1
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Bai J, Yun X, Xu X, Liu S, Zhang S, Liu T, Zhang Y. The proliferation and differentiation of spermatogonial stem cells in the frist wave of spermatogenesis in rats with Trib3 gene knockout. Reprod Biol 2024; 24:100921. [PMID: 38964220 DOI: 10.1016/j.repbio.2024.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
This study explores the effects of Trib3 gene knockout on adult male rat spermatogenesis. Using CRISPR/Cas9, we knocked out the Trib3 gene in Wistar rats. Results indicate altered expression of PLZF, ID4, and c-KIT in knockout rats, suggesting impaired spermatogonial stem cell proliferation and differentiation. Histological analysis reveals reduced seminiferous tubule area and decreased spermatocyte numbers. Mating experiments demonstrate reduced offspring rates after the second self-mating in knockout rats. SYCP3, a meiosis marker, shows elevated expression in knockout rat testes at 14 days postpartum, suggesting an impact on reproductive processes. ELISA results indicate decreased testosterone, FSH, and FGF9 levels in knockout rat testicular tissues. In conclusion, Trib3 gene deletion may impede spermatogonial self-renewal and promote differentiation through the FSH-FGF9- c-KIT interaction and p38MAPK pathway, affecting reproductive capacity. These findings contribute to understanding the molecular mechanisms regulating spermatogenesis.
Collapse
Affiliation(s)
- Jie Bai
- Medical Neurobiology Laboratory, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xia Yun
- Medical Neurobiology Laboratory, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xuguang Xu
- Medical Neurobiology Laboratory, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Shanshan Liu
- Medical Neurobiology Laboratory, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Sidegeer Zhang
- Clinical medicine, Shanxi Medical University,Taiyuan 030607, China
| | - Taodi Liu
- Medical Neurobiology Laboratory, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China.
| | - Yan Zhang
- Medical Neurobiology Laboratory, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China.
| |
Collapse
|
3
|
Lu G, Li J, Gao T, Liu Q, Chen O, Zhang X, Xiao M, Guo Y, Wang J, Tang Y, Gu J. Integration of dietary nutrition and TRIB3 action into diabetes mellitus. Nutr Rev 2024; 82:361-373. [PMID: 37226405 PMCID: PMC10859691 DOI: 10.1093/nutrit/nuad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Alsamahi S, Milne TJ, Mohd Hussaini HM, Rich AM, Cooper PR, Friedlander LT. Effects of glycation end-products on the dental pulp in patients with type 2 diabetes. Int Endod J 2023; 56:1373-1384. [PMID: 37615995 DOI: 10.1111/iej.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
AIM This ex vivo study aimed to compare protein expression of advanced glycation end-products (AGE) and receptor (RAGE), and the levels of selected genes associated with inflammation and collagen within dental pulp tissue from patients with type 2 (T2D) diabetes and non-T2D. METHODOLOGY Noncarious extracted permanent molar teeth from patients with well-controlled T2D (n = 19) and non-T2D (controls) (n = 19) were collected and compared. The coronal pulp was examined using immunohistochemistry (IHC) (n = 10 per group) for anti-AGE and anti-RAGE. Quantitative PCR (n = 9 per group) was used to analyse the gene expression levels of NFKB, S100A12 and COLIA1. Data analyses were performed between the groups using GraphPad Prism using Pearson correlation, Shapiro-Wilk and Mann-Whitney U-tests, and multiple regression using SPSS. RESULTS AGEs were distributed diffusely throughout the pulp extracellular matrix associated with collagen fibres and were present on several cell types. RAGE was expressed at the pulp-dentine interface and was observed on odontoblasts, immune cells, endothelial cells and fibroblasts. Semi-quantitative analysis of IHC samples showed significantly increased expression of AGE (p < .0001) and RAGE (p = .02) in T2D samples compared with controls. The expression of NFKB (p < .0001), S100A12 (p < .0001) and COLIA1 (p = .01) genes were significantly higher in the T2D pulp, and multivariate logistic regression analysis showed that these findings were not affected by age. CONCLUSION T2D may exert a similar glycation response in the dental pulp to other body sites. This could occur through activation of NF-κB pathways with a concomitant increase in genes associated with inflammation and collagen.
Collapse
Affiliation(s)
- Shaikhah Alsamahi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | - Alison M Rich
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Paul R Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Lara T Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
6
|
Liu J, Zhang R, Wang D, Lin Y, Bai C, Nie N, Gao S, Zhang Q, Chang H, Ren C. Elucidating the role of circNFIB in myocardial fibrosis alleviation by endogenous sulfur dioxide. BMC Cardiovasc Disord 2022; 22:492. [PMID: 36404310 PMCID: PMC9677687 DOI: 10.1186/s12872-022-02909-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND To investigate the role of circNFIB in the alleviation of myocardial fibrosis by endogenous sulfur dioxide (SO2). METHODS We stimulated cultured neonatal rat cardiac fibroblasts with transforming growth factor-β1 (TGF-β1) and developed an in vitro myocardial fibrosis model. Lentivirus vectors containing aspartate aminotransferase 1 (AAT1) cDNA were used to overexpress AAT1, and siRNA was used to silence circNFIB. The SO2, collagen, circNFIB, Wnt/β-catenin, and p38 MAPK pathways were examined in each group. RESULTS In the in vitro TGF-β1-induced myocardial fibrosis model, endogenous SO2/AAT1 expression was significantly decreased, and collagen levels in the cell supernatant and type I and III collagen expression, as well as α-SMA expression, were all significantly increased. TGF-β1 also significantly reduced circNFIB expression. AAT1 overexpression significantly reduced myocardial fibrosis while significantly increasing circNFIB expression. Endogenous SO2 alleviated myocardial fibrosis after circNFIB expression was blocked. We discovered that circNFIB plays an important role in the alleviation of myocardial fibrosis by endogenous SO2 by inhibiting the Wnt/β-catenin and p38 MAPK pathways. CONCLUSION Endogenous SO2 promotes circNFIB expression, which inhibits the Wnt/β-catenin and p38 MAPK signaling pathways, consequently alleviating myocardial fibrosis.
Collapse
Affiliation(s)
- Jia Liu
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ranran Zhang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dahai Wang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Lin
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Bai
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nana Nie
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Gao
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuye Zhang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Chang
- grid.412521.10000 0004 1769 1119Department of pediatric nephrology and rheumotology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chongmin Ren
- grid.412521.10000 0004 1769 1119Department of orthopedic oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Liao Q, Gao X. Tribbles homolog 3 contributes to high glucose-induced injury in retinal pigment epithelial cells via binding to growth factor receptor-bound 2. Bioengineered 2022; 13:10386-10398. [PMID: 35465829 PMCID: PMC9161919 DOI: 10.1080/21655979.2022.2056315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic retinopathy (DR) is the most typical complication of diabetes, which severely threatens sight. Tribbles homolog 3 (TRB3), a kind of pseudokinase, is discovered to be highly expressed in diabetes and retinas after retinal detachment. TRB3 expression in human retinal pigment epithelial (hRPE) cells exposed to different concentrations of glucose was tested by RT-qPCR and western blot. Then, cells were induced with 30 mM high glucose (HG) to establish a DR cell model. Following TRB3 knockdown, cell viability estimation employed CCK-8 assay. The mRNA levels of inflammatory factors were detected by RT-qPCR. Reactive oxygen species (ROS) level was measured by DCFH-DA assay, and levels of oxidative stress markers were evaluated applying corresponding kits. Cell apoptosis was assayed by TUNEL assay and western blot. Following, the growth factor receptor-bound 2 (GRB2) expression was also examined by RT-qPCR and western blot. The interaction between TRB3 and GRB2 was verified by Co-IP assay. After GRB2 was overexpressed in HG-induced hRPE cells transfected with shRNA-TRB3, functional experiments were conducted again. The results manifested that TRB3 expression was elevated under HG conditions. Deficiency of TRB3 enhanced the viability while alleviated inflammation, oxidative stress, and apoptosis in HG-induced hRPE cells. GRB2 was also increased in HG-exposed hRPE cells. Moreover, GRB2 had a strong affinity with TRB3 and positively regulated by TRB3. After GRB2 overexpression, the effects of TRB3 knockdown on HG-stimulated hRPE cells were all reversed. Briefly, this study confirmed the promoting role of TRB3/GRB2 axis in the progression of DR.
Collapse
Affiliation(s)
- Qin Liao
- Department of Ophthalmology, Chengdu Second People’s Hospital, Chengdu, china
| | - Xuefeng Gao
- College of Management, Beijing Capital Normal University, Beijing
| |
Collapse
|
8
|
Nourbakhsh M, Sharifi R, Heydari N, Nourbakhsh M, Ezzati-Mobasser S, Zarrinnahad H. Circulating TRB3 and GRP78 levels in type 2 diabetes patients: crosstalk between glucose homeostasis and endoplasmic reticulum stress. J Endocrinol Invest 2022; 45:649-655. [PMID: 34591271 DOI: 10.1007/s40618-021-01683-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Endoplasmic reticulum (ER) stress is implicated in the development of type 2 diabetes mellitus (T2DM) and insulin resistance. Tribbles homolog 3 (TRB3) is a pseudokinase upregulated by ER stress and hyperglycemia. Glucose-regulated protein 78 (GRP78) is an ER stress protein that is overexpressed under ER stress conditions. The current study aimed to investigate serum levels of TRB3 and GRP78, as an ER stress marker, in T2DM patients and their correlations with the metabolic profile. METHODS Fifty-seven patients with type 2 diabetes and 23 healthy control subjects were evaluated for serum concentrations of TRB3, GRP78, and AGEs by enzyme-linked immunosorbent assay (ELISA). Fasting plasma glucose (FPG), HbA1c, lipid profile, TNF-α and insulin were also measured, and insulin resistance was calculated using a homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS Serum concentrations of TRB3, GRP78, AGEs, and TNF-α were significantly higher in T2DM patients compared to the healthy controls. Moreover, a statistically significant positive correlation was observed between plasma concentrations of TRB3 and FPG, HbA1c, HOMA-IR, and AGE. GRP78 levels were positively correlated with HbA1c and AGEs. There was also a positive correlation between GRP78 and TRB3. AGEs levels were positively correlated with the levels of FPG, HbA1c, HOMA-IR, and TNF-α. CONCLUSION The current findings suggest that TRB3 and GRP78 may contribute to the pathogenesis of T2DM and might be considered as a therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- M Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - R Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, 1449614535, Tehran, Iran.
| | - N Heydari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Nourbakhsh
- Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - S Ezzati-Mobasser
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - H Zarrinnahad
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Cao X, Fang X, Guo M, Li X, He Y, Xie M, Xu Y, Liu X. TRB3 mediates vascular remodeling by activating the MAPK signaling pathway in hypoxic pulmonary hypertension. Respir Res 2021; 22:312. [PMID: 34906150 PMCID: PMC8670293 DOI: 10.1186/s12931-021-01908-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (PH) is a refractory pulmonary vascular remodeling disease, and the efficiency of current PH treatment strategies is unsatisfactory. Tribbles homolog 3 (TRB3), a member of the pseudokinase family, is upregulated in diverse types of cellular stresses and functions as either a pro-proliferative or pro-apoptotic factor depending on the specific microenvironment. The regulatory mechanisms of TRB3 in hypoxic PH are poorly understood. METHODS We performed studies using TRB3-specific silencing and overexpressing lentiviral vectors to investigate the potential roles of TRB3 on hypoxic pulmonary artery smooth muscle cells (PASMCs). Adeno-associated virus type 1(AVV1) vectors encoding short-hairpin RNAs against rat TRB3 were used to assess the role of TRB3 on hypoxic PH. TRB3 protein expression in PH patients was explored in clinical samples by western blot analysis. RESULTS The results of whole-rat genome oligo microarrays showed that the expression of TRB3 and endoplasmic reticulum stress (ERS)-related genes was upregulated in hypoxic PASMCs. TRB3 protein expression was significantly upregulated by hypoxia and thapsigargin. In addition, 4-PBA and 4μ8C, both inhibitors of ERS, decreased the expression of TRB3. TRB3 knockdown promoted apoptosis and damaged the proliferative and migratory abilities of hypoxic PASMCs as well as inhibited activation of the MAPK signaling pathway. TRB3 overexpression stimulated the proliferation and migration of PASMCs but decreased the apoptosis of PASMCs, which was partly reversed by specific inhibitors of ERK, JNK and p38 MAPK. The Co-IP results revealed that TRB3 directly interacts with ERK, JNK, and p38 MAPK. Knockdown of TRB3 in rat lung tissue reduced the right ventricular systolic pressure and decreased pulmonary medial wall thickness in hypoxic PH model rats. Further, the expression of TRB3 in lung tissues was higher in patients with PH compared with those who have normal pulmonary artery pressure. CONCLUSIONS TRB3 was upregulated in hypoxic PASMCs and was affected by ERS. TRB3 plays a key role in the pathogenesis of hypoxia-induced PH by binding and activating the ERK, JNK, and p38 MAPK pathways. Thus, TRB3 might be a promising target for the treatment of hypoxic PH.
Collapse
Affiliation(s)
- Xiaopei Cao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, 430030, China.
| |
Collapse
|
10
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
11
|
SAHA could inhibit TGF-β1/p38 pathway in MI-induced cardiac fibrosis through DUSP4 overexpression. Heart Vessels 2021; 37:152-160. [PMID: 34236463 PMCID: PMC8732849 DOI: 10.1007/s00380-021-01900-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/02/2021] [Indexed: 11/01/2022]
Abstract
Growing evidences have revealed that a histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA) has anti-fibrotic effect in different diseases. In this study, we first evaluated whether SAHA could suppress cardiac fibrosis. Mice with MI-induced cardiac fibrosis were treated with SAHA by intraperitoneal injection and their cardiac function was improved after SAHA treatment. Results of western blotting and qRT-PCR in heart tissues suggested that TGFβ1/P38 pathway was activated in MI mice, and this effect was reversed by SAHA. Cell proliferation assay suggested that SAHA could suppress TGF-β1-induced cardiac fibroblasts proliferation. Furthermore, results of western blotting and qRT-PCR in cardiac fibroblasts depicted that SAHA may exert its anti-fibrotic effect through inhibiting TGF-β1-induced P38 phosphorylation by promoting DUSP4 expression. Our findings may substantiate SAHA as a promising treatment for MI-induced cardiac fibrosis.
Collapse
|
12
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Fan F, He J, Su H, Zhang H, Wang H, Dong Q, Zeng M, Xing W, Sun X. Tribbles Homolog 3-Mediated Vascular Insulin Resistance Contributes to Hypoxic Pulmonary Hypertension in Intermittent Hypoxia Rat Model. Front Physiol 2020; 11:542146. [PMID: 33192545 PMCID: PMC7662151 DOI: 10.3389/fphys.2020.542146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the role of vascular insulin resistance (VIR) and Tribbles homolog 3 (TRIB3) in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). Rats were subjected to low air pressure and low oxygen intermittently for 4 weeks to induce HPH. The mean right ventricular pressure (mRVP), mean pulmonary arterial pressure (mPAP), and right ventricular index (RVI) were significantly increased in HPH rats. Pulmonary arteries from HPH rats showed VIR with reduced vasodilating effect of insulin. The protein levels of peroxisome proliferator-activated receptor gamma (PPARγ), phosphoinositide 3-kinase (PI3K), phosphorylations of Akt, and endothelial nitric oxide (NO) synthase (eNOS) were decreased, and TRIB3 and phosphorylated extracellular signal-regulated protein kinases (ERK1/2) were increased in pulmonary arteries of HPH rats. Early treatment of pioglitazone (PIO) partially reversed the development of HPH, improved insulin-induced vasodilation, and alleviated the imbalance of the insulin signaling. The overexpression of TRIB3 in rat pulmonary arterial endothelial cells (PAECs) reduced the levels of PPARγ, PI3K, phosphorylated Akt (p-Akt), and phosphorylated eNOS (p-eNOS) and increased p-ERK1/2 and the synthesis of endothelin-1 (ET-1), which were further intensified under hypoxic conditions. Moreover, TRIB3 knockdown caused significant improvement in Akt and eNOS phosphorylations and, otherwise, a reduction of ERK1/2 activation in PAECs after hypoxia. In conclusion, impaired insulin-induced pulmonary vasodilation and the imbalance of insulin-induced signaling mediated by TRIB3 upregulation in the endothelium contribute to the development of HPH. Early PIO treatment improves vascular insulin sensitivity that may help to limit the progression of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Fang Fan
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinxiao He
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geratology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haifeng Zhang
- Teaching Experiment Center, Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianqian Dong
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Minghua Zeng
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Wise LM, Stuart GS, Sriutaisuk K, Adams BR, Riley CB, Theoret CL. Anti-fibrotic Actions of Equine Interleukin-10 on Transforming Growth Factor-Beta1-Stimulated Dermal Fibroblasts Isolated From Limbs of Horses. Front Vet Sci 2020; 7:577835. [PMID: 33195583 PMCID: PMC7531226 DOI: 10.3389/fvets.2020.577835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023] Open
Abstract
Fibroproliferative disorders occur in both humans and horses following skin injury. In horses, wound healing on the limb is often complicated by the formation of fibroproliferative exuberant granulation tissue, characterized by persistent expression of pro-fibrotic transforming growth factor-beta1 (TGF-β1) and deficient expression of anti-inflammatory interleukin-10 (IL-10). IL-10 has been shown to directly modulate fibrotic gene expression in human fibroblasts, so we hypothesized that equine IL-10 (eIL-10) may exert similar anti-fibrotic effects on equine dermal fibroblasts. Cell-lines were created from the limb skin of six individual horses. Recombinant eIL-10 was produced and purified, and its effects on the cells investigated in the presence and absence of equine TGF-β1 (eTGF-β1). Myofibroblast differentiation and collagen production were examined using immunofluorescent cytometry, cell contractility in a collagen gel assay, and fibrotic gene expression using quantitative PCR. In response to eTGF-β1, fibroblasts increased in contractility and expression of alpha-smooth muscle actin, collagen types 1 and 3, and matrix metalloproteinase 1, 2, and 9. Equine IL-10 limited cell contractility and production of alpha-smooth muscle actin and type 3 collagen, and decreased mRNA levels of eCol3a1 and eMMP9, while increasing that of eMMP1. Opposing effects on eTGF-βR3 and eIL-10R1 gene expression were also observed, with mRNA levels decreasing following eTGF-β1 treatment, and increasing with eIL-10 treatment. These findings indicate that eIL-10 limits the pro-fibrotic effects of eTGF-β1, potentially through the modulation of fibrotic and receptor gene expression. Further investigations are warranted to assess the therapeutic utility of eIL-10 in the treatment of exuberant granulation tissue.
Collapse
Affiliation(s)
- Lyn M Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Gabriella S Stuart
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Kevalee Sriutaisuk
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Brooke R Adams
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christopher B Riley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christine L Theoret
- Département de Biomedecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
15
|
The Diabetic Cardiac Fibroblast: Mechanisms Underlying Phenotype and Function. Int J Mol Sci 2020; 21:ijms21030970. [PMID: 32024054 PMCID: PMC7036958 DOI: 10.3390/ijms21030970] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy involves remodeling of the heart in response to diabetes that includes microvascular damage, cardiomyocyte hypertrophy, and cardiac fibrosis. Cardiac fibrosis is a major contributor to diastolic dysfunction that can ultimately result in heart failure with preserved ejection fraction. Cardiac fibroblasts are the final effector cell in the process of cardiac fibrosis. This review article aims to describe the cardiac fibroblast phenotype in response to high-glucose conditions that mimic the diabetic state, as well as to explain the pathways underlying this phenotype. As such, this review focuses on studies conducted on isolated cardiac fibroblasts. We also describe molecules that appear to oppose the pro-fibrotic actions of high glucose on cardiac fibroblasts. This represents a major gap in knowledge in the field that needs to be addressed.
Collapse
|
16
|
Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis 2019; 6:jcdd6030027. [PMID: 31394846 PMCID: PMC6787752 DOI: 10.3390/jcdd6030027] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
The cardiac fibroblast is a remarkably versatile cell type that coordinates inflammatory, fibrotic and hypertrophic responses in the heart through a complex array of intracellular and intercellular signaling mechanisms. One important signaling node that has been identified involves p38 MAPK; a family of kinases activated in response to stress and inflammatory stimuli that modulates multiple aspects of cardiac fibroblast function, including inflammatory responses, myofibroblast differentiation, extracellular matrix turnover and the paracrine induction of cardiomyocyte hypertrophy. This review explores the emerging importance of the p38 MAPK pathway in cardiac fibroblasts, describes the molecular mechanisms by which it regulates the expression of key genes, and highlights its potential as a therapeutic target for reducing adverse myocardial remodeling.
Collapse
|
17
|
Cheng W, Mi L, Tang J, Yu W. Expression of TRB3 promotes epithelial‑mesenchymal transition of MLE‑12 murine alveolar type II epithelial cells through the TGF‑β1/Smad3 signaling pathway. Mol Med Rep 2019; 19:2869-2875. [PMID: 30720074 DOI: 10.3892/mmr.2019.9900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/12/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate whether the expression of tribbles pseudokinase 3 (TRB3) is involved in pulmonary interstitial fibrosis and to examine the possible mechanisms. The expression of TRB3 in murine alveolar type II epithelial cells (MLE‑12 cells) following transforming growth factor β1 (TGF‑β1) stimulation was assessed using various techniques, including western blot and reverse transcription‑quantitative polymerase chain reaction assays. TRB3 overexpression and downregulation models were used to evaluate the impact of TRB3 on the TGF‑β1‑induced epithelial‑mesenchymal transition (EMT) of MLE‑12 cells. The downregulation of TRB3 was induced by RNA interference. The expression of TRB3 was significantly increased in MLE‑12 cells following the activation of TGF‑β1 (P<0.05). The overexpression of TRB3 was found to promote activation of the TGF‑β1/Smad3 signaling pathway, EMT, and the upregulated expression of β‑catenin and EMT‑related genes and proteins (P<0.05), whereas the downregulation of TRB3 attenuated the promoting effect on EMT induced by TGF‑β1. In addition, the overexpression of TRB3 inhibited MLE‑12 cell proliferation by stimulating apoptosis, leading to the formation of pulmonary fibrosis (PF). The positive feedback loop demonstrated that TGF‑β1 induced the expression of TRB3, and TRB3, in turn, stimulated EMT and promoted the onset of PF through activation of the TGF‑β1/Smad3 signaling pathway. Therefore, TRB3 may promote the formation of PF through the TGF‑β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Liyun Mi
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jie Tang
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Wencheng Yu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
18
|
Rouet‐Benzineb P, Merval R, Polidano E. Effects of hypoestrogenism and/or hyperaldosteronism on myocardial remodeling in female mice. Physiol Rep 2018; 6:e13912. [PMID: 30430766 PMCID: PMC6236131 DOI: 10.14814/phy2.13912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
We investigated the potential adverse effects of hyperaldosteronism and/or hypoestrogenism on cardiac phenotype, and examined their combined effects in female mice overexpressing cardiac aldosterone synthase (AS). We focused on some signaling cascades challenging defensive responses to adapt and/or to survive in the face of double deleterious stresses, such as Ca2+ -homeostasis, pro/anti-hypertrophic, endoplasmic reticulum stress (ER stress), pro- or anti-apoptotic effectors, and MAP kinase activation, and redox signaling. These protein expressions were assessed by immunoblotting at 9 weeks after surgery. Female wild type (FWT) and FAS mice were fed with phytoestrogen-free diet; underwent ovariectomy (Ovx) or sham-operation (Sham). Ovx increased gain weight and hypertrophy index. Transthoracic echocardiograghy was performed. Both Ovx-induced heart rate decrease and fractional shortening increase were associated with collagen type III shift. Cardiac estrogen receptor (ERα, ERβ) protein expression levels were downregulated in Ovx mice. Hypoestrogenism increased plasma aldosterone and MR protein expression in FAS mice. Both aldosterone and Ovx played as mirror effects on up and downstream signaling effectors of calcium/redox homeostasis, apoptosis, such as concomitant CaMKII activation and calcineurin down-regulation, MAP kinase inhibition (ERK1/2, p38 MAPK) and Akt activation. The ratio Bcl2/Bax is in favor to promote cell survivor. Finally, myocardium had dynamically orchestrated multiple signaling cascades to restore tolerance to hostile environment thereby contributing to a better maintenance of Ca2+ /redox homeostasis. Ovx-induced collagen type III isoform shift and its upregulation may be important for the biomechanical transduction of the heart and the recovery of cardiac function in FAS mice. OVX antagonized aldosterone signaling pathways.
Collapse
|
19
|
Yuan J, Liu H, Gao W, Zhang L, Ye Y, Yuan L, Ding Z, Wu J, Kang L, Zhang X, Wang X, Zhang G, Gong H, Sun A, Yang X, Chen R, Cui Z, Ge J, Zou Y. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Am J Cancer Res 2018; 8:2565-2582. [PMID: 29721099 PMCID: PMC5928909 DOI: 10.7150/thno.22878] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
Rationale: Excessive myocardial fibrosis is the main pathological process in the development of cardiac remodeling and heart failure; therefore, it is important to prevent excessive myocardial fibrosis. We determined that microRNA-378 (miR-378) is cardiac-enriched and highly repressed during cardiac remodeling. We therefore proposed that miR-378 has a critical role in regulation of cardiac fibrosis, and examined the effects of miR-378 on cardiac fibrosis after mechanical stress. Methods: Mechanical stress was respectively imposed on mice through a transverse aortic constriction (TAC) procedure and on cardiac fibroblasts by stretching silicon dishes. A chemically modified miR-378 mimic (Agomir) or an inhibitor (Antagomir) was administrated to mice by intravenous injection and to cells by direct addition to the culture medium. MiR-378 knockout mouse was constructed. Cardiac fibroblasts were cultured in the conditioned media from the cardiomyocytes with either miR-378 depletion or treatment with sphingomyelinase inhibitor GW4869. Quantitative real-time polymerase chain reaction analysis of gene and miRNA expression, Western blot analysis, immunochemistry and electron microscopy were performed to elucidate the mechanisms. Results: Mechanical stress induced significant increases in fibrotic responses, including myocardial fibrosis, fibroblast hyperplasia, and protein and gene expression of collagen and matrix metalloproteinases (MMPs) both in vivo and in vitro. All these fibrotic responses were attenuated by treatment with a chemically modified miR-378 mimic (Agomir) but were exaggerated by treatment with an inhibitor (Antagomir). MiR-378 knockout mouse models exhibited aggravated cardiac fibrosis after TAC. Media from the cardiomyocytes with either miR-378 depletion or treatment with sphingomyelinase inhibitor GW4869 enhanced the fibrotic responses of stimulated cardiac fibroblasts, confirming that miR-378 inhibits fibrosis in an extracellular vesicles-dependent secretory manner. Mechanistically, the miR-378-induced anti-fibrotic effects manifested partially through the suppression of p38 MAP kinase phosphorylation by targeting MKK6 in cardiac fibroblasts. Conclusions: miR-378 is secreted from cardiomyocytes following mechanical stress and acts as an inhibitor of excessive cardiac fibrosis through a paracrine mechanism.
Collapse
|
20
|
Nonaka K, Kajiura Y, Bando M, Sakamoto E, Inagaki Y, Lew JH, Naruishi K, Ikuta T, Yoshida K, Kobayashi T, Yoshie H, Nagata T, Kido J. Advanced glycation end-products increase IL-6 and ICAM-1 expression via RAGE, MAPK and NF-κB pathways in human gingival fibroblasts. J Periodontal Res 2017; 53:334-344. [DOI: 10.1111/jre.12518] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Affiliation(s)
- K. Nonaka
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - Y. Kajiura
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - M. Bando
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - E. Sakamoto
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - Y. Inagaki
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - J. H. Lew
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - K. Naruishi
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Ikuta
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - K. Yoshida
- Department of Oral Healthcare Education; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Kobayashi
- General Dentistry and Clinical Education Unit; Niigata University Medical and Dental Hospital; Niigata Japan
- Division of Periodontology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - H. Yoshie
- Division of Periodontology; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - T. Nagata
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - J. Kido
- Department of Periodontology and Endodontology; Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| |
Collapse
|
21
|
Ma Y, Chen F, Yang S, Duan Y, Sun Z, Shi J. Silencing of TRB3 Ameliorates Diabetic Tubule Interstitial Nephropathy via PI3K/AKT Signaling in Rats. Med Sci Monit 2017; 23:2816-2824. [PMID: 28600485 PMCID: PMC5475374 DOI: 10.12659/msm.902581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Nephropathy, a chronic progressive kidney disease often characterized by glomeruli scarring and sclerosis, is a major complication of diabetes mellitus. Development of nephropathologic lesions has been shown to be associated with suppressed AKT phosphorylation and elevated level of apoptosis. Moreover, it has been established that the TRB3 gene is capable of inhibiting AKT phosphorylation and promoting apoptosis. Material/Methods In this study, we injected TRB3 siRNA into Wistar rats with type 1 diabetes, and monitored development of nephropathy in the rats. Urinary albumin excretion and serum creatinine were used as primary indicators, and nephritic histology was also examined. We also measured the serum level of pro-inflammatory cytokines collagen expression, and phosphorylation of PI3K and AKT proteins in the kidneys. Results By silencing the TRB3 gene with siRNA, diabetic-induced nephropathy symptoms were alleviated, such as increased serum creatinine level and urinary albumin secretion. Additionally, histological examination showed lower levels of nephropathic lesions, and samples of the kidneys showed less accumulation of collagen proteins. Levels of serum cytokines, including TNF-α, IL-1β, and IL-6, were also lowered, whereas phosphorylation levels of PI3K and AKT were increased. In summary, TRB3 silencing in diabetic rats had a significant ameliorative effect on their nephropathy. Conclusions Silencing of TRB3 has a significant ameliorative effect on diabetic nephropathy in rats.
Collapse
Affiliation(s)
- Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Suxia Yang
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Yurui Duan
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Zhiqiang Sun
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| |
Collapse
|
22
|
Gao J, Liu X, Wang B, Xu H, Xia Q, Lu T, Wang F. Farnesoid X receptor deletion improves cardiac function, structure and remodeling following myocardial infarction in mice. Mol Med Rep 2017; 16:673-679. [PMID: 28560412 PMCID: PMC5482148 DOI: 10.3892/mmr.2017.6643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
The farnesoid X receptor (FXR) is implicated in cholesterol and bile acid homeostasis; however, its role following myocardial infarction (MI) has yet to be elucidated. The aim of the present study was to investigate the effects of FXR knockout on left ventricular (LV) remodeling following MI. Coronary arteries of wild type (WT) and FXR‑/‑ mice were permanently occluded to cause MI, and serial echocardiographic and histological tests were conducted. At 4 weeks post‑MI, FXR‑/‑ mice exhibited significantly smaller infarct sizes (34.20±2.58 vs. 44.20±3.19%), improved ejection fraction (47.31±1.08 vs. 37.64±0.75%) and reduced LV chamber dilation compared with WT mice. LV remodeling was significant as early as 7 days post‑MI in FXR‑/‑ compared with WT mice. Histological features associated with enhanced long‑term remodeling and improved functionality, such as increased angiogenesis via detection of CD31 and reduced fibrosis, were observed in the FXR‑/‑ group. Myocyte apoptosis within the infarcted zones appeared significantly reduced by day 7 in FXR‑/‑ mice. In conclusion, the results of the present study suggested that FXR knockout may participate in the preservation of post‑MI cardiac functionality, via reducing fibrosis and chronic apoptosis, and ameliorating ventricular function.
Collapse
Affiliation(s)
- Jianshu Gao
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Bingjian Wang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Haiyan Xu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Tianfei Lu
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
23
|
Schröder HC, Tolba E, Diehl-Seifert B, Wang X, Müller WEG. Electrospinning of Bioactive Wound-Healing Nets. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:259-290. [PMID: 28238041 DOI: 10.1007/978-3-319-51284-6_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing properties. The underlying principles and the mechanism of these new approaches in the therapy wounds, in particular wounds showing impaired healing, as well as for further applications in skin regeneration/repair, are summarized.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany.
| | - Emad Tolba
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Bärbel Diehl-Seifert
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
24
|
Li X, Zhao D, Guo Z, Li T, Qili M, Xu B, Qian M, Liang H, E X, Chege Gitau S, Wang L, Huangfu L, Wu Q, Xu C, Shan H. Overexpression of SerpinE2/protease nexin-1 Contribute to Pathological Cardiac Fibrosis via increasing Collagen Deposition. Sci Rep 2016; 6:37635. [PMID: 27876880 PMCID: PMC5120308 DOI: 10.1038/srep37635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023] Open
Abstract
Although increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis, the molecular mechanisms of pressure overload or AngII -induced cardiac interstitial fibrosis remain elusive. In this study, serpinE2/protease nexin-1 was over-expressed in a cardiac fibrosis model induced by pressure-overloaded via transverse aortic constriction (TAC) in mouse. Knockdown of serpinE2 attenuates cardiac fibrosis in a mouse model of TAC. At meantime, the results showed that serpinE2 significantly were increased with collagen accumulations induced by AngII or TGF-β stimulation in vitro. Intriguingly, extracellular collagen in myocardial fibroblast was reduced by knockdown of serpinE2 compared with the control in vitro. In stark contrast, the addition of exogenous PN-1 up-regulated the content of collagen in myocardial fibroblast. The MEK1/2- ERK1/2 signaling probably promoted the expression of serpinE2 via transcription factors Elk1 in myocardial fibroblast. In conclusion, stress-induced the ERK1/2 signaling pathway activation up-regulated serpinE2 expression, consequently led accumulation of collagen protein, and contributed to cardiac fibrosis.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Dandan Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenfeng Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,The second Clinical Medical School of Inner Mongolia University for Nationalities, Inner Mongolia Forestry General Hospital, Inner Mongolia, China
| | - Tianshi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Muge Qili
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bozhi Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ming Qian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoqiang E
- Department of Orthopaedics, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Samuel Chege Gitau
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Pharmacy and Complementary Medicine, School of Health Sciences, Kenyatta University, Nairobi, Kenya
| | - Lu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Longtao Huangfu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qiuxia Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Effects of linagliptin and liraglutide on glucose- and angiotensin II-induced collagen formation and cytoskeleton degradation in cardiac fibroblasts in vitro. Acta Pharmacol Sin 2016; 37:1349-1358. [PMID: 27498780 DOI: 10.1038/aps.2016.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
AIM Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors can not only lower blood glucose levels, but also alleviate cardiac remodeling after myocardial ischemia and hypertension. In the present study, we investigated the effects of a DPP-4 inhibitor (linagliptin) and a GLP-1 activator (liraglutide) on glucose- and angiotensin II (Ang II)-induced collagen formation and cytoskeleton reorganization in cardiac fibroblasts in vitro, and elucidated the related mechanisms. METHODS Cardiac fibroblasts were isolated from the hearts of 6-week-old C57BL/6 mice, and then exposed to different concentrations of glucose or Ang II for 24 h. The expression of fibrotic signals (fibronectin, collagen-1, -3 and -4), as well as ERK1/2 and NF-κB-p65 in the fibroblasts was examined using Western blotting assays. F-actin degradation was detected under inverted laser confocal microscope in fibroblasts stained with Rhodamine phalloidin. RESULTS Glucose (1-40 mmol/L) and Ang II (10-8-10-5 mol/L) dose-dependently increased the expression of fibronectin, collagens, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. High concentrations of glucose (≥40 mmol/L) and Ang II (≥10-6 mol/L) caused a significant degradation of F-actin (less assembly F-actin fibers and more disassembly fibers). ERK1/2 inhibitor U0126 (10 μmol/L) and NF-κB inhibitor JSH-23 (10 μmol/L) both markedly suppressed glucose- and angiotensin II-induced fibronectin and collagen expressions in cardiac fibroblasts. Furthermore, pretreatment with liraglutide (10-100 nmol/L) or linagliptin (3 and 30 nmol/L) significantly decreased glucose- and Ang II-induced expression of fibrotic signals, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. Moreover, pretreatment with liraglutide (30 nmol/L) or liraglutide (100 nmol/L) markedly inhibited glucose-induced F-actin degradation, however, only liraglutide inhibited Ang II-induced F-actin degradation. CONCLUSION Linagliptin and liraglutide inhibit glucose- and Ang II-induced collagen formation in cardiac fibroblasts via activation of the ERK/NF-κB/pathway. Linagliptin and liraglutide also markedly inhibit glucose-induced F-actin degradation in cardiac fibroblasts, but only liraglutide inhibits Ang II-induced F-actin degradation.
Collapse
|
26
|
Kim JT, Kasukonis BM, Brown LA, Washington TA, Wolchok JC. Recovery from volumetric muscle loss injury: A comparison between young and aged rats. Exp Gerontol 2016; 83:37-46. [PMID: 27435497 DOI: 10.1016/j.exger.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
Termed volumetric muscle loss (VML), the bulk loss of skeletal muscle tissue either through trauma or surgery overwhelms the capacity for repair, leading to the formation of non-contractile scar tissue. The myogenic potential, along with other factors that influence wound repair are known to decline with age. In order to develop effective treatment strategies for VML injuries that are effective across a broad range of patient populations, it is necessary to understand how the response to VML injury is affected by aging. Towards this end, this study was conducted to compare the response of young and aged animal groups to a lower extremity VML injury. Young (3months, n=12) and aged (18months, n=8) male Fischer 344 rats underwent surgical VML injury of the tibialis anterior muscle. Three months after VML injury it was found that young TA muscle was on average 16% heavier than aged muscle when no VML injury was performed and 25% heavier when comparing VML treated young and aged animals (p<0.0001, p<0.0001). Peak contractile force for both the young and aged groups was found to decrease significantly following VML injury, producing 65% and 59% of the contralateral limbs' peak force, respectively (p<0.0001). However, there were no differences found for peak contractile force based on age, suggesting that VML affects muscle's ability to repair, regardless of age. In this study, we used the ratio of collagen I to MyoD expression as a metric for fibrosis vs. myogenesis. Decreasing fiber cross-sectional area with advancing age (p<0.005) coupled with the ratio of collagen I to MyoD expression, which increased with age, supports the thought that regeneration is impaired in the aged population in favor of fibrosis (p=0.0241). This impairment is also exacerbated by the contribution of VML injury, where a 77-fold increase in the ratio of collagen I to MyoD was observed in the aged group (p<0.0002). The aged animal model described in this study provides a tool for investigators exploring not only the development of VML injury strategies but also the effect of aging on muscle regeneration.
Collapse
Affiliation(s)
- John T Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| | - Benjamin M Kasukonis
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| | - Lemuel A Brown
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, Fayetteville, AR 72701, United States
| | - Tyrone A Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, Fayetteville, AR 72701, United States
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
27
|
Shengmai San Ameliorates Myocardial Dysfunction and Fibrosis in Diabetic db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4621235. [PMID: 27200101 PMCID: PMC4856913 DOI: 10.1155/2016/4621235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 11/17/2022]
Abstract
In this study, we mainly investigated the effects of Shengmai San (SMS) on diabetic cardiomyopathy (DCM) in db/db mice. The db/db mice were randomly divided into model group and SMS group, while C57BLKS/J inbred mice were used as controls. After 24-week treatment, blood glucose, body weight, and heart weight were determined. Hemodynamic changes in the left ventricle were measured using catheterization. The myocardial structure and subcellular structural changes were observed by HE staining and electron microscopy; the myocardium collagen content was quantified by Masson staining. To further explore the protective mechanism of SMS, we analyzed the expression profiles of fibrotic related proteins. Compared to nondiabetic mice, db/db mice exhibited enhanced diastolic myocardial dysfunction and adverse structural remodeling. Higher expression of profibrotic proteins and lower levels of extracellular matrix degradation were also observed. After SMS oral administration for 24 weeks, cardiac dysfunction, hypertrophy, and fibrosis in diabetic mice were greatly improved. Moreover, increased profibrotic protein expression was strongly reversed by SMS treatment in db/db mice. The results demonstrate that SMS exerts a cardioprotective effect against DCM by attenuating myocardial hypertrophy and fibrosis via a TGF-β dependent pathway.
Collapse
|
28
|
Chen M, Li H, Wang G, Shen X, Zhao S, Su W. Atorvastatin prevents advanced glycation end products (AGEs)-induced cardiac fibrosis via activating peroxisome proliferator-activated receptor gamma (PPAR-γ). Metabolism 2016; 65:441-53. [PMID: 26975536 DOI: 10.1016/j.metabol.2015.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/31/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous studies have shown that the activation of advanced glycation end products (AGEs) contributed to the cardiac fibrosis in diabetic patients. Although it had been reported that statins have beneficial effects on cardiac fibrosis in hypertension and myocardial ischemia models, their effects on AGEs models have not been studied. We aimed to investigate the effects of atorvastatin (Ator) on the AGEs-induced cardiac fibrosis both in vitro and vivo. METHODS Male Sprague-Dawley rats were randomly divided into four groups: Control, AGEs, Ator or AGEs+Ator. The cardiac function was evaluated with the echocardiography at the second and the third month. Fibrosis area, α-SMA and RAGE expression in cardiac tissue were measured. For in vitro study, rat cardiac fibroblasts were treated with PD98059 (ERK inhibitor), Ator or Ator+GW9662 (PPAR-γ antagonist), and then were stimulated with AGEs. Fibroblasts proliferation, ERK1/2, phosphorylated ERK1/2, α-SMA, and RAGE expression were studied. RESULTS Compared with the control group, in vivo treatment with Ator significantly retarded the AGEs-induced diastolic function and attenuated cardiac fibrosis, α-SMA, and RAGE over expression induced by AGEs. Consistently, Ator prominently downregulated RAGE and α-SMA, while inhibited phosphorylation of ERK1/2 and fibroblast proliferation induced by AGEs in vitro. The GW9662 neutralized these effects of Ator on cardiac fibroblasts stimulated by AGEs. CONCLUSION In this study, we demonstrated that AGEs-induced fibroblast proliferation and differentiation were dependent on AGEs-RAGE-ERK1/2 pathway and that atorvastatin could block this pathway via activating PPAR-γ.
Collapse
Affiliation(s)
- Miao Chen
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Guoxing Wang
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xuhua Shen
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shumei Zhao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Su
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Miedel EL, Brisson BK, Hamilton T, Gleason H, Swain GP, Lopas L, Dopkin D, Perosky JE, Kozloff KM, Hankenson KD, Volk SW. Type III collagen modulates fracture callus bone formation and early remodeling. J Orthop Res 2015; 33:675-84. [PMID: 25626998 PMCID: PMC4406871 DOI: 10.1002/jor.22838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/19/2015] [Indexed: 02/04/2023]
Abstract
Type III collagen (Col3) has been proposed to play a key role in tissue repair based upon its temporospatial expression during the healing process of many tissues, including bone. Given our previous finding that Col3 regulates the quality of cutaneous repair, as well as our recent data supporting its role in regulating osteoblast differentiation and trabecular bone quantity, we hypothesized that mice with diminished Col3 expression would exhibit altered long-bone fracture healing. To determine the role of Col3 in bone repair, young adult wild-type (Col3+/+) and haploinsufficent (Col3+/-) mice underwent bilateral tibial fractures. Healing was assessed 7, 14, 21, and 28 days following fracture utilizing microcomputed tomography (microCT), immunohistochemistry, and histomorphometry. MicroCT analysis revealed a small but significant increase in bone volume fraction in Col3+/- mice at day 21. However, histological analysis revealed that Col3+/- mice have less bone within the callus at days 21 and 28, which is consistent with the established role for Col3 in osteogenesis. Finally, a reduction in fracture callus osteoclastic activity in Col3+/- mice suggests Col3 also modulates callus remodeling. Although Col3 haploinsufficiency affected biological aspects of bone repair, it did not affect the regain of mechanical function in the young mice that were evaluated in this study. These findings provide evidence for a modulatory role for Col3 in fracture repair and support further investigations into its role in impaired bone healing.
Collapse
Affiliation(s)
- Emily L. Miedel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Becky K. Brisson
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Todd Hamilton
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hadley Gleason
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary P. Swain
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luke Lopas
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek Dopkin
- Department of Small Animal Clinical Science and Department of Physiology, Michigan State University, East Lansing, MI
| | - Joseph E. Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Small Animal Clinical Science and Department of Physiology, Michigan State University, East Lansing, MI
| | - Susan W. Volk
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Müller WEG, Tolba E, Schröder HC, Diehl-Seifert B, Wang X. Retinol encapsulated into amorphous Ca(2+) polyphosphate nanospheres acts synergistically in MC3T3-E1 cells. Eur J Pharm Biopharm 2015; 93:214-23. [PMID: 25900862 DOI: 10.1016/j.ejpb.2015.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
Abstract
Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the expression of collagen type V gene, were significantly enhanced if retinol is added together with aCa-polyP-NP. This synergistic effect was especially pronounced for the expression of the collagen type III gene. We propose that the synergistic effect of the retinol/aCa-polyP-NS on cell growth and collagen type III expression is induced via two routes, first through cellular uptake of the 45 nm nanospheres by clathrin-mediated endocytosis and second through extracellular disintegration of the nanospheres resulting in the release of retinol which is then taken up into the cells after binding to the retinal binding protein receptor.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; Biomaterials Department, Inorganic Chemical Industries Division, National Research Center, Doki, 11884 Cairo, Egypt
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
31
|
Marinho R, Mekary RA, Muñoz VR, Gomes RJ, Pauli JR, de Moura LP. Regulation of hepatic TRB3/Akt interaction induced by physical exercise and its effect on the hepatic glucose production in an insulin resistance state. Diabetol Metab Syndr 2015; 7:67. [PMID: 26288661 PMCID: PMC4539706 DOI: 10.1186/s13098-015-0064-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.
Collapse
Affiliation(s)
- Rodolfo Marinho
- />São Paulo State University, UNESP, Rio Claro, SP Brazil
- />Faculty of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, Jardim Santa Luzia, Limeira, SP Brazil
| | - Rania A. Mekary
- />Department of Social and Administrative Sciences, MCPHS University, Boston, MA USA
- />Department of Nutrition, Harvard T. Chan School of Public Health, Boston, MA USA
| | - Vitor Rosetto Muñoz
- />Faculty of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, Jardim Santa Luzia, Limeira, SP Brazil
| | - Ricardo José Gomes
- />Department of Biosciences, São Paulo Federal University (UNIFESP), Santos, SP Brazil
| | - José Rodrigo Pauli
- />São Paulo State University, UNESP, Rio Claro, SP Brazil
- />Faculty of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, Jardim Santa Luzia, Limeira, SP Brazil
| | - Leandro Pereira de Moura
- />São Paulo State University, UNESP, Rio Claro, SP Brazil
- />Faculty of Applied Science, University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, Jardim Santa Luzia, Limeira, SP Brazil
| |
Collapse
|
32
|
Wang W, Sun A, Lv W, Cheng J, Lv S, Liu X, Guan G, Liu G. TRB3, up-regulated in kidneys of rats with type1 diabetes, mediates extracellular matrix accumulation in vivo and in vitro. Diabetes Res Clin Pract 2014; 106:101-9. [PMID: 25112920 DOI: 10.1016/j.diabres.2014.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 05/23/2014] [Accepted: 07/20/2014] [Indexed: 12/17/2022]
Abstract
AIMS Fibrosis is the final disorder of most chronic kidney disease including diabetic nephropathy (DN), but the mechanisms are not fully understood. The present study aims to determine whether TRB3 participates in fibrogenesis in DN. METHODS Type1 diabetes was induced in male Wistar rats via intraperitoneal injection of streptozotocin (STZ). The expression of TRB3 and extracellular matrix (ECM) protein collagen I and fibronectin was investigated in kidneys of rats with diabetes and NRK-52E cells (a rat proximal tubular cell line) stimulated with albumin-overload. Rats without diabetes and NRK-52E cells without albumin stimulation served as control. Then gene silencing was used to study whether TRB3 participated in accumulation of collagen I and fibronectin in vivo and in vitro. RESULTS TRB3 is up-regulated in renal tubules of kidneys of rats with diabetes, especially proximal tubules. Albumin-overload can augments TRB3 expression and increase collagen I and fibronectin secretion in NRK-52E cells. Importantly, silencing of TRB3 alleviates collagen I and fibronectin accumulation in kidneys of rats with diabetes and NRK-52E cells induced by albumin-overload. CONCLUSIONS TRB3 mediates ECM accumulation in kidneys of rats with STZ-induced type1 diabetes and proximal tubular cells induced by albumin-overload, suggesting a potential target for treatment of DN.
Collapse
Affiliation(s)
- Weiwei Wang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China
| | - Aili Sun
- Department of Endocrinology, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China
| | - Wei Lv
- Department of Nephrology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Jing Cheng
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China
| | - Shasha Lv
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China
| | - Xiangchun Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China
| | - Guangju Guan
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China.
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Ji'nan, Shandong Province, China.
| |
Collapse
|
33
|
Tribbles 3 regulates the fibrosis cytokine TGF- β 1 through ERK1/2-MAPK signaling pathway in diabetic nephropathy. J Immunol Res 2014; 2014:240396. [PMID: 25133193 PMCID: PMC4124808 DOI: 10.1155/2014/240396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/21/2014] [Accepted: 06/03/2014] [Indexed: 01/14/2023] Open
Abstract
To reveal the expression and possible role of tribbles homolog 3 (TRB3) in the incidence of type 2 diabetic nephropathy, we used immunohistochemistry, real-time quantitative PCR, western blot analysis, and enzyme-linked immunosorbent assay (ELISA) to study the expression of TRB3, extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK), transforming growth factor β1 (TGF-β1), and collagen type IV in kidneys of db/db diabetic mice and in murine renal mesangial cells stimulated with high glucose. The expression of TRB3, TGF-β1, and collagen type IV was increased in kidneys of db/db diabetic mice. TGF-β1 and collagen type IV regulated by high glucose through ERK1/2 MAPK were downregulated by silencing TRB3 in renal mesangial cells. TRB3 may be involved in diabetic nephropathy by regulating the fibrosis cytokine TGF-β1 and collagen type IV through the ERK1/2 MAPK signaling pathway.
Collapse
|
34
|
Qin J, Fang N, Lou J, Zhang W, Xu S, Liu H, Fang Q, Wang Z, Liu J, Men X, Peng L, Chen L. TRB3 is involved in free fatty acid-induced INS-1-derived cell apoptosis via the protein kinase C δ pathway. PLoS One 2014; 9:e96089. [PMID: 24824999 PMCID: PMC4019472 DOI: 10.1371/journal.pone.0096089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/02/2014] [Indexed: 12/16/2022] Open
Abstract
Chronic exposure to free fatty acids (FFAs) may induce β cell apoptosis in type 2 diabetes. However, the precise mechanism by which FFAs trigger β cell apoptosis is still unclear. Tribbles homolog 3 (TRB3) is a pseudokinase inhibiting Akt, a key mediator of insulin signaling, and contributes to insulin resistance in insulin target tissues. This paper outlined the role of TRB3 in FFAs-induced INS-1 β cell apoptosis. TRB3 was promptly induced in INS-1 cells after stimulation by FFAs, and this was accompanied by enhanced INS-1 cell apoptosis. The overexpression of TRB3 led to exacerbated apoptosis triggered by FFAs in INS-1-derived cell line and the subrenal capsular transplantation animal model. In contrast, cell apoptosis induced by FFAs was attenuated when TRB3 was knocked down. Moreover, we observed that activation and nuclear accumulation of protein kinase C (PKC) δ was enhanced by upregulation of TRB3. Preventing PKCδ nuclear translocation and PKCδ selective antagonist both significantly lessened the pro-apoptotic effect. These findings suggest that TRB3 was involved in lipoapoptosis of INS-1 β cell, and thus could be an attractive pharmacological target in the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Jun Qin
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ni Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiuli Men
- Department of Pathophysiology, North China Coal Medical University, Tangshan, China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
35
|
Cell hypertrophy and MEK/ERK phosphorylation are regulated by glyceraldehyde-derived AGEs in cardiomyocyte H9c2 cells. Cell Biochem Biophys 2014; 66:537-44. [PMID: 23288619 DOI: 10.1007/s12013-012-9501-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diabetic cardiomyopathy has been shown to promote hypertrophy, leading to heart failure. Recent studies have reported a correlation between diabetic cardiomyopathy and oxidative stress, suggesting that the accumulation of advanced glycation end products (AGEs) induces the production of reactive oxygen species (ROS). In a clinical setting, AGEs have been shown to increase the risk of cardiovascular disease; however, the relationship between AGEs and cardiac hypertrophy remains unclear. This study sought to identify the role of AGEs in cardiac hypertrophy by treating H9c2 cells with glyceraldehyde-derived AGEs (200 μg/ml) or H2O2 (50 μM) for 96 h. Our results demonstrate that AGEs significantly increased protein levels and cell size. These effects were effectively blocked with PD98059 (10 μM; MEK/ERK inhibitor) pretreatment, suggesting that AGEs caused cell hypertrophy via the MEK/ERK pathway. We then treated cells with AGEs and H2O2 for 0-120 min and employed the Odyssey infrared imaging system to detect MEK/ERK phosphorylation. Our results show that AGEs up-regulated MEK/ERK phosphorylation. However, this effect was blocked by NAC (5 mM; ROS inhibitor), indicating that AGEs regulate MEK/ERK phosphorylation via ROS. Our findings suggest that glyceraldehyde-derived AGEs are closely related to cardiac hypertrophy and further identify a molecular mechanism underlying the promotion of diabetic cardiomyopathy by AGEs.
Collapse
|
36
|
Umadevi S, Gopi V, Elangovan V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chem Biol Interact 2013; 208:28-36. [PMID: 24309158 DOI: 10.1016/j.cbi.2013.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 11/07/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022]
Abstract
Advanced glycation end products (AGEs) play a major role in the development of cardiovascular disorders in diabetic patients. Recent studies evidenced the beneficial role of phytochemicals in reducing the risk of cardiovascular diseases. Hence the present study was framed to investigate the protective role of Gallic acid (GA) on AGEs induced cardiac fibrosis. Rats were infused with in vitro prepared AGEs (50mg/kg BW-intravenous injection) for 30 days. Further, GA (25mg/kgBW) was administered to rats along with AGEs. On infusion of AGEs, induction of fibrotic markers, collagen deposition, oxidative marker NADPH oxidase (NOX-p47 phox subunit), AGE receptor (RAGE) and cytokines expression was evaluated in the heart tissues using RT-PCR, Western blot and immunostaining methods. AGEs infusion significantly (P<0.01) increased the HW/BW ratio and fibrosis (4-fold) with increased expression of matrix genes MMP-2 and -9 (P<0.01, respectively) in the heart tissues. Whereas, administration of GA along with AGEs infusion prevented the fibrosis induced by AGEs. Further, GA treatment effectively prevented the AGEs mediated up-regulation of pro-fibrotic genes and ECM proteins such as TNF-α, TGF-β, MMP-2 and -9 expression. In addition, the increased expression of NOX (P<0.01), RAGE (P<0.01), NF-κB (P<0.01) and ERK 1/2 on AGEs infusion were normalized by GA treatment. Thus the present study shows the protective effect of GA on the fibrotic response and cardiac remodeling process induced by advanced glycation end products from external sources.
Collapse
Affiliation(s)
- Subramanian Umadevi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Venkatachalam Gopi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Vellaichamy Elangovan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| |
Collapse
|
37
|
Bai J, Zhang N, Hua Y, Wang B, Ling L, Ferro A, Xu B. Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS One 2013; 8:e72120. [PMID: 24023727 PMCID: PMC3759374 DOI: 10.1371/journal.pone.0072120] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023] Open
Abstract
Differentiation of cardiac fibroblasts into myofibroblasts is a critical event in the progression of cardiac fibrosis that leads to pathological cardiac remodeling. Metformin, an antidiabetic agent, exhibits a number of cardioprotective properties. However, much less is known regarding the effect of metformin on cardiac fibroblast differentiation. Thus, in the present study, we examined the effect of metformin on angiotensin (Ang) II-induced differentiation of cardiac fibroblasts into myofibroblasts and its underlying mechanism. Adult rat cardiac fibroblasts were stimulated with Ang II (100 nM) in the presence or absence of metformin (10–200 µM). Ang II stimulation induced the differentiation of cardiac fibroblasts into myofibroblasts, as indicated by increased expression of α-smooth muscle actin (α-SMA) and collagen types I and III, and this effect of Ang II was inhibited by pretreatment of cardiac fibroblasts with metformin. Metformin also decreased Ang II-induced reactive oxygen species (ROS) generation in cardiac fibroblasts via inhibiting the activation of the PKC-NADPH oxidase pathway. Further experiments using PKC inhibitor calphostin C and NADPH oxidase inhibitor apocynin confirmed that inhibition of the PKC-NADPH oxidase pathway markedly attenuated Ang II-induced ROS generation and myofibroblast differentiation. These data indicate that metformin inhibits Ang II-induced myofibroblast differentiation by suppressing ROS generation via the inhibition of the PKC-NADPH oxidase pathway in adult rat cardiac fibroblasts. Our results provide new mechanistic insights regarding the cardioprotective effects of metformin and provide an efficient therapeutic strategy to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Jian Bai
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Na Zhang
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ying Hua
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Bingjian Wang
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Lin Ling
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Albert Ferro
- Department of Clinical Pharmacology, Cardiovascular Division, King’s College London, London, United Kingdom
- * E-mail: (AF); (BX)
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- * E-mail: (AF); (BX)
| |
Collapse
|
38
|
Sakai Y, Fukamachi K, Futakuchi M, Hayashi H, Suzui M. Promotive effects of cell proliferation and chromosomal instability induced by tribbles-related protein 3 in mouse mammary tumor cells. Oncol Rep 2013; 30:64-70. [PMID: 23633152 DOI: 10.3892/or.2013.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 11/05/2022] Open
Abstract
Tribbles-related protein 3 (TRB3) has been shown to be a crucial modulator of tumorigenesis. However, the precise role and the functional morphology of TRB3 are not clearly understood. To elucidate these enigmas we established the cell line, M2TRB3, by introducing the human TRB3 gene and protein in Cl66M2 (M2) mouse mammary tumor cells. This cell line stably expressed the TRB3 gene and protein. After 72 h of cell culture, there was a 34% increase in the growth of M2TRB3 cells compared to the control M2 mock cells. The mean volume of the tumors originating from the M2TRB3 cells was significantly increased by 38% when compared to the mean volume of the M2 mock tumors, and the proliferating cell nuclear antigen (PCNA) labeling index in the M2TRB3 tumors was higher when compared to that of the M2 and M2 mock cells. In the tumor tissue samples, the mean diameter of nuclei in the M2TRB3 tumor cells (9.4±0.3 µm) showed a significant increase compared to that of the M2 mock tumor cells (7.0±0.2 µm). M2TRB3 cells also showed a marked increase in the population of tetraploid or octaploid nuclei compared to M2 mock cells bearing mainly either diploid or tetraploid nuclei. Western blot analysis revealed the overexpression of cyclin B1 and cyclin D1 in M2TRB3 cells when compared to that in the M2 mock cells. These novel findings provide further evidence that TRB3 promotes cell proliferation and chromosomal instability by causing polyploidization during development.
Collapse
Affiliation(s)
- Yuto Sakai
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences and Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
39
|
Zhao LM, Zhang W, Wang LP, Li GR, Deng XL. Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. Pflugers Arch 2012; 464:613-21. [PMID: 23053478 DOI: 10.1007/s00424-012-1165-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/02/2023]
Abstract
The present study was designed to investigate whether advanced glycation end products (AGEs) would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. Cultured adult rat cardiac fibroblasts were employed to investigate the regulation of K(Ca)3.1 channels by advanced glycation end products-bovine serum albumin (AGE-BSA) and the role of K(Ca)3.1 channels in cell proliferation using approaches of molecular biology. K(Ca)3.1 channel mRNA and protein levels were greatly enhanced in cardiac fibroblasts treated with 200 μg/ml AGE-BSA, and the effects were countered by anti-RAGE antibody or the ERK1/2 inhibitor PD98059, the p38-MAPK inhibitor SB203580, and the PI3K/Akt inhibitor LY294002. In addition, AGE-BSA stimulated cell proliferation and collagen production in cultured cardiac fibroblasts, and the effects were reversed by K(Ca)3.1 blocker TRAM-34, anti-RAGE antibody, or signal inhibitors PD98059, SB203580, and LY294002. These results demonstrate for the first time that AGEs increase the expression of K(Ca)3.1 channels in a RAGE-dependent manner and promote cardiac fibroblast proliferation and collagen production, which is mediated by phosphorylation of ERK1/2, p38-MAPK, and PI3K/Akt signals.
Collapse
Affiliation(s)
- Li-Mei Zhao
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
40
|
Crosstalk between the renin-angiotensin system and the advance glycation end product axis in the heart: role of the cardiac fibroblast. J Cardiovasc Transl Res 2012; 5:805-13. [PMID: 23054657 DOI: 10.1007/s12265-012-9405-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/27/2012] [Indexed: 01/08/2023]
Abstract
Cardiac fibroblasts (CFs) are involved in maintaining extracellular matrix (ECM) homeostasis in the heart. CFs mediate responses to hormonal and mechanical stimuli and relay these to other local cell types through release of autocrine and/or paracrine factors. CFs also play important roles in the setting of injury, i.e., myocardial infarction, where ECM production is key to efficient scarring. However, conditions exist in which excess production of ECM by CFs can lead to cardiac fibrosis. Two important pathways known to be involved in development of cardiac fibrosis are renin-angiotensin system (RAS) and advanced glycation end products (AGE) receptor (RAGE) signaling cascades. This report summarizes actions of these two pathways on function of CFs. Because cardiac fibrosis is an important component of diabetic cardiomyopathy, we include new data that suggests a possible crosstalk between the RAS and AGE/RAGE pathway in order to activate CFs in diabetes.
Collapse
|
41
|
Ye X, Wang L, Dang Y, Liu B, Zhao D. Investigation of the 1064 nm Q-switched Nd:YAG laser on collagen expression in an animal model. Photomed Laser Surg 2012; 30:604-9. [PMID: 22974369 DOI: 10.1089/pho.2012.3221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The objective of this study was to evaluate the changes of collagen expression and its possible molecular mechanism in the rat skin induced by 1064 nm Q-switched Nd:YAG laser treatments. METHODS The dorsal skin of Sprague-Dawley (SD) rats was irradiated with the 1064 nm laser at fluences of 0, 0.6, 1.5, and 2.5 J/cm2, respectively. Then biochemical analysis was used to quantify hydroxyproline content in the skin. The mRNA expressions of procollagen, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) were analyzed by using reverse transcription-polymerase chain reaction (RT-PCR). The activities of mitogen-activated protein kinase (MAPK) family members were detected by Western blot analysis. RESULTS The 1064 nm laser treatments led to a marked increase in collagen content in a dose-dependent manner. The expression of types I and III collagen, TIMP1 and TIMP2, in the skin was markedly upregulated, whereas the expression of MMP2 and MMP3 was significantly decreased after laser treatments. Both extracellular signal-related kinase (Erk)1/2 and JNK MAPK pathways were activated by the 1064 nm laser irradiation. CONCLUSIONS The 1064 nm laser irradiation could markedly increase collagen synthesis and inhibit collagen degradation. The activation of Erk1/2 and JNK MAPK seems to play a role in collagen production in the rat skin, induced by the 1064 nm laser.
Collapse
Affiliation(s)
- Xiyun Ye
- School of Life Science, East China Normal University, Shanghai, China
| | | | | | | | | |
Collapse
|
42
|
Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, Jiang GH, Bu PL, Zhang Y, Zhong M, Zhang W. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 2011; 60:2963-74. [PMID: 21933987 PMCID: PMC3198078 DOI: 10.2337/db11-0549] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Tribbles 3 (TRB3) is associated with insulin resistance, an important trigger in the development of diabetic cardiomyopathy (DCM). We sought to determine whether TRB3 plays a major role in modulating DCM and the mechanisms involved. RESEARCH DESIGN AND METHODS The type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated the characteristics of type 2 DCM by serial echocardiography and metabolite tests, Western blot analysis for TRB3 expression, and histopathologic analyses of cardiomyocyte density, lipids accumulation, cardiac inflammation, and fibrosis area. We then used gene silencing to investigate the role of TRB3 in the pathophysiologic features of DCM. RESULTS Rats with DCM showed severe insulin resistance, left ventricular dysfunction, aberrant lipids deposition, cardiac inflammation, fibrosis, and TRB3 overexpression. We found that the silencing of TRB3 ameliorated metabolic disturbance and insulin resistance; myocardial hypertrophy, lipids accumulation, inflammation, fibrosis, and elevated collagen I-to-III content ratio in DCM rats were significantly decreased. These anatomic findings were accompanied by significant improvements in cardiac function. Furthermore, with TRB3 gene silencing, the inhibited phosphorylation of Akt was restored and the increased phosphorylation of extracellular signal-regulated kinase 1/2 and Jun NH(2)-terminal kinase in DCM was significantly decreased. CONCLUSIONS TRB3 gene silencing may exert a protective effect on DCM by improving selective insulin resistance, implicating its potential role for treatment of human DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ming Zhong
- Corresponding author: Wei Zhang, , or Ming Zhong,
| | - Wei Zhang
- Corresponding author: Wei Zhang, , or Ming Zhong,
| |
Collapse
|
43
|
Hua F, Mu R, Liu J, Xue J, Wang Z, Lin H, Yang H, Chen X, Hu Z. TRB3 interacts with SMAD3 promoting tumor cell migration and invasion. J Cell Sci 2011; 124:3235-46. [DOI: 10.1242/jcs.082875] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tribbles homolog 3 (TRB3, also known as TRIB3, NIPK and SKIP3), a human homolog of Drosophila Tribbles, has been found to interact with a variety of signaling molecules to regulate diverse cellular functions. Here, we report that TRB3 is a novel SMAD3-interacting protein. Expression of exogenous TRB3 enhanced the transcriptional activity of SMAD3, whereas knocking down endogenous TRB3 reduced the transcriptional activity of SMAD3. The kinase-like domain (KD) of TRB3 was responsible for the interaction with SMAD3 and the regulation of SMAD3-mediated transcriptional activity. In addition, TGF-β1 stimulation or overexpression of SMAD3 enhanced the TRB3 promoter activity and expression, suggesting that there is a positive feedback loop between TRB3 and TGF-β–SMAD3 signaling. Mechanistically, TRB3 was found to trigger the degradation of SMAD ubiquitin regulatory factor 2 (Smurf2), which resulted in a decrease in the degradation of SMAD2 and phosphorylated SMAD3. Moreover, TRB3–SMAD3 interaction promoted the nuclear localization of SMAD3 because of the interaction of TRB3 with the MH2 domain of SMAD3. These effects of TRB3 were responsible for potentiating the SMAD3-mediated activity. Furthermore, knockdown of endogenous TRB3 expression inhibited the migration and invasion of tumor cells in vitro, which were associated with an increase in the expression of E-cadherin and a decrease in the expression of Twist-1 and Snail, two master regulators of epithelial-to-mesenchymal transition, suggesting a crucial role for TRB3 in maintaining the mesenchymal status of tumor cells. These results demonstrate that TRB3 acts as a novel SMAD3-interacting protein to participate in the positive regulation of TGF-β–SMAD-mediated cellular biological functions.
Collapse
Affiliation(s)
- Fang Hua
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Rong Mu
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Jinwen Liu
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Jianfei Xue
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Ziyan Wang
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Heng Lin
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Hongzhen Yang
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Xiaoguang Chen
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Zhuowei Hu
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| |
Collapse
|
44
|
Turner NA. Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiol 2011; 7:673-91. [DOI: 10.2217/fca.11.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
45
|
Wang CY, Liu HJ, Chen HJ, Lin YC, Wang HH, Hung TC, Yeh HI. AGE-BSA down-regulates endothelial connexin43 gap junctions. BMC Cell Biol 2011; 12:19. [PMID: 21575204 PMCID: PMC3224147 DOI: 10.1186/1471-2121-12-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/16/2011] [Indexed: 12/26/2022] Open
Abstract
Background Advanced glycation end products generated in the circulation of diabetic patients were reported to affect the function of vascular wall. We examined the effects of advanced glycation end products-bovine serum albumin (AGE-BSA) on endothelial connexin43 (Cx43) expression and gap-junction communication. Results In human aortic endothelial cells (HAEC) treated with a series concentrations of AGE-BSA (0-500 μg/ml) for 24 and 48 hours, Cx43 transcript and Cx43 protein were reduced in a dose dependent manner. In addition, gap-junction communication was reduced. To clarify the mechanisms underlying the down-regulation, MAPKs pathways in HAEC were examined. Both a MEK1 inhibitor (PD98059) and a p38 MAPK inhibitor (SB203580) significantly reversed the reductions of Cx43 mRNA and protein induced by AGE-BSA. Consistently, phosphorylation of ERK and p38 MAPK was enhanced in response to exposure to AGE-BSA. However, all reversions of down-regulated Cx43 by inhibitors did not restore the functional gap-junction communication. Conclusions AGE-BSA down-regulated Cx43 expression in HAEC, mainly through reduced Cx43 transcription, and the process involved activation of ERK and p38 MAPK.
Collapse
Affiliation(s)
- Chi-Young Wang
- Department of Internal Medicine, Mackay Memorial Hospital, New Taipei City 251, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Sildenafil and FDP-Sr attenuate diabetic cardiomyopathy by suppressing abnormal expression of myocardial CASQ2, FKBP12.6, and SERCA2a in rats. Acta Pharmacol Sin 2011; 32:441-8. [PMID: 21441944 DOI: 10.1038/aps.2010.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study whether calcium-modulating proteins CASQ2, FKBP12.6 and SERCA2a participate in diabetic cardiomyopathy, and whether the beneficial actions of testosterone, sildenafil or fructose diphosphate Sr (FDP-Sr) in the treatment of diabetic cardiomyopathy result from suppressing these molecules. METHODS Fifty male Sprague-Dawley (SD) rats were divided into five groups. Except for the normal group (non-diabetic), the other four groups were injected with streptozotocin (STZ, 60 mg/kg, ip) to induce diabetes. Four weeks after STZ injection, the four groups received sildenafil (12 mg·kg(-1)·d(-1), ig, for 4 week), FDP-Sr (200 mg/kg, ig, for 4 week), testosterone propionate (4 mg·kg(-1)·d(-1), sc, for 4 week), or no treatment, respectively. RESULTS In the diabetic rats, blood glucose, free fatty acids, triglycerides, total cholesterol, and low-density lipoprotein cholesterol (LDL-C) were significantly increased, while high-density lipoprotein cholesterol (HDL-C) was significantly reduced, as compared to the non-diabetic rats. Cardiac dysfunction and myocardial hypertrophy of the diabetic rats were associated with increased mRNA and protein expression of iNOS, OBRb, and PKCɛ, while expression of CASQ2, SERCA2a, and FKBP12.6 was significantly down-regulated. Sildenafil and FDP-Sr, but not testosterone, significantly attenuated the biomarker abnormalities, without changing the metabolic abnormalities. CONCLUSION CASQ2, FKBP12.6 and SERCA2a were down-regulated in diabetic cardiomyopathy. Sildenafil and FDP-Sr, but not testosterone, attenuated the cardiac dysfunction in diabetic cardiomyopathy, without changing the metabolic abnormalities, which may results from inhibiting oxidative and inflammatory cytokines and improving calcium homeostasis.
Collapse
|
47
|
Yokoyama T, Nakamura T. Tribbles in disease: Signaling pathways important for cellular function and neoplastic transformation. Cancer Sci 2011; 102:1115-22. [PMID: 21338441 DOI: 10.1111/j.1349-7006.2011.01914.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tribbles family of genes encodes pseudokinase proteins that are highly conserved in evolution. Instead of direct phosphorylation of target proteins, tribbles act as adaptors in signaling pathways for important cellular processes. These include mitogen-activated protein kinase kinase (MAPKK), CCAAT/enhancer-binding protein (C/EBP), activating transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP). Trib1 and Trib2 have been identified as myeloid oncogenes, and both may be involved in human leukemia. Tribbles proteins are also involved in a series of non-neoplastic disorders including metabolic and neurological diseases. The RAS/mitogen-activated protein kinase (MAPK) pathway molecules (in particular MAPK/ERK kinase 1 (MEK1) and C/EBP transcription factors) include tribbles-binding proteins that are involved in leukemogenesis, and the role of Trib1 as a linker between MAPK signaling and C/EBP degradation is proposed. Although the molecular function of tribbles is still under investigation, the research on tribbles in cellular processes, homeostasis of organisms and human diseases will provide valuable information for therapy of cancer as well as non-neoplastic disorders.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | |
Collapse
|
48
|
Zhou X, Wang L, Wang M, Xu L, Yu L, Fang T, Wu M. Emodin-induced microglial apoptosis is associated with TRB3 induction. Immunopharmacol Immunotoxicol 2011; 33:594-602. [PMID: 21275776 DOI: 10.3109/08923973.2010.549135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a natural anthraquinone compound isolated from the rhizome of rhubarb, has been reported to treat brain injury after intracerebral hemorrhage. Treatment of neurons with emodin is able to decrease glutamate excitotoxicity, modulate calcium homeostasis, and induce Bcl-2 expression. However, the effects of emodin on the brain-resident innate immune cells are unclear. In the present study, the mouse microglial cell line, BV-2, was selected to investigate the effects of emodin on microglial activation and apoptosis. Cell viability and apoptosis were sequentially measured with the CellTiter-Glo Luminescent Cell Viability Assay, YOPRO-1 and Caspase-Glo 3/7 Assay Systems. The degree of microglial activation was evaluated using quantitative RT-PCR to measure expression of inflammatory markers. Treatment of BV-2 cells with emodin caused caspase-mediated apoptosis in a dose-dependent manner, and emodin augmented LPS-induced microglial apoptosis to repress inflammatory activation. In response to emodin treatment, reactive oxygen species (ROS) production was increased, and TRB3 was markedly activated. siRNA knockdown of TRB3 attenuated emodin-induced microglial apoptosis. Ectopic overexpression of TRB3 decreased cell viability and was associated with dysregulation of the prosurvival Akt/FOXO3 pathway. These results demonstrate that emodin induces BV-2 cell apoptosis through TRB3 and consequently eliminates inflammatory microglia. Our findings provide a novel molecular basis through which emodin exerts neuroprotective effects, treating brain injury after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Xueping Zhou
- The Clinical Research Institute, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Khullar M, Al-Shudiefat AARS, Ludke A, Binepal G, Singal PK. Oxidative stress: a key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol 2011; 88:233-40. [PMID: 20393588 DOI: 10.1139/y10-016] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diabetes and its associated complications are major known health disorders. Diabetes mellitus increases the risk of cardiovascular morbidity and mortality by promoting cardiomyopathy. It appears to arise as a result of the diabetic state, at times independent of vascular or valvular pathology. It manifests initially as asymptomatic diastolic dysfunction, which progresses to symptomatic heart failure. The compliance of the heart wall is decreased and contractile function is impaired. The pathophysiology of diabetic cardiomyopathy is incompletely understood but appears to be multifactorial in origin. Several hypotheses have been proposed, including oxidative stress, inflammation, endothelial dysfunction, metabolic derangements, abnormalities in ion homeostasis, alterations in structural proteins, and interstitial fibrosis. Amongst these various mechanisms, an increase in reactive oxygen species, leading to oxidative stress, has received significant experimental support. This review focuses on the role of oxidative stress in the pathogenesis of diabetic cardiomyopathy and the potential of antioxidant therapy.
Collapse
Affiliation(s)
- Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
50
|
Kanwar YS. TRB3: an oxidant stress-induced pseudokinase with a potential to negatively modulate MCP-1 cytokine in diabetic nephropathy. Am J Physiol Renal Physiol 2010; 299:F963-4. [PMID: 20739396 DOI: 10.1152/ajprenal.00479.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|