1
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
2
|
Jadah NA, Shamkhi IA, Shamkhi JA. Photobiomodulation and Antimicrobial Photodynamic Influence of a 650 nm Wavelength on Staphylocoagulase and Viability of Staphylococcus aurous. J Lasers Med Sci 2022; 13:e5. [PMID: 35642239 PMCID: PMC9131292 DOI: 10.34172/jlms.2022.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/28/2021] [Indexed: 12/09/2023]
Abstract
Introduction: Staphylococcus aureus is one of the critical pathological bacteria. This bacterium had developed a variety of genetic mutations that made it resistant to drugs and more harmful to humans. In addition, all attempts to design a specific vaccine against S. aureus have failed. Therefore, this experiment was designed as a trial for vaccine production, by using a photodynamic treatment (PDT) through partial biological inhibition. The PDT of bacteria mainly focused on reducing the activity of staphylocoagulase (SC), which has a protective feature for bacteria. This study aimed to examine the photodynamic effect of combining a specific wavelength of a laser and a certain dilution photosensitizer, methylene blue (MB) dye. The possible PDT effect on the inhibition of pathogenic enzymatic activity was predicted. This study also aimed to evaluate the inhibitory effect of PDT on the total bacterial account (viability) simultaneously with SC assay. Methods: A 650nm wavelength diode laser was used with 100 mW output power and 2 minutes of exposure time. Dye dilutions were 50, 100, 150 and 200 μg/mL. The viability of bacteria after and before laser treatment was calculated using single plate-serial dilution spotting methods. The activity of SC was detected by using human plasma for 4 hours incubation of crude-substrate interaction. Results: The results revealed a significant decrease in enzyme activity and colony-forming units (CFU) after irradiating bacterial suspension with 150 g/mL MB, as well as a decline in CFU. However, irradiation with a laser alone showed a significant increase in SC activity and CFU for the same exposure time. Conclusion: Besides reducing the production of SC activity, PDT significantly inhibited the viability of S. aureus. The application of MB photosensitizer at a concentration of 150 g/mL in combination with a laser wavelength of 650 nm resulted in a complete decrease in the SC activity value as well as the viability of bacteria.
Collapse
Affiliation(s)
| | - Imad Abdulabbass Shamkhi
- Department of Basic Science, College of Dentistry, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| | | |
Collapse
|
3
|
Abstract
Staphylococcus aureus can target a variety of tissues, causing life-threatening infections. The basis for this diversity stems from the microorganism’s ability to spread in the vascular system throughout the body. To survive in blood, S. aureus coats itself with a fibrinogen (Fg)/fibrin shield. The protective shield is assembled by the coordinated actions of a number of Fg-binding bacterial proteins that manipulate the host’s blood coagulation system. Several of the Fg binders appear redundant, sharing similar functional motifs. This observation led us to screen for the presence of novel proteins with significant amino acid identities to von Willebrand factor-binding protein (vWbp), a key component in the shield assembly machinery. One identified protein showed significant sequence identity with the C-terminal region of vWbp, and we consequently named it vWbp homologous protein (vhp). The vhp gene lies within a cluster of genes that encode other virulence factors in S. aureus. Although each isolate only contains one copy of the vhp gene, S. aureus has at least three distinct alleles, vhpA, B, and C, that are present in the core genome. All three vhp isoforms bind Fg with high affinity, targeting a site located in the D fragment of Fg. We further identified an ∼79 amino acid-long, conserved segment within the C-terminal region of vWbp that shares high sequence identities (54 to 67%) with the vhps and binds soluble Fg with high affinity. Further analysis of this conserved motif and the intact vhps revealed intriguing differences in the Fg binding behavior, perhaps suggesting that these proteins have similar but discrete functions in the shield assembly.
Collapse
|
4
|
Faqihi F, Stoodley MA, McRobb LS. The Evolution of Safe and Effective Coaguligands for Vascular Targeting and Precision Thrombosis of Solid Tumors and Vascular Malformations. Biomedicines 2021; 9:biomedicines9070776. [PMID: 34356840 PMCID: PMC8301394 DOI: 10.3390/biomedicines9070776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In cardiovascular and cerebrovascular biology, control of thrombosis and the coagulation cascade in ischemic stroke, myocardial infarction, and other coagulopathies is the focus of significant research around the world. Ischemic stroke remains one of the largest causes of death and disability in developed countries. Preventing thrombosis and protecting vessel patency is the primary goal. However, utilization of the body’s natural coagulation cascades as an approach for targeted destruction of abnormal, disease-associated vessels and tissues has been increasing over the last 30 years. This vascular targeting approach, often termed “vascular infarction”, describes the deliberate, targeted delivery of a thrombogenic effector to diseased blood vessels with the aim to induce localized activation of the coagulation cascade and stable thrombus formation, leading to vessel occlusion and ablation. As systemic delivery of pro-thrombotic agents may cause consternation amongst traditional stroke researchers, proponents of the approach must suitably establish both efficacy and safety to take this field forward. In this review, we describe the evolution of this field and, with a focus on thrombogenic effectors, summarize the current literature with respect to emerging trends in “coaguligand” development, in targeted tumor vessel destruction, and in expansion of the approach to the treatment of brain vascular malformations.
Collapse
|
5
|
Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt. Pathogens 2020; 9:pathogens9050362. [PMID: 32397408 PMCID: PMC7281566 DOI: 10.3390/pathogens9050362] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Subclinical mastitis caused by Staphylococcus aureus has worldwide public health significance. Here, we aimed to determine the prevalence of S. aureus, antimicrobial resistance profiles, and the virulence and enterotoxins determinant genes of MRSA strains that caused subclinical bovine mastitis. Milk samples were collected from 120 lactating animals (50 buffaloes and 70 dairy cattle) from different farms located in Ismailia Province (Egypt). The collected samples were investigated for subclinical mastitis using a California mastitis test. The total prevalence of S. aureus was 35.9% (84/234) with 36.3% (53/146) in cattle and 31% (31/88) in buffaloes. Antimicrobial susceptibility testing showed that 35.7% (30/84) of the isolated strains were resistant to cefoxitin, defined as methicillin-resistant S. aureus (MRSA), with 37.7% (20/53) in cattle and 32.2% (10/31) in buffaloes. Using PCR, 100% of the tested strains harbored coa and mecA genes, while 86.6% were positive for spa gene, with remarkable gene size polymorphism. Additionally, 10% of the tested strains contained the pvl gene. Further, using multiplex PCR, 26.6% of the tested samples had sea gene, two strains had sec gene and only one strain had sea and sec genes. The seb and sed genes were absent in the tested strains. In conclusion, mecA, coa and spa virulence genes were widely distributed in MRSA strains isolated from bovine milk, whereas the sea gene was the most predominant enterotoxin gene. Notably, this is the first report that emphasizes the prevalence of pvl gene of MRSA isolated from bovine milk in Egypt.
Collapse
|
6
|
Maddur AA, Kroh HK, Aschenbrenner ME, Gibson BHY, Panizzi P, Sheehan JH, Meiler J, Bock PE, Verhamme IM. Specificity and affinity of the N-terminal residues in staphylocoagulase in binding to prothrombin. J Biol Chem 2020; 295:5614-5625. [PMID: 32156702 PMCID: PMC7186164 DOI: 10.1074/jbc.ra120.012588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
In Staphylococcus aureus-caused endocarditis, the pathogen secretes staphylocoagulase (SC), thereby activating human prothrombin (ProT) and evading immune clearance. A previous structural comparison of the SC(1-325) fragment bound to thrombin and its inactive precursor prethrombin 2 has indicated that SC activates ProT by inserting its N-terminal dipeptide Ile1-Val2 into the ProT Ile16 pocket, forming a salt bridge with ProT's Asp194, thereby stabilizing the active conformation. We hypothesized that these N-terminal SC residues modulate ProT binding and activation. Here, we generated labeled SC(1-246) as a probe for competitively defining the affinities of N-terminal SC(1-246) variants preselected by modeling. Using ProT(R155Q,R271Q,R284Q) (ProTQQQ), a variant refractory to prothrombinase- or thrombin-mediated cleavage, we observed variant affinities between ∼1 and 650 nm and activation potencies ranging from 1.8-fold that of WT SC(1-246) to complete loss of function. Substrate binding to ProTQQQ caused allosteric tightening of the affinity of most SC(1-246) variants, consistent with zymogen activation through occupation of the specificity pocket. Conservative changes at positions 1 and 2 were well-tolerated, with Val1-Val2, Ile1-Ala2, and Leu1-Val2 variants exhibiting ProTQQQ affinity and activation potency comparable with WT SC(1-246). Weaker binding variants typically had reduced activation rates, although at near-saturating ProTQQQ levels, several variants exhibited limiting rates similar to or higher than that of WT SC(1-246). The Ile16 pocket in ProTQQQ appears to favor nonpolar, nonaromatic residues at SC positions 1 and 2. Our results suggest that SC variants other than WT Ile1-Val2-Thr3 might emerge with similar ProT-activating efficiency.
Collapse
Affiliation(s)
- Ashoka A Maddur
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Mary E Aschenbrenner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Breanne H Y Gibson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama 36849
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Institute for Drug Discovery, Departments of Chemistry and Computer Science, Leipzig University Medical School, SAC 04103 Leipzig, Germany
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Ingrid M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| |
Collapse
|
7
|
Ploplis VA, Castellino FJ. Host Pathways of Hemostasis that Regulate Group A Streptococcus pyogenes Pathogenicity. Curr Drug Targets 2020; 21:193-201. [PMID: 31556853 PMCID: PMC7670306 DOI: 10.2174/1389450120666190926152914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
A hallmark feature of severe Group A Streptococcus pyogenes (GAS) infection is dysregulated hemostasis. Hemostasis is the primary pathway for regulating blood flow through events that contribute towards clot formation and its dissolution. However, a number of studies have identified components of hemostasis in regulating survival and dissemination of GAS. Several proteins have been identified on the surface of GAS and they serve to either facilitate invasion to host distal sites or regulate inflammatory responses to the pathogen. GAS M-protein, a surface-exposed virulence factor, appears to be a major target for interactions with host hemostasis proteins. These interactions mediate biochemical events both on the surface of GAS and in the solution when M-protein is released into the surrounding environment through shedding or regulated proteolytic processes that dictate the fate of this pathogen. A thorough understanding of the mechanisms associated with these interactions could lead to novel approaches for altering the course of GAS pathogenicity.
Collapse
Affiliation(s)
- Victoria A. Ploplis
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- University of Notre Dame, W.M. Keck Center for Transgene Research, 230 Raclin-Carmichael Hall, Notre Dame, IN 46556 USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
8
|
Thomas S, Liu W, Arora S, Ganesh V, Ko YP, Höök M. The Complex Fibrinogen Interactions of the Staphylococcus aureus Coagulases. Front Cell Infect Microbiol 2019; 9:106. [PMID: 31041195 PMCID: PMC6476931 DOI: 10.3389/fcimb.2019.00106] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/27/2019] [Indexed: 11/22/2022] Open
Abstract
The two coagulases, von Willebrand factor binding protein (vWbp) and Coagulase (Coa), are critical virulence factors in several animal models of invasive Staphylococcus aureus (S. aureus) infections. These proteins are part of an intricate system of proteins that S. aureus uses to assemble a fibrinogen (Fg)/fibrin protective shield surrounding itself. This shield allows the microorganism to evade clearance by the host phagocytic cells. The coagulases can non-proteolytically activate the zymogen prothrombin to convert Fg to fibrin and promote the Fg/fibrin shield formation. The coagulases also bind directly to Fg and the interaction between Coa and Fg has been previously characterized in some detail. However, the mechanism(s) by which vWbp interacts with Fg remains unclear. Here, we show that vWbp and Coa have distinct interactions with Fg, despite being structurally similar. Coa binds with a significantly higher affinity to soluble Fg than to Fg coated on a plastic surface, whereas vWbp demonstrates no preference between the two forms of Fg. The two coagulases appear to target different sites on Fg, as they do not compete with each other in binding to Fg. Similar to Coa, both the N- and C-terminal halves of vWbp (vWbp-N, vWbp-C, respectively) harbor Fg-binding activities. The higher affinity Fg-binding activity resides in vWbp-N; whereas, the C-terminal region of Coa encompasses the major Fg-binding activity. Peptides constituting the previously identified Coa/Efb1 Fg-binding motif fail to inhibit vWbp-C from binding to Fg, indicating that vWbp-C lacks a functional homolog to this motif. Interestingly, the N-terminal prothrombin-binding domains of both coagulases recognize the Fg β-chain, but they appear to interact with different sequence motifs in the host protein. Collectively, our data provide insight into the complex interactions between Fg and the S. aureus coagulases.
Collapse
Affiliation(s)
- Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Vannakambodi Ganesh
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| |
Collapse
|
9
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
10
|
An TJ, Benvenuti MA, Mignemi ME, Thomsen IP, Schoenecker JG. Pediatric Musculoskeletal Infection: Hijacking the Acute-Phase Response. JBJS Rev 2018; 4:01874474-201609000-00004. [PMID: 27760072 DOI: 10.2106/jbjs.rvw.15.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue injury activates the acute-phase response mediated by the liver, which promotes coagulation, immunity, and tissue regeneration. To survive and disseminate, musculoskeletal pathogens express virulence factors that modulate and hijack this response. As the acute-phase reactants required by these pathogens are most abundant in damaged tissue, these infections are predisposed to occur in tissues following traumatic or surgical injury. Staphylococcus aureus expresses the virulence factors coagulase and von Willebrand binding protein to stimulate coagulation and to form a fibrin abscess that protects it from host immune-cell phagocytosis. After the staphylococcal abscess community reaches quorum, which is the colony density that enables cell-to-cell communication and coordinated gene expression, subsequent expression of staphylokinase stimulates activation of fibrinolysis, which ruptures the abscess wall and results in bacterial dissemination. Unlike Staphylococcus aureus, Streptococcus pyogenes expresses streptokinase and other virulence factors to activate fibrinolysis and to rapidly disseminate throughout the body, causing diseases such as necrotizing fasciitis. Understanding the virulence strategies of musculoskeletal pathogens will help to guide clinical diagnosis and decision-making through monitoring of acute-phase markers such as C-reactive protein, erythrocyte sedimentation rate, and fibrinogen.
Collapse
Affiliation(s)
- Thomas J An
- Departments of Orthopaedics (M.E.M. and J.G.S.), Pediatrics (I.P.T. and J.G.S.), Pediatric Infectious Disease (I.P.T.), Pharmacology (J.G.S.), and Pathology (J.G.S.), Vanderbilt University School of Medicine (T.J.A. and M.A.B.), Nashville, Tennessee
| | | | | | | | | |
Collapse
|
11
|
Shibata T, Kobayashi Y, Ikeda Y, Kawabata SI. Intermolecular autocatalytic activation of serine protease zymogen factor C through an active transition state responding to lipopolysaccharide. J Biol Chem 2018; 293:11589-11599. [PMID: 29866883 DOI: 10.1074/jbc.ra118.002311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/30/2018] [Indexed: 11/06/2022] Open
Abstract
Horseshoe crab hemolymph coagulation is believed to be triggered by the autocatalytic activation of serine protease zymogen factor C to the active form, α-factor C, belonging to the trypsin family, through an active transition state of factor C responding to bacterial lipopolysaccharide (LPS), designated factor C*. However, the existence of factor C* is only speculative, and its proteolytic activity has not been validated. In addition, it remains unclear whether the proteolytic cleavage of the Phe737-Ile738 bond (Phe737 site) of factor C required for the conversion to α-factor C occurs intramolecularly or intermolecularly between the factor C molecules. Here we show that the Phe737 site of a catalytic Ser-deficient mutant of factor C is LPS-dependently hydrolyzed by a Phe737 site-uncleavable mutant, clearly indicating the existence of the active transition state of factor C without cleavage of the Phe737 site. Moreover, we found the following facts using several mutants of factor C: the autocatalytic cleavage of factor C occurs intermolecularly between factor C* molecules on the LPS surface; factor C* does not exhibit intrinsic chymotryptic activity against the Phe737 site, but it may recognize a three-dimensional structure around the cleavage site; and LPS is required not only to complete the substrate-binding site and oxyanion hole of factor C* by interacting with the N-terminal region but also to allow the Phe737 site to be cleaved by inducing a conformational change around the Phe737 site or by acting as a scaffold to induce specific protein-protein interactions between factor C* molecules.
Collapse
Affiliation(s)
- Toshio Shibata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuki Kobayashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuto Ikeda
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth. Oncogene 2018; 37:3967-3980. [PMID: 29662195 PMCID: PMC6053358 DOI: 10.1038/s41388-018-0213-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
Abstract
Induction of selective thrombosis and infarction in tumor-feeding vessels represents an attractive strategy to combat cancer. Here we took advantage of the unique coagulation properties of staphylocoagulase and genetically engineered it to generate a new fusion protein with novel anti-cancer properties. This novel bi-functional protein consists of truncated coagulase (tCoa) and an NGR (GNGRAHA) motif that recognizes CD13 and αvβ3 integrin receptors, targeting it to tumor endothelial cells. Herein, we report that tCoa coupled by its C-terminus to an NGR sequence retained its normal binding activity with prothrombin and avβ3 integrins, as confirmed in silico and in vitro. Moreover, in vivo biodistribution studies demonstrated selective accumulation of FITC-labeled tCoa-NGR fusion proteins at the site of subcutaneously implanted PC3 tumor xenografts in nude mice. Notably, systemic administration of tCoa-NGR to mice bearing 4T1 mouse mammary xenografts or PC3 human prostate tumors resulted in a significant reduction in tumor growth. These anti-tumor effects were accompanied by massive thrombotic occlusion of small and large tumor vessels, tumor infarction and tumor cell death. From these findings, we propose tCoa-NGR mediated tumor infarction as a novel and promising anti-cancer strategy targeting both CD13 and integrin αvβ3 positive tumor neovasculature.
Collapse
|
13
|
RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep 2017; 7:8126. [PMID: 28811469 PMCID: PMC5557930 DOI: 10.1038/s41598-017-05326-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 12/19/2022] Open
Abstract
Induction of thrombosis in tumor vasculature represents an appealing strategy for combating cancer. Herein, we combined unique intrinsic coagulation properties of staphylocoagulase with new acquired functional potentials introduced by genetic engineering, to generate a novel bi-functional fusion protein consisting of truncated coagulase (tCoa) bearing an RGD motif on its C-terminus for cancer therapy. We demonstrated that free coagulase failed to elicit any significant thrombotic activity. Conversely, RGD delivery of coagulase retained coagulase activity and afforded favorable interaction of fusion proteins with prothrombin and αvβ3 endothelial cell receptors, as verified by in silico, in vitro, and in vivo experiments. Although free coagulase elicited robust coagulase activity in vitro, only targeted coagulase (tCoa-RGD) was capable of producing extensive thrombosis, and subsequent infarction and massive necrosis of CT26 mouse colon, 4T1 mouse mammary and SKOV3 human ovarian tumors in mice. Additionally, systemic injections of lower doses of tCoa-RGD produced striking tumor growth inhibition of CT26, 4T1 and SKOV3 solid tumors in animals. Altogether, the nontoxic nature, unique shortcut mechanism, minimal effective dose, wide therapeutic window, efficient induction of thrombosis, local effects and susceptibility of human blood to coagulase suggest tCoa-RGD fusion proteins as a novel and promising anticancer therapy for human trials.
Collapse
|
14
|
Bharadwaz M, Manna P, Das D, Dutta N, Kalita J, Unni B, Deka Boruah HP. Isolation, purification, and characterization of staphylocoagulase, a blood coagulating protein from Staphylococcus sp. MBBJP S43. Int J Biol Macromol 2017; 102:1312-1321. [PMID: 28476593 DOI: 10.1016/j.ijbiomac.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 11/16/2022]
Abstract
Staphylocoagulase, a protein produced by S. aureus, play major role in blood coagulation and investigations are in advance to discover more staphylocoagulase producing species. The present study demonstrates the identification of a coagulase producing bacteria and isolation, purification and characterization of the protein. The bacteria was identified using 16S rDNA sequencing and phylogenetic investigation, classified the bacteria as Staphylococcus sp. MBBJP S43 with Genbank accession number KX907247. Tube test and Chromozym TH assay were used to study enzyme activity and comparison was made with five standard coagulase positive strains. The SEM images of the fibrin threads provide evidence of coagulation. The optimum temperature for enzyme activity was 37°C and pH of 6.5-7.5. Glucose and lactose as a carbon source and ammonium chloride as nitrogen source greatly influenced the bacterial growth. Staphylocoagulase has been purified to homogeneity (766 fold) by 80% (NH4)2SO4 precipitation, Sephadex G-75 gel filtration, DEAE anion exchange chromatography, and HPLC using C18 column. SDS PAGE revealed the molecular weight of the protein to be approximately 66kD and FTIR spectra of the purified protein demonstrated the presence of α helical structure. Present study revealed that the Staphylococcus sp. MBBJP S43 strain is a potential staphylocoagulase producing bacteria.
Collapse
Affiliation(s)
- Moonmee Bharadwaz
- Biotechnology Group, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, Chennai 600113, Tamil Nadu, India
| | - Prasenjit Manna
- Biotechnology Group, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dhrubajyoti Das
- Biotechnology Group, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Niren Dutta
- Biotechnology Group, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Biotechnology Group, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| | - Balagopalan Unni
- Research Cell, Assam Downtown University, Guwahati 781026, Assam, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| |
Collapse
|
15
|
Benvenuti M, An T, Amaro E, Lovejoy S, Mencio G, Martus J, Mignemi M, Schoenecker JG. Double-Edged Sword: Musculoskeletal Infection Provoked Acute Phase Response in Children. Orthop Clin North Am 2017; 48:181-197. [PMID: 28336041 DOI: 10.1016/j.ocl.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The acute phase response has a crucial role in mounting the body's response to tissue injury. Excessive activation of the acute phase response is responsible for many complications that occur in orthopedic patients. Given that infection may be considered continuous tissue injury that persistently activates the acute phase response, children with musculoskeletal infections are at markedly increased risk for serious complications. Future strategies that modulate the acute phase response have the potential to improve treatment and prevent complications associated with musculoskeletal infection.
Collapse
Affiliation(s)
| | - Thomas An
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emilie Amaro
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven Lovejoy
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory Mencio
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey Martus
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan Mignemi
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, USA; Departments of Orthopaedics, Pharmacology, and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
16
|
Suzuki Y, Matsushita S, Kubota H, Kobayashi M, Murauchi K, Higuchi Y, Kato R, Hirai A, Sadamasu K. Identification and functional activity of a staphylocoagulase type XI variant originating from staphylococcal food poisoning isolates. Lett Appl Microbiol 2016; 63:172-7. [PMID: 27227969 DOI: 10.1111/lam.12595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Staphylocoagulase, an extracellular protein secreted by Staphylococcus aureus, has been used as an epidemiological marker. At least 12 serotypes and 24 genotypes subdivided on the basis of nucleotide sequence have been reported to date. In this study, we identified a novel staphylocoagulase nucleotide sequence, coa310, from staphylococcal food poisoning isolates that had the ability to coagulate plasma, but could not be typed using the conventional method. The protein encoded by coa310 contained the six fundamental conserved domains of staphylocoagulase. The full-length nucleotide sequence of coa310 shared the highest similarity (77·5%) with that of staphylocoagulase-type (SCT) XIa. The sequence of the D1 region, which would be responsible for the determination of SCT, shared the highest similarity (91·8%) with that of SCT XIa. These results suggest that coa310 is a novel variant of SCT XI. Moreover, we demonstrated that coa310 encodes a functioning coagulase, by confirming the coagulating activity of the recombinant protein expressed from coa310. This is the first study to directly demonstrate that Coa310, a putative SCT XI, has coagulating activity. These findings may be useful for the improvement of the staphylocoagulase-typing method, including serotyping and genotyping. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to identify a novel variant of staphylocoagulase type XI based on its nucleotide sequence and to demonstrate coagulating activity in the variant using a recombinant protein. Elucidation of the variety of staphylocoagulases will provide suggestions for further improvement of the staphylocoagulase-typing method and contribute to our understanding of the epidemiologic characterization of Staphylococcus aureus.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - S Matsushita
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - H Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - M Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - K Murauchi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Y Higuchi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - R Kato
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - A Hirai
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - K Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
17
|
Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus Bloodstream Infections. ANNUAL REVIEW OF PATHOLOGY 2016; 11:343-64. [PMID: 26925499 PMCID: PMC5068359 DOI: 10.1146/annurev-pathol-012615-044351] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus, a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of S. aureus bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on S. aureus bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes.
Collapse
Affiliation(s)
- Lena Thomer
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | | |
Collapse
|
18
|
Davis RW, Brannen AD, Hossain MJ, Monsma S, Bock PE, Nahrendorf M, Mead D, Lodes M, Liles MR, Panizzi P. Complete genome of Staphylococcus aureus Tager 104 provides evidence of its relation to modern systemic hospital-acquired strains. BMC Genomics 2016; 17:179. [PMID: 26940863 PMCID: PMC4778325 DOI: 10.1186/s12864-016-2433-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) infections range in severity due to expression of certain virulence factors encoded on mobile genetic elements (MGE). As such, characterization of these MGE, as well as single nucleotide polymorphisms, is of high clinical and microbiological importance. To understand the evolution of these dangerous pathogens, it is paramount to define reference strains that may predate MGE acquisition. One such candidate is S. aureus Tager 104, a previously uncharacterized strain isolated from a patient with impetigo in 1947. RESULTS We show here that S. aureus Tager 104 can survive in the bloodstream and infect naïve organs. We also demonstrate a procedure to construct and validate the assembly of S. aureus genomes, using Tager 104 as a proof-of-concept. In so doing, we bridged confounding gap regions that limited our initial attempts to close this 2.82 Mb genome, through integration of data from Illumina Nextera paired-end, PacBio RS, and Lucigen NxSeq mate-pair libraries. Furthermore, we provide independent confirmation of our segmental arrangement of the Tager 104 genome by the sole use of Lucigen NxSeq libraries filled by paired-end MiSeq reads and alignment with SPAdes software. Genomic analysis of Tager 104 revealed limited MGE, and a νSaβ island configuration that is reminiscent of other hospital acquired S. aureus genomes. CONCLUSIONS Tager 104 represents an early-branching ancestor of certain hospital-acquired strains. Combined with its earlier isolation date and limited content of MGE, Tager 104 can serve as a viable reference for future comparative genome studies.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| | - Andrew D Brannen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| | - Mohammad J Hossain
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Scott Monsma
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA, 02114, USA.
| | - David Mead
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Michael Lodes
- Lucigen Corporation, 2905 Parmenter St, Middleton, WI, 53562, USA.
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
19
|
Thomer L, Emolo C, Thammavongsa V, Kim HK, McAdow ME, Yu W, Kieffer M, Schneewind O, Missiakas D. Antibodies against a secreted product of Staphylococcus aureus trigger phagocytic killing. J Exp Med 2016; 213:293-301. [PMID: 26880578 PMCID: PMC4813671 DOI: 10.1084/jem.20150074] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/13/2016] [Indexed: 01/03/2023] Open
Abstract
Vaccines and antibody therapeutics targeting staphylococcal surface molecules have failed to achieve clinical efficacy against MRSA infection. Here, Thomer et al. show that the R domain of prothrombin directs fibrinogen to the surface of S. aureus, which generates a protective coat for the pathogen, inhibiting phagocytosis by immune cells. The use of R-specific antibodies allows for immune cell recognition and protects mice against lethal bloodstream infections by broad spectrum MRSA isolates. Host immunity against bacteria typically involves antibodies that recognize the microbial surface and promote phagocytic killing. Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of lethal bloodstream infection; however, vaccines and antibody therapeutics targeting staphylococcal surface molecules have thus far failed to achieve clinical efficacy. S. aureus secretes coagulase (Coa), which activates host prothrombin and generates fibrin fibrils that protect the pathogen against phagocytosis by immune cells. Because of negative selection, the coding sequence for the prothrombin-binding D1-D2 domain is highly variable and does not elicit cross-protective immune responses. The R domain, tandem repeats of a 27-residue peptide that bind fibrinogen, is conserved at the C terminus of all Coa molecules, but its functional significance is not known. We show here that the R domain enables bloodstream infections by directing fibrinogen to the staphylococcal surface, generating a protective fibrin shield that inhibits phagocytosis. The fibrin shield can be marked with R-specific antibodies, which trigger phagocytic killing of staphylococci and protect mice against lethal bloodstream infections caused by a broad spectrum of MRSA isolates. These findings emphasize the critical role of coagulase in staphylococcal escape from opsonophagocytic killing and as a protective antigen for S. aureus vaccines.
Collapse
Affiliation(s)
- Lena Thomer
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Carla Emolo
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Molly E McAdow
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Wenqi Yu
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Matthew Kieffer
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
20
|
Abstract
Group A streptococci (GAS) express soluble and surface-bound virulence factors. Secreted streptokinase (SK) allelic variants exhibit varying abilities to activate host plasminogen (Pg), and GAS pathogenicity is associated with Pg activation and localization of the resulting plasmin (Pm) on the bacterial surface to promote dissemination. The various mechanisms by which GAS usurp the host proteolytic system are discussed, including the molecular sexuality mechanism of conformational activation of the Pg zymogen (Pg*) and subsequent proteolytic activation of substrate Pg by the S•KPg* and SK•Pm catalytic complexes. Substantial progress has been made to delineate both processes in a unified mechanism. Pm coats the bacteria by direct and indirect binding pathways involving plasminogen-binding group A streptococcal M-like (PAM) protein and host fibrin(ogen). Transgenic mouse models using human Pg are being optimized to mimic infections by SK variants in humans and to define in vivo combined mechanisms of these variants and PAM.
Collapse
Affiliation(s)
- I M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - P R Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - P E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
21
|
Kobayashi Y, Shiga T, Shibata T, Sako M, Maenaka K, Koshiba T, Mizumura H, Oda T, Kawabata SI. The N-terminal Arg residue is essential for autocatalytic activation of a lipopolysaccharide-responsive protease zymogen. J Biol Chem 2014; 289:25987-95. [PMID: 25077965 DOI: 10.1074/jbc.m114.586933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor C, a serine protease zymogen involved in innate immune responses in horseshoe crabs, is known to be autocatalytically activated on the surface of bacterial lipopolysaccharides, but the molecular mechanism of this activation remains unknown. In this study, we show that wild-type factor C expressed in HEK293S cells exhibits a lipopolysaccharide-induced activity equivalent to that of native factor C. Analysis of the N-terminal addition, deletion, or substitution mutants shows that the N-terminal Arg residue and the distance between the N terminus and the tripartite of lipopolysaccharide-binding site are essential factors for autocatalytic activation, and that the positive charge of the N terminus may interact with an acidic amino acid(s) of the molecule to convert the zymogen into an active form. Chemical cross-linking experiments indicate that the N terminus is required to form a complex of the factor C molecules in a sufficiently close vicinity to be chemically cross-linked on the surface of lipopolysaccharides. We propose a molecular mechanism of the autocatalytic activation of the protease zymogen on lipopolysaccharides functioning as a platform to induce specific protein-protein interaction between the factor C molecules.
Collapse
Affiliation(s)
| | | | - Toshio Shibata
- Department of Biology, Faculty of Sciences, and Institute for Advanced Study, Kyushu University, Fukuoka 812-8581
| | - Miyuki Sako
- the Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, and
| | - Katsumi Maenaka
- the Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, and
| | - Takumi Koshiba
- From the Graduate School of Systems Life Sciences, Department of Biology, Faculty of Sciences, and
| | - Hikaru Mizumura
- the LAL Research and Development Group, Seikagaku Corporation, Higashiyamato, Tokyo 207-0021, Japan
| | - Toshio Oda
- the LAL Research and Development Group, Seikagaku Corporation, Higashiyamato, Tokyo 207-0021, Japan
| | - Shun-ichiro Kawabata
- From the Graduate School of Systems Life Sciences, Department of Biology, Faculty of Sciences, and
| |
Collapse
|
22
|
Thomer L, Schneewind O, Missiakas D. Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J Biol Chem 2013; 288:28283-92. [PMID: 23960083 DOI: 10.1074/jbc.m113.493122] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen.
Collapse
Affiliation(s)
- Lena Thomer
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637
| | | | | |
Collapse
|
23
|
Role for the fibrinogen-binding proteins coagulase and Efb in the Staphylococcus aureus-Candida interaction. Int J Med Microbiol 2013; 303:230-8. [PMID: 23684234 DOI: 10.1016/j.ijmm.2013.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus and Candida species are increasingly coisolated from implant-associated polymicrobial infections creating an incremental health care problem. Synergistic effects between both genera seem to facilitate the formation of mixed S. aureus-Candida biofilms, which is thought to play a critical role in coinfections with these microorganisms. To identify and characterize S. aureus factors involved in the interaction with Candida species, we affinity-panned an S. aureus phage display library against Candida biofilms in the presence or absence of fibrinogen. Repeatedly isolated clones contained DNA fragments encoding portions of the S. aureus fibrinogen-binding proteins coagulase or Efb. The coagulase binds to prothrombin in a 1:1 ratio thereby inducing a conformational change and non-proteolytic activation of prothrombin, which in turn cleaves fibrinogen to fibrin. Efb has been known to inhibit opsonization. To study the role of coagulase and Efb in the S. aureus-Candida cross-kingdom interaction, we performed flow-cytometric phagocytosis assays. Preincubation with coagulase reduced the phagocytosis of Candida yeasts by granulocytes significantly and dose-dependently. By using confocal laser scanning microscopy, we demonstrated that the coagulase mediated the formation of fibrin surrounding the candidal cells. Furthermore, the addition of Efb significantly protected the yeasts against phagocytosis by granulocytes in a dose-dependent and saturable fashion. In conclusion, the inhibition of phagocytosis of Candida cells by coagulase and Efb via two distinct mechanisms suggests that S. aureus might be beneficial for Candida to persist as it helps Candida to circumvent the host immune system.
Collapse
|
24
|
Merdanovic M, Mönig T, Ehrmann M, Kaiser M. Diversity of allosteric regulation in proteases. ACS Chem Biol 2013. [PMID: 23181429 DOI: 10.1021/cb3005935] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allostery is a fundamental regulatory mechanism that is based on a functional modulation of a site by a distant site. Allosteric regulation can be triggered by binding of diverse allosteric effectors, ranging from small molecules to macromolecules, and is therefore offering promising opportunities for functional modulation in a wide range of applications including the development of chemical probes or drug discovery. Here, we provide an overview of key classes of allosteric protease effectors, their corresponding molecular mechanisms, and their practical implications.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Timon Mönig
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Michael Ehrmann
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| |
Collapse
|
25
|
Kroh HK, Bock PE. Effect of zymogen domains and active site occupation on activation of prothrombin by von Willebrand factor-binding protein. J Biol Chem 2012; 287:39149-57. [PMID: 23012355 DOI: 10.1074/jbc.m112.415562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin is conformationally activated by von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus through insertion of the NH(2)-terminal residues of vWbp into the prothrombin catalytic domain. The rate of prothrombin activation by vWbp(1-263) is controlled by a hysteretic kinetic mechanism initiated by substrate binding. The present study evaluates activation of prothrombin by full-length vWbp(1-474) through activity progress curve analysis. Additional interactions from the COOH-terminal half of vWbp(1-474) strengthened the initial binding of vWbp to prothrombin, resulting in higher activity and an ∼100-fold enhancement in affinity. The affinities of vWbp(1-263) or vWbp(1-474) were compared by equilibrium binding to the prothrombin derivatives prethrombin 1, prethrombin 2, thrombin, meizothrombin, and meizothrombin(des-fragment 1) and their corresponding active site-blocked analogs. Loss of fragment 1 in prethrombin 1 enhanced affinity for both vWbp(1-263) and vWbp(1-474), with a 30-45% increase in Gibbs free energy, implicating a regulatory role for fragment 1 in the activation mechanism. Active site labeling of all prothrombin derivatives with D-Phe-Pro-Arg-chloromethyl ketone, analogous to irreversible binding of a substrate, decreased their K(D) values for vWbp into the subnanomolar range, reflecting the dependence of the activating conformational change on substrate binding. The results suggest a role for prothrombin domains in the pathophysiological activation of prothrombin by vWbp, and may reveal a function for autocatalysis of the vWbp·prothrombin complexes during initiation of blood coagulation.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
26
|
Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun 2012; 80:3389-98. [PMID: 22825443 DOI: 10.1128/iai.00562-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
During infection, Staphylococcus aureus secretes two coagulases (Coa and von Willebrand factor binding protein [vWbp]), which, following an association with host prothrombin and fibrinogen, form fibrin clots and enable the establishment of staphylococcal disease. Within the genomes of different S. aureus isolates, coagulase gene sequences are variable, and this has been exploited for a classification of types. We show here that antibodies directed against the variable prothrombin binding portion of coagulases confer type-specific immunity through the neutralization of S. aureus clotting activity and protection from staphylococcal disease in mice. By combining variable portions of coagulases from North American isolates into hybrid Coa and vWbp proteins, a subunit vaccine that provided protection against challenge with different coagulase-type S. aureus strains in mice was derived.
Collapse
|
27
|
Cheng AG, DeDent AC, Schneewind O, Missiakas D. A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 2011; 19:225-32. [PMID: 21353779 DOI: 10.1016/j.tim.2011.01.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/05/2011] [Accepted: 01/25/2011] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus is an important human pathogen that causes skin and soft tissue abscesses. Abscess formation is not unique to staphylococcal infection and purulent discharge has been widely considered a physiological feature of healing and tissue repair. Here we present a different view, whereby S. aureus deploys specific virulence factors to promote abscess lesions that are distinctive for this pathogen. In support of this model, only live S. aureus is able to form abscesses, requiring genes that act at one or more of four discrete stages during the development of these infectious lesions. Protein A and coagulases are distinctive virulence attributes for S. aureus, and humoral immune responses specific for these polypeptides provide protection against abscess formation in animal models of staphylococcal disease.
Collapse
Affiliation(s)
- Alice G Cheng
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
28
|
Landgraf KE, Santell L, Billeci KL, Quan C, Young JC, Maun HR, Kirchhofer D, Lazarus RA. Allosteric peptide activators of pro-hepatocyte growth factor stimulate Met signaling. J Biol Chem 2010; 285:40362-72. [PMID: 20937841 DOI: 10.1074/jbc.m110.179721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatocyte growth factor (HGF) binds to its target receptor tyrosine kinase, Met, as a single-chain form (pro-HGF) or as a cleaved two-chain disulfide-linked α/β-heterodimer. However, only two-chain HGF stimulates Met signaling. Proteolytic cleavage of the Arg(494)-Val(495) peptide bond in the zymogen-like pro-HGF results in allosteric activation of the serine protease-like β-chain (HGF β), which binds Met to initiate signaling. We use insights from the canonical trypsin-like serine protease activation mechanism to show that isolated peptides corresponding to the first 7-10 residues of the cleaved N terminus of the β-chain stimulate Met phosphorylation by pro-HGF to levels that are ∼25% of those stimulated by two-chain HGF. Biolayer interferometry data demonstrate that peptide VVNGIPTR (peptide V8) allosterically enhances pro-HGF β binding to Met, resulting in a K(D)(app) of 1.6 μm, only 8-fold weaker than the Met/HGF β-chain affinity. Most notably, in vitro cell stimulation with peptide V8 in the presence of pro-HGF leads to Akt phosphorylation, enhances cell survival, and facilitates cell migration between 75 and 100% of that found with two-chain HGF, thus revealing a novel approach for activation of Met signaling that bypasses proteolytic processing of pro-HGF. Peptide V8 is unable to enhance Met binding or signaling with HGF proteins having a mutated activation pocket (D672N). Furthermore, Gly substitution of the N-terminal Val residue in peptide V8 results in loss of all activity. Overall, these findings identify the activation pocket of the serine protease-like β-chain as a "hot spot" for allosteric regulation of pro-HGF and have broad implications for developing selective allosteric activators of serine proteases and pseudoproteases.
Collapse
Affiliation(s)
- Kyle E Landgraf
- Department of Protein Engineering, Genentech, Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wiles KG, Panizzi P, Kroh HK, Bock PE. Skizzle is a novel plasminogen- and plasmin-binding protein from Streptococcus agalactiae that targets proteins of human fibrinolysis to promote plasmin generation. J Biol Chem 2010; 285:21153-64. [PMID: 20435890 DOI: 10.1074/jbc.m110.107730] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skizzle (SkzL), secreted by Streptococcus agalactiae, has moderate sequence identity to streptokinase and staphylokinase, bacterial activators of human plasminogen (Pg). SkzL binds [Glu]Pg with low affinity (K(D) 3-16 mum) and [Lys]Pg and plasmin (Pm) with indistinguishable high affinity (K(D) 80 and 50 nm, respectively). Binding of SkzL to Pg and Pm is completely lysine-binding site-dependent, as shown by the effect of the lysine analog, 6-aminohexanoic acid. Deletion of the COOH-terminal SkzL Lys(415) residue reduces affinity for [Lys]Pg and active site-blocked Pm 30-fold, implicating Lys(415) in a lysine-binding site interaction with a Pg/Pm kringle. SkzL binding to active site fluorescein-labeled Pg/Pm analogs demonstrates distinct high and low affinity interactions. High affinity binding is mediated by Lys(415), whereas the source of low affinity binding is unknown. SkzL enhances the activation of [Glu]Pg by urokinase (uPA) approximately 20-fold, to a maximum rate indistinguishable from that for [Lys]Pg and [Glu]Pg activation in the presence of 6-aminohexanoic acid. SkzL binds preferentially to the partially extended beta-conformation of [Glu]Pg, which is in unfavorable equilibrium with the compact alpha-conformation, thereby converting [Glu]Pg to the fully extended gamma-conformation and accelerating the rate of its activation by uPA. SkzL enhances [Lys]Pg and [Glu]Pg activation by single-chain tissue-type Pg activator, approximately 42- and approximately 650-fold, respectively. SkzL increases the rate of plasma clot lysis by uPA and single-chain tissue-type Pg activator approximately 2-fold, confirming its cofactor activity in a physiological model system. The results suggest a role for SkzL in S. agalactiae pathogenesis through fibrinolytic enhancement.
Collapse
Affiliation(s)
- Karen G Wiles
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
30
|
Bøtkjaer KA, Byszuk AA, Andersen LM, Christensen A, Andreasen PA, Blouse GE. Nonproteolytic induction of catalytic activity into the single-chain form of urokinase-type plasminogen activator by dipeptides. Biochemistry 2009; 48:9606-17. [PMID: 19705874 DOI: 10.1021/bi900510f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine proteases are initially synthesized as single-chain proenzymes with activities that are many orders of magnitude lower than those of the mature enzyme. Proteolytic cleavage of an exposed loop liberates a new amino terminus that inserts into a hydrophobic pocket and forms a stabilizing salt bridge with a ubiquitously conserved aspartate residue, resulting in a conformational change organizing the mature oxyanion hole. In a decisive 1976 work, Huber and Bode [Bode, W., and Huber, R. (1976) FEBS Lett. 68, 231-236] demonstrated that peptides sequentially similar to the new amino terminus in combination with a catalytic site inhibitor could specifically induce a trypsin-like conformation in trypsinogen. We now demonstrate that an Ile-Ile or Ile-Val dipeptide can induce limited enzyme activity in the single-chain zymogen form of urokinase-type plasminogen activator (uPA) or its K158A variant, which cannot be activated proteolytically. Furthermore, the slow formation of a covalent serpin-protease complex between single-chain uPA and PAI-1 is significantly accelerated in the presence of specific dipeptide sequences. The technique of using a dipeptide mimic as a surrogate for the liberated amino terminus further provides a novel means by which to covalently label the immature active site of single-chain uPA with a fluorescent probe, permitting fluorescence approaches for direct observations of conformational changes within the protease domain during zymogen activation. These data demonstrate the structural plasticity of the protease domain, reinforce the notion of "molecular sexuality", and provide a novel way of studying conformational changes of zymogens during proteolytic activation.
Collapse
|
31
|
Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A 2009; 106:7786-91. [PMID: 19416890 DOI: 10.1073/pnas.0811750106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Von Willebrand factor-binding protein (VWbp), secreted by Staphylococcus aureus, displays secondary structural homology to the 3-helix bundle, D1 and D2 domains of staphylocoagulase (SC), a potent conformational activator of the blood coagulation zymogen, prothrombin (ProT). In contrast to the classical proteolytic activation mechanism of trypsinogen-like serine proteinase zymogens, insertion of the first 2 residues of SC into the NH(2)-terminal binding cleft on ProT (molecular sexuality) induces rapid conformational activation of the catalytic site. Based on plasma-clotting assays, the target zymogen for VWbp may be ProT, but this has not been verified, and the mechanism of ProT activation is unknown. We demonstrate that VWbp activates ProT conformationally in a mechanism requiring its Val(1)-Val(2) residues. By contrast to SC, full time-course kinetic studies of ProT activation by VWbp demonstrate that it activates ProT by a substrate-dependent, hysteretic kinetic mechanism. VWbp binds weakly to ProT (K(D) 2.5 microM) to form an inactive complex, which is activated through a slow conformational change by tripeptide chromogenic substrates and its specific physiological substrate, identified here as fibrinogen (Fbg). This mechanism increases the specificity of ProT activation by delaying it in a slow reversible process, with full activation requiring binding of Fbg through an exosite expressed on the activated ProT*.VWbp complex. The results suggest that this unique mechanism regulates pathological fibrin (Fbn) deposition to VWF-rich areas during S. aureus endocarditis.
Collapse
|
32
|
Graber HU, Naskova J, Studer E, Kaufmann T, Kirchhofer M, Brechbühl M, Schaeren W, Steiner A, Fournier C. Mastitis-related subtypes of bovine Staphylococcus aureus are characterized by different clinical properties. J Dairy Sci 2009; 92:1442-51. [PMID: 19307625 DOI: 10.3168/jds.2008-1430] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Based on a former study from our group, one subtype of Staphylococcus aureus was associated with high within-herd prevalence of mastitis, whereas the other subtypes were associated with a low prevalence (sporadic intramammary infection). To confirm this hypothesis, a prospective study was done in 29 Swiss dairy herds. In particular, milk samples were collected from 10 herds with Staph. aureus herd problems (cases) and compared with samples from 19 herds with only sporadic cases of with Staph. aureus intramammary infection (controls). The isolates were tested for their virulence gene pattern and genotyped by PCR amplification of the 16S-23S rRNA intergenic spacer. The patterns and genotypes were then associated and compared with epidemiological and clinical data. Confirming the hypothesis, one particular subtype (genotype B) was associated with high within-herd and within-cow prevalence of intramammary infection, whereas the other subtypes were associated with low within-herd prevalence and infected single quarters. The gene patterns and genotypes were highly related, demonstrating the genetic diversity of the genotypes. The somatic cell counts were clearly increased in herds with a genotype B problem compared with herds with infections of other genotypes. Based on the different clinical properties and treatment consequences associated with these different genotypes found in Switzerland, we recommend subtyping Staph. aureus in other countries to determine if this finding is universally applicable.
Collapse
Affiliation(s)
- H U Graber
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, University of Berne, Bremgartenstrasse 109a, PO Box 8466, 3001 Berne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kinoshita M, Kobayashi N, Nagashima S, Ishino M, Otokozawa S, Mise K, Sumi A, Tsutsumi H, Uehara N, Watanabe N, Endo M. Diversity of staphylocoagulase and identification of novel variants of staphylocoagulase gene in Staphylococcus aureus. Microbiol Immunol 2008; 52:334-48. [PMID: 18667032 DOI: 10.1111/j.1348-0421.2008.00045.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Staphylocoagulase (SC) is a major phenotypic determinant of Staphylococcus aureus. Serotype of SC (coagulase type) is used as an epidemiological marker and 10 types (I-X) have been discriminated so far. To clarify genetic diversity of SC within a single and among different serotype(s), we determined approximately 1500 bp-nucleotide sequences of SC gene encoding D1, D2, and central regions (N-terminal half and central regions of SC; SC(NC)) for a total of 33 S. aureus strains comprising two to three strains from individual coagulase types (I-VIII, X) and 10 strains which were not determined as previously known SC serotypes (ND-strains). Amino acid sequence identities of SC(NC) among strains with a single coagulase type of II, III, IV, V, VI and X were extremely high (more than 99%), whereas lower identity (56-87%) was observed among different types. In contrast, within a single coagulase type of I, VII, or VIII, sequence divergence was found (lowest identity; 82%). SC(NC) sequences from the ND-strains were discriminated into two genetic groups with an identity of 71% to each other (tentatively assigned to genotypes [XI] and [XII]), and exhibited less than 86% sequence identities to those of most known coagulase types. All the types [XI] and [XII] strains were methicillin susceptible and belonged to different sequence types from those of coagulase types I-X strains reported so far by multilocus sequence typing. These findings indicated genetic heterogeneity of SC in coagulase types I, VII, and VIII strains, and the presence of two novel SC genotypes related to antigenicity of SC serotypes.
Collapse
Affiliation(s)
- Marie Kinoshita
- Department of Hygiene, Sapporo Medical University School of Medincine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fournier C, Kuhnert P, Frey J, Miserez R, Kirchhofer M, Kaufmann T, Steiner A, Graber HU. Bovine Staphylococcus aureus: association of virulence genes, genotypes and clinical outcome. Res Vet Sci 2008; 85:439-48. [PMID: 18358507 DOI: 10.1016/j.rvsc.2008.01.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 01/15/2008] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
Based on our clinical experience on bovine mastitis, we hypothesized that subtypes of Staphylococcus aureus (S. aureus) exist which differ in their contagious and pathogenic properties. In order to investigate this hypothesis, we analyzed strains of S. aureus isolated from spontaneous intramammary infection (IMI) with their virulence gene patterns and genotypes obtained by PCR amplification of the 16S-23S rRNA intergenic spacer (RS-PCR). The genotypes were then associated with epidemiological and clinical data including 26 herds. The results demonstrated a high association between genotypes and virulence gene patterns as well as between epidemiological and pathogenic properties of S. aureus. In particular, genotype B was related to high contagiosity and increased pathogenicity whereas the other types (C, OG) were found with infection of single cows. Because of the high clinical relevance, our results indicate the need to subtype the IMI-associated strains of S. aureus in the future.
Collapse
Affiliation(s)
- C Fournier
- Department of Clinical Veterinary Medicine, Vetsuisse-Faculty, University of Berne, 3001 Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bode W. Structure and interaction modes of thrombin. Blood Cells Mol Dis 2006; 36:122-30. [PMID: 16480903 DOI: 10.1016/j.bcmd.2005.12.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/19/2005] [Indexed: 11/30/2022]
Abstract
Any vascular injury triggers the burst-like release of the trypsin-like serine proteinase alpha-thrombin. Thrombin, the main executioner of the coagulation cascade, exhibits procoagulant as well as anticoagulant and antifibrinolytic properties, very specifically interacting with a number of protein substrates, receptors, cofactors, inhibitors, carbohydrates, and modulators. A large number of crystal structures of alpha-thrombin have shown that the thrombin surface can be subdivided into several functional regions, which recognize different substrates, inhibitors, and mediators with high specificity.
Collapse
Affiliation(s)
- Wolfram Bode
- Proteinase Research Group, Max-Planck-Institute für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
36
|
Chang AK, Kim HY, Park JE, Acharya P, Park IS, Yoon SM, You HJ, Hahm KS, Park JK, Lee JS. Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 2005; 187:6909-16. [PMID: 16199560 PMCID: PMC1251599 DOI: 10.1128/jb.187.20.6909-6916.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a causative agent of serious food-borne diseases in humans related to the consumption of raw seafood. It secretes a metalloprotease that is associated with skin lesions and serious hemorrhagic complications. In this study, we purified and characterized an extracellular metalloprotease (designated as vEP) having prothrombin activation and fibrinolytic activities from V. vulnificus ATCC 29307. vEP could cleave various blood clotting-associated proteins such as prothrombin, plasminogen, fibrinogen, and factor Xa, and the cleavage could be stimulated by addition of 1 mM Mn2+ in the reaction. The cleavage of prothrombin produced active thrombin capable of converting fibrinogen to fibrin. The formation of active thrombin appeared to be transient, with further cleavage resulting in a loss of activity. The cleavage of plasminogen, however, did not produce an active plasmin. vEP could cleave all three major chains of fibrinogen without forming a clot. It could cleave fibrin polymer formed by thrombin as well as the cross-linked fibrin formed by factor XIIIa. In addition, vEP could also cleave plasma proteins such as bovine serum albumin and gamma globulin, and its broad specificity is reflected in the cleavage sites, which include Asp207-Phe208 and Thr272-Ala273 bonds in prothrombin and a Tyr80-Leu81 bond in plasminogen. Taken together, the data suggest that vEP is a broad-specificity protease that could function as a prothrombin activator and a fibrinolytic enzyme to interfere with blood homeostasis as part of the mechanism associated with the pathogenicity of V. vulnificus in humans and thereby facilitate the development of systemic infection.
Collapse
Affiliation(s)
- Alan K Chang
- Research Center for Proteineous Materials, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- W Bode
- Proteinase Research Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz, Martinsried, Germany.
| |
Collapse
|