1
|
Juric M, Rawat V, Amaradhi R, Zielonka J, Ganesh T. Novel NADPH Oxidase-2 Inhibitors as Potential Anti-Inflammatory and Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1660. [PMID: 37759963 PMCID: PMC10525516 DOI: 10.3390/antiox12091660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
A family of seven NADPH oxidase enzymes (Nox1-5, Duox1-2) has been implicated in a variety of diseases, including inflammatory lung diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Here, we report the results of our studies aimed at developing novel brain-permeable Nox2 inhibitors with potential application as neuroprotective agents. Using cell-based assays, we identified a novel Nox2 inhibitor, TG15-132, that prevents PMA-stimulated oxygen consumption and reactive oxygen species (superoxide radical anion and hydrogen peroxide) formation upon acute treatment in differentiated HL60 cells. Long-term treatment with TG15-132 attenuates the induction of genes encoding Nox2 subunits, several inflammatory cytokines, and iNOS in differentiated THP-1 cells. Moreover, TG15-132 shows a relatively long plasma half-life (5.6 h) and excellent brain permeability, with a brain-to-plasma ratio (>5-fold) in rodent models. Additionally, TG15-132 does not cause any toxic effects on vital organs or blood biomarkers of toxicity in mice upon chronic dosing for seven days. We propose that TG15-132 may be used as a Nox2 inhibitor and a potential neuroprotective agent, with possible further structural modifications to increase its potency.
Collapse
Affiliation(s)
- Matea Juric
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Varun Rawat
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.R.); (R.A.)
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.R.); (R.A.)
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.R.); (R.A.)
| |
Collapse
|
2
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Yang X, Yu Y, Wang Z, Wu P, Su X, Wu Z, Gan J, Zhang D. NOX4 has the potential to be a biomarker associated with colon cancer ferroptosis and immune infiltration based on bioinformatics analysis. Front Oncol 2022; 12:968043. [PMID: 36249057 PMCID: PMC9554470 DOI: 10.3389/fonc.2022.968043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background Colon cancer (CC) is a common tumor, but its pathogenesis is still not well understood. Competitive endogenous RNA (ceRNA) theory, ferroptosis and tumor immune infiltration may be the mechanisms of the development of cancer. The purpose of the study is to seek genes connected with both immunity and ferroptosis, and provide important molecular basis for early noninvasive diagnosis and immunotherapy of CC. Methods We extracted messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) data of CC from The Cancer Genome Atlas database (TCGA), identified the differentially expressed mRNA (DEmRNA), miRNA (DEmiRNA) and lncRNA (DElncRNA), then constructed a ceRNA network. Venn overlap analysis was used to identify genes associated with immunity and ferroptosis in ceRNA network. The expression and prognosis of target genes were analyzed via Gene Expression Profiling Interactive Analysis (GEPIA) and PrognoScan database, and we analysed the related functions and signaling pathways of target genes by enrichment analysis. The correlation between target genes and tumor immune infiltrating was explored by CIBERSORT and spearman correlation analysis. Finally, the expression of target genes was detected via quantitative reverse transcription-PCR (qRT-PCR) in CC and normal colon tissues. Results Results showed that there were 4 DElncRNA, 4 DEmiRNA and 126 DEmRNA in ceRNA network. NADPH oxidase 4 protein (NOX4) was a DEmRNA associated with immunity and ferroptosis in ceRNA network. NOX4 was highly expressed in CC and connected with unfavourable prognosis. NOX4 was obviously enriched in pathways connected with carcinogenesis and significantly correlated with six kinds of immune cells. Immune checkpoints and NOX4 spearman correlation analysis showed that the expression of NOX4 was positively related to programmed cell death protein 1 (PD-1)-PDCD1, programmed cell death-Ligand 1 (PD-L1)-CD274 and cytotoxic T-lymphocyte-associated protein 4 (CTLA4). Conclusions To conclude, our study suggests that NOX4 is associated with both ferroptosis and tumor immunity, and might be a biomarker associated with the carcinogenesis, prognosis of CC and a potential target of CC immunotherapy.
Collapse
Affiliation(s)
- Xiaoping Yang
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yi Yu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zirui Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pingfan Wu
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People’s Liberation Army, Lanzhou, China
| | - Xiaolu Su
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiping Wu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianxin Gan
- Department of general surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Dekui Zhang,
| |
Collapse
|
5
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Kim H, Hwang E, Park BC, Kim SJ. Novel potential NOX2 inhibitors, Dudleya brittonii water extract and polygalatenoside A inhibit intracellular ROS generation and growth of melanoma. Biomed Pharmacother 2022; 150:112967. [PMID: 35430393 DOI: 10.1016/j.biopha.2022.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022] Open
Abstract
Reactive oxygen species (ROS) are key regulators of the proliferation, metastasis, and drug resistance of melanoma, which accounts for 60% of skin cancer deaths. In a previous study, we developed Dudleya brittonii water extract (DBWE) with antioxidant activity, but the mechanism of action and bioactive substances of DBWE have not been fully identified. This study showed altered NADPH oxidase 2 (NOX2) expression and selective inhibition of cytosolic ROS but not mitochondrial ROS in B16-F10 melanoma cells, suggesting the NOX2 inhibitory potential of DBWE. In addition, DBWE inhibited mitochondrial activity, lipid metabolism, and cell cycle in B16-F10 cells. The anti-melanoma effect of DBWE was abrogated by the addition of ROS, and there was no significant change in the melanogenesis pathway. Polygalatenoside A was identified as a candidate bioactive substance in the DBWE aqueous fraction through mass spectrometry, and the DBWE-like anti-melanoma effect was confirmed. These data suggest that DBWE and polygalatenoside A have the potential to prevent and treat melanoma.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam 31499, Republic of Korea
| | - Eunmi Hwang
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam 31499, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| | - Sung-Jo Kim
- Division of Cosmetics and Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam 31499, Republic of Korea.
| |
Collapse
|
7
|
Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022; 23:ijms23052702. [PMID: 35269843 PMCID: PMC8910662 DOI: 10.3390/ijms23052702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic environment by deploying a variety of adaptative mechanisms, one of them being the reorientation of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite to their negative role in the inception of oxidative stress, ROS are also key modulatory components of physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of cancer cells.
Collapse
Affiliation(s)
- Ildiko Szanto
- Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, Geneva University Hospitals, Diabetes Center of the Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
8
|
Wang T, Xu H. Multi-faced roles of reactive oxygen species in anti-tumor T cell immune responses and combination immunotherapy. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
T cells play a central role in anti-tumor immunity, and reactive oxygen species (ROS) lie at the crossroad on the anti-tumor T cell responses. To activate efficient T cell immunity, a moderate level of ROS is needed, however, excessive ROS would cause toxicity to the T cells, because the improper level leads to the formation and maintenance of an immunosuppressive tumor microenvironment. Up to date, strategies that modulate ROS, either increasing or decreasing, have been widely investigated. Some of them are utilized in anti-tumor therapies, showing inevitable impacts on the anti-tumor T cell immunity with both obverse and reverse sides. Herein, the impacts of ROS-increasing and ROS-decreasing treatments on the T cell responses in the tumor microenvironment are reviewed and discussed. At the same time, outcomes of combination immunotherapies are introduced to put forward inspirations to unleash the potential of immunotherapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xu
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
9
|
Huang C, Radi RH, Arbiser JL. Mitochondrial Metabolism in Melanoma. Cells 2021; 10:cells10113197. [PMID: 34831420 PMCID: PMC8618235 DOI: 10.3390/cells10113197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma and its associated alterations in cellular pathways have been growing areas of interest in research, especially as specific biological pathways are being elucidated. Some of these alterations include changes in the mitochondrial metabolism in melanoma. Many mitochondrial metabolic changes lead to differences in the survivability of cancer cells and confer resistance to targeted therapies. While extensive work has gone into characterizing mechanisms of resistance, the role of mitochondrial adaptation as a mode of resistance is not completely understood. In this review, we wish to explore mitochondrial metabolism in melanoma and how it impacts modes of resistance. There are several genes that play a major role in melanoma mitochondrial metabolism which require a full understanding to optimally target melanoma. These include BRAF, CRAF, SOX2, MCL1, TRAP1, RHOA, SRF, SIRT3, PTEN, and AKT1. We will be discussing the role of these genes in melanoma in greater detail. An enhanced understanding of mitochondrial metabolism and these modes of resistance may result in novel combinatorial and sequential therapies that may lead to greater therapeutic benefit.
Collapse
Affiliation(s)
- Christina Huang
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Rakan H. Radi
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Jack L. Arbiser
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-(404)-727-5063; Fax: +1-(404)-727-0923
| |
Collapse
|
10
|
Wang X, Liu Z, Sun J, Song X, Bian M, Wang F, Yan F, Yu Z. Inhibition of NADPH oxidase 4 attenuates lymphangiogenesis and tumor metastasis in breast cancer. FASEB J 2021; 35:e21531. [PMID: 33769605 DOI: 10.1096/fj.202002533r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Lymphangiogenesis is thought to contribute to promote tumor cells to enter lymphatic vessels and plant at a secondary site. Endothelial cells are the cornerstone of the generation of new lymphatic vessels. NADPH oxidase 4 (Nox4) is the most abundant one of NADPH oxidases in endothelial cells and the most studied one in relevance with cancer. Our purpose is to analyze the relationship between Nox4 and lymphangiogenesis and find out whether the newborn lymphatic vessels lead to cancer metastasis. We first explored the expression of Nox4 in lymphatic endothelial cells of primary invasive breast tumors and human normal mammary glands using GEO databases and found that Nox4 was upregulated in primary invasive breast tumors samples. In addition, its high expression correlated with lymph node metastasis in breast cancer patients. Nox4 could increase the tube formation and lymphatic vessel sprouting in a three-dimensional setting. In vivo, inhibition of Nox4 in 4T1 tumor-bearing mice could significantly decrease the tumor lymphangiogenesis and metastasis. Nox4 may increase tumor lymphangiogenesis via ROS/ERK/CCL21 pathway and attract CCR7-positive breast cancer cells to entry lymphatic vessels and distant organs. In conclusion, our results show that Nox4 is a factor that promotes lymphangiogenesis and is a potential target of antitumor metastasis.
Collapse
Affiliation(s)
- Xinzhao Wang
- Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Zhaoyun Liu
- Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Jujie Sun
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Xiang Song
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Mengxue Bian
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Fukai Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhiyong Yu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| |
Collapse
|
11
|
Characterization of NADPH Oxidase Expression and Activity in Acute Myeloid Leukemia Cell Lines: A Correlation with the Differentiation Status. Antioxidants (Basel) 2021; 10:antiox10030498. [PMID: 33807114 PMCID: PMC8004739 DOI: 10.3390/antiox10030498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
In acute myeloid leukemia (AML), a low level of reactive oxygen species (ROS) is associated with leukemic stem cell (LSC) quiescence, whereas a high level promotes blast proliferation. ROS homeostasis relies on a tightly-regulated balance between the antioxidant and oxidant systems. Among the oxidants, NADPH oxidases (NOX) generate ROS as a physiological function. Although it has been reported in AML initiation and development, the contribution of NOX to the ROS production in AML remains to be clarified. The aim of this study was to investigate the NOX expression and function in AML, and to examine the role of NOX in blast proliferation and differentiation. First, we interrogated the NOX expression in primary cells from public datasets, and investigated their association with prognostic markers. Next, we explored the NOX expression and activity in AML cell lines, and studied the impact of NOX knockdown on cell proliferation and differentiation. We found that NOX2 is ubiquitously expressed in AML blasts, and particularly in cells from the myelomonocytic (M4) and monocytic (M5) stages; however, it is less expressed in LSCs and in relapsed AML. This is consistent with an increased expression throughout normal hematopoietic differentiation, and is reflected in AML cell lines. Nevertheless, no endogenous NOX activity could be detected in the absence of PMA stimulation. Furthermore, CYBB knockdown, although hampering induced NOX2 activity, did not affect the proliferation and differentiation of THP-1 and HL-60 cells. In summary, our data suggest that NOX2 is a marker of AML blast differentiation, while AML cell lines lack any NOX2 endogenous activity.
Collapse
|
12
|
Santos WHD, Yoguim MI, Daré RG, da Silva-Filho LC, Lautenschlager SOS, Ximenes VF. Development of a caffeic acid–phthalimide hybrid compound for NADPH oxidase inhibition. RSC Adv 2021; 11:17880-17890. [PMID: 35480205 PMCID: PMC9033209 DOI: 10.1039/d1ra01066b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
NADPH oxidases are pharmacological targets for the treatment of inflammation-based diseases. This work presents the synthesis and study of a caffeic acid/phthalimide hybrid compound (C2) as a potential inhibitor of NADPH oxidases. Throughout the study, we have compared compound C2 with its precursor caffeic acid (C1). The redox properties were compared using three different antioxidant methodologies and showed that C2 was slightly less effective than C1, a well-established and robust antioxidant. However, C2 was three-fold more effective than albumin (used as a model protein). This chemical feature was decisive for the higher efficiency of C2 as an inhibitor of the release of superoxide anions by stimulated neutrophils and enzymatic activity of cell-free NADPH oxidase. Docking simulation studies were performed using the crystal structure of the recombinant dehydrogenase domain of the isoform NOX5 of C. stagnale, which retains the FAD cofactor (PDB: 5O0X). Considering that C2 could bind at the FAD redox site of NOX5, studies were conducted by comparing the interactions and binding energies of C1 and C2. The binding energies were −50.30 (C1) and −74.88 (C2) (kJ mol−1), which is in agreement with the higher efficacy of the latter as an NADPH oxidase inhibitor. In conclusion, incorporating the phthalimide moiety into caffeic acid was decisive for its effectiveness as an NADPH oxidase inhibitor. The incorporation of the phthalimide moiety into caffeic acid was decisive for its effectiveness as an NADPH oxidase inhibitor.![]()
Collapse
Affiliation(s)
| | - Maurício Ikeda Yoguim
- Department of Chemistry
- Faculty of Sciences
- UNESP – São Paulo State University
- Bauru
- Brazil
| | - Regina Gomes Daré
- Department of Pharmaceutical Sciences
- Maringa State University (UEM)
- Maringa
- Brazil
| | | | | | | |
Collapse
|
13
|
Ryu CH, Kim SH, Hur DY. Nicotinamide adenine dinucleotide phosphate oxidase inhibitor induces apoptosis on Epstein-Barr virus positive B lymphoma cells. Anat Cell Biol 2020; 53:471-480. [PMID: 33361545 PMCID: PMC7769111 DOI: 10.5115/acb.20.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/27/2022] Open
Abstract
Over-expression of nicotinamide adenine dinucleotide phosphate oxidase (Nox) isoform enzymes was recently reported in various cancers including Burkitt’s lymphoma (BL). However, the functions of Nox isoform enzymes in BL remain poorly understood. In this study, Nox isoform expression and the effects of a Nox-specific inhibitor were evaluated in Epstein-Barr virus (EBV)-positive Raji BL cells in comparison with EBV-negative Ramos BL cells. To evaluate Nox enzyme expression in Raji and Ramos BL cells, polymerase chain reaction (PCR) and western blot analysis were performed. To verify the intracellular signaling mechanism of the Nox inhibitor-induced apoptosis of Raji cells, WST-1 assay, trypan blue exclusion method, flow cytometry, PCR, western blotting, and bromodeoxyuridine staining were conducted. Experiments using the pan-caspase inhibitor z-VAD, reactive oxygen species scavenger N-acetyl-L-cysteine (NAC), and Bim inhibitor 1 were performed. PCR and western blot results showed that Nox isoform enzymes were highly expressed in EBV-positive BL Raji cells compared with EBV-negative BL Ramos cells. The Nox2 inhibitor induced apoptosis of Raji cells in time- and dose-dependent manners. The Nox2 inhibitor also caused up-regulation of Bim and Noxa, down-regulation of Mcl-1, translocation of Bax, release of cytochrome c, and caspase cascade activation, resulting in apoptosis. Furthermore, z-VAD, NAC, and BI-1 effectively blocked the Nox2 inhibitor-induced apoptosis of Raji cells. Taken together, these results provide a novel insight into the mechanism of Nox inhibitor-induced apoptosis and evidence for Nox as a therapeutic target to treat EBV-positive malignancies.
Collapse
Affiliation(s)
- Choong Heon Ryu
- Department of Internal Medicine, Dongguk University Gyeongju Hospital, Gyeongju, Korea
| | - Sung Hyun Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Korea
| | - Dae Young Hur
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
14
|
Hu J, Li Y, Li H, Shi F, Xie L, Zhao L, Tang M, Luo X, Jia W, Fan J, Zhou J, Gao Q, Qiu S, Wu W, Zhang X, Liao W, Bode AM, Cao Y. Targeting Epstein-Barr virus oncoprotein LMP1-mediated high oxidative stress suppresses EBV lytic reactivation and sensitizes tumors to radiation therapy. Theranostics 2020; 10:11921-11937. [PMID: 33204320 PMCID: PMC7667690 DOI: 10.7150/thno.46006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Generating oxidative stress is a critical mechanism by which host cells defend against infection by pathogenic microorganisms. Radiation resistance is a critical problem in radiotherapy against cancer. Epstein-Barr virus (EBV) is a cancer-causing virus and its reactivation plays an important role in the development of EBV-related tumors. This study aimed to explore the inner relationship and regulatory mechanism among oxidative stress, EBV reactivation, and radioresistance and to identify new molecular subtyping models and treatment strategies to improve the therapeutic effects of radiotherapy. Methods: ROS, NADP+/NADPH, and GSSG/GSH were detected to evaluate the oxidative stress of cells. 8-OHdG is a reliable oxidative stress marker to evaluate the oxidative stress in patients. Its concentration in serum was detected using an ELISA method and in biopsies was detected using IHC. qPCR array was performed to evaluate the expression of essential oxidative stress genes. qPCR, Western blot, and IHC were used to measure the level of EBV reactivation in vitro and in vivo. A Rta-IgG ELISA kit and EBV DNA detection kit were used to analyze the reactivation of EBV in serum from NPC patients. NPC tumor tissue microarrays was used to investigate the prognostic role of oxidative stress and EBV reactivation. Radiation resistance was evaluated by a colony formation assay. Xenografts were treated with NAC, radiation, or a combination of NAC and radiation. EBV DNA load of tumor tissue was evaluated using an EBV DNA detection kit. Oxidative stress, EBV reactivation, and the apoptosis rate in tumor tissues were detected by using 8-OHdG, EAD, and TUNEL assays, respectively. Results: We found that EBV can induce high oxidative stress, which promotes its reactivation and thus leads to radioresistance. Basically, EBV caused NPC cells to undergo a process of 'Redox Resetting' to acquire a new redox status with higher levels of ROS accumulation and stronger antioxidant systems by increasing the expression of the ROS-producing enzyme, NOX2, and the cellular master antioxidant regulator, Nrf2. Also, EBV encoded driving protein LMP1 promotes EBV reactivation through production of ROS. Furthermore, high oxidative stress and EBV reactivation were positively associated with poor overall survival of patients following radiation therapy and were significant related to NPC patients' recurrence and clinical stage. By decreasing oxidative stress using an FDA approved antioxidant drug, NAC, sensitivity of tumors to radiation was increased. Additionally, 8-OHdG and EBV DNA could be dual prognostic markers for NPC patients. Conclusions: Oxidative stress mediates EBV reactivation and leads to radioresistance. Targeting oxidative stress can provide therapeutic benefits to cancer patients with radiation resistance. Clinically, we, for the first time, generated a molecular subtyping model for NPC relying on 8-OHdG and EBV DNA level. These dual markers could identify patients who are at a high risk of poor outcomes but who might benefit from the sequential therapy of reactive oxygen blockade followed by radiation therapy, which provides novel perspectives for the precise treatment of NPC.
Collapse
|
15
|
Nuclear NADPH oxidase-4 associated with disease progression in renal cell carcinoma. Transl Res 2020; 223:1-14. [PMID: 32492552 PMCID: PMC8111697 DOI: 10.1016/j.trsl.2020.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/03/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Nuclear NADPH oxidase-4 (Nox4) is a key component of metabolic reprogramming and is often overexpressed in renal cell carcinoma (RCC). However, its prognostic role in RCC remains unclear. Here we examined the significance of nuclear Nox4 on disease progression and development of drug resistance in advanced RCC. We analyzed human RCC tissue from multiple regions in the primary index tumor, cancer-associated normal adjacent parenchyma, intravascular tumor in locally advanced cancer patients. We found that the higher nuclear Nox4 expression was significantly associated with progression and death. These findings were consistent after controlling for other competing clinical variables. In contrast, patients with lower nuclear Nox4, even in higher stage RCC had better prognosis. We identified a subset of patients with high nuclear Nox4 who had rapid disease progression or died within 6 months of surgery. In addition, higher nuclear Nox4 level correlated with resistance to targeted therapy and immunotherapy. Western blotting performed on fresh human RCC tissue as well as cell-lines revealed increased nuclear Nox4 expression. Our data support an important prognostic role of Nox4 mediated regulation of RCC independent of other competing variables. Nox4 localizes to the nucleus in high-grade, high-stage RCC. Higher nuclear Nox4 has prognostic significance for disease progression, poor survival, and development of drug resistance in RCC.
Collapse
|
16
|
Niu Y, Lin A, Luo P, Zhu W, Wei T, Tang R, Guo L, Zhang J. Prognosis of Lung Adenocarcinoma Patients With NTRK3 Mutations to Immune Checkpoint Inhibitors. Front Pharmacol 2020; 11:1213. [PMID: 32903385 PMCID: PMC7434857 DOI: 10.3389/fphar.2020.01213] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) are an important treatment modality that must be considered for patients with lung adenocarcinoma (LUAD). However, ICIs are effective only in some of these patients. Therefore, identifying biomarkers that accurately predict the prognosis of patients with LUAD treated with ICIs can help maximize their therapeutic benefits. This study aimed to identify a new potential predictor to better select and optimally benefit LUAD patients. Methods We first collected and analyzed a discovery immunotherapy cohort comprising clinical and mutation data for LUAD patients. Then, we evaluated whether the specific mutated genes can act as predictive biomarkers in this discovery immunotherapy cohort and further validated the findings in The Cancer Genome Atlas (TCGA) project LUAD cohort. Gene set enrichment analysis (GSEA) was used to explore possible alterations in DNA damage response (DDR) pathways within the gene mutation. Moreover, we analyzed whole-exome sequencing (WES) and drug sensitivity response data for LUAD cell lines in the Genomics of Drug Sensitivity in Cancer (GDSC) database. Results Among the mutated genes screened from both the ICI treatment and TCGA-LUAD cohorts, NTRK3 mutation (mutant-type NTRK3, NTRK3-MT) was strongly associated with immunotherapy. First, significant differences in overall survival (OS) were observed between patients with NTRK3-MT and those with NTRK3-WT in the ICI treatment cohort but not in the non-ICI-treated TCGA-LUAD cohort. We then analyzed the association of NTRK3-MT with clinical characteristics and found the tumor mutation burden (TMB) to be significantly higher in both NTRK3-MT cohorts. However, significant differences in neoantigen levels and smoking history were found only for NTRK3-MT in the LUAD cohort from TCGA. Furthermore, some immune-related genes and immune cell-related genes were significantly upregulated in patients with NTRK3-MT compared to those with NTRK3-WT. In addition, NTRK3 mutation affected the deregulation of some signaling pathways and the DDR pathway. Conclusions Our findings suggest that NTRK3-MT can predict the prognosis of patients with LUAD treated by ICIs and that it may have clinical significance for immunotherapy.
Collapse
Affiliation(s)
- Yuchun Niu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruixiang Tang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Wang C, An Y, Wang Y, Shen K, Wang X, Luan W, Ma F, Ni L, Liu M, Yu L. Insulin-like growth factor-I activates NFκB and NLRP3 inflammatory signalling via ROS in cancer cells. Mol Cell Probes 2020; 52:101583. [PMID: 32360740 DOI: 10.1016/j.mcp.2020.101583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
Previous studies have demonstrated that insulin-like growth factor-I (IGF-1) and reactive oxygen species (ROS) are involved in the development and progression of various cancers. However, their regulatory mechanism remains unknown. In this study, we treated cancer cells (HeLa, HepG2 and SW1116 cells) and normal cells (NCM-460) with IGF-1 at different concentrations and for different times and found that cancer cells produced large amounts of cytoplasmic ROS in cancer cells but not in normal cells. Further mechanistic analysis demonstrated that IGF-1 activated NFκB and NLRP3 inflammatory signalling in HeLa cells; systematic analysis indicated that IGF-1 activates NFκB and NLRP3, and the activation was cytosolic ROS- and NADPH oxidase 2 (NOX2)-dependent. Additionally, through coimmunoprecipitation experiments, we found that the IRS-1/COX2/mPGES-1/MAPKs/RAC2/NOX2 pathway nexus was involved in IGF-1-induced NFκB and NLRP3 production. Finally, we validated the regulatory mechanisms through IRS-1, mPGES-1 or NOX2 inhibition using their respective selective inhibitors or shRNA knockdown. Taken together, this is the first report on the mechanism by which IGF-1 activates NFκB and NLRP3 inflammatory signalling via ROS. These findings pave the way for an in-depth study of the role of IGF-1 and ROS in inflammation associated with the development and progression of cancer.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Yang Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Keshu Shen
- Jilin Hepatobiliary Hospital, Changchun, 130062, China
| | - Xuefei Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Wenjing Luan
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Fangxue Ma
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Lihui Ni
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Department of Infectious Diseases of First Hospital of Jilin University, Changchun, 130062, China.
| |
Collapse
|
18
|
Hong SW, Noh MH, Kim YS, Jin DH, Moon SH, Yang JW, Hur DY. APX-115A, a pan-NADPH Oxidase Inhibitor, Induces Caspase-dependent Cell Death by Suppressing NOX4-ROS Signaling in EBV-infected Retinal Epithelial Cells. Curr Eye Res 2020; 45:1136-1143. [PMID: 31951764 DOI: 10.1080/02713683.2020.1718164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Epstein-Barr virus is a γ-herpes virus that infects primary B cells and can transform infected cells into immortalized lymphoblastoid cell lines (LCL). The role of EBV in malignancies such as Burkitt's lymphoma and nasopharyngeal carcinoma is well understood, however, its role in EBV-infected retinal cells remains poorly understood. Therefore, we investigated the effect of EBV on the growth of retinal cells. METHODS Previously, we established and reported a cell line model to address the relationship between EBV infection and retinal cell proliferation that used adult retinal pigment epithelium (ARPE-19) and EBV infection. To determine the effect of EBV on ARPE-19 cells, cell death was measured by propidium iodine/annexin V staining and reactive oxygen species (ROS) were measured by FACS, and protein expression was evaluated using western blot analysis. Also, downregulation of LMP1 and NADPH oxidase 4 (NOX4) expression was accomplished using siRNA technology. RESULTS We found that ROS were dramatically increased in EBV-infected ARPE19 cells (APRE19/EBV) relative to the parental cell line. Additionally, the expression level of NOX4, a main source of ROS, was upregulated by EBV infection. Interestingly, downregulation of LMP1, one of the EBV viral onco-proteins, completely decreased EBV-induced ROS accumulation and the upregulation of NOX4. Treatment with APX-115A, a pan-NOX inhibitor, induced apoptotic cell death of only the EBV-infected ARPE19 cells but not the parental cell line. Pretreatment with z-VAD, a pan-caspase inhibitor, inhibited NOX inhibitor-induced cell death in ARPE19/EBV cells. Furthermore, APX-115A-induced cell death mediated the activation of JNK and ERK. Finally, we confirmed the expression level of NOX4, and APX-115A induced cell death of EBV-infected human primary retina epithelial cells and the activation of JNK and ERK. CONCLUSION Taken together, these our results suggest that APX-115A could be a therapeutic agent for treating EBV-infected retinal cells or diseases by inhibiting LMP1-NOX4-ROS signaling.
Collapse
Affiliation(s)
- Seung-Woo Hong
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center , Seoul, Republic of Korea
| | - Min Hye Noh
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center , Seoul, Republic of Korea
| | - Sung Hwan Moon
- AptaBio Therapeutics Incorporation , Gyeonggi-do, Republic of Korea
| | - Jae Wook Yang
- Department of Ophthalmology, Inje University Pusan Paik Hospital , Pusan, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University College of Medicine , Pusan, Republic of Korea
| |
Collapse
|
19
|
Demarest TG, Babbar M, Okur MN, Dan X, Croteau DL, Fakouri NB, Mattson MP, Bohr VA. NAD+Metabolism in Aging and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055905] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Tyler G. Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mustafa N. Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiuli Dan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Nima B. Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
20
|
Li Y, Cifuentes-Pagano E, DeVallance ER, de Jesus DS, Sahoo S, Meijles DN, Koes D, Camacho CJ, Ross M, St Croix C, Pagano PJ. NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biol 2019; 22:101143. [PMID: 30897521 PMCID: PMC6435978 DOI: 10.1016/j.redox.2019.101143] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
First described as essential to the phagocytic activity of leukocytes, Nox2-derived ROS have emerged as mediators of a range of cellular and tissue responses across species from salubrious to deleterious consequences. Knowledge of their role in inflammation is limited, however. We postulated that TNFα-induced endothelial reactive oxygen species (ROS) generation and pro-inflammatory signaling would be ameliorated by targeting Nox2. Herein, we in silico-modelled two first-in-class Nox2 inhibitors developed in our laboratory, explored their cellular mechanism of action and tested their efficacy in in vitro and mouse in vivo models of inflammation. Our data show that these inhibitors (CPP11G and CPP11H) disrupted canonical Nox2 organizing factor, p47phox, translocation to Nox2 in the plasma membrane; and abolished ROS production, markedly attenuated stress-responsive MAPK signaling and downstream AP-1 and NFκB nuclear translocation in human cells. Consequently, cell adhesion molecule expression and monocyte adherence were significantly inhibited by both inhibitors. In vivo, TNFα-induced ROS and inflammation were ameliorated by targeted Nox2 inhibition, which, in turn, improved hind-limb blood flow. These studies identify a proximal role for Nox2 in propagated inflammatory signaling and support therapeutic value of Nox2 inhibitors in inflammatory disease.
Collapse
Affiliation(s)
- Y Li
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - E Cifuentes-Pagano
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - E R DeVallance
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - D S de Jesus
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | - S Sahoo
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA
| | | | - D Koes
- Computational and Systems Biology, University of Pittsburgh, USA
| | - C J Camacho
- Computational and Systems Biology, University of Pittsburgh, USA
| | - M Ross
- Center for Biologic Imaging, University of Pittsburgh, PA, 15261, USA
| | - C St Croix
- Center for Biologic Imaging, University of Pittsburgh, PA, 15261, USA
| | - P J Pagano
- Vascular Medicine Institute, USA; Department of Pharmacology & Chemical Biology, USA.
| |
Collapse
|
21
|
Trepiana J, Ruiz-Larrea MB, Ruiz-Sanz JI. Unraveling the in vitro antitumor activity of Vismia baccifera against HepG2: role of hydrogen peroxide. Heliyon 2018; 4:e00675. [PMID: 30003166 PMCID: PMC6039853 DOI: 10.1016/j.heliyon.2018.e00675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022] Open
Abstract
Currently natural products derived from plants are receiving huge attention because of their antitumor activities. In previous work we reported that an aqueous leaf extract of Vismia baccifera induced toxicity in HepG2. The present study focuses on the mechanisms of the cytotoxic actions induced by the extract. Results showed that V. baccifera was innocuous in non-transformed human HH4 hepatocytes. In HepG2 it caused deregulation of antioxidant status (increasing superoxide dismutase expression and decreasing glutathione levels and glutathione peroxidase activity) and accumulation of reactive oxygen species, particularly hydrogen peroxide. The extract induced a) cell cycle arrest at G2/M phase, b) phosphorylation of ATM (protein kinase ataxia-telangiectasia mutated) and γH2AX (γ-histone family 2A variant), c) caspase-3 activation, and e) deregulation of the Bax/Bcl family, increasing pro-apoptotic proteins. ATM did not seem to be involved in γH2AX activation. Co-incubation with catalase prevented the alterations elicited by V. baccifera in HepG2. Taking together, these results indicate that hydrogen peroxide mediates the HepG2 cytotoxic response and provide evidence for more in-depth studies of the signaling involved.
Collapse
Affiliation(s)
- Jenifer Trepiana
- Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - M Begoña Ruiz-Larrea
- Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - José Ignacio Ruiz-Sanz
- Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| |
Collapse
|
22
|
Hu XF, Wang L, Xiang G, Lei W, Feng YF. Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: Critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes. Acta Biomater 2018; 73:470-487. [PMID: 29649637 DOI: 10.1016/j.actbio.2018.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Mechanism underlying the diabetes-induced poor osteointegration of implants remains elusive, making it a challenge to develop corresponding solutions. Here, we studied the role of angiogenesis in the diabetes-induced poor bone repair at the bone-implant interface (BII) and the related mechanisms. In vivo, titanium screws were implanted in the femurs of mice, and, in vitro, vascular endothelial cell (VEC) was cultured on titanium surface. Results showed that, compared with normal milieu (NM), diabetic milieu (DM) led to angiogenesis inhibition around implants which resulted in reduced osteoprogenitors and poor bone formation on BII in vivo. In vitro, DM caused significant increase of NADPH oxidases (NOX), dysfunction of mitochondria and overproduction of reactive oxygen species (ROS) in VEC on titanium surface, inducing obvious cell dysfunction. Both Mito-TEMPO (Mito, a mitochondria-targeted ROS antagonist) and apocynin (APO, a NOX inhibitor) effectively attenuated the oxidative stress and dysfunction of VEC, with the beneficial effects of APO significantly better than those of Mito. Further study showed that the diabetes-induced metabolic disturbance of VEC was significantly related to the increase of advanced glycation end products (AGEs) at the BII. Our results suggested that the AGEs-related and NOX-triggered cellular oxidative stress leads to VEC dysfunction and angiogenesis impairment at the BII, which plays a critical role in the compromised implant osteointegration under diabetic conditions. These demonstrated new insights into the BII in pathological states and also provided NOX and AGEs as promising therapeutic targets for developing novel implant materials to accelerate the angiogenesis and osteointegration of implants in diabetic patients with hyperglycemia. STATEMENT OF SIGNIFICANCE The high failure rate of bone implants in diabetic patients causes patients terrible pain and limits the clinical application of implant materials. The mechanism underlying this phenomenon needs elucidation so that it would be possible to develop corresponding solutions. Our study demonstrated that the AGEs-related and NOX-triggered oxidative stress of VEC leads to angiogenesis impairment at the bone-implant interface (BII) in diabetes. These are critical mechanisms underlying the compromised implant osteointegration in diabetic hyperglycemia. These provide new insights into the BII in diseased states and also suggest NOX and AGEs as crucial therapeutic targets for developing novel implant materials which could modulate the oxidative stress on BII to get improved osteointegration and reduced implant failure, especially in diabetic patients.
Collapse
|
23
|
You X, Ma M, Hou G, Hu Y, Shi X. Gene expression and prognosis of NOX family members in gastric cancer. Onco Targets Ther 2018; 11:3065-3074. [PMID: 29872318 PMCID: PMC5975617 DOI: 10.2147/ott.s161287] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Introduction Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are frequently deregulated in several human malignancies, including gastric cancer (GC). NOX-derived reactive oxygen species have been reported to contribute to gastric carcinogenesis and cancer progression. However, the expression and prognostic role of individual NOX in GC patients remain elusive. Methods and materials We investigated genetic alteration and mRNA expression of NOX family in GC patients via the cBioPortal, Human Protein Atlas, and Oncomine databases. Furthermore, we evaluated prognostic value of distinct NOX in GC patients through “The Kaplan–Meier plotter” database. Results Our analysis demonstrated that mRNA deregulation of NOX genes was common alteration in GC patients. Compared with normal tissues, NOX1/2/4 mRNA expression levels in GC tissues were higher, while NOX5 and DUOX1/2 expression levels were lower. Importantly, our results indicated that high mRNA expression of NOX2 was associated with better overall survival whereas NOX4 and DUOX1 were correlated with worse overall survival in all GC patients, particularly in intestinal-type GC patients. In addition, our data also shed light on the diverse roles of individual NOX members in GC patients with different clinicopathological features, including human epidermal growth factor receptor 2 status, clinical stages, pathological grades, and different choices of treatments of GC patients. Conclusion These findings suggest that individual NOX family genes, especially NOX2/4, and DUOX1, are potential prognostic markers in GC and implicate that the use of NOX inhibitor targeting NOX4 and DUOX1 may be an effective strategy for GC therapy.
Collapse
Affiliation(s)
- Xin You
- The First Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Mingzhe Ma
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guoxin Hou
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xi Shi
- The First Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Redox control in cancer development and progression. Mol Aspects Med 2018; 63:88-98. [PMID: 29501614 DOI: 10.1016/j.mam.2018.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death worldwide after cardiovascular diseases. This has been the case for the last few decades despite there being an increase in the number of cancer treatments. One reason for the apparent lack of drug effectiveness might be, at least in part, due to unspecificity for tumors; which often leads to substantial side effects. One way to improve the treatment of cancer is to increase the specificity of the treatment in accordance with the concept of individualized medicine. This will help to prevent further progression of an existing cancer or even to reduce the tumor burden. Alternatively it would be much more attractive and efficient to prevent the development of cancer in the first place. Therefore, it is important to understand the risk factors and the mechanisms of carcinogenesis in detail. One such risk factor, often associated with tumorigenesis and tumor progression, is an increased abundance of reactive oxygen species (ROS) arising from an imbalance of ROS-producing and -eliminating components. A surplus of ROS can induce oxidative damage of macromolecules including proteins, lipids and DNA. In contrast, ROS are essential for an adequate signal transduction and are known to regulate crucial cellular processes like cellular quiescence, differentiation and even apoptosis. Therefore, regulated ROS-formation at physiological levels can inhibit tumor formation and progression. With this review we provide an overview on the current knowledge of redox control in cancer development and progression.
Collapse
|
25
|
Hernández H, Parra A, Tobar N, Molina J, Kallens V, Hidalgo M, Varela D, Martínez J, Porras O. Insights into the HyPer biosensor as molecular tool for monitoring cellular antioxidant capacity. Redox Biol 2018. [PMID: 29524842 PMCID: PMC5952670 DOI: 10.1016/j.redox.2018.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aerobic metabolism brings inexorably the production of reactive oxygen species (ROS), which are counterbalanced by intrinsic antioxidant defenses avoiding deleterious intracellular effects. Redox balance is the resultant of metabolic functioning under environmental inputs (i.e. diet, pollution) and the activity of intrinsic antioxidant machinery. Monitoring of intracellular hydrogen peroxide has been successfully achieved by redox biosensor advent; however, to track the intrinsic disulfide bond reduction capacity represents a fundamental piece to understand better how redox homeostasis is maintained in living cells. In the present work, we compared the informative value of steady-state measurements and the kinetics of HyPer, a H2O2-sensitive fluorescent biosensor, targeted at the cytosol, mitochondrion and endoplasmic reticulum. From this set of data, biosensor signal recovery from an oxidized state raised as a suitable parameter to discriminate reducing capacity of a close environment. Biosensor recovery was pH-independent, condition demonstrated by experiments on pH-clamped cells, and sensitive to pharmacological perturbations of enzymatic disulfide reduction. Also, ten human cell lines were characterized according their H2O2-pulse responses, including their capacity to reduce disulfide bonds evaluated in terms of their migratory capacity. Finally, cellular migration experiments were conducted to study whether migratory efficiency was associated with the disulfide reduction activity. The migration efficiency of each cell type correlates with the rate of signal recovery measured from the oxidized biosensor. In addition, HyPer-expressing cells treated with N-acetyl-cysteine had accelerated recovery rates and major migratory capacities, both reversible effects upon treatment removal. Our data demonstrate that the HyPer signal recovery offers a novel methodological tool to track the cellular impact of redox active biomolecules.
Collapse
Affiliation(s)
- Helen Hernández
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Alejandra Parra
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Nicolas Tobar
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Jessica Molina
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Violeta Kallens
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Miltha Hidalgo
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Chile
| | - Jorge Martínez
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile
| | - Omar Porras
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Chile; Centro de Investigación en Alimentos para el Bienestar en el Ciclo Vital (ABCvital), Universidad de Chile, Chile.
| |
Collapse
|
26
|
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, Ouari O, Podsiadły R, Kalyanaraman B. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys 2017; 75:335-349. [PMID: 28660426 PMCID: PMC5693611 DOI: 10.1007/s12013-017-0813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, NADPH oxidases have been identified as a viable target for the development of novel therapeutics exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
27
|
Rao S, Morris R, Rice ZP, Arbiser JL. Regression of diffuse B-cell lymphoma of the leg with intralesional gentian violet. Exp Dermatol 2017; 27:93-95. [PMID: 28833549 DOI: 10.1111/exd.13418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 12/21/2022]
Abstract
In this case report, a patient of primary cutaneous diffuse B-cell lymphoma, leg type was treated with intralesional gentian violet as she was judged to be too medically fragile for conventional chemotherapy due to advanced age and multiple serious comorbidities. Gentian violet (crystal violet/hexamethyl pararosaniline) is a triphenylmethane dye. It has been shown to have an inhibitory effect on NADPH oxidase, an enzyme family which is found in abundance in reactive oxygen-driven tumors such as melanoma and lymphoma. We hypothesize that intralesional gentian violet treatment caused signalling changes in the lymphoma which allowed for immune clearance of the lymphoma. Complete resolution of the patient's lesion was noted on a follow-up visit.
Collapse
Affiliation(s)
- Shikha Rao
- Department of Dermatology, Atlanta Veterans Administration Medical Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert Morris
- Department of Dermatology, Atlanta Veterans Administration Medical Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Zakiya P Rice
- Department of Dermatology, Atlanta Veterans Administration Medical Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack L Arbiser
- Department of Dermatology, Atlanta Veterans Administration Medical Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
28
|
Gao X, Sun J, Huang C, Hu X, Jiang N, Lu C. RNAi-mediated silencing of NOX4 inhibited the invasion of gastric cancer cells through JAK2/STAT3 signaling. Am J Transl Res 2017; 9:4440-4449. [PMID: 29118906 PMCID: PMC5666053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
NADPH oxidase 4 (NOX4) is a member of the NADPH oxidase (NOX) family of enzymes and has been found abnormally expressed in human cancers. However, its role in gastric cancer (GC) is still unclear. In the current study, we reported that NOX4 expression levels were significantly up-regulated in GC tissues compared to normal tissues (P<0.0001). Higher NOX4 expression was significantly associated with poorer overall survival in GC patients. Silencing NOX4 in two NOX4 high expression GC cell lines, MGC-803 and BGC-823 cells, did not affect cell proliferation, while inhibited cell adhesion and cell invasion of GC cells. Furthermore, Gene set enrichment analysis (GSEA) results indicated that NOX4 expression was strongly associated with cell migration, epithelial-mesenchymal transition (EMT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. More interestingly, Interleukin-6 (IL-6) increased the invasion ability and activation of JAK2/STAT3 of MGC-803 and BGC-823 cells. Such effects were attenuated by NOX4 silencing. Overexpression of NOX4 in one NOX4 low expression GC cell line, SGC-7901 cells, significantly promoted cell invasion, which was impaired by treatment of JAK2 inhibitor, AG490. AG490 inhibited STAT3 activation in SW1990 cells. NOX4 may exert its function through JAK2/STAT3 pathway. In summary, the findings of this study indicate that NOX4 may promote the development of GC, potentially representing a novel prognostic marker for overall survival in GC.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan UniversityShanghai, China
- Genergy Bio-technology (Shanghai) Co., LTDRoom 4B, Building#3, No. 401 Caobao Rd, Xuhui District, Shanghai, China
| | - Jingping Sun
- The First People’s Hospital of Wujiang DistrictSuzhou, Jiangsu, China
| | - Chunyu Huang
- Genergy Bio-technology (Shanghai) Co., LTDRoom 4B, Building#3, No. 401 Caobao Rd, Xuhui District, Shanghai, China
| | - Xiaohua Hu
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan UniversityShanghai, China
| | - Ning Jiang
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan UniversityShanghai, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
29
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
30
|
Ahmad I, Guroji P, DeBrot AH, Manapragada PP, Katiyar SK, Elmets CA, Yusuf N. Loss of INK4a/Arf gene enhances ultraviolet radiation-induced cutaneous tumor development. Exp Dermatol 2017; 26:1018-1025. [PMID: 28418604 DOI: 10.1111/exd.13356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
The CDKN2A locus encodes for tumor suppressor genes p16INK4a and p14Arf which are frequently inactivated in human skin tumors. The purpose of this study was to determine the relationship between loss of INK4a/Arf activity and inflammation in the development of ultraviolet (UV) radiation-induced skin tumors. Panels of INK4a/Arf-/- mice and wild-type (WT) mice were treated with a single dose of UVB (200 mJ/cm2 ). For long-term studies, these mice were irradiated with UVB (200 mJ/cm2 ) three times weekly for 30 weeks. At the end of the experiment, tissues were harvested from mice and assayed for inflammatory biomarkers and cytokines. A single dose of UVB resulted in a significant increase in reactive oxygen species (ROS) and 8-dihydroxyguanosine (8-oxo-dG) lesions in INK4a/Arf-/- mice compared to WT mice. When subjected to chronic UVB, we found that 100% of INK4a/Arf-/- mice had tumors, whereas there were no tumors in WT controls after 24 weeks of UVB exposure. The increase in tumor development correlated with a significant increase in nuclear factor (NF)-κB, cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2 ) and its receptors both in UVB-exposed skin and in the tumors. A significant increase was seen in inflammatory cytokines in skin samples of INK4a/Arf-/- mice following treatment with chronic UVB radiation. Furthermore, significantly more CD11b+ Gr1+ myeloid cells were present in UVB-exposed INK4a/Arf-/- mice compared to WT mice. Our data indicate that by targeting UVB-induced inflammation, it may be possible to prevent UVB-induced skin tumors in individuals that carry CDKN2A mutation.
Collapse
Affiliation(s)
- Israr Ahmad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amanda H DeBrot
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Padma P Manapragada
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Veteran Affairs Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Veteran Affairs Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Veteran Affairs Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Abstract
Cancer is the second leading cause of death in the United States, and is an increasing cause of death in the developing world. While there is great heterogeneity in the anatomic site and mutations involved in human cancer, there are common features, including immortal growth, angiogenesis, apoptosis evasion, and other features, that are common to most if not all cancers. However, new features of human cancers have been found as a result of clinical use of novel “targeted therapies,” angiogenesis inhibitors, and immunotherapies, including checkpoint inhibitors. These findings indicate that cancer is a moving target, which can change signaling and metabolic features based upon the therapies offered. It is well-known that there is significant heterogeneity within a tumor and it is possible that treatment might reduce the heterogeneity as a tumor adapts to therapy and, thus, a tumor might be synchronized, even if there is no major clinical response. Understanding this concept is important, as concurrent and sequential therapies might lead to improved tumor responses and cures. We posit that the repertoire of tumor responses is both predictable and limited, thus giving hope that eventually we can be more effective against solid tumors. Currently, among solid tumors, we observe a response of 1/3 of tumors to immunotherapy, perhaps less to angiogenesis inhibition, a varied response to targeted therapies, with relapse and resistance being the rule, and a large fraction being insensitive to all of these therapies, thus requiring the older therapies of chemotherapy, surgery, and radiation. Tumor phenotypes can be seen as a continuum between binary extremes, which will be discussed further. The biology of cancer is undoubtedly more complex than duality, but thinking of cancer as a duality may help scientists and oncologists discover optimal treatments that can be given either simultaneously or sequentially.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Linda C Gilbert
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
32
|
Teixeira G, Szyndralewiez C, Molango S, Carnesecchi S, Heitz F, Wiesel P, Wood JM. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br J Pharmacol 2017; 174:1647-1669. [PMID: 27273790 PMCID: PMC5446584 DOI: 10.1111/bph.13532] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
The NADPH oxidase (NOX) family of enzymes produces ROS as their sole function and is becoming recognized as key modulators of signal transduction pathways with a physiological role under acute stress and a pathological role after excessive activation under chronic stress. The seven isoforms differ in their regulation, tissue and subcellular localization and ROS products. The most studied are NOX1, 2 and 4. Genetic deletion of NOX1 and 4, in contrast to NOX2, has revealed no significant spontaneous pathologies and a pathogenic relevance of both NOX1 and 4 across multiple organs in a wide range of diseases and in particular inflammatory and fibrotic diseases. This has stimulated interest in NOX inhibitors for therapeutic application. GKT136901 and GKT137831 are two structurally related compounds demonstrating a preferential inhibition of NOX1 and 4 that have suitable properties for in vivo studies and have consequently been evaluated across a range of disease models and compared with gene deletion. In contrast to gene deletion, these inhibitors do not completely suppress ROS production, maintaining some basal level of ROS. Despite this and consistent with most gene deletion studies, these inhibitors are well tolerated and slow or prevent disease progression in a range of models of chronic inflammatory and fibrotic diseases by modulating common signal transduction pathways. Clinical trials in patients with GKT137831 have demonstrated excellent tolerability and reduction of various markers of chronic inflammation. NOX1/4 inhibition may provide a safe and effective therapeutic strategy for a range of inflammatory and fibrotic diseases. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Teixeira
- Evotec International GmbHGoettingenGermany
| | | | - S Molango
- Genkyotex SAPlan les OuatesSwitzerland
| | | | - F Heitz
- Genkyotex SAPlan les OuatesSwitzerland
| | - P Wiesel
- Genkyotex SAPlan les OuatesSwitzerland
| | | |
Collapse
|
33
|
Prasad R, Singh T, Katiyar SK. Honokiol inhibits ultraviolet radiation-induced immunosuppression through inhibition of ultraviolet-induced inflammation and DNA hypermethylation in mouse skin. Sci Rep 2017; 7:1657. [PMID: 28490739 PMCID: PMC5431968 DOI: 10.1038/s41598-017-01774-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023] Open
Abstract
Ultraviolet (UV) radiation exposure induces immunosuppression, which contributes to the development of cutaneous malignancies. We investigated the effects of honokiol, a phytochemical found in plants of the genus Magnolia, on UVB-induced immunosuppression using contact hypersensitivity (CHS) as a model in C3H/HeN mice. Topical application of honokiol (0.5 and 1.0 mg/cm2 skin area) had a significant preventive effect on UVB-induced suppression of the CHS response. The inflammatory mediators, COX-2 and PGE2, played a key role in this effect, as indicated by honokiol inhibition of cyclooxygenase-2 (COX-2) expression and PGE2 production in the UVB-exposed skin. Honokiol application also inhibited UVB-induced DNA hypermethylation and its elevation of the levels of TET enzyme, which is responsible for DNA demethylation in UVB-exposed skin. This was consistent with the restoration of the CHS response in mice treated with the DNA demethylating agent, 5-aza-2'-deoxycytidine, after UVB exposure. There was no significant difference in the levels of inhibition of UVB-induced immunosuppression amongst mice that were treated topically with available anti-cancer drugs (imiquimod and 5-fluorouracil). This study is the first to show that honokiol has the ability to inhibit UVB-induced immunosuppression in preclinical model and, thus, has potential for use as a chemopreventive strategy for UVB radiation-induced malignancies.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Tripti Singh
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
- Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Gào X, Schöttker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 2017; 8:51888-51906. [PMID: 28881698 PMCID: PMC5584299 DOI: 10.18632/oncotarget.17128] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress results from an imbalance of the reactive oxygen species/reactive nitrogen species (ROS/RNS) production and the oxidants defense system. Extensive research during the last decades has revealed that oxidative stress can mediate cancer initiation and development by leading not only to molecular damage but also to a disruption of reduction-oxidation (redox) signaling. In order to provide a global overview of the redox signaling pathways, which play a role in cancer formation, we conducted a systematic literature search in PubMed and ISI Web of Science and identified 185 relevant reviews published in the last 10 years. The 20 most frequently described pathways were selected to be presented in this systematic review and could be categorized into 3 groups: Intracellular ROS/RNS generating organelles and enzymes, signal transduction cascades kinases/phosphatases and transcription factors. Intracellular ROS/RNS generation organelles are mitochondria, endoplasmic reticulum and peroxisomes. Enzymes, including NOX, COX, LOX and NOS, are the most prominent enzymes generating ROS/RNS. ROS/RNS act as redox messengers of transmembrane receptors and trigger the activation or inhibition of signal transduction kinases/phosphatases, such as the family members of protein tyrosine kinases and protein tyrosine phosphatases. Furthermore, these reactions activate downstream signaling pathways including protein kinase of the MAPK cascade, PI3K and PKC. The kinases and phosphatases regulate the phosphorylation status of transcription factors including APE1/Ref-1, HIF-1α, AP-1, Nrf2, NF-κB, p53, FOXO, STAT, and β-catenin. Finally, we briefly discuss cancer prevention and treatment opportunities, which address redox pathways and further research needs.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany.,Institute of Health Care and Social Sciences, FOM University, Essen, Germany
| |
Collapse
|
35
|
Li YY, Shi ZM, Yu XT, Feng P, Wang XJ. The effects of urotensin II on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-Jun N-terminal kinase pathway in human hepatoma cells. Peptides 2017; 88:106-114. [PMID: 27988353 DOI: 10.1016/j.peptides.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/20/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
AIMS Urotensin II (UII) is a vasoactive neuropeptide involved in migration and invasion in various cell types. However, the effects of UII on human hepatoma cells still remain unclear. The aim of this study was to investigate the role and mechanism of UII on migration and invasion in human hepatoma cells. METHODS Migration was measured by wound healing assays and a Transwell® methodology, and invasion was analyzed using Matrigel® invasion chambers. Reactive oxygen species (ROS) levels were detected using a 2', 7'-dichlorofluorescein diacetate probe, and flow cytometry, and protein expression levels were evaluated by western blotting. Cell proliferation and actin polymerization were examined using cell proliferation reagent WST-1 and F-actin immunohistochemistry staining. RESULTS Exposure to UII promoted migration and invasion in hepatoma cells compared with that in cells without UII. UII also increased matrix metalloproteinase-2 (MMP2) expression in a time-independent manner. Furthermore, UII markedly enhanced ROS generation and NADPH oxidase subunit expression, and consequently facilitated the phosphorylation of c-Jun N-terminal kinase (JNK). The UT antagonist urantide or the antioxidant/NADPH oxidase inhibitor apocynin decreased UII-induced ROS production. JNK phosphorylation, migration, invasion, and MMP9/2 expression were also reversed by pretreatment with apocynin. Urantide and JNK inhibitor SP600125 abrogated migration, invasion, or MMP9/2 expression in response to UII. UII induced actin polymerization and fascin protein expression, and could be reversed by apocynin and SP600125. CONCLUSIONS Exogenous UII induced migration and invasion in hepatoma cells that mainly involved NADPH oxidase-derived ROS through JNK activation. UT played an additional role in regulating hepatoma cells migration and invasion. Thus, our data suggested an important effect of UII in hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Ying-Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Zheng-Ming Shi
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Xiao-Tong Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Ping Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xue-Jiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
36
|
Molecular mechanisms involved in gliomagenesis. Brain Tumor Pathol 2017; 34:1-7. [DOI: 10.1007/s10014-017-0278-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
37
|
Regulation of anoikis resistance by NADPH oxidase 4 and epidermal growth factor receptor. Br J Cancer 2017; 116:370-381. [PMID: 28081539 PMCID: PMC5294491 DOI: 10.1038/bjc.2016.440] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Normal cells are sensitive to anoikis, which is a cell detachment-induced apoptosis. However, cancer cells acquire anoikis resistance that is essential for successful metastasis. This study aimed to demonstrate the function and potential mechanism of NADPH oxidase 4 (NOX4) and EGFR activation in regulating anoikis resistance in lung cancer. METHODS Cells were cultured either in the attached or suspended condition. Cell viability was measured by cell counting and live and dead cell staining. Expression levels of NOX4 and EGFR were measured by PCR and immunoblotting. Reactive oxygen species (ROS) levels were measured by flow cytometry. Effects of NOX4 overexpression or NOX4 knockdown by si-NOX4 on anoikis sensitivity were explored. Levels of NOX4 and EGFR in lung cancer tissues were evaluated by IHC staining. RESULTS NOX4 was upregulated but EGFR decreased in suspended cells compared with attached cells. Accordingly, ROS levels were increased in suspended cells, resulting in the activation of Src and EGFR. NOX4 knockdown decreased activation of Src and EGFR, and thus sensitised cells to anoikis. NOX4 overexpression increased EGFR levels and attenuated anoikis. NOX4 expression is upregulated and is positively correlated with EGFR levels in the lung cancer patient tissues. CONCLUSIONS NOX4 upregulation confers anoikis resistance by ROS-mediated activation of EGFR and Src, and by maintaining EGFR levels, which is critical for cell survival.
Collapse
|
38
|
Shen K, Lu F, Xie J, Wu M, Cai B, Liu Y, Zhang H, Tan H, Pan Y, Xu H. Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget 2016; 7:50596-50611. [PMID: 27418140 PMCID: PMC5226606 DOI: 10.18632/oncotarget.10585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Cambogin, a bioactive polycyclic polyprenylated acylphoroglucinol (PPAP) derived from the Garcinia genus, possesses proapoptotic effect in medulloblastoma and breast cancer cells. We have previously demonstrated that the proapoptotic effect of cambogin is driven by the production of reactive oxygen species (ROS). Here we have shown that the inhibitory effect of cambogin on cell proliferation is associated with the loss of mitochondrial transmembrane potential (ΔΨm) and mitochondrial fragmentation. Cambogin also promotes the mutual complex formation of the membrane-bound subunit p22phox of NADPH oxidase 1 (NOX1), as well as the phosphorylation of the cytosolic subunit p47phox, subsequently enhancing membrane-bound NOX1 activity, which leads to increases in intracellular and mitochondrial levels of O2.- and H2O2. Pharmacological inhibition of NOX1 using apocynin (pan-NOX inhibitor), ML171 (NOX1 inhibitor) or siRNA against NOX1 prevents the increases in O2.- and H2O2 levels and the anti-proliferative effect of cambogin. Antioxidants, including SOD (superoxide dismutase), CAT (catalase) and EUK-8, are also able to restore cell viability in the presence of cambogin. Besides, cambogin increases the dissociation of thioredoxin-1 (Trx1) from ASK1, switching the inactive form of ASK1 to the active kinase, subsequently leads to the phosphorylation of JNK/SAPK, which is abolished upon ML171 treatment. The proapoptotic effect of cambogin in breast cancer cells is also aggravated upon knocking down Trx1 in MCF-7 cells. Taken in conjunction, these data indicate that the anti-proliferative and pro-apoptotic effect of cambogin is mediated via inducing NOX1-dependent ROS production and the dissociation of ASK1 and Trx1.
Collapse
Affiliation(s)
- Kaikai Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangfang Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide SA5000, Australia
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ, UK
| | - Minfeng Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yurong Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yingyi Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of T.C.M, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
39
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
40
|
Palen K, Weber J, Dwinell MB, Johnson BD, Ramchandran R, Gershan JA. E-cadherin re-expression shows in vivo evidence for mesenchymal to epithelial transition in clonal metastatic breast tumor cells. Oncotarget 2016; 7:43363-43375. [PMID: 27270319 PMCID: PMC5190029 DOI: 10.18632/oncotarget.9715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
Substantial experimental evidence has shown that dedifferentiation from an epithelial state to a mesenchymal-like state (EMT) drives tumor cell metastasis. This transition facilitates tumor cells to acquire motility and invasive features. Intriguingly, tumor cells at the metastatic site are primarily epithelial, and it is believed that they differentiate back to an epithelial state by a process called mesenchymal to epithelial transition (MET). However, there is little in vivo evidence to support the MET process. To investigate EMT and MET in vivo, we generated two epithelial (E) and two mesenchymal (M) primary clonal cell lines from a spontaneous mouse mammary tumor (Tg MMTV/neu). These cells were labeled with reporters (GFP and luciferase), and tracked in vivo during primary tumor growth and subsequent secondary metastasis. Once E cells were implanted into the mammary fat pad, E-cadherin expression progressively decreased and continued to decrease as the primary tumor enlarged over time. A greater percentage of E tumor cells expressed E-cadherin at the secondary metastatic site as compared to the corresponding primary tumor site. Collectively, these data provide direct in vivo evidence that epithelial tumor cells have metastatic potential, undergo EMT at the primary tumor site, and MET at the metastatic site.
Collapse
Affiliation(s)
- Katie Palen
- Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - James Weber
- Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Michael B. Dwinell
- Department of Microbiology and Molecular Genetics at the Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Bryon D. Johnson
- Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Ramani Ramchandran
- Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Obstetrics and Gynecology at the Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Jill A. Gershan
- Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
41
|
Arbiser JL, Bonner MY. Seborrheic Keratoses: The Rodney Dangerfield of Skin lesions, and Why They Should Get Our Respect. J Invest Dermatol 2016; 136:564-566. [PMID: 26902127 PMCID: PMC5925755 DOI: 10.1016/j.jid.2015.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022]
Abstract
Neel et al. have demonstrated that seborrheic keratosis, the most common of all skin tumors, is dependent on acutely transforming retrovirus AKT8 in rodent T-cell lymphoma signaling. The authors found that these lesions are hypersensitive to Akt inhibitors which bind to the ATP binding site of Akt. Cutaneous squamous cell carcinoma is resistant to Akt inhibitors. The implications of this study are not limited to seborrheic keratosis. The presence of wild type p53 (seborrheic keratosis) or mutant p53 (cutaneous squamous cell carcinoma) appears to dictate whether a lesion is sensitive to Akt inhibition or not.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory School of Medicine, and Winship Cancer Institute, Atlanta, Georgia, USA; Dermatology Veterans Affairs Medical Center, Decatur, Georgia, USA.
| | - Michael Y Bonner
- Department of Dermatology, Emory School of Medicine, and Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Zielonka J, Zielonka M, VerPlank L, Cheng G, Hardy M, Ouari O, Ayhan MM, Podsiadły R, Sikora A, Lambeth JD, Kalyanaraman B. Mitigation of NADPH Oxidase 2 Activity as a Strategy to Inhibit Peroxynitrite Formation. J Biol Chem 2016; 291:7029-44. [PMID: 26839313 DOI: 10.1074/jbc.m115.702787] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 01/09/2023] Open
Abstract
Using high throughput screening-compatible assays for superoxide and hydrogen peroxide, we identified potential inhibitors of the NADPH oxidase (Nox2) isoform from a small library of bioactive compounds. By using multiple probes (hydroethidine, hydropropidine, Amplex Red, and coumarin boronate) with well defined redox chemistry that form highly diagnostic marker products upon reaction with superoxide (O2 (̇̄)), hydrogen peroxide (H2O2), and peroxynitrite (ONOO(-)), the number of false positives was greatly decreased. Selected hits for Nox2 were further screened for their ability to inhibit ONOO(-)formation in activated macrophages. A new diagnostic marker product for ONOO(-)is reported. We conclude that the newly developed high throughput screening/reactive oxygen species assays could also be used to identify potential inhibitors of ONOO(-)formed from Nox2-derived O2 (̇̄)and nitric oxide synthase-derived nitric oxide.
Collapse
Affiliation(s)
- Jacek Zielonka
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
| | - Monika Zielonka
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Lynn VerPlank
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Gang Cheng
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Micael Hardy
- the Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Olivier Ouari
- the Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Mehmet Menaf Ayhan
- the Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Radosław Podsiadły
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adam Sikora
- the Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland, and
| | - J David Lambeth
- the Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322
| | - Balaraman Kalyanaraman
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
| |
Collapse
|
43
|
Gupta SC, Singh R, Pochampally R, Watabe K, Mo YY. Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway. Oncotarget 2015; 5:12070-82. [PMID: 25504433 PMCID: PMC4322981 DOI: 10.18632/oncotarget.2514] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/24/2014] [Indexed: 01/24/2023] Open
Abstract
It is well known that acidic microenvironment promotes tumorigenesis, however, the underlying mechanism remains largely unknown. In the present study, we show that acidosis promotes invasiveness of breast cancer cells through a series of signaling events. First, our study indicates that NF-κB is a key factor for acidosis-induced cell invasion. Acidosis activates NF-κB without affecting STAT3 activity; knockdown of NF-κB p65 abrogates the acidosis-induced invasion activity. Next, we show that the activation of NF-κB is mediated through phosphorylation and degradation of IκBα; and phosphorylation and nuclear translocation of p65. Upstream to NF-κB signaling, AKT is activated under acidic conditions. Moreover, acidosis induces generation of reactive oxygen species (ROS) which can be suppressed by ROS scavengers, reversing the acidosis-induced activation of AKT and NF-κB, and invasiveness. As a negative regulator of AKT, PTEN is oxidized and inactivated by the acidosis-induced ROS. Finally, inhibition of NADPH oxidase (NOX) suppresses acidosis-induced ROS production, suggesting involvement of NOX in acidosis-induced signaling cascade. Of considerable interest, acidosis-induced ROS production and activation of AKT and NF-κB can be only detected in cancer cells, but not in non-malignant cells. Together, these results demonstrate a cancer specific acidosis-induced signaling cascade in breast cancer cells, leading to cell invasion.
Collapse
Affiliation(s)
- Subash C Gupta
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Ramesh Singh
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Kounosuke Watabe
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Microbiology, University of Mississippi Medical Center, Jackson, MS
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
44
|
The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer. Future Med Chem 2015; 6:1413-22. [PMID: 25329197 DOI: 10.4155/fmc.14.86] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
So-called antioxidants have yet to make a clinical impact on the treatment of human cancer. The reasons for this failure are several. First, many agents that are called antioxidants are truly antioxidants at a given dose, but this dose may not have been given in clinical trials. Second, many agents are not antioxidants at all. Third, not all tumors use reactive oxygen as a signaling mechanism. Finally, reactive oxygen inhibition is often insufficient to kill or regress a tumor cell by itself, but requires sequential introduction of a therapeutic agent for maximal effect. We hope to provide a framework for the logical use of these agents in cancer.
Collapse
|
45
|
Iwamoto H, Zhang Y, Seki T, Yang Y, Nakamura M, Wang J, Yang X, Torimura T, Cao Y. PlGF-induced VEGFR1-dependent vascular remodeling determines opposing antitumor effects and drug resistance to Dll4-Notch inhibitors. SCIENCE ADVANCES 2015; 1:e1400244. [PMID: 26601163 PMCID: PMC4640632 DOI: 10.1126/sciadv.1400244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 06/05/2023]
Abstract
Inhibition of Dll4 (delta-like ligand 4)-Notch signaling-mediated tumor angiogenesis is an attractive approach in cancer therapy. However, inhibition of Dll4-Notch signaling has produced different effects in various tumors, and no biomarkers are available for predicting the anti-Dll4-Notch-associated antitumor activity. We show that human and mouse tumor cell-derived placental growth factor (PlGF) is a key determinant of the Dll4-Notch-induced vascular remodeling and tumor growth. In natural PlGF-expressing human tumors, inhibition of Dll4-Notch signaling markedly accelerated tumor growth by increasing blood perfusion in nonleaking tumor vasculatures. Conversely, in PlGF-negative tumors, Dll4 inhibition suppressed tumor growth by the formation of nonproductive and leaky vessels. Surprisingly, genetic inactivation of vascular endothelial growth factor receptor 1 (VEGFR1) completely abrogated the PlGF-modulated vascular remodeling and tumor growth, indicating a crucial role for VEGFR1-mediated signals in modulating Dll4-Notch functions. These findings provide mechanistic insights on PlGF-VEGFR1 signaling in the modulation of the Dll4-Notch pathway in angiogenesis and tumor growth, and have therapeutic implications of PlGF as a biomarker for predicting the antitumor benefits of Dll4 and Notch inhibitors.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Xiaojuan Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, People’s Republic of China
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 831 0011 Kurume, Japan
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
- Department of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
46
|
Kang SW, Lee S, Lee EK. ROS and energy metabolism in cancer cells: alliance for fast growth. Arch Pharm Res 2015; 38:338-45. [PMID: 25599615 DOI: 10.1007/s12272-015-0550-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
In normal cells, the cellular reactive oxygen species (ROS) level is proportional to the activity of mitochondrial electron transport and tightly controlled by endogenous antioxidant system. However, energy metabolism and ROS homeostasis in cancer cells are much different from those in normal cells. For example, a majority of cellular glucose is metabolized through aerobic glycolysis ("Warburg effect") and the pentose phosphate pathway. Cancer cells harbor functional mitochondria, but many mutations in nuclear DNA-encoded mitochondrial genes and mitochondrial genome result in the mitochondrial metabolic reprogramming. The other characteristic of cancer cells is to maintain much higher ROS level than normal cells. Ironically, cancer cells overexpress the ROS-producing NADPH oxidase and the ROS-eliminating antioxidant enzymes, both of which enzyme systems share NADPH as a reducing power source. In this article, we review the complex connection between ROS and energy metabolisms in cancer cells.
Collapse
Affiliation(s)
- Sang Won Kang
- Department of Life Sciences, Research Center for Cell Homeostasis, Ewha Womans University, Seoul, 120-750, Republic of Korea,
| | | | | |
Collapse
|
47
|
Lin Y, Jia R, Liu Y, Gao Y, Zeng X, Kou J, Yu B. Diosgenin inhibits superoxide generation in FMLP-activated mouse neutrophils via multiple pathways. Free Radic Res 2014; 48:1485-93. [DOI: 10.3109/10715762.2014.966705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Superoxide deficiency attenuates promotion of hepatocarcinogenesis by cytotoxicity in NADPH oxidase knockout mice. Arch Toxicol 2014; 89:1383-93. [DOI: 10.1007/s00204-014-1298-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/17/2014] [Indexed: 01/26/2023]
|
49
|
Bauer KM, Watts TN, Buechler S, Hummon AB. Proteomic and functional investigation of the colon cancer relapse-associated genes NOX4 and ITGA3. J Proteome Res 2014; 13:4910-8. [PMID: 25096929 PMCID: PMC4227555 DOI: 10.1021/pr500557n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colon cancer is a major cause of cancer-related deaths worldwide. Adjuvant chemotherapy significantly reduces mortality in stage III colon cancer; however, it is only marginally effective in stage II patients. There is also increasing evidence that right-side colon cancer is different from left-side colon cancer. We have observed that the genes altered in expression between the poor and good prognosis tumors vary significantly depending on whether the malignancy originates on the right or left side of the colon. We have identified NADPH oxidase 4 (NOX4) to be highly predictive of relapse in stage II left-side colon cancer, whereas integrin alpha 3 beta 1 (ITGA3) is predictive of relapse in stage II right-side colon cancer. To investigate the underlying molecular mechanisms, we are analyzing the effect of ITGA3 and NOX4 silencing via RNA interference and pharmacological inhibition on global protein expression patterns via iTRAQ labeling and mass spectrometry in colon cancer cells. On the basis of bioinformatic analysis, the functions of these genes were assessed through phenotypic assays, revealing roles in cell migration and reactive oxygen species generation. These biomarkers for relapse risk are of clinical interest and lead to insight into how a tumor progresses to metastasis.
Collapse
Affiliation(s)
- Kerry M Bauer
- Harper Cancer Research Institute, ‡Department of Chemistry & Biochemistry, and §Department of Applied and Computational Mathematics and Statistics, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
50
|
Köhler UA, Kurinna S, Schwitter D, Marti A, Schäfer M, Hellerbrand C, Speicher T, Werner S. Activated Nrf2 impairs liver regeneration in mice by activation of genes involved in cell-cycle control and apoptosis. Hepatology 2014; 60:670-8. [PMID: 24310875 DOI: 10.1002/hep.26964] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
UNLABELLED The nuclear factor erythroid-derived 2, like 2 (Nrf2) transcription factor is a key regulator of the antioxidant defense system, and pharmacological activation of Nrf2 is a promising strategy for prevention of toxin-induced liver damage. However, the consequences of Nrf2 activation on liver regeneration (LR) have not been determined. To address this question, we generated mice expressing a constitutively active Nrf2 (caNrf2) mutant in hepatocytes. Expression of the transgene did not affect liver homeostasis. Surprisingly, however, there was no beneficial effect of Nrf2 activation on CCl4 -induced liver injury and fibrosis. Most important, LR after partial hepatectomy was impaired in caNrf2-transgenic mice as a result of delayed hepatocyte proliferation and enhanced apoptosis of these cells after liver injury. Mechanistically, this involved up-regulation of the cyclin-dependent kinase inhibitor p15 and the proapoptotic protein Bcl2l11 (Bim). Using chromatin immunoprecipitation, we show that the p15 and Bcl2l11 genes are direct targets of Nrf2, which are activated under hyperproliferative conditions in the liver. CONCLUSION Activated Nrf2 delays proliferation and induces apoptosis of hepatocytes in the regenerating liver. These negative effects of Nrf2 activation on LR should be considered when Nrf2-activating compounds are used for prevention of liver damage.
Collapse
Affiliation(s)
- Ulrike A Köhler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|