1
|
Rao B, Zhang M, Liu M, Tu Y. Odoratin balances ROS/NO through EZH2/PPARγ signalling to improve myocardial fibrosis. Clin Exp Pharmacol Physiol 2024; 51. [PMID: 39462856 DOI: 10.1111/1440-1681.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Myocardial fibrosis is a critical concern in clinical medicine. This study explores the potential of odoratin as a treatment for myocardial fibrosis and investigates its underlying mechanisms. In vitro experiments involved stimulating primary mouse cardiomyocytes with TGF-β1, followed by odoratin treatment, to assess levels of reactive oxygen species (ROS) and nitric oxide (NO). In vivo, a mouse model of myocardial fibrosis was established using abdominal aortic constriction (AAC) and treated with odoratin. ROS and NO levels in myocardial tissue were then evaluated. Immunofluorescence and Western blotting analysis showed that odoratin reduced excess ROS, enhanced NO production and decreased fibrosis-related protein expression in vitro. In vivo, odoratin significantly improved cardiac function, reduced ROS, increased NO levels and mitigated fibrosis in AAC-induced mice. Both in vitro and in vivo, odoratin inhibited the expression of NADPH oxidase 4 and EZH2, while promoting the expression of phosphorylated endothelial nitric oxide synthase (p-eNOS) and PPARγ. The anti-fibrotic effects of odoratin were reversed by PPARγ antagonism, and EZH2 overexpression diminished PPARγ activation by odoratin. These findings suggest that odoratin may combat myocardial fibrosis by balancing ROS and NO through PPARγ activation, with EZH2 inhibition likely playing a key regulatory role.
Collapse
Affiliation(s)
- Bin Rao
- Nanchang Medical College, Nanchang, China
- Jiangxi Health Vocational College, Nanchang, China
| | - Min Zhang
- Shangrao Health Vocational College, Shangrao, China
| | - Min Liu
- Nanchang Medical College, Nanchang, China
| | - Yan Tu
- Nanchang Medical College, Nanchang, China
- Jiangxi Health Vocational College, Nanchang, China
| |
Collapse
|
2
|
Shao R, Chen R, Zheng Q, Yao M, Li K, Cao Y, Jiang L. Oxidative stress disrupts vascular microenvironmental homeostasis affecting the development of atherosclerosis. Cell Biol Int 2024. [PMID: 39370593 DOI: 10.1002/cbin.12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 10/08/2024]
Abstract
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
Collapse
Affiliation(s)
- Ruifei Shao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Rui Chen
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Qiang Zheng
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Mengyu Yao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kunlin Li
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lihong Jiang
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
4
|
Zhang Y, Huang F, Wu Y, Jiao L, Wang Y, Ding T. Protective effect of rubber seed oil on human endothelial cells. J Mol Histol 2024; 55:589-598. [PMID: 38890233 PMCID: PMC11306359 DOI: 10.1007/s10735-024-10198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study was conducted to characterize the antioxidant and anti-inflammatory properties of Rubber Seed Oil (RSO) against atherosclerosis (AS) through the study of the protective effects and mechanisms on human umbilical vein endothelial cells (HUVECs) injury induced by oxidized low-density lipoprotein (ox-LDL). METHODS HUVECs were treated with RSO, ox-LDL, RSO + ox-LDL, respectively, followed by cell activity testing, levels of IL-1β, IL-6, IL-10, TNF-α, ROS, NO, the mRNA expression of eNOS and protein expression of MCP-1, VCAM-1, eNOS, TLR4, NF-κB p65、p-NF-κB p65. RESULTS Compared with the ox-LDL group, cell viability, NO level and the expression of eNOS mRNA significantly increased. and the levels of pro-inflammatory factors such as IL-1β, IL-6, TNF-α, IL-10, ROS were significantly decreased, which was accompanied by decreases in TLR4 mRNA, TLR4, MCP-1, VCAM-1 protein expression, as well as the ratio of NF-κB p-p65/p65 in the group treated with 250 μg/ml ox-LDL + 50 μg/ml RSO, 250 μg/ml ox-LDL + 100 μg/ml RSO, 250 μg/ml ox-LDL + 150 μg/ml RSO. CONCLUSIONS RSO can reduce the expression of pro-inflammatory mediators, oxidative factors involved in injured vascular endothelial cells, exhibiting anti-inflammatory and antioxidant properties HUVECs exposed to ox-LDL. In addition, it may alleviate endothelial cell damage by inhibiting the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhang
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Fuchuan Huang
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Yiran Wu
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Linmei Jiao
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Yun Wang
- Xishuangbanna Huakun Biotechnology Co., Ltd, Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan, China
| | - Tao Ding
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Maleki MH, Vakili O, Tavakoli R, Nadimi E, Noori Z, Taghizadeh M, Dehghanian A, Tayebi L, Shafiee SM. Protective and curative effects of unconjugated bilirubin on gene expression of LOX-1 and iNOS in the heart of rats receiving high-fat diet and low dose streptozotocin: a histomorphometric approach. J Inflamm (Lond) 2024; 21:26. [PMID: 38982470 PMCID: PMC11234610 DOI: 10.1186/s12950-024-00397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory condition affecting the large arteries and is a major cause of cardiovascular diseases (CVDs) globally. Increased levels of adhesion molecules in cardiac tissue serve as prognostic markers for coronary artery occlusion risk. Given the antioxidant properties of bilirubin and its inverse correlation with atherosclerosis, this study aimed to assess the beneficial effects of bilirubin on atherosclerotic indices and heart structure in high-fat diet-fed diabetic rats with atherosclerosis. METHODS Atherosclerosis was induced in three out of five groups of adult male Sprague Dawley rats through a 14-week period of high-fat diet (HFD) consumption and a single low dose of streptozotocin (STZ) (35 mg/kg). The atherosclerotic rats were then treated with intraperitoneal administration of 10 mg/kg/day bilirubin for either 6 or 14 weeks (treated and protected groups, respectively), or the vehicle. Two additional groups served as the control and bilirubin-treated rats. Subsequently, the mRNA expression levels of vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), lectin-like LDL receptor 1 (LOX-1), and the inducible nitric oxide synthase (iNOS) were analyzed using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Histopathological and stereological analyses were performed to assess changes in the heart structure. RESULTS Bilirubin significantly decreased the expression of VCAM-1, ICAM-1, LOX-1, and iNOS genes in the treated group. Moreover, bilirubin mitigated pathological damage in the left ventricle of the heart. Stereological analysis revealed a decrease in the left ventricle and myocardium volume, accompanied by an increase in vessel volume in rats treated with bilirubin. CONCLUSION These findings demonstrate that mild hyperbilirubinemia can protect against the progression of atherosclerosis and heart failure by improving lipid profile, modulating adhesion molecules, LOX-1, and iNOS gene expression levels.
Collapse
Affiliation(s)
- Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Tavakoli
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Noori
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Pathology and Cytogenetics Division, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Chen F, Yu X. Circ_0002331 Interacts with ELAVL1 to Improve ox-LDL-Induced Vascular Endothelial Cell Dysfunction via Regulating CCND2 mRNA Stability. Cardiovasc Toxicol 2024; 24:625-636. [PMID: 38743320 DOI: 10.1007/s12012-024-09865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Circular RNAs (circRNAs) have been discovered to serve as vital regulators in atherosclerosis (AS). However, the role and mechanism of circ_0002331 in AS process are still unclear. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL to establish an in vitro model for AS. The expression levels of circ_0002331, Cyclin D2 (CCND2) and ELAVL1 were analyzed by quantitative real-time PCR. Cell proliferation, apoptosis, migration, invasion and angiogenesis were assessed by EdU assay, flow cytometry, transwell assay and tube formation assay. The protein levels of CCND2, ELAVL1, and autophagy-related markers were detected using western blot analysis. IL-8 level was analyzed by ELISA. The relationship between ELAVL1 and circ_0002331 or CCND2 was analyzed by RIP assay and RNA pull-down assay. Moreover, FISH assay was used to analyze the co-localization of ELAVL1 and CCND2 in HUVECs. Our data showed that circ_0002331 was obviously downregulated in AS patients and ox-LDL-induced HUVECs. Overexpression of circ_0002331 could promote proliferation, migration, invasion and angiogenesis, while inhibit apoptosis, autophagy and inflammation in ox-LDL-induced HUVECs. Furthermore, CCND2 was positively regulated by circ_0002331, and circ_0002331 could bind with ELAVL1 to promote CCND2 mRNA stability. Besides, CCND2 overexpression suppressed ox-LDL-induced HUVECs dysfunction, and its knockdown also reversed the regulation of circ_0002331 on ox-LDL-induced HUVECs dysfunction. In conclusion, circ_0002331 might be a potential target for AS treatment, which could improve ox-LDL-induced dysfunction of HUVECs via regulating CCND2 by binding with ELAVL1.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiovascular Medicine, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xiufeng Yu
- Department of Emergency Medicine, Lishui People's Hospital, No. 1188 Liyang Street, Yanquan Avenue, Liandu District, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
7
|
Liu Y, Long Y, Fang J, Liu G. Advances in the Anti-Atherosclerotic Mechanisms of Epigallocatechin Gallate. Nutrients 2024; 16:2074. [PMID: 38999821 PMCID: PMC11243004 DOI: 10.3390/nu16132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis (AS) is a common clinical sickness and the major pathological basis of ischemic cardiocerebrovascular diseases (CCVDs). The pathogenesis of AS involves a variety of risk factors, and there is a lack of effective preventive and curative drugs that can completely treat AS. In recent years, with the improvement of people's living standards and changes in dietary habits, the morbidity and mortality rates of AS are on the rise, and the age of onset tends to be younger. The formation of AS is closely related to a variety of factors, and the main factors include lipid metabolism disorders, endothelial damage, inflammation, unstable plaques, etc. Epigallocatechin gallate (EGCG), as one of the main components of catechins, has a variety of pharmacological effects, and its role in the prevention of AS and the protection of cardiovascular and cerebral blood vessels has been highly valued. Recent epidemiological investigations and various in vivo and ex vivo experiments have shown that EGCG is capable of resisting atherosclerosis and reducing the morbidity and mortality of AS. In this paper, we reviewed the anti-AS effects of EGCG and its mechanisms in recent years, including the regulation of lipid metabolism, regulation of intestinal flora disorders, improvement of vascular endothelial cell functions, inhibition of inflammatory factors expression, regulation of inflammatory signaling pathways, inhibition of matrix metalloproteinase (MMP) expression, and inhibition of platelet aggregation, which are helpful for the prevention of cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yiling Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Li X, Zou J, Lin A, Chi J, Hao H, Chen H, Liu Z. Oxidative Stress, Endothelial Dysfunction, and N-Acetylcysteine in Type 2 Diabetes Mellitus. Antioxid Redox Signal 2024; 40:968-989. [PMID: 38497734 DOI: 10.1089/ars.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junyong Zou
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Aiping Lin
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jingshu Chi
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Hao
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Chen
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenguo Liu
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
9
|
Hou Y, Fan Y, Cheng Y, Peng X, Shan C, Yang Y. Comparative Analysis of the Anti-Inflammatory Effects of Liraglutide and Dulaglutide. Int Heart J 2024; 65:548-556. [PMID: 38749748 DOI: 10.1536/ihj.23-576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Inflammation plays a pathophysiological role in atherosclerosis and its clinical consequences. In addition to glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are of wide concern for cardioprotective effects. The structure, half-life, homology, and clinical efficacy of GLP-1RAs exhibit remarkable disparity. Several studies have compared the disparities in anti-inflammatory effects between daily and weekly GLP-1RAs. This study aimed to compare the similarities and differences between liraglutide and dulaglutide in terms of inhibiting atherosclerotic inflammation and improving co-cultured endothelial cell function. The expression of inflammation markers was examined by immunofluorescence, Western blotting, and real-time PCR. The tube-forming ability of endothelial cells was tested on Matrigel. The results verify that 10/50/100 nmol/L liraglutide and 100 nmol/L dulaglutide markedly suppressed the expression of inflammatory factors in LPS-induced atherosclerosis after 24 and 72 hours, respectively. Moreover, they promoted the polarization of M1 macrophages toward the M2 phenotype and improved the function of co-cultured endothelial cells. Both liraglutide and dulaglutide ameliorate atherosclerosis development. The difference between the two resided in the extended intervention duration required to observe the effect of dulaglutide, and liraglutide demonstrated a superior dose-dependent manner. We provide a potential strategy to understand the dynamics of drug action and possible timing administration.
Collapse
Affiliation(s)
- Yi Hou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yini Fan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yuan Cheng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Xiaoyue Peng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| |
Collapse
|
10
|
Chen Y, Zeng M, Xie J, Xiong Z, Jin Y, Pan Z, Spanos M, Wang T, Wang H. MiR-421 mediates PM 2.5-induced endothelial dysfunction via crosstalk between bronchial epithelial and endothelial cells. Inhal Toxicol 2024:1-10. [PMID: 38776440 DOI: 10.1080/08958378.2024.2356839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE PM2.5 is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM2.5 induced an increased release of miR-421 from the bronchial epithelium. However, the role of miR-421 in PM2.5-induced endothelial injury remains elusive. MATERIALS AND METHODS We utilized a subacute PM2.5-exposure model in mice in vivo and an acute injury cell model in vitro to simulate PM2.5-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of miR-421 in PM2.5-induced endothelial injury. RESULTS Our findings reveal that inhibition of miR-421 attenuated PM2.5-induced endothelial injury and hypertension. Mechanistically, miR-421 inhibited the expression of angiotensin-converting enzyme 2 (ACE2) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible nitric oxide synthase (iNOS), thereby exacerbating PM2.5-induced endothelial injury. CONCLUSIONS Our results indicate that PM2.5 exposure facilitates crosstalk between bronchial epithelial and endothelial cells via miR-421/ACE2/iNOS signaling pathway, mediating endothelial damage and hypertension. MiR-421 inhibition may offer a new strategy for the prevention and treatment of PM2.5-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Yiqing Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengting Zeng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
| | - Jinxin Xie
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
| | - Zhihao Xiong
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
| | - Yuxin Jin
- QianWeiChang College, Shanghai University, Shanghai, China
| | - Zihan Pan
- QianWeiChang College, Shanghai University, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong, China
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Nantong, China
| |
Collapse
|
11
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
12
|
Zhang J, Gao L, Yang GL, Kong DZ. The effect of single nucleotide polymorphisms on depression in combination with coronary diseases: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1369676. [PMID: 38745947 PMCID: PMC11091366 DOI: 10.3389/fendo.2024.1369676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Background Depression and coronary heart disease (CHD) have common risk mechanisms. Common single nucleotide polymorphisms (SNPs) may be associated with the risk of depression combined with coronary heart disease. Methods This study was designed according to the PRISMA-P guidelines. We will include case-control studies and cohort studies investigating the relationship between gene SNPs and depression and coronary heart disease comorbidities. The Newcastle-Ottawa Scale (NOS) will be used to assess the risk of bias. When measuring dichotomous outcomes, we will use the odds ratio (OR) and 95% confidence interval (95%CIs) in a case-control study. Five genetic models (allele model, homozygous model, co-dominant model, dominant model, and recessive model) will be evaluated for each included study. Subgroup analysis by ethnicity will be performed. If necessary, post hoc analysis will be made according to different types. Results A total of 13 studies were included in this study, and the types of genes included are FKBP5 and SGK1 genes that act on glucocorticoid; miR-146a, IL-4-589, IL-6-174, TNF-α-308, CRP-717 genes that act on inflammatory mechanisms; eNOS genes from endothelial cells; HSP70 genes that act on the autoimmune response; ACE2 and MAS1 genes that act to mediate Ang(1-7) in the RAS system; 5-HTTLPR gene responsible for the transport of serotonin 5-HT and neurotrophic factor BDNF gene. There were three studies on 5-HTTLPR and BDNF genes, respectively, while there was only one study targeting FKBP5, SGK1, miR-146a, IL-4-589, IL-6-174, TNF-alpha-308, CRP-717, eNOS, HSP70, ACE2, and MAS1 genes. We did not perform a meta-analysis for genes reported in a single study, and meta-analysis was performed separately for studies exploring the 5-HTTLPR and BDNF genes. The results showed that for the 5-HTTLPR gene, there was a statistically significant association between 5-HTTLPR gene polymorphisms and depression in combination with coronary diseases (CHD-D) under the co-dominant model (LS vs LL: OR 1.76, 95%CI 1.20-2.59; SS vs LL: OR 2.80, 95%CI 1.45 to 5.41), the dominant model (LS+SS vs LL: OR 2.06, 95%CI 1.44 to 2.96), and the homozygous model (SS vs LL: OR 2.80 95%CI 1.45 to 5.5.41) were statistically significant for CHD-D, demonstrating that polymorphisms in the 5-HTTLPR gene are associated with the development of CHD-D and that the S allele in the 5-HTTLPR gene is likely to be a risk factor for CHD-D. For the BDNF gene, there were no significant differences between one of the co-dominant gene models (AA vs GG: OR 6.63, 95%CI 1.44 to 30.64), the homozygous gene model (AA vs GG: OR 6.63,95% CI 1.44 to 30.64), the dominant gene model (GA+AA vs GG: OR4.29, 95%CI 1.05 to 17.45), recessive gene model (AA vs GG+GA: OR 2.71, 95%CI 1.16 to 6.31), and allele model (A vs G: OR 2.59, 95%CI 1.18 to 5.67) were statistically significant for CHD-D, demonstrating that BDNFrs6265 gene polymorphisms are associated with the CHD-D development and that the A allele in the BDNFrs6265 gene is likely to be a risk factor for CHD-D. We analyzed the allele frequencies of SNPs reported in a single study and found that the SNPs in the microRNA146a gene rs2910164, the SNPs in the ACE2 gene rs2285666 and the SNPs in the SGK1 gene rs1743963 and rs1763509 were risk factors for the development of CHD-D. We performed a subgroup analysis of three studies involving the BDNFrs6265 gene. The results showed that European populations were more at risk of developing CHD-D than Asian populations in both dominant model (GA+AA vs GG: OR 10.47, 95%CI 3.53 to 31.08) and co-dominant model (GA vs GG: OR 6.40, 95%CI 1.98 to 20.73), with statistically significant differences. In contrast, the studies involving the 5-HTTLPR gene were all Asian populations, so subgroup analyses were not performed. We performed sensitivity analyses of studies exploring the 5-HTTLPR and BDNF rs6265 genes. The results showed that the results of the allele model, the dominant model, the recessive model, the homozygous model and the co-dominant model for both 5-HTTLPR and BDNF rs6265 genes were stable. Due to the limited number of studies of the 5-HTTLPR and BDNF genes, it was not possible to determine the symmetry of the funnel plot using Begg's funnel plot and Egger's test. Therefore, we did not assess publication bias. Discussion SNPs of the microRNA146a gene at rs2910164, the ACE2 gene at the rs2285666 and the SGK1 gene at rs1743963 and rs1763509, and the SNPs at the 5-HTTLPR and BDNF gene loci are associated with the onset of comorbid depression in coronary heart disease. We recommend that future research focus on studying SNPs' impact on comorbid depression in coronary heart disease, specifically targeting the 5-HTTLPR and BDNF gene at rs6265. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021229371.
Collapse
Affiliation(s)
| | | | | | - De Zhao Kong
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Zhou B, Sh G, Xie D, Zhao X, Hao B, Liu D, Wang M, Wu L, Lin L, Qian X. Ginsenoside Rb1 prevents age-related endothelial senescence by modulating SIRT1/caveolin-1/enos signaling pathway. Heliyon 2024; 10:e24586. [PMID: 38322899 PMCID: PMC10844051 DOI: 10.1016/j.heliyon.2024.e24586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Background Advancing age is one of the independent risk factors for cardiovascular disorders. The Compendium of Materia Medica, a classic book on traditional Chinese medicine, states that ginseng "harmonizes the five internal organs, calming the spirit and prolonging the years of life." Considered one of the primary bioactive compounds derived from Panax ginseng, ginsenoside Rb1 (g-Rb1) has been scientifically suggested to possess anti-senescence efficacy. More research is needed to explore the vascular pharmacological activity and potential clinical application value of g-Rb1. Aims of the study Our previous study demonstrated that g-Rb1 could mitigate cellular senescence via the SIRT1/eNOS pathway. This study was performed to explore the exact mechanisms by which g-Rb1 modulates the SIRT1/eNOS pathway. Materials and methods We used human primary umbilical vein endothelial cells (HUVECs) to establish a replicative ageing model. Real-time (RT‒PCR), western blotting, small interfering RNA (siRNA), and immunoprecipitation were conducted to detect the effect of g-Rb1 on the SIRT1/caveolin-1/eNOS axis. Results G-Rb1 increased NO production and alleviated replicative senescence of HUVECs. The application of g-Rb1 elevated the mRNA and protein abundance of both SIRT1 and eNOS while concomitantly suppressing the expression of caveolin-1. Inhibition of SIRT1 and eNOS by siRNAs suppressed the anti-senescence function of g-Rb1, while caveolin-1 siRNA could enhance it. G-Rb1 decreased the acetylation level of caveolin-1 and increased NO production, which was suppressed by SIRT1 siRNA. Both g-Rb1 and caveolin-1 siRNA could reduce the acetylation level of eNOS and increase NO production. Conclusion G-Rb1 prevents age-related endothelial senescence by modulating the SIRT1/caveolin-1/eNOS signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Baoshun Hao
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dinhui Liu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Wu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liangying Lin
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxian Qian
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Mosleh MM, Sohn MJ, Kim HS. Endothelial marker profiles in cerebral radiation-induced vasculopathy: A comparative immunohistochemical analysis. Medicine (Baltimore) 2024; 103:e37130. [PMID: 38306519 PMCID: PMC10843420 DOI: 10.1097/md.0000000000037130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Radiation therapy results in radiation-induced vasculopathy, characterized by alterations in the vascular architecture stemming from radiation exposure. The exact molecular pathways and associated pathologies of this condition have yet to be comprehensively understood. This study aimed to identify specific markers' roles in cerebral vascular endothelial injury pathogenesis after radiosurgery and explore their unique expression patterns in diverse pathologies post-stereotactic radiosurgery. A retrospective cohort study was conducted to assess the expression profiles of endothelial markers via immunohistochemical analysis in 25 adult patients (13 males and 12 females) who had undergone neurosurgical resection for various central nervous system pathologies following stereotactic radiosurgery or radiotherapy from 2001 to 2015. Our findings revealed strong immunohistochemical expression of ICAM-1 and E-selectin across various disease states, while MMP-9, PAI-1, and eNOS exhibited moderate expression levels. In contrast, VCAM-1 and P-Selectin had the weakest expression across all groups. Notably, while individual markers showed significant variations in expression levels when comparing different diseases (P < .001), no substantial differences were found in the overall immunohistochemical expression patterns across the 5 distinct pathologies studied (P = .407, via 2-way ANOVA). Despite the varied long-term effects of radiotherapy on the vascular endothelium, a common thread of inflammation runs through the pathology of these conditions. The distinct patterns of marker expression identified in our study suggest that different markers play unique roles in the development of radiation-induced vasculopathy. These findings offer insights that could lead to the development of novel preventive strategies and treatments.
Collapse
Affiliation(s)
- Mohammad Mohsen Mosleh
- Department of Biomedical Science, Graduate School of Medicine, Inje University, Busanjin-gu, Busan, Korea
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, Busanjin-gu, Busan, Korea
- Department of Neurosurgery and Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Ilsanseo-gu, Goyang City, Gyeonggi-do, Korea
| | - Han Seong Kim
- Department of Pathology, Inje University Ilsan Paik Hospital, Inje University Ilsan Paik Hospital, College of Medicine, Ilsanseo-gu, Goyang City, Gyeonggi-do, Korea
| |
Collapse
|
15
|
Webster KA. Translational Relevance of Advanced Age and Atherosclerosis in Preclinical Trials of Biotherapies for Peripheral Artery Disease. Genes (Basel) 2024; 15:135. [PMID: 38275616 PMCID: PMC10815340 DOI: 10.3390/genes15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD), primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revascularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI) and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or progenitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are approved in the US, EU, or China. The reasons are unclear, but animal models that do not represent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on inappropriate models. The question is significant because the former case requires abandonment of current strategies, while the latter encourages continued optimization. These issues are discussed in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse models that include age and atherosclerosis as the only comorbidities that are consistently present and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials, no biopharmacological procedure that failed in clinical trials had been tested in animal models that included advanced age and atherosclerosis relevant to PAD/CLI.
Collapse
Affiliation(s)
- Keith A. Webster
- Vascular Biology Institute, University of Miami, Miami, FL 33146, USA;
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Kazaleh M, Gioscia-Ryan R, Ailawadi G, Salmon M. Oxidative Stress and the Pathogenesis of Aortic Aneurysms. Biomedicines 2023; 12:3. [PMID: 38275364 PMCID: PMC10813769 DOI: 10.3390/biomedicines12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Aortic aneurysms are responsible for significant morbidity and mortality. Despite their clinical significance, there remain critical knowledge gaps in the pathogenesis of aneurysm disease and the mechanisms involved in aortic rupture. Recent studies have drawn attention to the role of reactive oxygen species (ROS) and their down-stream effectors in chronic cardiovascular diseases and specifically in the pathogenesis of aortic aneurysm formation. This review will discuss current mechanisms of ROS in mediating aortic aneurysms, the failure of endogenous antioxidant systems in chronic vascular diseases, and their relation to the development of aortic aneurysms.
Collapse
Affiliation(s)
- Matthew Kazaleh
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Piao X, Ma L, Xu Q, Zhang X, Jin C. Noncoding RNAs: Versatile regulators of endothelial dysfunction. Life Sci 2023; 334:122246. [PMID: 37931743 DOI: 10.1016/j.lfs.2023.122246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Noncoding RNAs have recently emerged as versatile regulators of endothelial dysfunction in atherosclerosis, a chronic inflammatory disease characterized by the formation of plaques within the arterial walls. Through their ability to modulate gene expression, noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, play crucial roles in various cellular processes involved in endothelial dysfunction (ECD), such as inflammation, pyroptosis, migration, proliferation, apoptosis, oxidative stress, and angiogenesis. This review provides an overview of the current understanding of the regulatory roles of noncoding RNAs in endothelial dysfunction during atherosclerosis. It highlights the specific noncoding RNAs that have been implicated in the pathogenesis of ECD, their target genes, and the mechanisms by which they contribute to ECD. Furthermore, we have reviewed the current therapeutics in atherosclerosis and explore their interaction with noncoding RNAs. Understanding the intricate regulatory network of noncoding RNAs in ECD may open up new opportunities for the development of novel therapeutic strategies to combat ECD.
Collapse
Affiliation(s)
- Xiong Piao
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China.
| | - Lie Ma
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Qinqi Xu
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Xiaomin Zhang
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Chengzhu Jin
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
18
|
Cecchini AL, Biscetti F, Manzato M, Lo Sasso L, Rando MM, Nicolazzi MA, Rossini E, Eraso LH, Dimuzio PJ, Massetti M, Gasbarrini A, Flex A. Current Medical Therapy and Revascularization in Peripheral Artery Disease of the Lower Limbs: Impacts on Subclinical Chronic Inflammation. Int J Mol Sci 2023; 24:16099. [PMID: 38003290 PMCID: PMC10671371 DOI: 10.3390/ijms242216099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CeVD) are characterized by atherosclerosis and inflammation as their underlying mechanisms. This paper aims to conduct a literature review on pharmacotherapy for PAD, specifically focusing on how different drug classes target pro-inflammatory pathways. The goal is to enhance the choice of therapeutic plans by considering their impact on the chronic subclinical inflammation that is associated with PAD development and progression. We conducted a comprehensive review of currently published original articles, narratives, systematic reviews, and meta-analyses. The aim was to explore the relationship between PAD and inflammation and evaluate the influence of current pharmacological and nonpharmacological interventions on the underlying chronic subclinical inflammation. Our findings indicate that the existing treatments have added anti-inflammatory properties that can potentially delay or prevent PAD progression and improve outcomes, independent of their effects on traditional risk factors. Although inflammation-targeted therapy in PAD shows promising potential, its benefits have not been definitively proven yet. However, it is crucial not to overlook the pleiotropic properties of the currently available treatments, as they may provide valuable insights for therapeutic strategies. Further studies focusing on the anti-inflammatory and immunomodulatory effects of these treatments could enhance our understanding of the mechanisms contributing to the residual risk in PAD and pave the way for the development of novel therapies.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Manzato
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Lo Sasso
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Anna Nicolazzi
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrica Rossini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Massetti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Flex
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
19
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Roy R, Wilcox J, Webb AJ, O’Gallagher K. Dysfunctional and Dysregulated Nitric Oxide Synthases in Cardiovascular Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2023; 24:15200. [PMID: 37894881 PMCID: PMC10607291 DOI: 10.3390/ijms242015200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Nitric oxide (NO) plays an important and diverse signalling role in the cardiovascular system, contributing to the regulation of vascular tone, endothelial function, myocardial function, haemostasis, and thrombosis, amongst many other roles. NO is synthesised through the nitric oxide synthase (NOS)-dependent L-arginine-NO pathway, as well as the nitrate-nitrite-NO pathway. The three isoforms of NOS, namely neuronal (NOS1), inducible (NOS2), and endothelial (NOS3), have different localisation and functions in the human body, and are consequently thought to have differing pathophysiological roles. Furthermore, as we continue to develop a deepened understanding of the different roles of NOS isoforms in disease, the possibility of therapeutically modulating NOS activity has emerged. Indeed, impaired (or dysfunctional), as well as overactive (or dysregulated) NOS activity are attractive therapeutic targets in cardiovascular disease. This review aims to describe recent advances in elucidating the physiological role of NOS isoforms within the cardiovascular system, as well as mechanisms of dysfunctional and dysregulated NOS in cardiovascular disease. We then discuss the modulation of NO and NOS activity as a target in the development of novel cardiovascular therapeutics.
Collapse
Affiliation(s)
- Roman Roy
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
| | - Joshua Wilcox
- Cardiovascular Department, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Andrew J. Webb
- Department of Clinical Pharmacology, British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London SE1 7EH, UK;
| | - Kevin O’Gallagher
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 9NU, UK
| |
Collapse
|
21
|
Ardiana M, Santoso A, Hermawan HO, Nugraha RA, Pikir BS, Suryawan IGR. Acute effects of cigarette smoke on Endothelial Nitric Oxide synthase, vascular cell adhesion molecule 1 and aortic intima media thickness. F1000Res 2023; 10:396. [PMID: 38046985 PMCID: PMC10690037 DOI: 10.12688/f1000research.28375.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 12/05/2023] Open
Abstract
Background. Cigarette smoking could induce endothelial dysfunction and the increase of circulating markers of inflammation by activation of monocytes. This can lead to increased intima media thickness (IMT) of entire blood vessels and result in acceleration of the atherosclerosis process. However, to our knowledge, little is known about the role of cigarette smoking in this atherosclerotic inflammatory process. The aim of this study is to explore the link between cigarette smoking and its effect on endothelial nitric oxide synthase (e-NOS) and vascular cell adhesion molecule 1 (VCAM-1). Methods. An experimental study with a post-test only controlled group design was used. We used 18 Wistar rats ( Rattus norvegicus) randomly subdivided into two groups: group K (-) were not exposed to tobacco smoke, whereas group K (+) were exposed to smoke equivalent of more than 40 cigarettes for 28 days daily. After 28 days, samples were analyzed for e-NOS, VCAM-1 and aortic IMT. Results . Our results indicate that tobacco smoke can enhance the expression of VCAM-1 on rat cardiac vascular endothelial cells, resulting in a decreased expression of e-NOS level and increase of aortic IMT. Linear regression model found that eNOS level negatively correlated wiith aortic IMT ( r 2 = 0.584, β = -0.764, p < 0.001), whereas VCAM-1 expression did not correlate with aortic IMT ( r 2 = 0.197, p = 0.065). Conclusion. Low e-NOS level and high VCAM-1 level observed after cigarette smoke exposure which may increase aortic IMT.
Collapse
Affiliation(s)
- Meity Ardiana
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60272, Indonesia
| | - Anwar Santoso
- Department of Cardiology and Vascular Medicine, Faculty of Medicine University of Indonesia - National Cardiovascular Centre Harapan Kita Hospital, Jakarta, DKI Jakarta, 11420, Indonesia
| | - Hanestya Oky Hermawan
- Department of Biomedicine, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia
| | - Ricardo Adrian Nugraha
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60272, Indonesia
| | - Budi Susetyo Pikir
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60272, Indonesia
| | - I. Gde Rurus Suryawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60272, Indonesia
| |
Collapse
|
22
|
Cheng X, Wang K, Zhao Y, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov 2023; 9:275. [PMID: 37507372 PMCID: PMC10382489 DOI: 10.1038/s41420-023-01560-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) such as atherosclerosis, myocardial remodeling, myocardial ischemia-reperfusion (I/R) injury, heart failure, and oxidative stress are among the greatest threats to human health worldwide. Cardiovascular pathogenesis has been studied for decades, and the influence of epigenetic changes on CVDs has been extensively studied. Post-translational modifications (PTMs), including phosphorylation, glycosylation, methylation, acetylation, ubiquitination, ubiquitin-like and nitrification, play important roles in the normal functioning of the cardiovascular system. Over the past decade, with the application of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an increasing number novel acylation modifications have been discovered, including propionylation, crotonylation, butyrylation, succinylation, lactylation, and isonicotinylation. Each change in protein conformation has the potential to alter protein function and lead to CVDs, and this process is usually reversible. This article summarizes the mechanisms underlying several common PTMs involved in the occurrence and development of CVDs.
Collapse
Affiliation(s)
- XueLi Cheng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China.
| |
Collapse
|
23
|
Wang Y, Li X, Qi M, Li X, Zhang F, Wang Y, Wu J, Shu L, Fan S, Li Y, Li Y. Pharmacological effects and mechanisms of YiYiFuZi powder in chronic heart disease revealed by metabolomics and network pharmacology. Front Mol Biosci 2023; 10:1203208. [PMID: 37426419 PMCID: PMC10327484 DOI: 10.3389/fmolb.2023.1203208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: YiYiFuZi powder (YYFZ) is a classical formula in Chinese medicine, which is commonly used clinically for the treatment of Chronic Heart Disease (CHD), but it's pharmacological effects and mechanism of action are currently unclear. Methods: An adriamycin-induced CHD model rat was established to evaluate the pharmacological effects of YYFZ on CHD by the results of inflammatory factor level, histopathology and echocardiography. Metabolomic studies were performed on rat plasma using UPLC-Q-TOF/MS to screen biomarkers and enrich metabolic pathways; network pharmacology analysis was also performed to obtain the potential targets and pathways of YYFZ for the treatment of CHD. Results: The results showed that YYFZ significantly reduced the levels of TNF-α and BNP in the serum of rats, alleviated the disorder of cardiomyocyte arrangement and inflammatory cell infiltration, and improved the cardiac function of rats with CHD. The metabolomic analysis identified a total of 19 metabolites, related to amino acid metabolism, fatty acid metabolism, and other metabolic pathways. Network pharmacology showed that YYFZ acts through PI3K/Akt signaling pathway, MAPK signaling pathway and Ras signaling pathway. Discussion: YYFZ treatment of CHD modulates blood metabolic pattern and several protein phosphorylation cascades but importance specific changes for therapeutic effect require further studies.
Collapse
Affiliation(s)
- Yuming Wang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Qi
- TIPRHUYA Advancing Innovative Medicines Ltd., Tianjin, China
| | - Xiaokai Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangfang Zhang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyu Wang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junke Wu
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simiao Fan
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunfei Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Huang JB, Chen ZR, Yang SL, Hong FF. Nitric Oxide Synthases in Rheumatoid Arthritis. Molecules 2023; 28:molecules28114414. [PMID: 37298893 DOI: 10.3390/molecules28114414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe joint damage and disability. However, the specific mechanism of RA has not been thoroughly clarified over the past decade. Nitric oxide (NO), a kind of gas messenger molecule with many molecular targets, is demonstrated to have significant roles in histopathology and homeostasis. Three nitric oxide synthases (NOS) are related to producing NO and regulating the generation of NO. Based on the latest studies, NOS/NO signaling pathways play a key role in the pathogenesis of RA. Overproduction of NO can induce the generation and release of inflammatory cytokines and act as free radical gas to accumulate and trigger oxidative stress, which can involve in the pathogenesis of RA. Therefore, targeting NOS and its upstream and downstream signaling pathways may be an effective approach to managing RA. This review clearly summarizes the NOS/NO signaling pathway, the pathological changes of RA, the involvement of NOS/NO in RA pathogenesis and the conventional and novel drugs based on NOS/NO signaling pathways that are still in clinical trials and have good therapeutic potential in recent years, with an aim to provide a theoretical basis for further exploration of the role of NOS/NO in the pathogenesis, prevention and treatment of RA.
Collapse
Affiliation(s)
- Jia-Bao Huang
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Zhi-Ru Chen
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shu-Long Yang
- School of Basic Medical Sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
| |
Collapse
|
25
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
26
|
Liu H, Zhan J, He J, Zhong L, Yang J, Dai Q, Zhang X. The effect of 17β-estradiol plus norethisterone acetate on blood pressure and inflammation markers: A meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol 2023; 285:59-68. [PMID: 37060841 DOI: 10.1016/j.ejogrb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
OBJECTIVE Several randomized controlled trials (RCTs) have explored the impact of 17β-estradiol plus norethisterone acetate administration on blood pressure and inflammation markers, however, their findings have often been contradictory. Thus, we conducted a systematic review and meta-analysis of RCTs to assess the effects of this drug combination on systolic blood pressure (SBP), diastolic blood pressure (DBP) and C-reactive protein (CRP) concentrations. METHODS The Cochrane Library, PubMed/Medline, Scopus, and Google Scholar were searched to identify relevant published RCTs. The pooled mean change and standard deviation (SD) of the outcomes were calculated using the STATA software (version 14) for Statistical Computing. RESULTS A total of 18 publications were included in the current meta-analysis. In total, there were 12 RCT arms on SBP, 12 RCT arms on DBP, and 6 RCT arms on CRP levels. The administration of 17β-estradiol plus norethisterone acetate intake increased SBP (WMD: 3.48 mmHg, 95% CI: 0.73, 6.23, P = 0.013), particularly in subjects aged ≥ 60 years (WMD: 5.89 mmHg, 95% CI: 1.71, 10.07, P = 0.006) or with a body mass index (BMI) < 30 kg/m2 (WMD: 6.55 mmHg, 95% CI: 2.64, 10.46, P = 0.012), as well as in the RCTs which lasted ≥ 6 months (WMD: 6.47 mmHg, 95% CI: 3.03, 9.90, P < 0.001),when 17β-estradiol dosages were ≥ 2 mg/day (WMD: 4.12 mmHg, 95% CI: 1.03, 7.22, P = 0.009; I2 = 99%, P < 0.001) and in RCTs conducted on healthy postmenopausal women (WMD: 4.22 mmHg, 95% CI: 0.43, 8.01, P = 0.02; I2 = 94%, P < 0.001). DBP decreased following this drug combination in the RCTs which lasted < 6 months (WMD: -1.42 mmHg, 95% CI: -2.27, -0.57, P = 0.001). CRP concentrations increased following the use of this drug combination (WMD: 1.01 mg/L, 95% CI: 0.62, 1.41, P < 0.001), especially in participants aged < 60 years (WMD: 1.22 mg/L, 95% CI: 0.77, 1.68, P < 0.001) or with a BMI < 30 kg/m2 (WMD: 0.97 mg/L, 95% CI: 0.67, 1.27, P < 0.001), as well as in RCTs with a duration of ≥ 6 months (WMD: 1.15 mg/L, 95% CI: 0.57, 1.73, P < 0.001), when 17β-estradiol dosages were ≥ 2 mg/day (WMD: 0.97 mg/L, 95% CI: 0.67, 1.27, P < 0.001; I2 = 55%, P = 0.107) and in RCTs conducted on healthy postmenopausal women (WMD: 1.22 mg/L, 95% CI: 0.77, 1.68, P < 0.001; I2 = 90%, P < 0.001). CONCLUSION The administration of 17β-estradiol plus norethisterone acetate increases SBP and CRP concentrations and, when prescribed for less than 6 months, decreases DBP. However, despite being statistically significant, the impact of this drug combination on SBP and DBP is not clinically relevant as the variation in blood pressure values was low.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Jiang Zhan
- Department of Cardiovascular Medicine, Ezhou Central Hospital, Hubei Province, Ezhou, Hubei 436000, China
| | - Jiao He
- Department of Outpatient, General Hospital of Western Theater of Chinese People's Liberation Army, Chengdu, Sichuan 610000, China
| | - Lili Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Jing Yang
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Qiaomei Dai
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Xianlin Zhang
- Department of Endocrinology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430019, China.
| |
Collapse
|
27
|
Pu L, Meng Q, Li S, Wang Y, Liu B. TXNRD1 knockdown inhibits the proliferation of endothelial cells subjected to oscillatory shear stress via activation of the endothelial nitric oxide synthase/apoptosis pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119436. [PMID: 36754152 DOI: 10.1016/j.bbamcr.2023.119436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular disease, and fluid shear stress is a key factor regulating its occurrence and development. Oscillatory shear stress (Oss) is an important pro-atherosclerosis factor. Oss mainly occurs in areas that are susceptible to atherosclerosis, but the exact mechanism of atherosclerosis induction remains unclear. Therefore, starting from the atheroprone phenotype that Oss stimulates abnormal vascular endothelial cell proliferation, this study aimed to reveal the underlying mechanism of Oss-induced atherosclerosis formation and to identify new targets for the prevention and treatment of atherosclerosis. In this study, the gene encoding thioredoxin reductase 1 (TXNRD1), which is closely related to atherosclerosis development and cell proliferation, was screened by analyzing the transcriptome sequencing data of static and Oss-treated human aortic endothelial cells (HAECs). Moreover, this study successfully verified that TXNRD1 mRNA and protein were significantly upregulated in Oss-treated HAECs. Oss significantly promoted the proliferation, migration, and tube formation of HAECs, whereas TXNRD1 knockdown impaired the proliferation, migration, and tube formation of Oss-treated HAECs, and this process was mainly achieved via activation of the apoptosis pathway. To further clarify whether Oss-sensitive TXNRD1 affects the apoptosis rate and proliferative ability of HAECs by regulating the endothelial nitric oxide synthase (eNOS) pathway, we used NG-nitro-L-arginine methyl ester (L-NAME) to inhibit eNOS activity and nitric oxide (NO) production. L-NAME significantly reversed the promoting effect of TXNRD1 knockdown on Oss-treated HAEC apoptosis, and it also abolished the inhibitory effect of TXNRD1 knockdown on the proliferation and S + G2 phase cell mass of Oss-treated HAECs. In conclusion, this study showed that TXNRD1 knockdown inhibited the proliferation of HAECs exposed to Oss by activating the eNOS/apoptosis pathway, revealing that TXNRD1 is involved in the dysregulation of Oss-induced endothelial cell proliferation. These findings provide new directions and insights into the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yaru Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
28
|
Lu T, He Y, Liu Z, Ma C, Chen S, Jia R, Duan L, Guo C, Liu Y, Guo D, Li T, He Y. A machine learning-derived gene signature for assessing rupture risk and circulatory immunopathologic landscape in patients with intracranial aneurysms. Front Cardiovasc Med 2023; 10:1075584. [PMID: 36844725 PMCID: PMC9950511 DOI: 10.3389/fcvm.2023.1075584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Background Intracranial aneurysm (IA) is an uncommon but severe subtype of cerebrovascular disease, with high mortality after aneurysm rupture. Current risk assessments are mainly based on clinical and imaging data. This study aimed to develop a molecular assay tool for optimizing the IA risk monitoring system. Methods Peripheral blood gene expression datasets obtained from the Gene Expression Omnibus were integrated into a discovery cohort. Weighted gene co-expression network analysis (WGCNA) and machine learning integrative approaches were utilized to construct a risk signature. QRT-PCR assay was performed to validate the model in an in-house cohort. Immunopathological features were estimated using bioinformatics methods. Results A four-gene machine learning-derived gene signature (MLDGS) was constructed for identifying patients with IA rupture. The AUC of MLDGS was 1.00 and 0.88 in discovery and validation cohorts, respectively. Calibration curve and decision curve analysis also confirmed the good performance of the MLDGS model. MLDGS was remarkably correlated with the circulating immunopathologic landscape. Higher MLDGS scores may represent higher abundance of innate immune cells, lower abundance of adaptive immune cells, and worse vascular stability. Conclusions The MLDGS provides a promising molecular assay panel for identifying patients with adverse immunopathological features and high risk of aneurysm rupture, contributing to advances in IA precision medicine.
Collapse
Affiliation(s)
- Taoyuan Lu
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Yanyan He
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chi Ma
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Rufeng Jia
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Lin Duan
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dehua Guo
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China,Tianxiao Li,
| | - Yingkun He
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China,*Correspondence: Yingkun He,
| |
Collapse
|
29
|
Weng J, Chen M, Shi B, Liu D, Weng S, Guo R. Konjac glucomannan defends against high-fat diet-induced atherosclerosis in rabbits by promoting the PI3K/Akt pathway. Heliyon 2023; 9:e13682. [PMID: 36852043 PMCID: PMC9957759 DOI: 10.1016/j.heliyon.2023.e13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of cardiovascular disease and cerebral infarction, which seriously endanger human health. This study aimed to investigate konjac glucomannan (KGM) defends against high-fat diet-induced AS in rabbits by promoting the PI3K/Akt pathway. KGM administration reduced the degree of AS indicated by reducing the plaques and foam cells, the tunica intima thickness, and the tunica intima/tunica media thickness ratio in the aorta, and enlarging the lumen of the aorta. In addition, KGM administration regulated blood lipids, ameliorated inflammation indicated by reducing the levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, CRP, and VCAM-1, and attenuated endothelial injury, simultaneously mitigated oxidative stress indicated by decreasing MPO activity and the concentrations of MDA and increasing the GSH-Px and SOD concentrations. Moreover, KGM promotes the phosphorylation of PI3K and AKT. However, these effects of KGM on rabbits with high-fat diet-induced AS were blocked by LY294002. In conclusion, KGM defends against high-fat diet-induced AS in rabbits by promoting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Junting Weng
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Min Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Bingbing Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Danjuan Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Shuoyun Weng
- School of Wenzhou Medical University, Wenzhou 325035, China
| | - Rongjie Guo
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| |
Collapse
|
30
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
31
|
The ABA/LANCL Hormone/Receptor System in the Control of Glycemia, of Cardiomyocyte Energy Metabolism, and in Neuroprotection: A New Ally in the Treatment of Diabetes Mellitus? Int J Mol Sci 2023; 24:ijms24021199. [PMID: 36674711 PMCID: PMC9863406 DOI: 10.3390/ijms24021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.
Collapse
|
32
|
Xu H, Tan L, Qu Q, Zhang W. NEDD4 attenuates oxidized low‑density lipoprotein‑induced inflammation and dysfunction in vascular endothelial cells via regulating APEX1 expression. Exp Ther Med 2023; 25:88. [PMID: 36684652 PMCID: PMC9849851 DOI: 10.3892/etm.2023.11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis chiefly results from inflammation as well as vascular endothelial cell dysfunction. Methylation levels of neuronally expressed developmentally downregulated 4 (NEDD4) were found to be fortified in atherosclerosis patients and NEDD4 deficiency enhanced vascular calcification. However, the exact function of NEDD4 in inflammation and vascular endothelial dysfunction remains to be elucidated. In the present study, CCK-8 assay was used to estimate cell viability. Reverse transcription-quantitative PCR was adopted to examine the expression of NEDD4, inflammation-associated enzymes and apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1). Western blotting was used to test NEDD4, endothelial nitric oxide synthase, inducible nitric oxide synthase and APEX1 protein levels. Cytotoxicity was detected by a lactate dehydrogenase (LDH) kit. Reactive oxygen species level was tested by a corresponding kit. Vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 contents were examined with ELISA. Cell adhesion assays evaluated the adhesion of endothelial cells. Co-immunoprecipitation assay was used to test the relationship between NEDD4 and APEX1. The data revealed that NEDD4 expression rapidly declined in oxidized low density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs). Following NEDD4 overexpression, the active damage, inflammatory release and endothelial cell dysfunction in ox-LDL-induced HUVECs were attenuated. After co-transfection of APEX1 interference plasmids and NEDD4 overexpression plasmids, cell damage, inflammatory release and endothelial cell dysfunction in ox-LDL-induced HUVECs were improved again. Taken together, NEDD4 attenuated ox-LDL-induced inflammation and endothelial dysfunction by regulating APEX1 expression.
Collapse
Affiliation(s)
- Huiyu Xu
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Lijuan Tan
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Qiaofang Qu
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Wutang Zhang
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China,Correspondence to: Dr Wutang Zhang, Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, 18 Yifen Road, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
33
|
Rahnama Inchehsablagh B, Ghadiri Soufi F, Koochakkhani S, Azarkish F, Farshidi H, Eslami M, Mahmoodi M, Soltani N, Eftekhar E. Magnesium Supplementation Affects the Expression of Sirtuin1, Tumor Protein P53 and Endothelial Nitric Oxide Synthase Genes in Patients with Atherosclerosis: A Double-Blind, Randomized, Placebo-Controlled Trial. Indian J Clin Biochem 2023; 38:59-66. [PMID: 36684501 PMCID: PMC9852374 DOI: 10.1007/s12291-022-01032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/04/2022] [Indexed: 01/25/2023]
Abstract
Magnesium seems to play a role in improving cardiovascular function, but its exact mechanism is unknown. In this study, we hypothesized that magnesium could modulate the expression of genes involved in atherosclerosis. The aim of the present investigation was to evaluate the effect of magnesium sulfate on the expression of sirtuin1 (SIRT1), tumor protein p53 (TP53), and endothelial nitric oxide synthase (eNOS) genes in patients with atherosclerosis. This study was a placebo-controlled double-blind randomized clinical trial on 56 patients with angiographically proven atherosclerosis. Participants were randomly divided into two groups receiving 300 mg/day magnesium sulfate (n = 29) and placebo (n = 27) for three months (following up every month). Fasting blood samples were taken before and after the intervention and total RNA was extracted and used to evaluate the expression level of SIRT1, TP53, and eNOS genes by Real-Time PCR. The expression of eNOS gene was significantly increased (P < 0.0001) and the expression of TP53 gene was decreased (P = 0.02) in the magnesium sulfate group compared to the placebo group. But SIRT1 gene expression was not significantly different between the two groups. Our findings demonstrate that magnesium sulfate supplementation may have a protective role against the progression of atherosclerosis through upregulation of eNOS and downregulation of TP53 gene. Trial registration: This present clinical trial has been registered in the Iranian Registry of Clinical Trials (IRCT) with the registration code of "IRCT20151028024756N3", https://www.irct.ir/trial/29097?revision=114102. Registered on 16 December 2019.
Collapse
Affiliation(s)
| | - Farhad Ghadiri Soufi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fariba Azarkish
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdiye Eslami
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Mahmoodi
- Clinical Research Development Center of Shahidmohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nepton Soltani
- Physiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Eftekhar
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
34
|
Sáez T, Pageé A, Kirschenman R, Quon A, Spaans F, Davidge ST. A High Cholesterol Diet During Late Pregnancy Impairs Long-Term Maternal Vascular Function in Mice. Arterioscler Thromb Vasc Biol 2023; 43:120-132. [PMID: 36353990 DOI: 10.1161/atvbaha.122.318421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Gestational dyslipidemia is associated with pregnancy complications including preeclampsia. However, whether gestational dyslipidemia leads postpartum vascular dysfunction, which could increase the risk for cardiovascular complications later in life, is not known. Here, we aimed to determine whether a gestational dyslipidemia affects postpartum vascular health and induces early signs of atherosclerosis. METHODS Pregnant C57BL/6 mice received a high cholesterol diet or control diet from gestational day 13.5 until term. After delivery, all mice received the control diet for ≈3 months postpartum (PP). Age-matched nulliparous females were on the same diets for equal periods. After 3 months, all mice were euthanized, serum was collected, and aortas were isolated to assess vascular function (wire myography) and markers of oxidative stress and early atherosclerosis. RESULTS PP-high cholesterol diet females had increased circulating cholesterol levels compared with PP-control diet mice, without effect of the diet in nulliparous mice. Methacholine-induced vasodilation was impaired, and nitric oxide contribution reduced, by the high cholesterol diet in aortas of PP mice, but not in nulliparous mice. Exposure to oxidized low-density-protein cholesterol further impaired methylcholine-induced vasodilation in PP-high cholesterol diet aortas only. Compared with PP-control diet mice, aortic inducible nitric oxide synthase expression, reactive oxygen species and nitrotyrosine levels were increased in aortas from PP-high cholesterol diet mice. No differences in aortic lipid deposition and macrophage infiltration were found. CONCLUSIONS Exposure to a high cholesterol diet in pregnancy impairs vascular function postpartum. Our results support the hypothesis that gestational dyslipidemia impacts maternal vascular function after pregnancy, which could potentially predispose these women to future cardiovascular complications.
Collapse
Affiliation(s)
- Tamara Sáez
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.).,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.)
| | - Abbey Pageé
- Department of Physiology, University of Alberta, Edmonton, Canada (A.P., S.T.D.)
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.).,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.)
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.).,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.)
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.).,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.)
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.).,Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada (T.S., R.K., A.Q., F.S., S.T.D.).,Department of Physiology, University of Alberta, Edmonton, Canada (A.P., S.T.D.)
| |
Collapse
|
35
|
Zhang Y, Wang S, Guo S, Zhang X, Yang C, Su G, Wan J. Circ_0004104 participates in the regulation of ox-LDL-induced endothelial cells injury via miR-942-5p/ROCK2 axis. BMC Cardiovasc Disord 2022; 22:517. [PMID: 36460954 PMCID: PMC9717494 DOI: 10.1186/s12872-022-02959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cardiovascular disease was the most common disease among the elderly with high morbidity and mortality. Circ_0004104 was demonstrated to be involved in the regulation of atherosclerosis. METHODS Quantitative real-time polymerase chain reaction was employed to measure the expression of circ_0004104, miR-942-5p and Rho associated coiled-coil containing protein kinase 2 (ROCK2). Cell proliferation was tested by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell apoptosis was measured by flow cytometry, and tube formation assay was used to detect the angiogenesis ability of cells. Western blot assay was performed to assess protein levels. Enzyme‑linked immunosorbent assay was used to detect the release of IL-1β and TNF-α. The relationship between miR-942-5p and circ_0004104 or ROCK2 was identified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay. RESULTS Oxidized low-density lipoprotein (ox-LDL) inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and promoted apoptosis in a dose-dependent manner. Circ_0004104 was increased in serum of atherosclerosis patients and ox-LDL-treated HUVECs, and silence of circ_0004104 promoted the proliferation of ox-LDL-exposed HUVECs and inhibited cell apoptosis. MiR-942-5p downregulation reversed si-circ_0004104-mediated influences in HUVECs upon ox-LDL exposure. ROCK2 was the target of miR-942-5p and circ_0004104 regulated the expression of ROCK2 through sponging miR-942-5p. ROCK2 abated the influences of miR-942-5p in ox-LDL-stimulated HUVECs. Circ_0004104 was increased in the exosomes derived from ox-LDL-exposed HUVECs, and the expression of circ_0004104 was promoted in HUVECs after stimulation with ox-LDL-treated HUVECs cells-derived exosomes. CONCLUSION Circ_0004104 downregulation receded ox-LDL-induced injury in HUVECs through miR-942-5p and ROCK2.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- grid.412467.20000 0004 1806 3501Cardiovascular Internal Medicine Department, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000 China
| | - Shaojun Wang
- grid.412467.20000 0004 1806 3501Cardiovascular Internal Medicine Department, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000 China
| | - Sicong Guo
- grid.412467.20000 0004 1806 3501Cardiovascular Internal Medicine Department, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000 China
| | - Xinzhong Zhang
- grid.412467.20000 0004 1806 3501Cardiovascular Internal Medicine Department, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000 China
| | - Chuan Yang
- grid.412467.20000 0004 1806 3501Cardiovascular Internal Medicine Department, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000 China
| | - Guangsheng Su
- grid.412467.20000 0004 1806 3501Cardiovascular Internal Medicine Department, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000 China
| | - Jiye Wan
- grid.412467.20000 0004 1806 3501Cardiovascular Internal Medicine Department, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000 China
| |
Collapse
|
36
|
Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022; 11:3843. [PMID: 36497101 PMCID: PMC9735601 DOI: 10.3390/cells11233843] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system and is the leading cause of cardiovascular diseases worldwide. Excessive generation of reactive oxygen species (ROS) leads to a state of oxidative stress which is a major risk factor for the development and progression of atherosclerosis. ROS are important for maintaining vascular health through their potent signalling properties. However, ROS also activate pro-atherogenic processes such as inflammation, endothelial dysfunction and altered lipid metabolism. As such, considerable efforts have been made to identify and characterise sources of oxidative stress in blood vessels. Major enzymatic sources of vascular ROS include NADPH oxidases, xanthine oxidase, nitric oxide synthases and mitochondrial electron transport chains. The production of ROS is balanced by ROS-scavenging antioxidant systems which may become dysfunctional in disease, contributing to oxidative stress. Changes in the expression and function of ROS sources and antioxidants have been observed in human atherosclerosis while in vitro and in vivo animal models have provided mechanistic insight into their functions. There is considerable interest in utilising antioxidant molecules to balance vascular oxidative stress, yet clinical trials are yet to demonstrate any atheroprotective effects of these molecules. Here we will review the contribution of ROS and oxidative stress to atherosclerosis and will discuss potential strategies to ameliorate these aspects of the disease.
Collapse
Affiliation(s)
| | | | - Emma Yu
- Section of Cardiorespiratory Medicine, University of Cambridge, Cambridge CB2 0BB, UK
| |
Collapse
|
37
|
CHENG X, ZHAO C, JIN Z, HU J, ZHANG Z, ZHANG C. Natural products: potential therapeutic agents for atherosclerosis. Chin J Nat Med 2022; 20:830-845. [DOI: 10.1016/s1875-5364(22)60219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/24/2022]
|
38
|
Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022; 10:1002285. [PMID: 36312558 PMCID: PMC9606242 DOI: 10.3389/fbioe.2022.1002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (especially atherosclerosis) is a major cause of death worldwide, and novel diagnostic tools and treatments for this disease are urgently needed. Aptamers are single-stranded oligonucleotides that specifically recognize and bind to the targets by forming unique structures in vivo, enabling them to rival antibodies in cardiac applications. Chemically synthesized aptamers can be readily modified in a site-specific way, so they have been engineered in the diagnosis of cardiac diseases and anti-thrombosis therapeutics. Von Willebrand Factor plays a unique role in the formation of thrombus, and as an aptamer targeting molecule, has shown initial success in antithrombotic treatment. A combination of von Willebrand Factor and nucleic acid aptamers can effectively inhibit the progression of blood clots, presenting a positive diagnosis and therapeutic effect, as well as laying a novel theory and strategy to improve biocompatibility paclitaxel drug balloon or implanted stent in the future. This review summarizes aptamer-based applications in cardiovascular disease, including biomarker discovery and future management strategy. Although relevant applications are relatively new, the significant advancements achieved have demonstrated that aptamers can be promising agents to realize the integration of diagnosis and therapy in cardiac research.
Collapse
Affiliation(s)
| | | | | | - Jun Pu
- *Correspondence: Yuquan Xie, ; Jun Pu,
| |
Collapse
|
39
|
Liu P, Wang S, Wang G, Zhao M, Du F, Li K, Wang L, Wu H, Chen J, Yang Y, Su G. Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation. J Cell Mol Med 2022; 26:5165-5180. [PMID: 36071548 PMCID: PMC9575109 DOI: 10.1111/jcmm.17541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis is a complex pathological process involving macrophages, endothelial cells and vascular smooth muscle cells that can lead to ischemic heart disease; however, the mechanisms underlying cell‐to‐cell communication in atherosclerosis are poorly understood. In this study, we focused on the role of exosomal miRNAs in crosstalk between macrophages and endothelial cells and explored the rarely studied molecular mechanisms involved. Our in vitro result showed that macrophage‐derived exosomal miR‐4532 significantly disrupted human umbilical vein endothelial cells (HUVECs) function by targeting SP1 and downstream NF‐κB P65 activation. In turn, increased endothelin‐1 (ET‐1), intercellular cell adhesion molecule‐1 (ICAM‐1) and vascular cell adhesion molecule‐1 (VCAM‐1) and decreased endothelial nitric oxide synthase (eNOS) expression in HUVECs increased attraction of macrophages, exacerbating foam cell formation and transfer of exosomal miR‐4532 to HUVECs. MiR‐4532 overexpression significantly promoted endothelial injury and pretreatment with an inhibitor of miR‐4532 or GW4869 (exosome inhibitor) could reverse this injury. In conclusion, our data reveal that exosomes have a critical role in crosstalk between HUVECs and macrophages. Further, exosomal miR‐4532 transferred from macrophages to HUVECs and targeting specificity protein 1 (SP1) may be a novel therapeutic target in patients with atherosclerosis.
Collapse
Affiliation(s)
- Peng Liu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuya Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangxin Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingming Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Fengli Du
- Shandong Provincial Public Health Clinical Center, Jinan, Shandong, China
| | - Kaiyuan Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lei Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huihui Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Jiamin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College Shandong University, Jinan, Shandong, China
| | - Yang Yang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guohai Su
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
40
|
Liu Y, Zhong H, Xu P, Zhou A, Ding L, Qiu J, Wu H, Dai M. Deciphering the combination mechanisms of Gualou–Xiebai herb pair against atherosclerosis by network pharmacology and HPLC-Q-TOF-MS technology. Front Pharmacol 2022; 13:941400. [PMID: 36120369 PMCID: PMC9476847 DOI: 10.3389/fphar.2022.941400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Gualou (Trichosanthes kirilowii Maxim)–Xiebai (Allium macrostemon Bunge) (GLXB) is a well-known herb pair against atherosclerosis (AS). However, the combination mechanisms of GLXB herb pair against AS remain unclear. Objective: To compare the difference in efficacy between GLXB herb pair and the single herbs and to explore the combination mechanisms of GLXB against AS in terms of compounds, targets, and signaling pathways. Methods: The combined effects of GLXB were evaluated in AS mice. The main compounds of GLXB were identified via quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) and UNIFI informatics platforms. The united mechanisms of GLXB in terms of nodes, key interactions, and functional clusters were realized by network pharmacology. At last, the anti-atherosclerotic mechanisms of GLXB were validated using enzyme-linked immunosorbent assay (ELISA) and Western blot in AS mice. Results: The anti-atherosclerotic effects of the GLXB herb pair (6 g/kg) were more significant than those of Gualou (4 g/kg) and Xiebai (2 g/kg) alone. From the GLXB herb pair, 48 main components were identified. In addition, the GLXB herb pair handled more anti-atherosclerotic targets and more signaling pathways than Gualou or Xiebai alone, whereas 10 key targets of GLXB were found using topological analysis. Furthermore, the GLXB herb pair (6 g/kg) could suppress the inflammatory target levels of IL-6, IL-1β, TNF-α, ALOX5, PTGS2, and p-p38 in AS mice. GLXB herb pair (6 g/kg) could also ameliorate endothelial growth and function by regulating the levels of VEGFA, eNOS, p-AKT, VCAM-1, and ICAM-1 and reducing macrophage adhesion to vascular wall in AS mice. GLXB herb pair (6 g/kg) could improve the blood lipid levels in AS mice. In addition, the regulating effects of GLXB herb pair (6 g/kg) on levels of IL-1β, TNF-α, ALOX5, VEGFA, eNOS, VCAM-1, ICAM-1, and blood lipids were more significant than those of Gualou (4 g/kg) or Xiebai alone (2 g/kg). Conclusion: The combination mechanisms of the GLXB herb pair were elucidated in terms of components, targets, and signaling pathways, which may be related to suppressing inflammation, regulating vascular endothelial growth/function, and improving blood lipid levels.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hua Zhong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Pengbo Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Lidan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jingwen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: An Zhou, ; Hongfei Wu, ,
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
41
|
Dong R, Xu Y. Glomerular cell cross talk in diabetic kidney diseases. J Diabetes 2022; 14:514-523. [PMID: 35999686 PMCID: PMC9426281 DOI: 10.1111/1753-0407.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus. It is the leading inducement of end-stage renal disease (ESRD), and its global incidence has been increasing at an alarming rate. The strict control of blood pressure and blood glucose can delay the progression of DKD, but intensive treatment is challenging to maintain. Studies to date have failed to find a complete cure. The glomerulus's alterations and injuries play a pivotal role in the initiation and development of DKD. A wealth of data indicates that the interdependent relationship between resident cells in the glomerulus will provide clues to the mechanism of DKD and new ways for therapeutic intervention. This review summarizes the significant findings of glomerular cell cross talk in DKD, focusing on cellular signaling pathways, regulators, and potential novel avenues for treating progressive DKD.
Collapse
Affiliation(s)
- Ruixue Dong
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Youhua Xu
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| |
Collapse
|
42
|
Phua K, Chew NWS, Kong WKF, Tan RS, Ye L, Poh KK. The mechanistic pathways of oxidative stress in aortic stenosis and clinical implications. Theranostics 2022; 12:5189-5203. [PMID: 35836811 PMCID: PMC9274751 DOI: 10.7150/thno.71813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the elucidation of the pathways behind the development of aortic stenosis (AS), there remains no effective medical treatment to slow or reverse its progress. Instead, the gold standard of care in severe or symptomatic AS is replacement of the aortic valve. Oxidative stress is implicated, both directly as well as indirectly, in lipid infiltration, inflammation and fibro-calcification, all of which are key processes underlying the pathophysiology of degenerative AS. This culminates in the breakdown of the extracellular matrix, differentiation of the valvular interstitial cells into an osteogenic phenotype, and finally, calcium deposition as well as thickening of the aortic valve. Oxidative stress is thus a promising and potential therapeutic target for the treatment of AS. Several studies focusing on the mitigation of oxidative stress in the context of AS have shown some success in animal and in vitro models, however similar benefits have yet to be seen in clinical trials. Statin therapy, once thought to be the key to the treatment of AS, has yielded disappointing results, however newer lipid lowering therapies may hold some promise. Other potential therapies, such as manipulation of microRNAs, blockade of the renin-angiotensin-aldosterone system and the use of dipeptidylpeptidase-4 inhibitors will also be reviewed.
Collapse
Affiliation(s)
- Kailun Phua
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Nicholas WS Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| | - William KF Kong
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| |
Collapse
|
43
|
Gao F, Wang XC, Luo ZD, Hu GQ, Ma MQ, Liang Y, Xu BL, Lin XH. LncRNA HOXA11-AS promotes vascular endothelial cell injury in atherosclerosis by regulating the miR-515-5p/ROCK1 axis. ESC Heart Fail 2022; 9:2259-2271. [PMID: 35578440 PMCID: PMC9288755 DOI: 10.1002/ehf2.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
AIMS Long non-coding RNA HOXA11-AS participated in heart disease. In this study, we aim to evaluate the potential roles of HOXA11-AS in atherosclerosis and its underlying mechanisms. METHODS AND RESULTS The expression levels of HOXA11-AS in ox-LDL-treated HUVECs and arch tissues of high-fat diet-fed ApoE-/- mice (n = 10) were assessed by qRT-PCR. The effects of HOXA11-AS knockdown on the development of atherosclerosis were evaluated using in vitro and in vivo models. Luciferase reporter and RNA immunoprecipitation (RIP) assays verified the potential relationships between HOXA11-AS or ROCK1 and miR-515-5p. The interactive roles between HOXA11-AS and miR-515-5p and between miR-515-5p and ROCK1 were further characterized in ox-LDL-treated HUVECs. Our data showed that HOXA11-AS was significantly up-regulated (P < 0.001), whereas miR-515-5p was dramatically down-regulated in AS mice tissues (P < 0.001) and ox-LDL-treated HUVECs (P < 0.01). Ox-LDL could induce endothelial injuries by inhibiting cell proliferation (P < 0.001) and SOD synthesis (P < 0.001), promoting apoptosis (P < 0.01), ROS (P < 0.001), and MDA production (P < 0.001), increasing Bax (P < 0.001) and cleaved Caspase-3 (P < 0.001), and decreasing Bcl-2 (P < 0.001) and phosphorylated eNOS (P < 0.01). HOXA11-AS knockdown attenuated endothelial injuries via increasing eNOS phosphorylation. Luciferase assay and RIP results confirmed that miR-515-5p is directly bound to HOXA11-AS and ROCK1. HOXA11-AS promoted ox-LDL-induced HUVECs injury by directly inhibiting miR-515-5p from increasing ROCK1 expression and subsequently decreasing the expression and phosphorylation of eNOS. MiR-515-5p mimics could partially reverse the effects of HOXA11-AS knockdown. CONCLUSIONS HOXA11-AS contributed to atherosclerotic injuries by directly regulating the miR-515-5p/ROCK1 axis. This study provided new evidence that HOXA11-AS might be a candidate for atherosclerosis therapy.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Xiao-Chen Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Zhi-Dan Luo
- Department of Geriatrics, Chongqing People's Hospital, Chongqing, China
| | - Guang-Quan Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Meng-Qing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Yi Liang
- Houston Methodist Research Institute, Center for Cardiovascular Regeneration, Houston, TX, USA
| | - Bang-Long Xu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, China
| | - Xian-He Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| |
Collapse
|
44
|
Fei J, Demillard LJ, Ren J. Reactive oxygen species in cardiovascular diseases: an update. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide, imposing major health threats. Reactive oxygen species (ROS) are one of the most important products from the process of redox reactions. In the onset and progression of cardiovascular diseases, ROS are believed to heavily influence homeostasis of lipids, proteins, DNA, mitochondria, and energy metabolism. As ROS production increases, the heart is damaged, leading to further production of ROS. The vicious cycle continues on as additional ROS are generated. For example, recent evidence indicated that connexin 43 (Cx43) deficiency and pyruvate kinase M2 (PKM2) activation led to a loss of protection in cardiomyocytes. In this context, a better understanding of the mechanisms behind ROS production is vital in determining effective treatment and management strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Juanjuan Fei
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Laurie J. Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
45
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
46
|
Golledge J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat Rev Cardiol 2022; 19:456-474. [PMID: 34997200 DOI: 10.1038/s41569-021-00663-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Approximately 6% of adults worldwide have atherosclerosis and thrombosis of the lower limb arteries (peripheral artery disease (PAD)) and the prevalence is rising. PAD causes leg pain, impaired health-related quality of life, immobility, tissue loss and a high risk of major adverse events, including myocardial infarction, stroke, revascularization, amputation and death. In this Review, I describe the pathophysiology, presentation, outcome, preclinical research and medical management of PAD. Established treatments for PAD include antithrombotic drugs, such as aspirin and clopidogrel, and medications to treat dyslipidaemia, hypertension and diabetes mellitus. Randomized controlled trials have demonstrated that these treatments reduce the risk of major adverse events. The drug cilostazol, exercise therapy and revascularization are the current treatment options for the limb symptoms of PAD, but each has limitations. Novel therapies to promote collateral and new capillary growth and treat PAD-related myopathy are under investigation. Methods to improve the implementation of evidence-based medical management, novel drug therapies and rehabilitation programmes for PAD-related pain, functional impairment and ischaemic foot disease are important areas for future research.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia. .,The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia. .,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
47
|
Zhao H, Zhao J. Study on the role of naringin in attenuating Trimethylamine-N-Oxide-Induced human umbilical vein endothelial cell inflammation, oxidative stress, and endothelial dysfunction. CHINESE J PHYSIOL 2022; 65:217-225. [DOI: 10.4103/0304-4920.359796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
48
|
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:777697. [PMID: 34917616 PMCID: PMC8670327 DOI: 10.3389/fcell.2021.777697] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
49
|
Ge P, Gao M, Du J, Yu J, Zhang L. Downregulation of microRNA-512-3p enhances the viability and suppresses the apoptosis of vascular endothelial cells, alleviates autophagy and endoplasmic reticulum stress as well as represses atherosclerotic lesions in atherosclerosis by adjusting spliced/unspliced ratio of X-box binding protein 1 (XBP-1S/XBP-1U). Bioengineered 2021; 12:12469-12481. [PMID: 34783632 PMCID: PMC8810154 DOI: 10.1080/21655979.2021.2006862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
AS is an important pathological basis of cardiovascular disease. It has been reported that miRNAs are involved in almost all steps of AS, including the injury and dysfunction of endothelial cells and vascular smooth muscle cells. This work was designed to elucidate the biological functions of miR-512-3p in the pathological process of AS and probe into the underlying molecular mechanism. In the present work, ox-LDL-treated HUVECs served as the in vitro model of AS and ApoE-/- mice were nourished with a high-fat diet to establish an in vivo model of AS. Proliferation, apoptosis and migration of HUVECs were evaluated by performing CCK-8, TUNEL staining, western blot and transwell assays. Immunofluorescence examined LC3 expression and levels of autophagy-related and ER stress-related proteins were determined by western blot assay. In addition, starBase predicted the complementary binding sites of XBP-1 to miR-512-3p and luciferase reporter assay confirmed the interaction between miR-512-3p and XBP-1. Moreover, H&E staining was employed to evaluate atherosclerotic lesions in AS model mice. Results revealed that ox-LDL treatment decreased the proliferative and migrative activities and promoted the apoptosis of HUVECs as well as induced autophagy and ER stress, which were abrogated by miR-512-3p silencing. Importantly, ox-LDL treatment elevated miR-512-3p expression and XBP-1 was a direct target of miR-512-3p. Mechanistically, knockdown of miR-512-3p enhanced the viability, suppressed the apoptosis and promoted the migration of ox-LDL-treated HUVECs, alleviated atherosclerotic lesions in AS model mice as well as repressed autophagy and ER stress by targeting XBP-1 to manipulate the ratio of XBP-1S/XBP-1U.
Collapse
Affiliation(s)
- Peipei Ge
- Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, People's Republic of China
| | - Mingxiao Gao
- Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, People's Republic of China
| | - Juan Du
- Department of Cardiology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800, Shandong Province, People's Republic of China
| | - Jingbin Yu
- Department of Cardiology, Zibo Central Hospital, No54 Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiology, Zibo Central Hospital, No54 Gongqingtuan West Road, Zibo, 255036, Shandong Province, People's Republic of China
| |
Collapse
|
50
|
Zhao M, Hao M, Tong H, Su L, Fei C, Gu W, Mao J, Lu T, Mao C. Screening of blood-activating active components from Curcuma wenyujin Y.H. Chen et C. Ling rhizome based on spectrum-effect relationship analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123022. [PMID: 34933255 DOI: 10.1016/j.jchromb.2021.123022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/09/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Curcuma wenyujin Y.H. Chen et C. Ling rhizome (also called EZhu in China) has long been used as plant medicine for its traditional effect on promoting blood circulation and remove blood stasis. However, the active components of EZhu are still unclear at present. This research is managed to investigate the pharmacodynamics material basis on removing blood stasis of EZhu by exploring the spectrum-effect relationship between UPLC-Q/TOF-MS fingerprints and pharmacologic actions. Hemorheology and related functional parameters were detected to evaluate the pharmacologic actions of EZhu. Relative content Changes of components in rat plasma were detected by UPLC-Q/TOF-MS. A compound-target-pathway network was built to predict the pharmacological activity of components in plasma. Then, bivariate correlation analysis (BCA) was used to explore the correlation degree between components in plasma and pharmacologic actions of EZhu. In UPLC-Q/TOF-MS fingerprints of rat plasma, 10 prototype components were identified. BCA results show that 8 components were concerned with the pharmacological activity for treating blood stasis syndrome (BSS) in varying degrees (R > 0.5, P < 0.05). Among them, zedoarofuran and curzerenone have shown correlation with more pharmacological indicators. The network predicted that 80 targets were closely related to 10 components, in which 48 targets were connected with 159 metabolic pathways including arachidonic acid metabolism, sphingolipid signaling pathway, and linoleic acid metabolism. Overall, this study provided a scientific basis for TCM quality control to ensure its safety and efficacy.
Collapse
Affiliation(s)
- Mengting Zhao
- College of pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou (550025), China; College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Min Hao
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Huangjin Tong
- Affiliated hospital of integrated traditional Chinese and western medicine, Nanjing university of Chinese medicine, Nanjing (210028), China; College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Lianlin Su
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Chenghao Fei
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Wei Gu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing (210023), China
| | - Tulin Lu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| | - Chunqin Mao
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| |
Collapse
|