1
|
Demirci PY, Yeşilot SB, Eskimez Z. The Role of Sex and Other Personal Characteristics in the Effects of Symptoms Severity on Self-Care Agency in Individuals with Multiple Sclerosis. Brain Behav 2024; 14:e70091. [PMID: 39402807 PMCID: PMC11473579 DOI: 10.1002/brb3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, autoimmune disease that attacks the central nervous system. AIMS The study was conducted to determine the role of sex and other personal characteristics in the impact of symptom severity on self-care in individuals with MS. METHODS The study was cross-sectional and was completed with 200 participants throughout Turkey. The data were collected through random and snowball sampling using the MS-related symptom checklist (MS-RS), the Fatigue Severity Scale (FSS), and the Exercise of Self-Care Agency (ESCA) form. The data obtained were analyzed using the SPSS 21. Statistical significance was evaluated at the level of p < 0.05. RESULTS The mean age of the participants was 37.97 ± 10.6 years. The mean scores were 47.4 ± 22.41 for MS-RS, 4.58 ± 2.2 for FSS, and 94.65 ± 24.76 for ESCA in females. The mean MS-RS score in males was 45 ± 25.89, FSS was 4.33 ± 2.5, and ESCA was 83.43 ± 23.95. There were no significant differences between the sexes except that the ESCA scores were higher in females (p < 0.05). According to a multiple linear regression analysis, the duration of diagnosis and sensory subdimension of MS-RS negatively affected the ESCA score in females, and this statistically significant model explained 22.6% of ESCA scores. CONCLUSION The study found that both sexes had clinically significant fatigue, mildly severe symptoms, and moderate self-care agency. While being a female positively affected self-care agency, disease duration, and sensory symptoms negatively affected females' self-care agency.
Collapse
Affiliation(s)
- Pınar Yeşil Demirci
- Nursing Department, Faculty of Health SciencesCukurova UniversityAdanaTurkey
| | | | - Zehra Eskimez
- Nursing Department, Faculty of Health SciencesCukurova UniversityAdanaTurkey
| |
Collapse
|
2
|
Hasaniani N, Nouri S, Shirzad M, Rostami-Mansoor S. Potential therapeutic and diagnostic approaches of exosomes in multiple sclerosis pathophysiology. Life Sci 2024; 347:122668. [PMID: 38670451 DOI: 10.1016/j.lfs.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Exosomes are bilayer lipid vesicles that are released by cells and contain proteins, nucleic acids, and lipids. They can be internalized by other cells, inducing inflammatory responses and instigating toxicities in the recipient cells. Exosomes can also serve as therapeutic vehicles by transporting protective cargo to maintain homeostasis. Multiple studies have shown that exosomes can initiate and participate in the regulation of neuroinflammation, improve neurogenesis, and are closely related to the pathogenesis of central nervous system (CNS) diseases, including multiple sclerosis (MS). Exosomes can be secreted by both neurons and glial cells in the CNS, and their contents change with disease occurrence. Due to their ability to penetrate the blood-brain barrier and their stability in peripheral fluids, exosomes are attractive biomarkers of CNS diseases. In recent years, exosomes have emerged as potential therapeutic agents for CNS diseases, including MS. However, the molecular pathways in the pathogenesis of MS are still unknown, and further research is needed to fully understand the role of exosomes in the occurrence or improvement of MS disease. Thereby, in this review, we intend to provide a more complete understanding of the pathways in which exosomes are involved and affect the occurrence or improvement of MS disease.
Collapse
Affiliation(s)
- Nima Hasaniani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sina Nouri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
McBenedict B, Goh KS, Yau RCC, Elamin S, Yusuf WH, Verly G, Thomas A, Alphonse B, Ouabicha K, Valentim G, Hauwanga WN, Lima Pessôa B. Neuropathic Pain Secondary to Multiple Sclerosis: A Narrative Review. Cureus 2024; 16:e61587. [PMID: 38962595 PMCID: PMC11221503 DOI: 10.7759/cureus.61587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Neuropathic pain in MS is a debilitating symptom that significantly impairs the quality of life for a substantial proportion of MS patients. Neuropathic pain in MS stems primarily from demyelination, axonal loss, CNS inflammation, and direct damage to the myelin sheath, leading to pain manifestations such as ongoing extremity pain, Lhermitte's phenomenon, and trigeminal neuralgia (TN). The pathophysiological mechanisms behind MS-related neuropathic pain are explored in this review, highlighting central sensitization, neural dysfunction, spinal thalamic tract dysfunction, and inflammatory processes that exacerbate neuronal damage. Neuropathic pain in MS necessitates comprehensive assessment tools and neurophysiological tests to differentiate neuropathic pain from other MS symptoms accurately. Treatment strategies for MS-related neuropathic pain encompass pharmacological interventions, including anticonvulsants and antidepressants, and emerging therapies targeting specific inflammatory processes. The review advocates for a holistic approach to management, incorporating innovative treatments and multidisciplinary strategies to address both the physical symptoms and psychosocial aspects of this disorder. This comprehensive overview underscores the importance of ongoing research into targeted therapies to improve patient outcomes and enhance the quality of life for those affected by MS.
Collapse
Affiliation(s)
| | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Johor Bahru, MYS
| | | | - Sara Elamin
- Medicine, University of Medical Sciences and Technology, Khartoum, SDN
| | | | - Gabriel Verly
- Neurology, Federal University of Rio de Janeiro, Rio de Janeiro, BRA
| | - Anusha Thomas
- Neurology, Christian Medical College & Hospital, Ludhiana, IND
| | - Berley Alphonse
- Internal Medicine, University Notre Dame of Haiti, Port-au-Prince, HTI
| | | | | | | | | |
Collapse
|
4
|
Nawar AA, Farid AM, Wally R, Tharwat EK, Sameh A, Elkaramany Y, Asla MM, Kamel WA. Efficacy and safety of stem cell transplantation for multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. Sci Rep 2024; 14:12545. [PMID: 38822024 PMCID: PMC11143245 DOI: 10.1038/s41598-024-62726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Multiple sclerosis (MS) is a common autoimmune neurological disease affecting patients' motor, sensory, and visual performance. Stem Cell Transplantation (SCT) is a medical intervention where a patient is infused with healthy stem cells with the purpose of resetting their immune system. SCT shows remyelinating and immunomodulatory functions in MS patients, representing a potential therapeutic option. We conducted this systematic review and meta-analysis that included randomized control trials (RCTs) of SCT in MS patients to investigate its clinical efficacy and safety, excluding observational and non-English studies. After systematically searching PubMed, Web of Science, Scopus, and Cochrane Library until January 7, 2024, nine RCTs, including 422 patients, were eligible. We assessed the risk of bias (ROB) in these RCTs using Cochrane ROB Tool 1. Data were synthesized using Review Manager version 5.4 and OpenMeta Analyst software. We also conducted subgroup and sensitivity analyses. SCT significantly improved patients expanded disability status scale after 2 months (N = 39, MD = - 0.57, 95% CI [- 1.08, - 0.06], p = 0.03). SCT also reduced brain lesion volume (N = 136, MD = - 7.05, 95% CI [- 10.69, - 3.4], p = 0.0002). The effect on EDSS at 6 and 12 months, timed 25-foot walk (T25-FW), and brain lesions number was nonsignificant. Significant adverse events (AEs) included local reactions at MSCs infusion site (N = 25, RR = 2.55, 95% CI [1.08, 6.03], p = 0.034) and hematological disorders in patients received immunosuppression and autologous hematopoietic SCT (AHSCT) (N = 16, RR = 2.33, 95% CI [1.23, 4.39], p = 0.009). SCT can improve the disability of MS patients and reduce their brain lesion volume. The transplantation was generally safe and tolerated, with no mortality or significant serious AEs, except for infusion site reactions after mesenchymal SCT and hematological AEs after AHSCT. However, generalizing our results is limited by the sparse number of RCTs conducted on AHSCT. Our protocol was registered on PROSPERO with a registration number: CRD42022324141.
Collapse
Affiliation(s)
| | | | - Rim Wally
- Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Engy K Tharwat
- Bioinformatics Group, Centre for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Ahmed Sameh
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna Elkaramany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Walaa A Kamel
- Neurology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Van Hijfte L, Cambron M, Capron B, Dachy B, Decoo D, Dive D, Dubois B, Sankari SE, London F, Perrotta G, Popescu V, Van Pesch V, Van Wijmeersch B, Willekens B, Laureys G. Multiple Sclerosis Multidisciplinary Care: A National Survey and Lessons for the Global Community. Mult Scler Relat Disord 2024; 85:105540. [PMID: 38489948 DOI: 10.1016/j.msard.2024.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Access to, standardization and reimbursement of multidisciplinary care for people with MS (PwMS) is lacking in many countries. Therefore, this study aims to describe the current multidisciplinary care for people with MS (PwMS) in Belgium and identify benefits, needs and future perspectives METHODS: A survey for PwMS questioned various aspects of MS and viewpoints on care. For MS nurses (MSN) and neurologists, employment, education, job-content, care organization and perspectives were inquired. Descriptive and univariate statistics were performed RESULTS: The PwMS survey comprised 916 respondents with a mean age of 46±12.7 years and 75,4 % of the respondents being female. The majority of the participants had relapsing remitting MS (60.8 %) and the mean patient determined disease steps (PDDS) was 2.0 (IQR=3). 65.3 % and 60.4 % of the PwMS reported having access to a multidisciplinary team (MDT) or MSN. Access to an MSN was associated with more frequent disease modifying treatment (p=.015), spasticity (p=.042) and gait treatment (p=.035), but also more physiotherapy (p=.004), driver's license adjustment (p<.001) and a higher employment rate (p=.004). MDT access was associated with more frequent symptomatic bladder treatment (p=.047), higher physiotherapy rate (p<.001), higher work- (p=.002), insurance- (p<.001) and home support measures (p=.019). PwMS without an available MDT more often indicated that MS care needs improvement (p<.001). MSN's (n = 22) were mainly funded through various budgets, including hospital and neurology practice budgets. Finally, 69 % and 75 % neurologists (n = 62) working without an MSN or MDT stated a need of such support and 61 % agreed that MDT's should be organized at hospital-network level CONCLUSION: MDT and MSN availability may enhance medical and socio-economic support for PwMS. Guidelines, alignment and reimbursement are needed.
Collapse
Affiliation(s)
- Liesbeth Van Hijfte
- Ghent University Hospital, 4Brain Research Unit, Department of Neurology, Gent, Belgium.
| | - Melissa Cambron
- Sint-Jan Bruges Hospital, Department of Neurology, Brugge, Belgium
| | - Brigitte Capron
- CHU de Charleroi, Department of Neurology, Lodelinsart, Belgium
| | - Bernard Dachy
- Hôpital Brugmann, Université Libre de Bruxelles, Department of Neurology, Brussels, Belgium
| | - Danny Decoo
- AZ Alma, Department of Neurology, Eeklo, Belgium
| | | | - Bénédicte Dubois
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Souraya El Sankari
- Cliniques Universitaires Saint-Luc, UCLouvain, Department of Neurology, Brussels, Belgium
| | - Frederic London
- CHU UCL Namur, Université catholique de Louvain, Department of Neurology, Yvoir, Belgium
| | - Gaetano Perrotta
- Hôpital Erasme, Université Libre de Bruxelles, Department of Neurology, Brussels, Belgium
| | - Veronica Popescu
- University MS Centre (UMSC), Hasselt-Pelt, Belgium; Noorderhart Hospitals, Revalidation and MS, Pelt, Belgium
| | - Vincent Van Pesch
- Cliniques Universitaires Saint-Luc, UCLouvain, Department of Neurology, Brussels, Belgium
| | - Bart Van Wijmeersch
- University MS Centre (UMSC), Hasselt-Pelt, Belgium; Noorderhart Hospitals, Revalidation and MS, Pelt, Belgium
| | - Barbara Willekens
- Antwerp University Hospital, Department of Neurology and UNiCA (University Neuroimmunology Center Antwerp), Edegem, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Translational Neurosciences Research Group, Wilrijk, Belgium
| | - Guy Laureys
- Ghent University Hospital, 4Brain Research Unit, Department of Neurology, Gent, Belgium
| |
Collapse
|
6
|
Nguyen P, Rempe T, Forghani R. Multiple Sclerosis: Clinical Update and Clinically-Oriented Radiologic Reporting. Magn Reson Imaging Clin N Am 2024; 32:363-374. [PMID: 38555146 DOI: 10.1016/j.mric.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the nervous system. MR imaging findings play an integral part in establishing diagnostic hallmarks of the disease during initial diagnosis and evaluating disease status. Multiple iterations of diagnostic criteria and consensus guidelines are put forth by various expert groups incorporating imaging of the brain and spine, and efforts have been made to standardize imaging protocols for MS. Emerging ancillary imaging findings have also attracted increasing interests and should be sought for on radiologic examination. In this paper, the authors review the clinical guidelines and approach to imaging of MS and related disorders, focusing on clinically impactful image interpretation and MR imaging reporting.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Radiology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610-0374, USA
| | - Torge Rempe
- Department of Neurology, University of Florida College of Medicine, Norman Fixel Institute for Neurological Diseases, 3009 SW Williston Road, Gainesville, FL 32608, USA
| | - Reza Forghani
- Department of Radiology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610-0374, USA; Division of Movement Disorders, Department of Neurology, University of Florida College of Medicine, Norman Fixel Institute for Neurological Diseases, 3009 SW Williston Road, Gainesville, FL 32608, USA; Division of Medical Physics, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610-0374, USA; Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Room 221.1, 3011 SW Williston Road, Gainesville, FL 32608, USA.
| |
Collapse
|
7
|
Vitarelli da Silva T, Bernardes D, Oliveira-Lima OC, Fernandes Pinto B, Limborço Filho M, Fraga Faraco CC, Juliano MA, Esteves Arantes RM, A Moreira F, Carvalho-Tavares J. Cannabidiol Attenuates In Vivo Leukocyte Recruitment to the Spinal Cord Microvasculature at Peak Disease of Experimental Autoimmune Encephalomyelitis. Cannabis Cannabinoid Res 2024; 9:537-546. [PMID: 36745386 DOI: 10.1089/can.2022.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation leading to demyelination. The associated symptoms lead to a devastating decrease in quality of life. The cannabinoids and their derivatives have emerged as an encouraging alternative due to their management of symptom in MS. Objective: The aim of the study was to investigate the mechanism of action of cannabidiol (CBD), a nonpsychoactive cannabinoid, on molecular and cellular events associated with leukocyte recruitment induced by experimental autoimmune encephalomyelitis (EAE). Materials and Methods: C57BL/6 female mice were randomly assigned to the four experimental groups: C (control group), CBD (cannabidiol-treated group, 5 mg/kg i.p.; 14 days), EAE (experimental autoimmune encephalomyelitis-induced group), and EAE+CBD (experimental autoimmune encephalomyelitis-induced plus cannabidiol-treated group). Results: The results indicated that 5 mg/kg of CBD injected intraperitoneally between the 1st and 14th days of EAE could reduce the leukocyte rolling and adhesion into the spinal cord microvasculature as well cellular tissue infiltration. These results were supported by a decreased mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord. Conclusion: Purified CBD reduces in vivo VCAM and ICAM-mediated leukocyte recruitment to the spinal cord microvasculature at EAE peak disease.
Collapse
Affiliation(s)
- Thiago Vitarelli da Silva
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Bernardes
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | - Onésia Cristina Oliveira-Lima
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Neuroquímica e Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bárbara Fernandes Pinto
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Limborço Filho
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cristina Fraga Faraco
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida Juliano
- Enzimas proteolíticas e Síntese de peptídeos, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Esteves Arantes
- Neuroimunopatologia Experimental, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Carvalho-Tavares
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Educação e Comunicação em Ciências da Vida e da Saúde (NEDUCOM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Seyedmirzaei H, Salabat D, KamaliZonouzi S, Teixeira AL, Rezaei N. Risk of MS relapse and deterioration after COVID-19: A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 83:105472. [PMID: 38316078 DOI: 10.1016/j.msard.2024.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Upper respiratory viral infections have long been considered triggers for multiple sclerosis (MS) relapse and exacerbation. The possible effects of SARS-CoV-2 infection on MS relapse and deterioration remain controversial. METHODS We systematically searched PubMed, Scopus, Embase, Cochrane, and Web of Science databases to find relevant studies assessing changes in relapse rates or Expanded Disability Status Scale (EDSS) following COVID-19 in people with MS. Meta-analyses were performed, and to investigate sources of heterogeneity, subgroup analysis, meta-regression, and sensitivity analysis were conducted. RESULTS We included 14 studies in our systematic review and meta-analysis. The meta-analysis demonstrated that COVID-19 was not associated with a rise in relapse rate (risk ratio (RR): 0.97, 95 % confidence interval (CI): 0.67, 1.41, p-value: 0.87) or a rise in EDSS (standardized mean difference (SMD): -0.09, 95 % CI: -0.22, 0.03, p-value: 0.13). The analysis of EDSS changes indicated a significant heterogeneity (I2: 55 %, p-value: 0.01). Other analyses were not statistically significant. CONCLUSIONS COVID-19 infection was not associated with an increased risk of relapse and clinical deterioration in people with MS.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Salabat
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara KamaliZonouzi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ma F, Wang J, Jiang W, Luo J, Yang R, Zhang L, Han C. Ganoderic Acid A: A Potential Natural Neuroprotective Agent for Neurological Disorders: A Review. Int J Med Mushrooms 2024; 26:11-23. [PMID: 38421693 DOI: 10.1615/intjmedmushrooms.2023051918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ganoderic acid A (GAA) is one of the major triterpenoids in Ganoderma lucidum (GL). Accumulating evidence has indicated that GAA demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Here, the effects and mechanisms of GAA in the treatment of neurological disorders were evaluated and discussed through previous research results. By summarizing previous research results, we found that GAA may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative stress, anti-apoptosis, protection of nerve cells, and regulation of nerve growth factor. Therefore, GAA is a promising natural neuroprotective agent and this review would contribute to the future development of GAA as a novel clinical candidate drug for treating neurological diseases.
Collapse
Affiliation(s)
- Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
10
|
Bisht P, Rathore C, Rathee A, Kabra A. Astrocyte Activation and Drug Target in Pathophysiology of Multiple Sclerosis. Methods Mol Biol 2024; 2761:431-455. [PMID: 38427254 DOI: 10.1007/978-1-0716-3662-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease, which is also referred to as an autoimmune disorder with chronic inflammatory demyelination affecting the core system that is the central nervous system (CNS). Demyelination is a pathological manifestation of MS. It is the destruction of myelin sheath, which is wrapped around the axons, and it results in the loss of synaptic connections and conduction along the axon is also compromised. Various attempts are made to understand MS and demyelination using various experimental models out of them. The most popular model is experimental autoimmune encephalomyelitis (EAE), in which autoimmunity against CNS components is induced in experimental animals by immunization with self-antigens derived from basic myelin protein. Astrocytes serve as a dual-edged sword both in demyelination and remyelination. Various drug targets have also been discussed that can be further explored for the treatment of MS. An extensive literature research was done from various online scholarly and research articles available on PubMed, Google Scholar, and Elsevier. Keywords used for these articles were astrocyte, demyelination, astrogliosis, and reactive astrocytes. This includes articles being the most relevant information to the area compiled to compose a current review.
Collapse
Affiliation(s)
- Preeti Bisht
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Ankit Rathee
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| |
Collapse
|
11
|
Rajendran R, Rajendran V, Böttiger G, Stadelmann C, Shirvanchi K, von Au L, Bhushan S, Wallendszus N, Schunin D, Westbrock V, Liebisch G, Ergün S, Karnati S, Berghoff M. The small molecule fibroblast growth factor receptor inhibitor infigratinib exerts anti-inflammatory effects and remyelination in a model of multiple sclerosis. Br J Pharmacol 2023; 180:2989-3007. [PMID: 37400950 DOI: 10.1111/bph.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Fibroblast growth factors and receptors (FGFR) have been shown to modulate inflammation and neurodegeneration in multiple sclerosis (MS). The selective FGFR inhibitor infigratinib has been shown to be effective in cancer models. Here, we investigate the effects of infigratinib on prevention and suppression of first clinical episodes of myelin oligodendrocyte glycoprotein (MOG)35-55 -induced experimental autoimmune encephalomyelitis (EAE) in mice. EXPERIMENTAL APPROACH The FGFR inhibitor infigratinib was given over 10 days from the time of experimental autoimmune encephalomyelitis induction or the onset of symptoms. The effects of infigratinib on proliferation, cytotoxicity and FGFR signalling proteins were studied in lymphocyte cell lines and microglial cells. KEY RESULTS Administration of infigratinib prevented by 40% and inhibited by 65% first clinical episodes of the induced experimental autoimmune encephalomyelitis. In the spinal cord, infiltration of lymphocytes and macrophages/microglia, destruction of myelin and axons were reduced by infigratinib. Infigratinib enhanced the maturation of oligodendrocytes and increased remyelination. In addition, infigratinib resulted in an increase of myelin proteins and a decrease in remyelination inhibitors. Further, lipids associated with neurodegeneration such as lysophosphatidylcholine and ceramide were decreased as were proliferation of T cells and microglial cells. CONCLUSION AND IMPLICATIONS This proof of concept study demonstrates the therapeutic potential of targeting FGFRs in a disease model of multiple sclerosis. Application of oral infigratinib resulted in anti-inflammatory and remyelinating effects. Thus, infigratinib may have the potential to slow disease progression or even to improve the disabling symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Ranjithkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gregor Böttiger
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kian Shirvanchi
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Laureen von Au
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Natascha Wallendszus
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Darja Schunin
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Victor Westbrock
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
12
|
Laeeq T, Vongsavath T, Tun KM, Hong AS. The Potential Role of Fecal Microbiota Transplant in the Reversal or Stabilization of Multiple Sclerosis Symptoms: A Literature Review on Efficacy and Safety. Microorganisms 2023; 11:2840. [PMID: 38137984 PMCID: PMC10745313 DOI: 10.3390/microorganisms11122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple sclerosis (MS) affects millions of people worldwide, and recent data have identified the potential role of the gut microbiome in inducing autoimmunity in MS patients. To investigate the potential of fecal microbiota transplant (FMT) as a treatment option for MS, we conducted a comprehensive literature search (PubMed/Medline, Embase, Web of Science, Scopus, and Cochrane) and identified five studies that involved 15 adult MS patients who received FMT for gastrointestinal symptoms. The primary outcome of this review was to assess the effect of FMT in reversing and improving motor symptoms in MS patients, while the secondary outcome was to evaluate the safety of FMT in this patient population. Our findings suggest that all 15 patients who received FMT experienced improved and reversed neurological symptoms secondary to MS. This improvement was sustained even in follow-up years, with no adverse effects observed. These results indicate that FMT may hold promise as a treatment option for MS, although further research is necessary to confirm these findings.
Collapse
Affiliation(s)
- Tooba Laeeq
- Department of Internal Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Tahne Vongsavath
- Department of Internal Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Kyaw Min Tun
- Department of Internal Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Annie S. Hong
- Department of Gastroenterology, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
13
|
Sortino M, Petrigna L, Trovato B, Amato A, Castorina A, D’Agata V, Maugeri G, Musumeci G. An Overview of Physical Exercise Program Protocols and Effects on the Physical Function in Multiple Sclerosis: An Umbrella Review. J Funct Morphol Kinesiol 2023; 8:154. [PMID: 37987490 PMCID: PMC10660496 DOI: 10.3390/jfmk8040154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Multiple sclerosis is a disease that concerns a growing number of people, especially females. There are different interventions proposed for this population, and physical activity is one of them. A proper and well-structured physical activity program can be a cheap, feasible, and practical instrument to help this population improve their quality of life. Consequently, the present study aimed to analyze, through an umbrella review, published articles to evaluate the protocols and the effect of intervention on different types of multiple sclerosis and eventually to propose a standardized intervention for this population. Systematic reviews and meta-analyses of randomized controlled trials on multiple sclerosis and physical activity effects were searched for on the electronic databases PubMed, Web of Science, and Scopus up to 22 December 2022. The quality of the studies included was determined and the results were narratively analyzed. The included studies present heterogeneity in the population, in the study design and protocols, and in the outcomes evaluated. Most of the studies detected positive outcomes on the physical function of people with multiple sclerosis. This study highlights the necessity of future studies on a population with similar characteristics, adopting similar protocols to evaluate their feasibility and validity to make physical intervention prescribed as a medicine.
Collapse
Affiliation(s)
- Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Luca Petrigna
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Bruno Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (M.S.); (L.P.); (B.T.); (A.A.); (V.D.); (G.M.)
| |
Collapse
|
14
|
Schiffmann D, Lampkemeyer V, Lindner M, Fleck AK, Koch K, Eschborn M, Liebmann M, Strecker JK, Minnerup J, Wiendl H, Klotz L. Endurance Exercise Attenuates Established Progressive Experimental Autoimmune Encephalomyelitis and Is Associated with an Amelioration of Innate Immune Responses in NOD Mice. Int J Mol Sci 2023; 24:15798. [PMID: 37958787 PMCID: PMC10648469 DOI: 10.3390/ijms242115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease causing axonal degeneration and demyelination. Exercise in mice with active monophasic experimental autoimmune encephalomyelitis (EAE) attenuates disease severity associated with diverse impacts on T cell-mediated immunity. However, studies have so far focused on preventive approaches. In this study, we investigated the impact of endurance exercise on established EAE disease in a model of secondary progressive MS. When the exercise program on motorized running wheels was started at disease manifestation, the disease course was significantly ameliorated. This was associated with a significant decrease in B cell, dendritic cell, and neutrophil cell counts in the central nervous system (CNS). Furthermore, we observed an increased expression of major histocompatibility complex class II (MHC-II) as well as alterations in costimulatory molecule expression in CNS B cells and dendritic cells. In contrast, T cell responses were not altered in the CNS or periphery. Thus, exercise training is capable of attenuating the disease course even in established secondary progressive EAE, potentially via modulation of the innate immune compartment. Further studies are warranted to corroborate our findings and assess the potential of this lifestyle intervention as a complementary therapeutic strategy in secondary progressive MS patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany; (D.S.)
| |
Collapse
|
15
|
Greenberg B, Giovannoni G. A place for biosimilars in the changing multiple sclerosis treatment landscape. Mult Scler Relat Disord 2023; 77:104841. [PMID: 37467536 DOI: 10.1016/j.msard.2023.104841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The treatment paradigm for multiple sclerosis (MS), particularly relapsing-remitting MS, is heavily reliant on biologic disease-modifying therapies (DMTs). However, the current cost of treatment acts as a significant barrier to access for patients. Over the next few years exclusivity periods for key biologic medicines used in MS are likely to end, opening the door for biosimilar medicines to enter the market. METHODS In this review, we discuss what biosimilar medicines are, and how the existing experience with biosimilar medicines across multiple therapy areas can inform the assimilation of biosimilar medicines into the MS treatment landscape in Europe and the US. RESULTS There is currently a lack of knowledge and awareness around the distinctions and similarities between small molecules, non-biological complex drugs, and biological medicines, as well as the different categories of follow-on successor medicines. These include biosimilar medicines that offer a matching efficacy and safety profile to the reference biologic. Understanding and recognition of the stringency of the approval pathways required for drug categories such as biosimilars are key in building confidence in treatment outcomes. For example, biosimilar medicines are sometimes perceived only as 'copies' of their reference biologic despite undergoing an extensive approval process requiring that no clinically meaningful differences are observed between the biosimilar medicine and the reference medicine. For MS, introduction of biosimilar medicines in the future will enable more people with MS to receive effective treatment, and also expand access to biologic DMTs in MS. Experiences from the use of biosimilars in multiple therapy areas have shown us that this can result in cost-saving benefits for a healthcare system. Introduction of biosimilar medicines in other therapy areas has also demonstrated the importance of appropriate, accurate education and information for their successful integration into clinical practice. CONCLUSION In order to realize optimized treatment outcomes in MS in coming years and to find the appropriate place for biosimilar medicines in the changing MS landscape, it is essential that clinicians and people with MS understand the fundamentals of biosimilars, their potential benefits and consistency of treatment provided by a biosimilar medicine, given the matching efficacy and safety profile to its reference medicine. As evidenced in other therapy areas, biosimilar medicines may reduce key barriers to access by providing a cost-effective alternative to the MS treatment arsenal, while providing the same treatment outcomes as reference biologics.
Collapse
Affiliation(s)
- Benjamin Greenberg
- Department of Neurology and Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom
| |
Collapse
|
16
|
Koca N, Seferoğlu M. Effects of disease-modifying therapies on lipid parameters in patients with multiple sclerosis. Mult Scler Relat Disord 2023; 77:104876. [PMID: 37423049 DOI: 10.1016/j.msard.2023.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cholesterol and lipids are essential components of nerve cells. Myelin synthesis and stabilization is a cholesterol-dependent process. It has been shown in several studies that high plasma cholesterol levels may be associated with clinical deterioration in Multiple Sclerosis (MS). There is scarce information about the effects of disease-modifying treatment (DMTs) on lipid profile. In this study, we aimed to investigate the effect of DMTs on plasma lipid profiles in MS patients. METHOD The records of 380 MS patients who were still under follow-up were analyzed in terms of age, sex, disease duration, EDSS scores, serum lipid levels, and used DMTs. The data of patients receiving Interferon (n = 53), Glatiramer acetate (n = 25), Fingolimod (n = 44), Teriflunomide (n = 24), Dimethyl fumarate (n = 7) and Ocrelizumab (n = 14) were compared with the data of control group (n = 53). RESULTS A total of 220 patients, 157 women, and 63 men, were included in the study. The average age of the participants in the study was 39.83 ± 10.21 years, mean disease duration was 8.45 ± 6.56 years, and the EDSS score was 2.25 ± 1.97. Although, Lipid parameters were higher in MS patients using Fingolimod the difference cannot reach the statistical significance. CONCLUSION No significant relationship was found between the DMTs that MS patients had been using for the last six months and their cholesterol levels.
Collapse
Affiliation(s)
- Nizameddin Koca
- University of Health Sciences, Bursa Sehir Training & Research Hospital, Department of Internal Medicine, Bursa, Turkey
| | - Meral Seferoğlu
- University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Neurology, Bursa, Turkey
| |
Collapse
|
17
|
Dong X, Sun S, Li J, Shen S, Chen W, Li T, Li X. Identification of potential functional peptides involved in demyelinating injury in the central nervous system. PeerJ 2023; 11:e15846. [PMID: 37637167 PMCID: PMC10448882 DOI: 10.7717/peerj.15846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurologic disease characterized by the demyelinating injury of the central nervous system (CNS). It was reported that the mutant peptide came from myelin proteolipid protein (PLP) and myelin basic protein (MBP) might play a critical role in immunotherapy function of MS. However, endogenous peptides in demyelinating brain tissue of MS and their role in the pathologic process of MS have not been revealed. Here, we performed peptidomic analysis of freshly isolated corpus callosum (CC) from the brains of CPZ-treated mice and normal diet controls of male C57BL/6 mice by LC-MS/MS. Identified a total of 217 peptides were expressed at different levels in MS mice model compared with controls. By performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, we found that the precursor protein of these differently expressed peptides (DEPs) were associated with myelin sheath and oxidative phosphorylation. Our study is the first brain peptidomic of MS mice model, revealing the distinct features of DEPs in demyelination brain tissue. These DPEs may provide further insight into the pathogenesis and complexity of MS, which would facilitate the discovery of the potential novel and effective strategy for the treatment of MS.
Collapse
Affiliation(s)
- Xiaohua Dong
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Shen
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Tongqi Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
19
|
Chen JY, Tian XY, Wei SS, Xu W, Pan RR, Chen LL, Chen LD, Nan LH, Wang QQ, Ma XQ, Huang MQ. Magnolol as STAT3 inhibitor for treating multiple sclerosis by restricting Th17 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154917. [PMID: 37301184 DOI: 10.1016/j.phymed.2023.154917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is an immune disease in the central nervous system (CNS) associated with Th17 cells. Moreover, STAT3 initiates Th17 cell differentiation and IL-17A expression through facilitating RORγt in MS. Here, we reported that magnolol, isolated from Magnolia officinalis Rehd. Et Wils, was regarded as a candidate for MS treatment verified by both in vitro and in vivo studies. METHODS In vivo, experimental autoimmune encephalomyelitis (EAE) model in mice was employed to evaluate the alleviation of magnolol on myeloencephalitis. In vitro, FACS assay was employed to evaluate the effect of magnolol on Th17 and Treg cell differentiation and IL-17A expression; network pharmacology-based study was applied to probe the involved mechanisms; western blotting, immunocytochemistry, and luciferase reporter assay was used to further confirm the regulation of magnolol on JAK/STATs signaling pathway; surface plasmon resonance (SPR) assay and molecular docking were applied to manifest affinity with STAT3 and binding sites; overexpression of STAT3 was employed to verify whether magnolol attenuates IL-17A through STAT3 signaling pathway. RESULTS In vivo, magnolol alleviated loss of body weight and severity of EAE mice; magnolol improved lesions in spinal cords and attenuated CD45 infiltration, and serum cytokines levels; correspondingly, magnolol focused on inhibiting Th17 differentiation and IL-17A expression in splenocyte of EAE mice; moreover, magnolol selectively inhibited p-STAT3(Y705) and p-STAT4(Y693) of both CD4+ and CD8+ T cells in splenocyte of EAE mice. In vitro, magnolol selectively inhibited Th17 differentiation and IL-17A expression without impact on Treg cells; network pharmacology-based study revealed that magnolol perhaps diminished Th17 cell differentiation through regulating STAT family members; western blotting further confirmed that magnolol inhibited p-JAK2(Y1007) and selectively antagonized p-STAT3(Y705) and slightly decreased p-STAT4(Y693); magnolol antagonized both STAT3 nucleus location and transcription activity; magnolol had a high affinity with STAT3 and the specific binding site perhaps to be at SH2 domain; overexpression of STAT3 resulted in failed inhibition of magnolol on IL-17A. CONCLUSION Magnolol selectively inhibited Th17 differentiation and cytokine expression through selectively blocking of STAT3 resulting in decreased the ratio of Th17/Treg cells for treating MS, suggesting that the potential of magnolol for treating MS as novel STAT3 inhibitor.
Collapse
Affiliation(s)
- Jian-Yu Chen
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, China
| | - Xiao-Yun Tian
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, China
| | - Shan-Shan Wei
- School of Pharmacy, Second Military Medical University, No.325, Guo He Road, Shanghai 30025, China
| | - Wen Xu
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, China
| | - Rong-Rong Pan
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong road, Pudong New Area, Shanghai 200137, China
| | - Lin-Lin Chen
- School of Pharmacy, Second Military Medical University, No.325, Guo He Road, Shanghai 30025, China
| | - Lang-Dong Chen
- School of Pharmacy, Second Military Medical University, No.325, Guo He Road, Shanghai 30025, China
| | - Li-Hong Nan
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, China
| | - Qian-Qian Wang
- Medical College, Dalian University, Dalian 116622, China.
| | - Xue-Qin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Ming-Qing Huang
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, China.
| |
Collapse
|
20
|
Mitsikostas DD, Orologas A, Dardiotis E, Fakas N, Doskas T, Karageorgiou K, Maltezou M, Iliopoulos I, Vikelis M, Grigoriadis N. A Prospective, Observational Study Assessing Effectiveness, Safety, and QoL of Greek Patients with Multiple Sclerosis Under Treatment with Fingolimod. Adv Ther 2023; 40:2217-2233. [PMID: 36897520 DOI: 10.1007/s12325-022-02388-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/24/2022] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Fingolimod is the first approved oral therapy for relapsing-remitting multiple sclerosis (RRMS). The present study aimed to further characterize fingolimod's safety profile, and to assess the patient-reported treatment satisfaction and impact of fingolimod on the quality of life (QoL) of patients with multiple sclerosis (MS) treated in routine care in Greece. METHODS This was a multicenter, prospective, observational, 24-month study conducted in Greece by hospital-based and private practice neurologists who specialize in MS. Eligible patients had initiated fingolimod within 15 days in accordance with the locally approved label. Safety outcomes included any adverse event (AE) observed during the study period and efficacy outcomes included both objective (disability progression and 2-year annualized relapse rate) and patient-reported assessments (Treatment Satisfaction Questionnaire for Medication (TSQM) v1.4 and the EuroQol (EQ)-5-dimension (5D) 3-level instruments). RESULTS A total of 489 eligible patients (age 41.2 ± 9.8 years; 63.7% female; 4.2% treatment-naive) were exposed to fingolimod for a median of 23.7 months. During the observation period, 20.5% of the participants experienced 233 AEs. Lymphopenia (8.8%), leukopenia (4.2%), hepatic enzyme increased (3.4%), and infections (3.0%) were the most common. Most patients (89.3%) did not experience disability progression; the 2-year annualized relapse rate decreased by 94.7% compared to baseline. The median EQ-visual analogue scale (VAS) was 74.5 at month 24 vs. 65.0 at enrollment (p < 0.001) and the EQ-5D index score was 0.80 vs. 0.78, respectively. Significant improvements were noted in the TSQM global satisfaction and effectiveness domain scores between 6 and 24 months post enrollment (median scores at month 24, 71.4 and 66.7, respectively) (p < 0.001). Significant increases from enrollment to the 24th month were also noted in the patients' global satisfaction and effectiveness domain scores [mean change of 7.4 ± 17.7 (p = 0.005) and mean increase of 5.4 ± 16.2) (p = 0.043), respectively]. CONCLUSION In the real-world setting of Greece, fingolimod demonstrates a clinical benefit and a predictable and manageable safety profile, which contribute towards high patient-reported treatment satisfaction and improvements in the QoL of patients with MS.
Collapse
Affiliation(s)
| | - Anastasios Orologas
- A' Department of Neurology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Nikolaos Fakas
- Neurology Department, General Military Hospital of Athens, 401, Athens, Greece
| | - Triantafyllos Doskas
- Ntoskas K. Triantafillos Private Practice, K. Papakonstantinou 4, Paiania, 19002, Athens, Greece
| | - Klimentini Karageorgiou
- The Neurological Institute of Athens, 51, Leof. Vasilissis Sofias Ave, 10676, Athens, Greece
| | - Maria Maltezou
- Department of Neurology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Ioannis Iliopoulos
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | - Nikolaos Grigoriadis
- B' Department of Neurology, School of Medicine, Faculty of Health Sciences, Multiple Sclerosis Center, Aristotle University of Thessaloniki, AHEPA University Hospital, Kiriakidi 1, 54621, Thessaloniki, Greece.
| |
Collapse
|
21
|
Zuckerman AD, DeClercq J, Simonson D, Zagel AL, Turco E, Banks A, Wawrzyniak J, Rightmier E, Blevins A, Choi L. Adherence and persistence to self-administered disease-modifying therapies in patients with multiple sclerosis: A multisite analysis. Mult Scler Relat Disord 2023; 75:104738. [PMID: 37182475 DOI: 10.1016/j.msard.2023.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Though there are several disease-modifying therapy (DMT) options for patients with multiple sclerosis (MS), treatment outcomes rely on patient adherence and persistence. Previous studies have demonstrated suboptimal adherence rates and high rates of early treatment discontinuation. Health-system specialty pharmacies (HSPPs) are a growing practice model that have demonstrated adherence and persistence benefits through single site evaluations. Research is needed across multiple HSSPs to understand and validate the outcomes of this practice model. METHODS A multisite prospective cohort study was performed including patients with at least three fills of a DMT between January 2020 and June 2021 at an HSSP. Patients were excluded due to pregnancy or death. Enrollment occurred for 6 months followed by 12 months of follow-up. Adherence was measured using pharmacy claims to calculate proportion of days covered (PDC) during the follow-up period. Time to non-persistence was calculated as the time from an index DMT fill to the first date of a gap of >60 days between medication exhaust and fulfillment dates. Adherence and persistence calculations were assessed at the therapeutic class level (any self-administered DMT dispensed by the HSSPs). The Kaplan-Meier method was used to present the probability of being persistent, and Cox proportional hazards regression analysis was used to estimate hazard ratios of factors associated with non-persistence, which included age, sex, study site, insurance type, and whether the patient switched medication as potential factors. RESULTS The most common self-administered DMTs filled among 968 patients were glatiramer acetate (32%), fingolimod (18%), and dimethyl fumarate (18%). Most patients (96%) did not switch DMT during the study period. The median PDC was 0.97 (interquartile range 0.90-0.99), which was similar across all sites. Patients who had at least one DMT switch were 76% less likely to have a higher PDC than those who did not have any switch after adjusting for other covariates (Odds ratio: 0.24, 95% confidence interval [CI]: 0.14-0.40, p<0.001). Most patients (86%) were persistent to DMT over the 12-month study period. Among those non-persistent, median time to non-persistence was 231 (IQR 177-301) days. Patients who switched medications were 2.4 times more likely to be non-persistent (95% CI: 1.3 - 4.5, p = 0.005). The most common reasons for non-persistence were discontinuation/medication held for an extended period (30%), often due to patient or prescriber decision (75%). CONCLUSION High rates of DMT adherence and persistence were seen among patients serviced by HSSPs, indicating potential benefits of this model for patients with MS. Switching DMTs was associated with lower adherence and persistence and may be an opportunity for added care coordination or resources to optimize therapy transitions.
Collapse
Affiliation(s)
- Autumn D Zuckerman
- Specialty Pharmacy Services, Vanderbilt University Medical Center, 726 Melrose Ave, Nashville, TN 37211, United States.
| | - Josh DeClercq
- Department of Biostatistics, Vanderbilt University Medical Center, United States
| | - Dana Simonson
- Fairview Specialty Pharmacy, 711 Kasota Ave SE, Minneapolis, MN 55414, United States
| | - Alicia L Zagel
- Fairview Pharmacy Services, 711 Kasota Ave SE, Minneapolis, MN 55414, United States
| | - Evan Turco
- WVU Medicine Specialty Pharmacy Services, Allied Health Solutions, 3040 University Ave Suite 1400, Morgantown, WV 26505, United States
| | - Aimee Banks
- Specialty Pharmacy Services, Vanderbilt University Medical Center, 726 Melrose Ave, Nashville, TN 37211, United States
| | - Julie Wawrzyniak
- University of Rochester Specialty Pharmacy, UR Medicine, 601 Elmwood Ave, Rochester NY 14642, United States
| | - Elizabeth Rightmier
- University of Rochester Specialty Pharmacy, UR Medicine, 601 Elmwood Ave, Rochester NY 14642, United States
| | - Abbi Blevins
- WVU Medicine Specialty Pharmacy Services, Allied Health Solutions, 3040 University Ave Suite 1400, Morgantown, WV 26505, United States
| | - Leena Choi
- Department of Biostatistics, Vanderbilt University Medical Center, United States
| |
Collapse
|
22
|
La Rosa G, Lonardo MS, Cacciapuoti N, Muscariello E, Guida B, Faraonio R, Santillo M, Damiano S. Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and Neuroprotective Mechanisms to Clinical Evidence. Int J Mol Sci 2023; 24:ijms24087247. [PMID: 37108412 PMCID: PMC10138565 DOI: 10.3390/ijms24087247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial, immune-mediated disease caused by complex gene-environment interactions. Dietary factors modulating the inflammatory status through the control of the metabolic and inflammatory pathways and the composition of commensal gut microbiota, are among the main environmental factors involved in the pathogenesis of MS. There is no etiological therapy for MS and the drugs currently used, often accompanied by major side effects, are represented by immunomodulatory substances capable of modifying the course of the disease. For this reason, nowadays, more attention is paid to alternative therapies with natural substances with anti-inflammatory and antioxidant effects, as adjuvants of classical therapies. Among natural substances with beneficial effects on human health, polyphenols are assuming an increasing interest due to their powerful antioxidant, anti-inflammatory, and neuroprotective effects. Beneficial properties of polyphenols on the CNS are achieved through direct effects depending on their ability to cross the blood-brain barrier and indirect effects exerted in part via interaction with the microbiota. The aim of this review is to examine the literature about the molecular mechanism underlying the protective effects of polyphenols in MS achieved by experiments conducted in vitro and in animal models of the disease. Significant data have been accumulated for resveratrol, curcumin, luteolin, quercetin, and hydroxytyrosol, and therefore we will focus on the results obtained with these polyphenols. Clinical evidence for the use of polyphenols as adjuvant therapy in MS is restricted to a smaller number of substances, mainly curcumin and epigallocatechin gallate. In the last part of the review, a clinical trial studying the effects of these polyphenols in MS patients will also be revised.
Collapse
Affiliation(s)
- Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Maria Serena Lonardo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Nunzia Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Espedita Muscariello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| |
Collapse
|
23
|
Gao D, Zheng CC, Hao JP, Yang CC, Hu CY. Icariin ameliorates behavioral deficits and neuropathology in a mouse model of multiple sclerosis. Brain Res 2023; 1804:148267. [PMID: 36731819 DOI: 10.1016/j.brainres.2023.148267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Multiple sclerosis (MS) is a systemic inflammatory illness of the central nervous system that involves demyelinating lesions in the myelin-rich white matter and pathology in the grey matter. Despite significant advancements in drug research for MS, the disease's complex pathophysiology makes it difficult to treat the progressive forms of the disease. In this study, we identified a natural flavonoid compound icariin (ICA) as a potent effective agent for MS in ameliorating the deterioration of symptoms including the neurological deficit score and the body weight in a murine experimental autoimmune encephalomyelitis (EAE) model. These improvements were associated with decreased demyelination in the corpus callosum and neuron loss in the hippocampus and cortex confirmed by immunohistochemistry analysis. Meanwhile, it was observed that the activation of microglia in cerebral cortex and hippocampus were inhibited followed by the neuroinflammatory cytokines downregulation such as IL-1β, IL-6 and TNF-α after ICA treatment, which was probably attributable to the suppression of microglial NLRP3 inflammasome activation. Additionally, molecular docking also revealed the binding force of ICA to NLRP3 inflammasome protein complexes in vitro. Taken together, our findings have demonstrated that ICA, as pleiotropic agent, prevents EAE-induced MS by improving demyelination and neuron loss, which interferes with the neuroinflammation via microglial NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Ceng-Ceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Jin-Ping Hao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China.
| | - Chao-Ying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China; Phase I Clinical Trial Unit, Beijing Ditan Hospital Capital Medical University, Beijing 100015, China.
| |
Collapse
|
24
|
Manian M, Motallebnezhad M, Nedaeinia R, Salehi R, Khani L, Ferns GA, Jazayeri MH. Comparison of OX40 expression in patients with multiple sclerosis and neuromyelitis optica as an approach to diagnosis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:19. [PMID: 36899405 PMCID: PMC10007837 DOI: 10.1186/s13223-023-00772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/13/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Previous studies have shown that CD134 (OX40) co-stimulation is involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) models and the antigen is expressed within multiple sclerosis lesions in humans. OX40 (CD134) is thought to be a secondary co-stimulatory immune checkpoint molecule that is expressed by T cells. This study aimed to evaluate the mRNA expression of OX40 and its serum levels in the peripheral blood of patients with Multiple Sclerosis (MS) or Neuromyelitis Optica (NMO). METHODS Patients with MS (n = 60), NMO (n = 20), and 20 healthy subjects were recruited from Sina Hospital, Tehran, Iran. The diagnoses were confirmed by a specialist in clinical neurology. Peripheral venous blood was obtained from all subjects, and mRNA quantification of OX40 was conducted using real-time PCR. Serum samples were also obtained and the concentration of OX40 was determined using an enzyme-linked immunosorbent assay (ELISA). RESULTS There was a significant correlation between the mRNA expression and serum levels of OX40 and disability as assessed using the expanded disability status scale (EDSS) in the patients with MS, but not in the patients with NMO. Expression of OX40 mRNA was significantly higher in the peripheral blood of MS patients compared to healthy individuals and NMO patients (*P < 0.05). In addition, serum OX40 concentrations were also significantly higher in patients with MS patients compared with healthy subjects (9.08 ± 2.48 vs. 1.49 ± 0.54 ng/ml; P = 0.041). CONCLUSIONS It appears that an increased expression of OX40 may be associated with the hyperactivation of T cells in patients with MS, and this may play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Mostafa Manian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran, 1449614535, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Science, Lodz, Poland.,Bio-Med-Chem Doctoral School of the University of Lodz, Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Mir Hadi Jazayeri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran, 1449614535, Iran. .,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Immunity orchestrates a bridge in gut-brain axis of neurodegenerative diseases. Ageing Res Rev 2023; 85:101857. [PMID: 36669690 DOI: 10.1016/j.arr.2023.101857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Neurodegenerative diseases, in particular for Alzheimer's disease (AD), Parkinson's disease (PD) and Multiple sclerosis (MS), are a category of diseases with progressive loss of neuronal structure or function (encompassing neuronal death) leading to neuronal dysfunction, whereas the underlying pathogenesis remains to be clarified. As the microbiological ecosystem of the intestinal microbiome serves as the second genome of the human body, it is strongly implicated as an essential element in the initiation and/or progression of neurodegenerative diseases. Nevertheless, the precise underlying principles of how the intestinal microflora impact on neurodegenerative diseases via gut-brain axis by modulating the immune function are still poorly characterized. Consequently, an overview of initiating the development of neurodegenerative diseases and the contribution of intestinal microflora on immune function is discussed in this review.
Collapse
|
26
|
Bravo-Vázquez LA, Mora-Hernández EO, Rodríguez AL, Sahare P, Bandyopadhyay A, Duttaroy AK, Paul S. Current Advances of Plant-Based Vaccines for Neurodegenerative Diseases. Pharmaceutics 2023; 15:711. [PMID: 36840033 PMCID: PMC9963606 DOI: 10.3390/pharmaceutics15020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Erick Octavio Mora-Hernández
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
| | - Alma L. Rodríguez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla, Querétaro 76230, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
27
|
DENİZ YZ, TECELLİOĞLU M, ÖZCAN C. Multiple Sclerosis Patients’ COVID-19 Catching Ratios and Disease Profiles. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2023. [DOI: 10.17517/ksutfd.1191897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Objective: For a long time ımmunomodulatory / immunosuppressive drugs are used to slow the progression of multiple sclerosis (MS). These treatments are known to suppress the immune system and create susceptibility to infections. In our study, it was aimed to evaluate whether MS patients who received immunomodulatory / immunosuppressive treatments in the current coronavirus disease 2019 (COVID-19) pandemic, negatively affect them in terms of disease severity, frequency and psychological outcomes.
Methods: Participants consist of MS patients who acquired COVID-19 (group 1) aged 18-65, using disease modifying treatments (DMT) with follow-up in neurology outpatient clinic, and the other two groups consist of similar age and gender. One of the other two groups is MS patients who have not had COVID-19 (group 2), the other group consisted of patients who had COVID-19 and did not have MS (group 3). MS profile, coronavirus anxiety scale (CAS) and Beck depression inventory (BDI) scales between groups 1 and 2; COVID-19 profile between groups 1 and 3 compared.
Results: As a result of comparing the MS disease profile of the 1st and 2nd groups and in terms of the COVID-19 disease profile of the 1st and 3rd groups, there was no statistically significant difference in these paired comparison groups (p> 0.05).
Conclusion: İt was concluded that DMT use does not increase the severity of COVID-19 and acquiring COVID-19 did not affect the psychiatric outcomes in MS patients, since no statistically significant difference was observed in 2 MS group and 2 COVID-19 group comparison
Collapse
|
28
|
Curran C, Vaitaitis G, Waid D, Volmer T, Alverez E, Wagner DH. Ocrevus reduces TH40 cells, a biomarker of systemic inflammation, in relapsing multiple sclerosis (RMS) and in progressive multiple sclerosis (PMS). J Neuroimmunol 2023; 374:578008. [PMID: 36535240 PMCID: PMC9868100 DOI: 10.1016/j.jneuroim.2022.578008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Treating MS has been difficult. One successful drug is Ocrelizumab (anti-CD20), used for the chronic relapsing MS (RMS) and the progressive MS (PMS) forms. TH40 cells are pathogenic effector T cells that increase in percentage and numbers during chronic inflammation. Here we show that in the earliest MS course, clinically isolated syndrome (CIS), TH40 cells expand in number. In PMS TH40 cell numbers remain expanded demonstrating sustained chronic inflammation. In RMS TH40 cells were found in CSF and express CD20. Ocrelizumab reduced TH40 cells to healthy control levels in patients. During treatment inflammatory cytokine producing TH40 cells were decreased.
Collapse
Affiliation(s)
- Christian Curran
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Gisela Vaitaitis
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Dan Waid
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Timothy Volmer
- The Department of Neurology, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - Enrique Alverez
- The Department of Neurology, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America
| | - David H Wagner
- The Webb Waring Center and Department of Medicine, The University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd, Aurora, CO 80045, United States of America.
| |
Collapse
|
29
|
Wang Q, Chen YY, Yang ZC, Yuan HJ, Dong YW, Miao Q, Li YQ, Wang J, Yu JZ, Xiao BG, Ma CG. Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells. Chin J Integr Med 2023; 29:394-404. [PMID: 36607588 DOI: 10.1007/s11655-022-3587-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action. METHODS This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively. RESULTS GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05). CONCLUSION GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Collapse
Affiliation(s)
- Qing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yang-Yang Chen
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Zhi-Chao Yang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Jun Yuan
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yi-Wei Dong
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Qiang Miao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yan-Qing Li
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Jing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Department of Neurology, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie-Zhong Yu
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.,Department of Neurology, Datong Fifth People's Hospital, Datong, Shanxi Province, 037009, China
| | - Bao-Guo Xiao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200000, China
| | - Cun-Gen Ma
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China. .,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.
| |
Collapse
|
30
|
Abolghasemi M, Ali Ashrafi S, Asadi M, Shanehbandi D, Sadigh Etehad S, Poursaei E, Nejadghaderi SA, Shaafi S. MicroRNAs expression in peripheral blood mononuclear cells of patients with multiple sclerosis propose. Mol Biol Rep 2023; 50:167-172. [PMID: 36319782 DOI: 10.1007/s11033-022-07905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND MicroRNAs (miRs) are involved in the autoimmune and neurological diseases, including multiple sclerosis (MS), through modulating post-transcriptional gene regulation. Accumulating evidence indicates that miR-10, miR-24a, miR-124, and miR-21 play an imperative role in MS pathogenesis. Therefore, the current research aimed to analyze the expression of the selected miRNAs for MS in Iranian population. METHODS AND RESULTS Blood sample of 75 relapsing-remitting MS (RRMS) patients and 75 healthy individuals suffering no neurodegenerative illness was collected. Subsequently, the isolation of peripheral blood mononuclear cells (PBMCs) was performed by employing Ficoll-Hypaque density gradient method. Afterward, total RNA was extracted and subjected to qRT-PCR analysis. The obtained results evidenced that the relative expression of miR-10 (P = 0.0002), miR-21 (P = 0.0014), and miR-124 (P = 0.0091) significantly decreased in RRMS patients compared to healthy participants. On the contrary, no notable change was observed between the studies groups regarding miR-24a expression levels (P = 0.107). ROC curve analysis estimated an area under the curve (AUC) value equal to 0.75 with P = 0.0006 for miR-10, while it was decreased for miR-21 (AUC = 0.67 and P = 0.0054) and miR-124 (AUC = 0.66 and P = 0.012). CONCLUSION The change in miR-10, miR-124, and miR-21 expression patterns was implied to participate in MS development. Further large scale observational studies are recommended.
Collapse
Affiliation(s)
- Mahsa Abolghasemi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepide Ali Ashrafi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh Etehad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Poursaei
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheida Shaafi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Kalinichenko EN, Babitskaya SV. The Development of the Combination Drug Leukovir ® Tablets for the Treatment of Multiple Sclerosis: A Comprehensive Review. Curr Drug Targets 2023; 24:1271-1281. [PMID: 38037996 DOI: 10.2174/0113894501272301231124074141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
The review is devoted to the development and study of the drug Leukovir® (cladribine+ ribavirin) and its use in the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis, a chronic neurodegenerative disease aiming the risk reduction of relapse and progression of a disability. In clinical trials Leukovir® has proved to be efficient by up to 56 weeks for the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis. The drug is registered in the Republic of Belarus. The efficacy, safety and tolerability profile of the drug Leukovir® suggests that it is well suited for disease-modifying therapy of multiple sclerosis. Patients require four 35-day courses of treatment, each consisting of seven days of treatment followed by a break of 28 days. The use of Leukovir® has contributed to the suppression of inflammatory process activity according to MRI data and stabilization of the clinical condition. It has reduced the number of relapses in patients with relapsing-remitting and secondary-progressive forms of multiple sclerosis.
Collapse
Affiliation(s)
- Elena N Kalinichenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| | - Svetlana V Babitskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| |
Collapse
|
32
|
Aykaç S, Eliaçık S. What are the trends in the treatment of multiple sclerosis in recent studies? - A bibliometric analysis with global productivity during 1980-2021. Mult Scler Relat Disord 2022; 68:104185. [PMID: 36183445 DOI: 10.1016/j.msard.2022.104185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND There is no bibliometric analysis in the literature on the subject of the treatment of multiple sclerosis (MS), which is a disease with increasing prevalence, severely affecting the life and quality of life of patients. The purpose of this study was to analyze the scientific articles published on the subject of MS treatment, using bibliometric approaches and statistical methods, and thereby show the trend subjects and global productivity. METHODS From 14,443 publications on the subject of MS between 1980 and 2021, 5010 in the category of article were retrieved from the Web of Science and analyzed statistically. Bibliometric network visualization diagrams were created to determine trend subjects, collaborations between countries and citation analyzes. Exponential Smoothing estimation was used to predict the number of articles to be published in the next 5 years. Correlations were determined using Spearman's correlation analysis. RESULTS The 3 countries contributing the most to literature were found to be the USA (1385, 37.6%), Italy (700, 13.9%), and Germany (694, 13.8%). The most productive author was Hartung Hans-Peter (n = 82) and the most productive institution was the University of London (n = 198). The three most productive journals were the Multiple Sclerosis Journal (n = 354), Multiple Sclerosis and Related Disorders (n = 224), and Neurology (n = 204). The most studied subjects can be listed from past to present as interferon beta, disease-modifying treatment or drugs, relapsing, natalizumab, fingolimod, glatiramer acetate, fatigue, alemtuzumab, cytokines, mitoxantrone, MRI, adherence, depression, experimental autoimmune encephalomyelitis, quality of life, and biomarkers. CONCLUSION The scientific production related to MS treatment shows growth chronologically over the years. According to the findings of the analysis done to identify trending subjects, the key words studied in recent years were determined to be fingolimod, alemtuzumab, disease-modifying therapy, ocrelizumab, teriflunomide, rituximab, dimethyl fumarate, safety, biomarkers, COVID-19, oxidative stress, inflammation, vitamin D, relapsing multiple sclerosis, cost-effectiveness, cladribine tablets, and medication adherence. Western countries, especially European countries, the USA, and Canada lead the way in research and scientific collaboration on the subject of MS treatment. These findings can contribute to a better understanding of this subject and can help provide new ideas for further studies.
Collapse
Affiliation(s)
- Serdar Aykaç
- Department of Neurology, Faculty of Medicine, Hitit University, Çorum, Turkey.
| | - Sinan Eliaçık
- Department of Neurology, Faculty of Medicine, Hitit University, Çorum, Turkey
| |
Collapse
|
33
|
Zhang X, Huai Y, Wei Z, Yang W, Xie Q, Yi L. Non-invasive brain stimulation therapy on neurological symptoms in patients with multiple sclerosis: A network meta analysis. Front Neurol 2022; 13:1007702. [PMID: 36457862 PMCID: PMC9705977 DOI: 10.3389/fneur.2022.1007702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE The aim of the study was to evaluate non-invasive brain stimulation (NIBS) [including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES)] on neurological symptoms in patients with multiple sclerosis (PwMS). METHOD We searched PubMed, Embase, Cochrane Library, Web of Science and Ovid MEDLINE until February 2022. And we evaluated the included studies for methodological quality by the Cochrane bias risk assessment tool and assessed the studies' certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. We performed network meta analysis (NMA) by using Stata 15 and ranked the results of the NMA by using the surface under the cumulative ranking curve (SUCRA) ranking chart. RESULT Twenty seven clinical trials were finally included (N = 596, 66.4% women). For the immediate effects, rTMS over M1 yielded the most optimal scheme for fatigue reduction among all the interventions compared to the sham stimulation groups [MD = -0.85, 95% CI (-1.57, -0.14)] (SUCRA = 82.6%). iTBS over M1 yielded the most signifcant reduced pain level than the sham groups did [MD = -1.26, 95% CI (-2.40, -0.11)] (SUCRA = 98.4%). tDCS over F3 was the best protocol of NIBS to improve quality of life (QOL) [MD = 1.41, 95% CI = (0.45,2.36)] (SUCRA = 76.7%), and iTBS over M1 may significantly reduce spasticity compared to sham stimulation [MD = -1.20, 95% CI = (-1.99, -0.41)] (SUCRA = 90.3%). Furthermore, rTMS, tRNS, and tDCS on certain areas may improve PwMS accuracy, response time, manual dexterity, pain relief and QOL, but does not show statistically significant differences. The evidence assessed using GRADE is very low. CONCLUSION Based on the NMA and SUCRA ranking, we can conclude that symptoms including fatigue, pain, spasticity, and QOL can be improved by following NIBS protocol after treatment. Nonetheless, most of the included studies lack a good methodology, and more high-quality randomized clinical trials are needed.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Rehabilitation Department, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
- Shenzhen Longhua District Rehabilitation Medical Equipment Development and Transformation Joint Key Laboratory, Shenzhen, Guangdong, China
| | - Yaping Huai
- Rehabilitation Department, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
- Shenzhen Longhua District Rehabilitation Medical Equipment Development and Transformation Joint Key Laboratory, Shenzhen, Guangdong, China
| | - Zhiqiang Wei
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weiwei Yang
- Rehabilitation Department, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Qizhi Xie
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Li Yi
- Neurology Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
34
|
Ubbink DT, Damman OC, de Jong BA. Shared decision-making in patients with multiple sclerosis. Front Neurol 2022; 13:1063904. [PMID: 36438979 PMCID: PMC9691958 DOI: 10.3389/fneur.2022.1063904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 09/09/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic and progressive neurological disorder impacting physical, cognitive, and psychosocial health. The disease course, severity, and presence of symptoms differ within and between persons over time and are unpredictable. Given the preference-sensitive nature of many key decisions to be made, and the increasing numbers of disease-modifying therapies, shared decision-making (SDM) with patients seems to be key in offering optimum care and outcomes for people suffering from MS. In this paper, we describe our perspective on how to achieve SDM in patients with MS, following key SDM-elements from established SDM-frameworks. As for deliberation in the clinical encounter, SDM communication training of professionals and feedback on their current performance are key aspects, as well as encouraging patients to participate. Concerning information for patients, it is important to provide balanced, evidence-based information about the benefits and the harms of different treatment options, including the option of surveillance only. At the same time, attention is needed for the optimal dosage of that information, given the symptoms of cognitive dysfunction and fatigue among MS-patients, and the uncertainties they have to cope with. Finally, for broader communication, a system is required that assures patient preferences are actually implemented by multidisciplinary MS-teams. As SDM is also being implemented in many countries within the context of value-based health care, we consider the systematic use of outcome information, such as patient-reported outcome measures (PROMs) and Patient Decision Aids, as an opportunity to achieve SDM.
Collapse
Affiliation(s)
- Dirk T. Ubbink
- Department of Surgery, Amsterdam University Medical Centers, Public Health Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Olga C. Damman
- Department of Public and Occupational Health, Amsterdam University Medical Centers, Public Health Research Institute, Free University of Amsterdam, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, Amsterdam University Medical Centers, MS Center Amsterdam, Amsterdam Neuroscience Research Institute, Public Health Research Institute, Free University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
35
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
36
|
Uddin MN, Figley TD, Kornelsen J, Mazerolle EL, Helmick CA, O'Grady CB, Pirzada S, Patel R, Carter S, Wong K, Essig MR, Graff LA, Bolton JM, Marriott JJ, Bernstein CN, Fisk JD, Marrie RA, Figley CR. The comorbidity and cognition in multiple sclerosis (CCOMS) neuroimaging protocol: Study rationale, MRI acquisition, and minimal image processing pipelines. FRONTIERS IN NEUROIMAGING 2022; 1:970385. [PMID: 37555178 PMCID: PMC10406313 DOI: 10.3389/fnimg.2022.970385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 08/10/2023]
Abstract
The Comorbidity and Cognition in Multiple Sclerosis (CCOMS) study represents a coordinated effort by a team of clinicians, neuropsychologists, and neuroimaging experts to investigate the neural basis of cognitive changes and their association with comorbidities among persons with multiple sclerosis (MS). The objectives are to determine the relationships among psychiatric (e.g., depression or anxiety) and vascular (e.g., diabetes, hypertension, etc.) comorbidities, cognitive performance, and MRI measures of brain structure and function, including changes over time. Because neuroimaging forms the basis for several investigations of specific neural correlates that will be reported in future publications, the goal of the current manuscript is to briefly review the CCOMS study design and baseline characteristics for participants enrolled in the three study cohorts (MS, psychiatric control, and healthy control), and provide a detailed description of the MRI hardware, neuroimaging acquisition parameters, and image processing pipelines for the volumetric, microstructural, functional, and perfusion MRI data.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Teresa D. Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin L. Mazerolle
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Carl A. Helmick
- Division of Geriatric Medicine, Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Christopher B. O'Grady
- Department of Anesthesia and Biomedical Translational Imaging Centre, Dalhousie University, Halifax, NS, Canada
| | - Salina Pirzada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sean Carter
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Kaihim Wong
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Marco R. Essig
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
| | - Lesley A. Graff
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James M. Bolton
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James J. Marriott
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John D. Fisk
- Nova Scotia Health Authority and the Departments of Psychiatry, Psychology and Neuroscience, and Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre Winnipeg, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
Hoelz AG, Bernardes D, Cartarozzi LP, de Oliveira ALR. Gliosis attenuation in experimental autoimmune encephalomyelitis by a combination of dimethyl fumarate and pregabalin. Front Cell Neurosci 2022; 16:921916. [PMID: 36052340 PMCID: PMC9426298 DOI: 10.3389/fncel.2022.921916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulated microglia and astrocytes have been associated with progressive neurodegeneration in multiple sclerosis (MS), highlighting the need for strategies that additionally target intrinsic inflammation in the central nervous system (CNS). The objective of the present study was to investigate the glial response in experimental autoimmune encephalomyelitis (EAE)-induced mice treated with a combination of dimethyl fumarate (DMF) and pregabalin (PGB). For that, 28 C57BL/6J mice were randomly assigned to the five experimental groups: naïve, EAE, EAE-DMF, EAE-PGB, and EAE-DMF + PGB. Pharmacological treatments were initiated with the beginning of clinical signs, and all animals were euthanized at 28 dpi for the lumbar spinal cord evaluation. The results demonstrated a stronger attenuation of the clinical presentation by the combined approach. DMF alone promoted the downregulation of Iba-1 (microglia/macrophages marker) in the ventral horn compared with the non-treated EAE animals (P < 0.05). PGB treatment was associated with reduced Iba-1 immunofluorescence in both the dorsal (P < 0.05) and ventral horn (P < 0.05) compared to EAE vehicle-treated counterparts. However, the combined approach reduced the Iba-1 marker in the dorsal (P < 0.05) and ventral (P < 0.01) horns compared to non-treated EAE animals and further reduced Iba-1 in the ventral horn compared to each drug-alone approach (P < 0.05). In addition, the combination of DMF and PGB reduced activated astrocytes (GFAP) in both the dorsal and ventral horns of the spinal cord to a naïve-like level and upregulated Nrf-2 expression. Taken together, the data herein suggest robust attenuation of the glial response in EAE mice treated with DMF and PGB.
Collapse
|
38
|
Chaoyang C, Xiu D, Ran W, Lingyun M, Simiao Z, Ruoming L, Enyao Z, Ying Z, Yimin C, Zhenming L. Pharmacokinetic Characteristics of Siponimod in Healthy Volunteers and Patients With Multiple Sclerosis: Analyses of Published Clinical Trials. Front Pharmacol 2022; 13:824232. [PMID: 35620290 PMCID: PMC9127076 DOI: 10.3389/fphar.2022.824232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: This study aimed to investigate the pharmacokinetic characteristics of siponimod in healthy volunteers and patients with MS based on aggregated data from published clinical trials, and to explore the factors influencing siponimod exposure. Methods: A total of 476 siponimod plasma concentrations aggregated from 28 dosage groups (corresponding to 294 healthy volunteers and 207 patients with MS) were collected from published clinical trials. Population pharmacokinetic (PPK) analysis was performed using a nonlinear, mixed-effect modeling approach. The pharmacokinetic properties of siponimod in healthy volunteers and patients with MS were compared, and the influence of covariates on siponimod exposure was evaluated using both PPK analysis and noncompartmental analysis (NCA). Results: A one-compartment model with first-order absorption and elimination adequately described siponimod pharmacokinetics. The typical population parameter estimates of clearance (CL/F), apparent volume of distribution (V/F), and absorption rate constant (ka) were 3.17 L/h, 112.70 L, and 0.38 h−1, respectively. An 11.85% lower siponimod clearance was estimated for patients with MS relative to healthy volunteers. Subgroup analyses using NCA assessments revealed that siponimod presented an accumulation index of approximately 2 after multiple administration. Compared with nonobese participants, obese participants had a relatively lower dose-corrected area under the concentration-time curve (AUC0-∞/D) (0.31 vs. 0.42 h/L) and V/F (120.95 vs. 133.75 L), and a relatively higher CL/F (3.25 vs. 3.21 L/h). Participants with CYP2C9*2/*3, *1/*3, and *3/*3 genotypes experienced an increased (1.3- and 3.4-fold, respectively) AUC0-∞/D and a decreased (0.7- and 0.3-fold, respectively) CL/F compared with those in participants with the CYP2C9*1/*1, *1*2, and *2*2 genotypes. Fluconazole combination led to a decrease in CL/F (approximately 0.5 times) and an increase in AUC0-∞/D (approximately 1.3 times). Conclusion: Siponimod pharmacokinetic properties in healthy volunteers and patients with MS were explored using complementary model-based meta-analysis (MBMA) and NCA approaches. A slightly lower siponimod clearance was observed in patients with MS than in healthy volunteers. The dosage regimen, body mass index, CYP2C9 genetic polymorphism and fluconazole combination may had influences on siponimod pharmacokinetics. Such model paves the road to more population-based analyses in different patient populations with MS to quantify the effect of any influencing factors on siponimod pharmacokinetics.
Collapse
Affiliation(s)
- Chen Chaoyang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Dong Xiu
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Wei Ran
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ma Lingyun
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Zhao Simiao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Li Ruoming
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Zhang Enyao
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Zhou Ying
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Cui Yimin
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Liu Zhenming
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
39
|
Vaccination Coverage against Tetanus, Diphtheria, Pertussis and Poliomyelitis and Validity of Self-Reported Vaccination Status in Patients with Multiple Sclerosis. J Pers Med 2022; 12:jpm12050677. [PMID: 35629100 PMCID: PMC9146089 DOI: 10.3390/jpm12050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease with a neurodegenerative component of the central nervous system. Immunomodulatory therapy can increase the risk of infection, which is a particular risk for MS patients. Therefore, a complete vaccination status is of utmost importance as protection against vaccine-preventable infectious diseases. Our aim was to investigate the vaccination status, vaccination card knowledge and the vaccination behavior of MS patients with regard to vaccinations against tetanus, diphtheria, pertussis and poliomyelitis. Three hundred twenty-seven patients with MS were evaluated by anamnesis, clinical examination, structured interview and vaccination card control in this two-center study. Based on the recommendations of the Robert Koch Institute, we assessed the completeness of the vaccination status of the examined vaccinations. Furthermore, a comparative analysis of patients with complete/incomplete or correctly/wrongly self-reported vaccination status was performed. In the cohort analyzed, the vaccination coverage was 79.5% for tetanus, 79.2% for diphtheria, 74.8% for pertussis and 84.8% for poliomyelitis. The assumed vaccination status was higher for tetanus (86.5%) and lower for diphtheria (69.4%), pertussis (61.2%) and poliomyelitis (75.9%). Patients who were unvaccinated or only partially vaccinated against tetanus had received vaccination advice from a physician less often in the past year (13.4 vs. 36.9%, p < 0.001) and had no one to check the vaccination card more often (35.8 vs. 12.3%, p < 0.001). High sensitivity (93.7%) and low specificity (30.3%) were determined regarding the validity of self-reported tetanus vaccination status. Patients with a correctly reported tetanus vaccination status were more likely to have their vaccination card checked by a physician than those who overestimated or underestimated their vaccination status (76.7 vs. 63.0/43.8%, p = 0.002). Similar findings were seen with regard to diphtheria, pertussis and poliomyelitis vaccination. Patients without a regular vaccination card control (17.1%) were more likely to be male (44.6 vs. 29.4%, p = 0.037), had fewer siblings on average (1.1 vs. 1.6, p = 0.016), dealt less frequently with the issue of vaccination in the past year (32.1 vs. 69.3%, p < 0.001) and more frequently had the wish to receive vaccination advice (48.2 vs. 34.4%, p = 0.030) than patients in whom the vaccination card was checked regularly by a physician. To minimize the risk of infection in MS patients, treating physicians should provide regular vaccination counseling and perform vaccination card controls, as these factors are associated with a higher vaccination coverage and a higher validity of self-reported vaccination statuses.
Collapse
|
40
|
Srichawla BS. Dimethyl Fumarate-Induced Takotsubo Cardiomyopathy in a Patient With Relapsing-Remitting Multiple Sclerosis. Cureus 2022; 14:e23789. [PMID: 35518534 PMCID: PMC9067331 DOI: 10.7759/cureus.23789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 12/27/2022] Open
Abstract
Dimethyl fumarate (DMF) is an approved oral pharmacologic agent used in the treatment of relapsing-remitting multiple sclerosis (RRMS). Although commonly used in clinical practice, its mechanism of action remains largely unknown. Some frequent side effects associated with this drug are angioedema, hepatic injury, flushing, herpes zoster infection, and abdominal pain among others. A 47-year-old female presented with symptoms of an allergic reaction after initiating DMF therapy. She required intensive care unit admission due to an acute-hypoxic respiratory failure. A transthoracic echocardiogram (TTE) revealed apical ballooning and a left ventricular ejection fraction (LVEF) of 35%-40%. A coronary angiogram revealed no coronary artery disease. The diagnosis of takotsubo cardiomyopathy was made. The patient was managed with high-dose steroids and an epinephrine drip, in addition to a high-flow nasal cannula (HFNC) for respiratory support. At a three-month follow-up, a repeat TTE showed a resolution of the underlying takotsubo cardiomyopathy (CM) with no stunted myocardium and a normal ejection fraction (EF). Here, I highlight a life-threatening case of DMF-induced takotsubo CM and familiarize clinicians and patients with the need for close monitoring of symptoms when initiating disease-modifying drug (DMD) therapy.
Collapse
|
41
|
Yang Y, Song W, Wang N, Ren Y, Liu H. Tip-concentrated microneedle patch delivering everolimus for therapy of multiple sclerosis. BIOMATERIALS ADVANCES 2022; 135:212729. [PMID: 35929200 DOI: 10.1016/j.bioadv.2022.212729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis is a chronic progressive demyelinating disease of the central nervous system. At present, systemic drug therapy for multiple sclerosis has limited efficacy and serious side effects. Everolimus, as a new generation of mTOR inhibitors, can effectively alleviate the inflammatory reaction of the central nervous system and offers a promising choice for the treatment of multiple sclerosis. However, due to the low oral bioavailability and narrow response window of oral everolimus, a new delivery system is urgently needed to overcome the above problems. In this study, we constructed a tip-concentrated microneedle patch as a transdermal delivery system of everolimus for the treatment of multiple sclerosis. Here, the drug was concentrated in the needle tips by the rational design, making it delivered completely into the skin. The therapeutic effect of everolimus-loaded microneedles was evaluated using the experimental autoimmune encephalomyelitis (EAE) model and further verified with neurological function scores and the histopathological results of the spinal cord. These results indicated that the tip-concentrated microneedle patch provided an effective, safe and simple method for the transdermal delivery of everolimus, thus providing a new treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Yang Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Song
- Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Wang
- Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Ren
- Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongzhuo Liu
- Wuya Collage of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
42
|
Efficacy and Safety of Mesenchymal Stem Cell Transplantation in the Treatment of Autoimmune Diseases (Rheumatoid Arthritis, Systemic Lupus Erythematosus, Inflammatory Bowel Disease, Multiple Sclerosis, and Ankylosing Spondylitis): A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Stem Cells Int 2022; 2022:9463314. [PMID: 35371265 PMCID: PMC8970953 DOI: 10.1155/2022/9463314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/30/2023] Open
Abstract
Objective To evaluate the efficacy and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune diseases. Methods The Chinese and English databases were searched for clinical research on the treatment of autoimmune diseases with mesenchymal stem cells. The search time range is from a self-built database to October 1, 2021. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted data, and evaluated the bias of the included studies. RevMan 5.3 analysis software was used for meta-analysis. Results A total of 18 RCTs involving 5 autoimmune diseases were included. The 5 autoimmune disease were rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease, ankylosing spondylitis, and multiple sclerosis. For RA, the current randomized controlled trials (RCTs) still believe that stem cell transplantation may reduce disease activity, improve the clinical symptoms (such as DAS28), and the percentage of CD4+CD 25+Foxp3+Tregs in the response group increased and the percentage of CD4+IL-17A+Th17 cells decreased. The total clinical effective rate of RA is 54%. For SLE, the results showed that mesenchymal stem cell transplantation may improve SLEDAI [-2.18 (-3.62, -0.75), P = 0.003], urine protein [-0.93 (-1.04, -0.81), P < 0.00001], and complement C3 [0.31 (0.19, 0.42), P < 0.00001]. For inflammatory bowel disease, the results showed that mesenchymal stem cell transplantation may improve clinical efficacy [2.50 (1.07, 5.84), P = 0.03]. For ankylosing spondylitis, MSC treatment for 6 months may increase the total effective rate; reduce erythrocyte sedimentation rate, intercellular adhesion molecules, and serum TNF-α; and improve pain and activity. For multiple sclerosis, the current research results are still controversial, so more RCTs are needed to amend or confirm the conclusions. No obvious adverse events of mesenchymal stem cell transplantation were found in all RCTs. Conclusion MSCs have a certain effect on different autoimmune diseases, but more RCTs are needed to further modify or confirm the conclusion.
Collapse
|
43
|
Vollmer BL, Wolf AB, Sillau S, Corboy JR, Alvarez E. Evolution of Disease Modifying Therapy Benefits and Risks: An Argument for De-escalation as a Treatment Paradigm for Patients With Multiple Sclerosis. Front Neurol 2022; 12:799138. [PMID: 35145470 PMCID: PMC8821102 DOI: 10.3389/fneur.2021.799138] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
BackgroundStrategies for sequencing disease modifying therapies (DMTs) in multiple sclerosis (MS) patients include escalation, high efficacy early, induction, and de-escalation.ObjectiveTo provide a perspective on de-escalation, which aims to match the ratio of DMT benefit/risk in aging patients.MethodsWe reanalyzed data from a retrospective, real-world cohort of MS patients to model disease activity for oral (dimethyl fumarate and fingolimod) and higher efficacy infusible (natalizumab and rituximab) DMTs by age. For patients with relapsing MS, we conducted a controlled, stratified analysis examining odds of disease activity for oral vs. infusible DMTs in patients <45 or ≥45 years. We reviewed the literature to identify DMT risks and predictors of safe discontinuation.ResultsYounger patients had lower probability of disease activity on infusible vs. oral DMTs. There was no statistical difference after age 54.2 years. When dichotomized, patients <45 years on oral DMTs had greater odds of disease activity compared to patients on infusible DMTs, while among those ≥45 years, there was no difference. Literature review noted that adverse events increase with aging, notably infections in patients with higher disability and longer DMT duration. Additionally, we identified factors predictive of disease reactivation including age, clinical stability, and MRI activity.ConclusionIn a real-world cohort of relapsing MS patients, high efficacy DMTs had less benefit with aging but were associated with increased risks. This cohort helps overcome some limitations of trials where older patients were excluded. To better balance benefits/risks, we propose a DMT de-escalation approach for aging MS patients.
Collapse
|
44
|
Damianidou O, Theotokis P, Grigoriadis N, Petratos S. Novel contributors to B cell activation during inflammatory CNS demyelination; An oNGOing process. Int J Med Sci 2022; 19:164-174. [PMID: 34975310 PMCID: PMC8692119 DOI: 10.7150/ijms.66350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/11/2021] [Indexed: 11/05/2022] Open
Abstract
Over the past two decades, the development of targeted immunotherapeutics for relapsing-remitting multiple sclerosis has been successfully orchestrated through the efficacious modulation of neuroinflammatory outcomes demonstrated in the experimental autoimmune encephalomyelitis (EAE) model. In this model, the focus of developing immunomodulatory therapeutics has been demonstrated through their effectiveness in modifying the pro-inflammatory Th1 and Th17-dependent neuropathological outcomes of demyelination, oligodendrocytopathy and axonal dystrophy. However, recent successful preclinical and clinical trials have advocated for the significance of B cell-dependent immunopathogenic responses and has led to the development of novel biologicals that target specific B cell phenotypes. In this context, a new molecule, B-cell activating factor (BAFF), has emerged as a positive regulator of B cell survival and differentiation functioning through various signaling pathways and potentiating the activity of various receptor complexes through pleiotropic means. One possible cognate receptor for BAFF includes the Nogo receptor (NgR) and its homologs, previously established as potent inhibitors of axonal regeneration during central nervous system (CNS) injury and disease. In this review we provide current evidence for BAFF-dependent signaling through the NgR multimeric complex, elucidating their association within the CNS compartment and underlying the importance of these potential pathogenic molecular regulators as possible therapeutic targets to limit relapse rates and potentially MS progression.
Collapse
Affiliation(s)
- Olympia Damianidou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Paschalis Theotokis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
45
|
Shabalina D, Zulkaidarova A, Khramchenko M, Subocheva S, Abros’kina M, Prokopenko S. Experience of remote rehabilitation for patients with multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:69-73. [DOI: 10.17116/jnevro202212211169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Zhao Z, Lv Y, Gu ZC, Ma CL, Zhong MK. Risk for Cardiovascular Adverse Events Associated With Sphingosine-1-Phosphate Receptor Modulators in Patients With Multiple Sclerosis: Insights From a Pooled Analysis of 15 Randomised Controlled Trials. Front Immunol 2021; 12:795574. [PMID: 34950154 PMCID: PMC8688957 DOI: 10.3389/fimmu.2021.795574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background All agents engaging sphongosine-1-phospate receptors (S1PRs) will have some cardiovascular effect. This study aimed to elucidate the risk of cardiovascular adverse events (AEs) in patients with multiple sclerosis (MS) treated with S1PR modulators (S1PRMs). Methods We systematically searched the PubMed, EMBASE, and Cochrane Library databases for randomised controlled trials (RCTs) published through January 5, 2021. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated using the random-effects model. Sensitivity analyses and meta-regression were performed. Results Seventeen RCTs (12 for fingolimod; 3 for ozanimod; 2 for siponimod) involving 13,295 patients were included. Compared with the control treatment, S1PRMs significantly increased the risk of cardiovascular AEs (RR, 2.21; 95% CI, 1.58–3.10; I2, 75.6%). Notably, the high-risk cardiovascular AEs associated with S1PRMs were primarily bradyarrhythmia (RR, 2.92; 95% CI, 1.91–4.46; I2, 30.8%) and hypertension (RR, 2.00; 95% CI, 1.49–2.67; I2, 56.5%). Subgroup analysis results were consistent with the primary outcomes except that ozanimod was associated with a higher risk of hypertension only (RR, 1.76; 95% CI, 1.10–2.82; I2, 0.0%), while siponimod was associated with a higher risk of bradyarrhythmia only (RR, 2.75; 95% CI, 1.75–4.31; I2, 0.0%). No significant inter-subgroup differences were observed (Pinteraction > 0.05). Conclusions S1PRM use increased the risk of cardiovascular AEs by 1.21 times in patients with MS, and increased risks for bradyarrhythmia and hypertension were at 2.92- and 2.00-fold, respectively. These findings can help clinicians assess the risk of cardiovascular AEs in patients treated with S1PRMs. Systematic Review Registration The PROSPERO ID is CRD42020183215.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Lv
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.,The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhi-Chun Gu
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Patel C, Zagon IS, Pearce-Clawson M, McLaughlin PJ. Timing of treatment with an endogenous opioid alters immune response and spinal cord pathology in female mice with experimental autoimmune encephalomyelitis. J Neurosci Res 2021; 100:551-563. [PMID: 34821408 DOI: 10.1002/jnr.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a progressive disease of the central nervous system (CNS) that primarily affects women during the second or third decade of life. The mechanism is hypothesized to involve unregulated peripheral inflammation resulting in blood-brain barrier damage, and eventual axonal damage and demyelination. Based on this understanding, the animal model of MS, experimental autoimmune encephalomyelitis (EAE), often is utilized to study lymphocyte activation. Therapeutic paradigms of exogenous opioid growth factor (OGF) or low-dose naltrexone (LDN) treatment can modulate EAE, but little is reported regarding OGF or LDN effects on peripheral inflammation, microglia activation, and/or macrophage proliferation. Moreover, little is known about differential responses to LDN or OGF relative to the duration and timing of treatment. Utilizing a female mouse model of EAE, two treatment regimens were established to investigate differences between prophylactic treatment and traditional therapy initiated at the time of disease presentation. Prophylactic OGF or LDN treatment delayed the onset of behavior, suppressed neutrophil replication, and curtailed lymphocyte proliferation which ultimately improved behavioral outcome. Traditional therapy with OGF or LDN reversed behavioral deficits, restored OGF and IL-17 serum levels, and inhibited microglial activation within 8 days. Reduced serum OGF levels in untreated EAE mice correlated with increased microglia activation within lumbar spinal cords. Both treatment regimens of OGF or LDN reduced activated microglia, whereas only prophylactic treatment prevented CNS macrophage aggregation. These data demonstrate that the timing of LDN or OGF treatment initiation alters outcomes and can prevent or reverse behavioral deficits, cytokine activation, and spinal cord pathology.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ian S Zagon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mason Pearce-Clawson
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Patricia J McLaughlin
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
48
|
Mohammad Rezaie S, Shahabinejad M, Loripoor M, Sayadi AR. The effect of aromatherapy with lavender essential oil on the working memory of women with multiple sclerosis. J Med Life 2021; 14:776-781. [PMID: 35126747 PMCID: PMC8811666 DOI: 10.25122/jml-2020-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/23/2021] [Indexed: 11/19/2022] Open
Abstract
Working memory, one of the cognitive components, may be impaired in patients with multiple sclerosis. Accordingly, this study aims to determine the effects of aromatherapy with lavender essential oil on the working memory of women with multiple sclerosis (MS). In this clinical trial, 60 women with multiple sclerosis were selected using the sampling method from patients referred to the MS Clinic of Rafsanjan. Based on the inclusion and exclusion criteria, the participants were randomly divided into intervention and placebo groups. In addition, the working memory test developed by Daneman and Carpenter was used to evaluate the participants’ working memory before the intervention and the day after the last intervention. The collected data were analyzed using SPSS Statistics version 18.0. According to intragroup comparison results and based on the paired t-test, the mean score of the working memory before the intervention in the intervention group was 82.77±6.87, which increased to 87.64±5.57 after the intervention (P<0.001). The average working memory score of the placebo group was 80.30±11.09 and 82.09±11.31 before and after the intervention, respectively, which did not have a statistically significant difference (P=0.154). Based on findings from the independent t-test, the mean scores of working memory had a statistically significant difference between the intervention and placebo groups after the intervention (P=0.02). According to the results from this study, aromatherapy with lavender essential oil improved working memory in women with multiple sclerosis.
Collapse
Affiliation(s)
- Sara Mohammad Rezaie
- Internal Surgery Nursing, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Shahabinejad
- Department of Medical Surgical Nursing, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Marzeyeh Loripoor
- Department of Midwifery, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Reza Sayadi
- Department of Psychiatric Nursing, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
49
|
Nucleic Acids as Novel Therapeutic Modalities to Address Multiple Sclerosis Onset and Progression. Cell Mol Neurobiol 2021; 42:2611-2627. [PMID: 34694513 DOI: 10.1007/s10571-021-01158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023]
Abstract
The issue of treating Multiple Sclerosis (MS) begins with disease-modifying treatments (DMTs) which may cause lymphopenia, dyspnea, and many other adverse effects. Consequently, further identification and evaluation of alternative treatments are crucial to monitoring their long-term outcomes and hopefully, moving toward personalized approaches that can be translated into clinical treatments. In this article, we focused on the novel therapeutic modalities that alter the interaction between the cellular constituents contributing to MS onset and progression. Furthermore, the studies that have been performed to evaluate and optimize drugs' efficacy, and particularly, to show their limitations and strengths are also presented. The preclinical trials of novel approaches for multiple sclerosis treatment provide promising prospects to cure the disease with pinpoint precision. Considering the fact that not a single treatment could be effective enough to cover all aspects of MS treatment, additional researches and therapies need to be developed in the future. Since the pathophysiology of MS resembles a jigsaw puzzle, researchers need to put a host of pieces together to create a promising window towards MS treatment. Thus, a combination therapy encompassing all these modules is highly likely to succeed in dealing with the disease. The use of different therapeutic approaches to re-induce self-tolerance in autoreactive cells contributing to MS pathogenesis is presented. A Combination therapy using these tools may help to deal with the clinical disabilities and symptoms of the disease in the future.
Collapse
|
50
|
Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front Immunol 2021; 12:749192. [PMID: 34646275 PMCID: PMC8503317 DOI: 10.3389/fimmu.2021.749192] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs) have been demonstrated in preclinical studies and trials of inflammatory and autoimmune diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is primarily attributed to the paracrine pathway. As one of the key paracrine effectors, mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in diameter that play an important role in cell-to-cell communication by carrying bioactive substances from parental cells. Recent studies support the finding that MSC-EXOs have an obvious inhibitory effect toward different effector cells involved in the innate and adaptive immune response. Moreover, substantial progress has been made in the treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs instead of MSCs to treat autoimmune diseases appears to be a promising cell-free treatment strategy. In this review, we review the current understanding of MSC-EXOs and discuss the regulatory role of MSC-EXOs on immune cells and its potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|