytotherapy 2016; 17:1230-9. [PMID: 26276006 DOI: 10.1016/j.jcyt.2015.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Excessive or unresolved inflammation leads to tissue lesions. Adipose tissue-derived mesenchymal stromal cells (AMSCs) have shown protective effects that may be dependent on the modulation of inflammation by secreted factors. METHODS We used the zymosan-induced mouse air pouch model at two time points (4 h and 18 h) to evaluate the in vivo effects of AMSCs and their conditioned medium (CM) on key steps of the early inflammatory response. We assessed the effects of AMSCs and CM on leukocyte migration and myeloperoxidase activity. The levels of chemokines, cytokines and eicosanoids in exudates were measured by use of enzyme-linked immunoassay or radio-immunoassay. In addition, the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES-1) was studied by use of Western blotting and the phosphorylation of p65 nuclear factor-κB (NF-κB) by immunofluorescence. RESULTS All inflammatory parameters were significantly reduced by CM and AMSCs to a similar extent at 4 h after zymosan injection with lower effects at 18 h. The observed inhibition of leukocyte migration was associated with reduced levels of chemokines and leukotriene B4. Interleukin-1β, interleukin-6, tumor necrosis factor-α and tumor necrosis factor-stimulated gene 6 levels were significantly decreased. The downregulation of mPGES-1 was associated with inhibition of prostaglandin E2 production. Our results suggest that these anti-inflammatory effects are related, in part, to the inhibition of NF-κB activation. CONCLUSIONS AMSCs dampen the early process of inflammation in the zymosan-induced mouse air pouch model through paracrine mechanisms. These results support the potential utility of these cells as a source of novel treatment approaches for inflammatory pathologies.
Collapse
Affiliation(s)
| | - María Isabel Guillén
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain; Department of Chemistry, Biochemistry and Molecular Biology, Cardenal Herrera-CEU University, Valencia, Spain
| | | | - María José Alcaraz
- Department of Pharmacology and IDM, University of Valencia, Valencia, Spain.
| |
Collapse
|
45
|
Distinct effects of Lactobacillus plantarum KL30B and Escherichia coli 3A1 on the induction and development of acute and chronic inflammation. Cent Eur J Immunol 2016; 40:420-30. [PMID: 26862305 PMCID: PMC4737739 DOI: 10.5114/ceji.2015.56963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Objective Enteric bacteria are involved in the pathogenesis of ulcerative colitis. In experimental colitis, a breakdown of the intestinal epithelial barrier results in inflow of various gut bacteria, induction of acute inflammation and finally, progression to chronic colitis. Material and methods In the present study we compared pro-inflammatory properties of two bacterial strains isolated from human microbiome, Escherichia coli 3A1 and Lactobacillus plantarum KL30B. The study was performed using two experimental models of acute inflammation: peritonitis in mice and trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. Results Both bacterial strains induced massive neutrophil infiltration upon injection into sterile peritoneal cavity. However, peritoneal exudate cells stimulated in vitro with E. coli 3A1, produced far more nitric oxide, than those stimulated with L. plantarum KL30B. Interestingly, distinct effect on the development of TNBS-induced colitis was observed after oral administration of the tested bacteria. Lactobacillus plantarum KL30B evoked strong acute colitis. On the contrary, the administration of E. coli 3A1 resulted in a progression of colitis to chronicity. Conclusions Our results show that distinct effects of bacterial administration on the development of ongoing inflammation is strain specific and depends on the final effect of cross-talk between bacteria and cells of the innate immune system.
Collapse
|
46
|
Marcinkiewicz J, Stręk P, Strus M, Głowacki R, Ciszek-Lenda M, Zagórska-Świeży K, Gawda A, Tomusiak A. Staphylococcus epidermidis and biofilm-associated neutrophils in chronic rhinosinusitis. A pilot study. Int J Exp Pathol 2016; 96:378-86. [PMID: 26765504 DOI: 10.1111/iep.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/16/2015] [Indexed: 11/26/2022] Open
Abstract
A key role of bacterial biofilm in the pathogenesis of chronic rhinosinusitis (CRS) with (CRSwNP) and without nasal polyps (CRSsNP) is commonly accepted. However, the impact of some bacterial species isolated from inflamed sinus mucosa on biofilm formation is unclear. In particular, the role of Staphylococcus epidermidis as aetiological agents of CRS is controversial. Moreover, the effect of biofilm formation on neutrophil infiltration and activity in CRSwNP calls for explanation. In this study, biofilms were found in three of 10 patients (mean age = 46 ± 14) with CRS undergoing endoscopic sinus surgery by means of scanning electron microscopy. Unexpectedly, S. epidermidis was the primary isolated bacteria and was also found to be present in all biofilm-positive mucosa specimens, indicating its pivotal role in the pathogenesis of severe chronic infections associated with biofilm formation. We have also measured the activity of myeloperoxidase (MPO), the most abundant neutrophil enzyme, to demonstrate the presence of neutrophils in the samples tested. Our present results show that the level of MPO in CRS associated with biofilm is lower than that without biofilm. It may suggest either a low number of neutrophils or the presence of a type of neutrophils with compromised antimicrobial activity, described as biofilm-associated neutrophils (BAN). Finally, we conclude that further studies with a large number of CRS cases should be performed to establish the association between S. epidermidis and other frequently isolated bacterial species from paranasal sinuses, with the severity of CRS, biofilm formation and the infiltration of BAN.
Collapse
Affiliation(s)
| | - Paweł Stręk
- Department of Otorhinolaryngology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Strus
- Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Roman Głowacki
- Department of Otorhinolaryngology, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Ciszek-Lenda
- Chair of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Anna Gawda
- Chair of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Tomusiak
- Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
47
|
Havixbeck JJ, Barreda DR. Neutrophil Development, Migration, and Function in Teleost Fish. BIOLOGY 2015; 4:715-34. [PMID: 26561837 PMCID: PMC4690015 DOI: 10.3390/biology4040715] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
It is now widely recognized that neutrophils are sophisticated cells that are critical to host defense and the maintenance of homeostasis. In addition, concepts such as neutrophil plasticity are helping to define the range of phenotypic profiles available to cells in this group and the physiological conditions that contribute to their differentiation. Herein, we discuss key features of the life of a teleost neutrophil including their development, migration to an inflammatory site, and contributions to pathogen killing and the control of acute inflammation. The potent anti-microbial mechanisms elicited by these cells in bony fish are a testament to their long-standing evolutionary contributions in host defense. In addition, recent insights into their active roles in the control of inflammation prior to induction of apoptosis highlight their importance to the maintenance of host integrity in these early vertebrates. Overall, our goal is to summarize recent progress in our understanding of this cell type in teleost fish, and to provide evolutionary context for the contributions of this hematopoietic lineage in host defense and an efficient return to homeostasis following injury or infection.
Collapse
Affiliation(s)
- Jeffrey J Havixbeck
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | - Daniel R Barreda
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| |
Collapse
|
48
|
Havixbeck JJ, Rieger AM, Wong ME, Hodgkinson JW, Barreda DR. Neutrophil contributions to the induction and regulation of the acute inflammatory response in teleost fish. J Leukoc Biol 2015; 99:241-52. [PMID: 26292979 DOI: 10.1189/jlb.3hi0215-064r] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are essential to the acute inflammatory response, where they serve as the first line of defense against infiltrating pathogens. We report that, on receiving the necessary signals, teleost (Carassius auratus) neutrophils leave the hematopoietic kidney, enter into the circulation, and dominate the initial influx of cells into a site of inflammation. Unlike mammals, teleost neutrophils represent <5% of circulating leukocytes during periods of homeostasis. However, this increases to nearly 50% immediately after intraperitoneal challenge with zymosan, identifying a period of neutrophilia that precedes the peak influx of neutrophils into the challenge site at 18 h after injection). We demonstrate that neutrophils at the site of inflammation alter their phenotype throughout the acute inflammatory response, and contribute to both the induction and the resolution of inflammation. However, neutrophils isolated during the proinflammatory phase (18 h after injection) produced robust respiratory burst responses, released inflammation-associated leukotriene B(4), and induced macrophages to increase reactive oxygen species production. In contrast, neutrophils isolated at 48 h after infection (proresolving phase) displayed low levels of reactive oxygen species, released the proresolving lipid mediator lipoxin A(4), and downregulated reactive oxygen species production in macrophages before the initiation of apoptosis. Lipoxin A(4) was a significant contributor to the uptake of apoptotic cells by teleost macrophages and also played a role, at least in part, in the downregulation of macrophage reactive oxygen species production. Our results highlight the contributions of neutrophils to both the promotion and the regulation of teleost fish inflammation and provide added context for the evolution of this hematopoietic lineage.
Collapse
Affiliation(s)
- Jeffrey J Havixbeck
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Aja M Rieger
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael E Wong
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Hodgkinson
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R Barreda
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Carbone F, Teixeira PC, Braunersreuther V, Mach F, Vuilleumier N, Montecucco F. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2. Antioxid Redox Signal 2015; 23:460-89. [PMID: 24635113 PMCID: PMC4545676 DOI: 10.1089/ars.2013.5778] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. RECENT ADVANCES Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. CRITICAL ISSUES NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. FUTURE DIRECTIONS Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke.
Collapse
Affiliation(s)
- Federico Carbone
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland .,2 Department of Internal Medicine, University of Genoa School of Medicine , IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Priscila Camillo Teixeira
- 3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| | - Vincent Braunersreuther
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland
| | - François Mach
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland
| | - Nicolas Vuilleumier
- 3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| | - Fabrizio Montecucco
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland .,2 Department of Internal Medicine, University of Genoa School of Medicine , IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy .,3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| |
Collapse
|
50
|
Biedroń R, Konopiński MK, Marcinkiewicz J, Józefowski S. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages. PLoS One 2015; 10:e0123293. [PMID: 25849867 PMCID: PMC4388828 DOI: 10.1371/journal.pone.0123293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl), causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin) and glycoproteins (human apo-transferrin, ovalbumin) gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206), scavenger receptors A (CD204) and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system to detect infections caused by pathogens not recognized by pattern recognition receptors.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
- * E-mail:
| |
Collapse
|