1
|
Ahn H, Lee H, Choi W, Lee H, Lee KG, Youn I, Hur W, Han S, Song C. Discovery of the therapeutic potential of naltriben against glutamate-induced neurotoxicity. Neurochem Int 2025; 183:105928. [PMID: 39756586 DOI: 10.1016/j.neuint.2025.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glutamate-induced neuronal death is associated with neurodegeneration including cerebral ischemia. Several μ-opioid receptor antagonists exhibit a neuroprotective activity and have been considered as a potential therapeutic option for neurodegenerative disorders. For the first time, our current study unveiled the neuroprotective activity of selective δ-opioid receptor antagonists. A potent, selective δ-opioid receptor antagonist naltriben, also known as a potent TRPM7 agonist, displayed the prominent protective effect against glutamate-induced toxicity through opioid receptor-independent, TRPM7-independent mechanisms in HT22 cells. Naltriben activated Nrf2 pathway, and alleviated glutamate-induced Ca2+ influx, ROS production, and apoptosis. Moreover, intraperitoneal administration of naltriben at 20 mg/kg greatly reduced the infarct volume in the subcortical photothrombotic ischemia mouse model in vivo. The neuroprotective activity of naltriben was enhanced by a longer pretreatment, indicating that like Nrf2 activators, naltriben also requires the cellular priming for its full protective effects. Together, these results suggested naltriben as a potential therapeutic agent in conditions related with glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Hyomin Ahn
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyomin Lee
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wonseok Choi
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyebin Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Inchan Youn
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooyoung Hur
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sungmin Han
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; KHU-KIST, Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Chiman Song
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Miao H, Zhao Q, Dai Y, Qiu J. Neuroprotective effects of miRNA-326 knockout in neonatal hypoxic-ischemic brain damage mice via the δ-opioid receptor. Biochem Biophys Res Commun 2024; 726:150259. [PMID: 38909535 DOI: 10.1016/j.bbrc.2024.150259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) in the perinatal period is an important cause of cerebral damage and long-term neurological sequelae, and can place much pressure on families and society. Our previous study demonstrated that miRNA-326 reduces neuronal apoptosis by up-regulating the δ-opioid receptor (DOR) under oxygen-glucose deprivation in vitro. In the present study, we aimed to explore the neuroprotective effects of the miRNA-326/DOR axis by inhibiting apoptosis in HIBD using neonatal miRNA-326 knockout mice. Neonatal C57BL/6 mice, neonatal miRNA-326 knockout mice, and neonatal miRNA-326 knockout mice intraperitoneally injected with the DOR inhibitor naltrindole were treated with hypoxic-ischemia (HI). Neurological deficit scores, magnetic resonance imaging, terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling, and Caspase-3, Bax, and B-cell lymphoma 2 (Bcl-2) expression were evaluated on day 2 after HI. Neurobehavioral analyses were performed on days 2 and 28 after HI. Additionally, the Morris water maze test was conducted on days 28. Compared with HI-treated neonatal C57BL/6 mice, HI-treated neonatal miRNA-326 knockout mice had higher neurological deficit scores, smaller cerebral infarction areas, and improved motor function, reaction ability, and long-term spatial learning and memory. These effects were likely the result of inhibiting apoptosis; the DOR inhibitor reversed these neuroprotective effects. Our findings indicate that miRNA-326 knockout plays a neuroprotective effect in neonatal HIBD by inhibiting apoptosis via the target gene DOR.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Animals, Newborn
- Apoptosis/genetics
- Hypoxia-Ischemia, Brain/genetics
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neuroprotective Agents/pharmacology
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
Collapse
Affiliation(s)
- Hong Miao
- Department of Neonatology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiao Zhao
- Department of Neonatology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynaecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Qiu
- Department of Neonatology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neonatology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Damiescu R, Dawood M, Elbadawi M, Klauck SM, Bringmann G, Efferth T. Identification of Cytisine Derivatives as Agonists of the Human Delta Opioid Receptor by Supercomputer-Based Virtual Drug Screening and Transcriptomics. ACS Chem Biol 2024; 19:1963-1981. [PMID: 39167688 DOI: 10.1021/acschembio.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Delta opioid receptors (DORs) are rising as therapeutic targets, not only for the treatment of pain but also other neurological disorders (e.g., Parkinson's disease). The advantage of DOR agonists compared to μ-opioid receptor agonists is that they have fewer side effects and a lower potential to induce tolerance. However, although multiple candidates have been tested in the past few decades, none have been approved for clinical use. The current study focused on searching for new DOR agonists by screening a chemical library containing 40,000 natural and natural-derived products. The functional activity of the top molecules was evaluated in vitro through the cyclic adenosine monophosphate accumulation assay. Compound 3 showed promising results, and its activity was further investigated through transcriptomic methods. Compound 3 inhibited the expression of TNF-α, prevented NF-κB translocation to the nucleus, and activated the G-protein-mediated ERK1/2 pathway. Additionally, compound 3 is structurally different from known DOR agonists, making it a valuable candidate for further investigation for its anti-inflammatory and analgesic potential.
Collapse
Affiliation(s)
- Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| |
Collapse
|
4
|
Gao S, He Q. Opioids and the kidney: two sides of the same coin. Front Pharmacol 2024; 15:1421248. [PMID: 39135801 PMCID: PMC11317763 DOI: 10.3389/fphar.2024.1421248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Renal dysfunction, including acute renal failure (ARF) and chronic kidney disease (CKD), continues to present significant health challenges, with renal ischemia-reperfusion injury (IRI) being a pivotal factor in their development and progression. This condition, notably impacting kidney transplantation outcomes, underscores the urgent need for innovative therapeutic interventions. The role of opioid agonists in this context, however, remains a subject of considerable debate. Current reviews tend to offer limited perspectives, focusing predominantly on either the protective or detrimental effects of opioids in isolation. Our review addresses this gap through a thorough and comprehensive evaluation of the existing literature, providing a balanced examination of the dualistic nature of opioids' influence on renal health. We delve into both the nephroprotective and nephrotoxic aspects of opioids, dissecting the complex interactions and paradoxical effects that embody the "two sides of the same coin" phenomenon. This comprehensive analysis is vital for understanding the intricate roles of opioids in renal pathophysiology, potentially informing the development of novel therapeutic strategies for preventing or treating hypoxic kidney injury.
Collapse
Affiliation(s)
- Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
5
|
Chen Y, Zhang H, Jiang L, Cai W, Kuang J, Geng Y, Xu H, Li Y, Yang L, Cai Y, Wang X, Xiao J, Ni W, Zhou K. DADLE promotes motor function recovery by inhibiting cytosolic phospholipase A 2 mediated lysosomal membrane permeabilization after spinal cord injury. Br J Pharmacol 2024; 181:712-734. [PMID: 37766498 DOI: 10.1111/bph.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Autophagy is a protective factor for controlling neuronal damage, while necroptosis promotes neuroinflammation after spinal cord injury (SCI). DADLE (D-Ala2 , D-Leu5 ]-enkephalin) is a selective agonist for delta (δ) opioid receptor and has been identified as a promising drug for neuroprotection. The aim of this study was to investigate the mechanism/s by which DADLE causes locomotor recovery following SCI. EXPERIMENTAL APPROACH Spinal cord contusion model was used and DADLE was given by i.p. (16 mg·kg-1 ) in mice for following experiments. Motor function was assessed by footprint and Basso mouse scale (BMS) score analysis. Western blotting used to evaluate related protein expression. Immunofluorescence showed the protein expression in each cell and its distribution. Network pharmacology analysis was used to find the related signalling pathways. KEY RESULTS DADLE promoted functional recovery after SCI. In SCI model of mice, DADLE significantly increased autophagic flux and inhibited necroptosis. Concurrently, DADLE restored autophagic flux by decreasing lysosomal membrane permeabilization (LMP). Additionally, chloroquine administration reversed the protective effect of DADLE to inhibit necroptosis. Further analysis showed that DADLE decreased phosphorylated cPLA2 , overexpression of cPLA2 partially reversed DADLE inhibitory effect on LMP and necroptosis, as well as the promotion autophagy. Finally, AMPK/SIRT1/p38 pathway regulating cPLA2 is involved in the action DADLE on SCI and naltrindole inhibited DADLE action on δ receptor and on AMPK signalling pathway. CONCLUSION AND IMPLICATION DADLE causes its neuroprotective effects on SCI by promoting autophagic flux and inhibiting necroptosis by decreasing LMP via activating δ receptor/AMPK/SIRT1/p38/cPLA2 pathway.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiaxuan Kuang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Shekhar AC, Nathanson BH, Mader TJ, Coute RA. Cardiac Arrest Following Drug Overdose in the United States: An Analysis of the Cardiac Arrest Registry to Enhance Survival. J Am Heart Assoc 2024; 13:e031245. [PMID: 38293840 PMCID: PMC11056133 DOI: 10.1161/jaha.123.031245] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Given increases in drug overdose-associated mortality, there is interest in better understanding of drug overdose out-of-hospital cardiac arrest (OHCA). A comparison between overdose-attributable OHCA and nonoverdose-attributable OHCA will inform public health measures. METHODS AND RESULTS We analyzed data from 2017 to 2021 in the Cardiac Arrest Registry to Enhance Survival (CARES), comparing overdose-attributable OHCA (OD-OHCA) with OHCA from other nontraumatic causes (non-OD-OHCA). Arrests involving patients <18 years, health care facility residents, patients with cancer diagnoses, and patients with select missing data were excluded. Our main outcome of interest was survival with good neurological outcome, defined as Cerebral Performance Category score 1 or 2. From a data set with 537 100 entries, 29 500 OD-OHCA cases and 338 073 non-OD-OHCA cases met inclusion criteria. OD-OHCA cases involved younger patients with fewer comorbidities, were less likely to be witnessed, and less likely to present with a shockable rhythm. Unadjusted survival to hospital discharge with Cerebral Performance Category score =1 or 2 was significantly higher in the OD-OHCA cohort (OD: 15.2% versus non-OD: 6.9%). Adjusted results showed comparable survival with Cerebral Performance Category score =1 or 2 when the first monitored arrest rhythm was shockable (OD: 28.9% versus non-OD: 23.5%, P=0.087) but significantly higher survival rates with Cerebral Performance Category score =1 or 2 for OD-OHCA when the first monitored arrest rhythm was nonshockable (OD: 9.6% versus non-OD: 3.1%, P<0.001). CONCLUSIONS Among patients presenting with nonshockable rhythms, OD-OHCA is associated with significantly better outcomes. Further research should explore cardiac arrest causes, and public health efforts should attempt to reduce the burden from drug overdoses.
Collapse
Affiliation(s)
| | | | - Timothy J. Mader
- Department of Emergency MedicineUMass Chan Medical School—BaystateSpringfieldMAUSA
- Department of Healthcare Delivery and Population ScienceUMass Chan Medical School—BaystateSpringfieldMAUSA
| | - Ryan A. Coute
- Department of Emergency MedicineUniversity of Alabama at Birmingham Heersink School of MedicineBirminghamALUSA
| |
Collapse
|
7
|
Shivling Mali A, Honc O, Hejnova L, Novotny J. Opioids Alleviate Oxidative Stress via the Nrf2/HO-1 Pathway in LPS-Stimulated Microglia. Int J Mol Sci 2023; 24:11089. [PMID: 37446267 DOI: 10.3390/ijms241311089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Opioids are known to have antioxidant effects and to modulate microglial function under certain conditions. It has been previously shown that opioid ligands can effectively inhibit the release of proinflammatory cytokines when stimulated with lipopolysaccharide (LPS) and convert microglia to an anti-inflammatory polarization state. Here, we used C8-B4 cells, the mouse microglial cell line activated by LPS as a model to investigate the anti-inflammatory/antioxidant potential of selected opioid receptor agonists (DAMGO, DADLE, and U-50488). We found that all of these ligands could exert cytoprotective effects through the mechanism affecting LPS-induced ROS production, NADPH synthesis, and glucose uptake. Interestingly, opioids elevated the level of reduced glutathione, increased ATP content, and enhanced mitochondrial respiration in microglial cells exposed to LPS. These beneficial effects were associated with the upregulation of the Nrf2/HO-1 pathway. The present results indicate that activation of opioid signaling supports the preservation of mitochondrial function with concomitant elimination of ROS in microglia and suggest that an Nrf2/HO-1 signaling pathway-dependent mechanism is involved in the antioxidant efficacy of opioids. Opioid receptor agonists may therefore be considered as agents to suppress oxidative stress and inflammatory responses of microglia.
Collapse
Affiliation(s)
- Akash Shivling Mali
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Honc
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| |
Collapse
|
8
|
δ-Opioid Receptor Activation Inhibits Ferroptosis by Activating the Nrf2 Pathway in MPTP-Induced Parkinson Disease Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4130937. [PMID: 36818224 PMCID: PMC9937764 DOI: 10.1155/2023/4130937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Introduction Recent studies suggest the involvement of ferroptosis in the pathogenesis of Parkinson disease (PD). δ-Opioid receptors (DORs) have neuroprotective effects in PD. It is not known whether the neuroprotective effects of DORs in PD are attributable to the inhibition of ferroptosis. Therefore, we aimed to investigate the role of DORs in ferroptosis in MPTP-induced PD models. Methods To identify the influence of DORs on ferroptosis in MPTP-induced PD models, we measured the malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels, analyzed the levels of ferroptosis-related proteins (GXP4 and SLC7a11) and Nrf2 expression by using western blotting, and assessed mitochondrial dysfunction by using JC-1 staining and transmission electron microscopy. Results DOR activation reduced the 4-HNE and MDA levels, increased the GXP4 and SLC7a11 levels, and ameliorated mitochondrial dysfunction in MPTP-induced PD models. These neuroprotective effects of DORs could be blocked by Nrf2-siRNA. Thus, the effects of DORs on ferroptosis in PD models were partially controlled by Nrf2, which regulated GXP4 and SLC7a11 synthesis. Conclusion DORs exert neuroprotective effects in PD models by inhibiting ferroptosis partially via activating the Nrf2 pathway.
Collapse
|
9
|
Martens GA, Geßner C, Osterhof C, Hankeln T, Burmester T. Transcriptomes of Clusterin- and S100B-transfected neuronal cells elucidate protective mechanisms against hypoxia and oxidative stress in the hooded seal (Cystophora cristata) brain. BMC Neurosci 2022; 23:59. [PMID: 36243678 PMCID: PMC9571494 DOI: 10.1186/s12868-022-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.
Collapse
Affiliation(s)
- Gerrit A Martens
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany.
| | - Cornelia Geßner
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| | - Carina Osterhof
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thorsten Burmester
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
10
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
11
|
Degrandmaison J, Rochon-Haché S, Parent JL, Gendron L. Knock-In Mouse Models to Investigate the Functions of Opioid Receptors in vivo. Front Cell Neurosci 2022; 16:807549. [PMID: 35173584 PMCID: PMC8841419 DOI: 10.3389/fncel.2022.807549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Samuel Rochon-Haché
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Jean-Luc Parent,
| | - Louis Gendron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Pain Research Network, Sherbrooke, QC, Canada
- *Correspondence: Louis Gendron,
| |
Collapse
|
12
|
Xu Y, Chen R, Zhi F, Sheng S, Khiati L, Yang Y, Peng Y, Xia Y. δ-opioid Receptor, Microglia and Neuroinflammation. Aging Dis 2022; 14:778-793. [PMID: 37191426 DOI: 10.14336/ad.2022.0912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation underlies the pathophysiology of multiple age-related neurological disorders. Microglia, the resident immune cells of the central nervous system, are critically involved in neuroinflammatory regulation and neural survival. Modulating microglial activation is thus a promising approach to alleviate neuronal injury. Our serial studies have revealed a neuroprotective role of the δ-opioid receptor (DOR) in several acute and chronic cerebral injuries by regulating neuroinflammation and cellular oxidative stress. More recently, we found an endogenous mechanism for the inhibition of neuroinflammation is closely related to DOR's modulation of microglia. Our recent studies showed that DOR activation could strongly protect neurons from hypoxia- and lipopolysaccharide (LPS)-induced injury by inhibiting microglial pro-inflammatory transformation, while knocking-down DOR or restraining DOR activity promoted microglia activation and the relevant inflammatory events with an aggravation of cell injury. This novel finding highlights a therapeutic potential of DOR in numerous age-related neurological disorders through the modulation of neuroinflammation by targeting microglia. This review summarized the current data regarding the role of microglia in neuroinflammation, oxidative stress, and age-related neurological diseases focusing on the pharmacological effects and signaling transduction of DOR in microglia.
Collapse
|
13
|
Esmaeeli S, Valencia J, Buhl LK, Bastos AB, Goudarzi S, Eikermann M, Fehnel C, Pollard R, Thomas A, Ogilvy CS, Shaefi S, Nozari A. Anesthetic management of unruptured intracranial aneurysms: a qualitative systematic review. Neurosurg Rev 2021; 44:2477-2492. [PMID: 33415519 PMCID: PMC9157460 DOI: 10.1007/s10143-020-01441-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Intracranial aneurysms (IA) occur in 3-5% of the general population and may require surgical or endovascular obliteration if the patient is symptomatic or has an increased risk of rupture. These procedures carry an inherent risk of neurological complications, and the outcome can be influenced by the physiological and pharmacological effects of the administered anesthetics. Despite the critical role of anesthetic agents, however, there are no current studies to systematically assess the intraoperative anesthetic risks, benefits, and outcome effects in this population. In this systematic review of the literature, we carefully examine the existing evidence on the risks and benefits of common anesthetic agents during IA obliteration, their physiological and clinical characteristics, and effects on neurological outcome. The initial search strategy captured a total of 287 published studies. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 28 studies were included in the final report. Our data showed that both volatile and intravenous anesthetics are commonly employed, without evidence that either is superior. Although no specific anesthetic regimens are promoted, their unique neurological, cardiovascular, and physiological properties may be critical to the outcome in vulnerable patients. In particular, patients at risk for perioperative ischemia may benefit from timely administration of anesthetic agents with neuroprotective properties and optimization of their physiological parameters. Further studies are warranted to examine if these anesthetic regimens can reduce the risk of neurological injury and improve the overall outcome in these patients.
Collapse
Affiliation(s)
- Shooka Esmaeeli
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Juan Valencia
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lauren K Buhl
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andres Brenes Bastos
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sogand Goudarzi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthias Eikermann
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Corey Fehnel
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard Pollard
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ajith Thomas
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston, USA
| | - Christopher S Ogilvy
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston, USA
| | - Shahzad Shaefi
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ala Nozari
- Department of Anesthesiology, Critical care and pain medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Anesthesiology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Degrandmaison J, Grisé O, Parent JL, Gendron L. Differential barcoding of opioid receptors trafficking. J Neurosci Res 2021; 100:99-128. [PMID: 34559903 DOI: 10.1002/jnr.24949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied μ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Network of Junior Pain Investigators, QC, Canada
| | - Olivier Grisé
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Pain Research Network, QC, Canada
| |
Collapse
|
15
|
Zhang G, Lai Z, Gu L, Xu K, Wang Z, Duan Y, Chen H, Zhang M, Zhang J, Zhao Z, Wang S. Delta Opioid Receptor Activation with Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin Contributes to Synaptic Improvement in Rat Hippocampus against Global Ischemia. Cell Transplant 2021; 30:9636897211041585. [PMID: 34470528 PMCID: PMC8419564 DOI: 10.1177/09636897211041585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Global cerebral ischemia induced by cardiac arrest usually leads to poor neurological outcomes. Numerous studies have focused on ways to prevent ischemic damage in the brain, however clinical therapies are still limited. Our previous studies revealed that delta opioid receptor (DOR) activation with [d-Ala2, d-Leu5] enkephalin (DADLE), a DOR agonist, not only significantly promotes neuronal survival on day 3, but also improves spatial memory deficits on days 5-9 after ischemia. However, the neurological mechanism underlying DADLE-induced cognitive recovery remains unclear. This study first examined the changes in neuronal survival in the CA1 region at the advanced time point (day 7) after ischemia/reperfusion (I/R) injury and found a significant amelioration of damaged CA1 neurons in the rats treated with DADLE (2.5 nmol) when administered at the onset of reperfusion. The structure and function of CA1 neurons on days 3 and 7 post-ischemia showed significant improvements in both the density of the injured dendritic spines and the basic transmission of the impaired CA3-CA1 synapses following DADLE treatment. The molecular changes involved in DADLE-mediated synaptic modulation on days 3 and 7 post-ischemia implied the time-related differential regulation of PKCα-MARCKS on the dendritic spine structure and of BDNF- ERK1/2-synapsin I on synaptic function, in response to ischemic/reperfusion injury as well as to DADLE treatment. Importantly, all the beneficial effects of DADLE on ischemia-induced cellular, synaptic, and molecular deficits were eliminated by the DOR inhibitor naltrindole (2.5 nmol). Taken together, this study suggested that DOR activation-induced protective signaling pathways of PKCα-MARCKS involved in the synaptic morphology and BDNF-ERK-synapsin I in synaptic transmission may be engaged in the cognitive recovery in rats suffering from advanced cerebral ischemia.
Collapse
Affiliation(s)
- Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zelin Lai
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Lingling Gu
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Kejia Xu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhenlu Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yale Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital
| | - Min Zhang
- Tongji University School of Medicine, Shanghai 201204, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital.,Tongji University School of Medicine, Shanghai 201204, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
16
|
Gedar Totuk OM, Yildiz E, Mollica A, Kabadayi K, Sahin A. The opioid peptide biphalin modulates human corneal epithelial wound healing in vitro. J Fr Ophtalmol 2021; 44:1403-1412. [PMID: 34446298 DOI: 10.1016/j.jfo.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 10/20/2022]
Abstract
PURPOSE Analgesic drugs, including nonselective opioids and non-steroidal anti-inflammatory drugs, should be used with great precautions to relieve pain after trauma to the corneal epithelium because of their unfavorable effects on wound healing. Biphalin is a synthetic opioid peptide that has been demonstrated to possess a strong analgesic effect on rodents. The purpose of this study is to investigate the effects of biphalin on human corneal epithelial wound healing. METHODS An immortalized human corneal epithelial cell (HCEC) culture was used to analyze the effects of biphalin on wound healing. The toxicity of biphalin at various concentrations was measured by the MTT assay. The effects of 1μM and 10μM biphalin on wound closure, cell migration and proliferation were tested in an in vitro scratch assay of HCECs. Naloxone, a non-selective competitive opioid receptor antagonist, was also used to inhibit the effects of biphalin in all experiments. RESULTS Biphalin did not cause any toxic effect on HCECs at concentrations lower than 100μM at various incubation time points. Biphalin significantly increased wound healing at 1μM concentration in an in vitro scratch assay of HCECs (P<0.05). It also significantly increased migration of HCECs (P<0.01). There was no significant difference between the biphalin and control groups of HCECs in the Ki67 proliferation assay. CONCLUSION Biphalin, which is a synthetic opioid peptide, promotes corneal epithelial wound healing by increasing cell migration. This role should be evaluated in further in vivo and clinical studies.
Collapse
Affiliation(s)
- O M Gedar Totuk
- Department of Ophthalmology, Bahçeşehir University School of Medicine, Istanbul, 34734, Turkey.
| | - E Yildiz
- Research Center for Translational Medicine, Koç University, Istanbul, 34010, Turkey.
| | - A Mollica
- Department of Pharmacy, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, 66100, Italy.
| | - K Kabadayi
- Bahçeşehir University School of Medicine, Istanbul, 34734, Turkey.
| | - A Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, 34010, Turkey.
| |
Collapse
|
17
|
Zheng M, Choi N, Balboni G, Xia Y, Sung JH. Hair Growth Promotion by δ-Opioid Receptor Activation. Biomol Ther (Seoul) 2021; 29:643-649. [PMID: 34148869 PMCID: PMC8551727 DOI: 10.4062/biomolther.2021.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/05/2022] Open
Abstract
Literature has revealed that the delta opioid receptor (DOR) exhibited diverse pharmacological effects on neuron and skin. In the present study, we have investigated whether the activation of DOR has hair-growth promotion effects. Compared with other opioid receptor, DOR was highly expressed in epidermal component of hair follicle in human and rodents. The expression of DOR was high in the anagen phase, but it was low in the catagen and telogen phases during mouse hair cycle. Topical application of UFP-512, a specific DOR agonist, significantly accelerated the induction of the anagen in C3H mice. Topical application of UFP-512 also increased the hair length in hair organ cultures and promoted the proliferation and the migration of outer root sheath (ORS) cells. Similarly, pharmacological inhibition of DOR by naltrindole significantly inhibited the anagen transition process and decreased hair length in hair organ cultures. Thus, we further examined whether Wnt/β-catenin pathway was related to the effects of DOR on hair growth. We found that Wnt/β-catenin pathway was activated by UFP-512 and siRNA for β-catenin attenuated the UFP-512 induced proliferation and migration of ORS cells. Collectively, result established that DOR was involved in hair cycle regulation, and that DOR agonists such as UFP-512 should be developed for novel hair-loss treatment.
Collapse
Affiliation(s)
- Mei Zheng
- STEMORE Co. Ltd., Incheon 21983, Republic of Korea
| | - Nahyun Choi
- STEMORE Co. Ltd., Incheon 21983, Republic of Korea
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Jong-Hyuk Sung
- STEMORE Co. Ltd., Incheon 21983, Republic of Korea.,College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
18
|
Xu Y, Zhi F, Balboni G, Yang Y, Xia Y. Opposite Roles of δ- and μ-Opioid Receptors in BACE1 Regulation and Alzheimer's Injury. Front Cell Neurosci 2020; 14:88. [PMID: 32425755 PMCID: PMC7204847 DOI: 10.3389/fncel.2020.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by amyloid plaques and neurofibrillary tangles. Substantial evidence for AD pathogenesis suggests that β-site APP cleaving enzyme 1 (BACE1) and γ-secretase enzyme initiate the amyloidogenic pathway and produces toxic Aβ peptides that prone to aggregate in the brain. Therefore, the inhibition of BACE1 expression and function is an attractive strategy for AD therapy. In the present work, we made the first finding that activating δ-opioid receptors (DOR) with a specific DOR agonist significantly attenuated BACE1 expression and activity in the highly differentiated PC12 cells with mimicked AD injury, while the application of DOR inhibitor naltrindole reversed the UFP-512 effects, and even caused a major increase in BACE1 expression and activity as well as Aβ42 production in physiological conditions. Knocking-down DOR also enhanced BACE1 protein expression and its activity for APP processing, associating with a significant increase in Aβ42 production. In sharp contrast, activation of μ-opioid receptor (MOR) with DAMGO greatly promoted BACE1 expression and activity with an acceleration of APP cleavage, thus contributing to increased Aβ42 production. DADLE, a less selective DOR agonist that may bind to MOR, had no stable inhibitory effect on BACE1. Similar results were also found in APP mutant (APPswe) SH-SY5Y cell line, providing further validation of the DOR action on BACE1 regulation. Our novel data demonstrated entirely different roles of DOR and MOR in the regulation of BACE1 expression and activity with DOR being neuroprotective against AD injury. These findings provided a novel clue for new strategies of AD therapy via targeting endogenous opioid receptors.
Collapse
Affiliation(s)
- Yuan Xu
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Feng Zhi
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Chen YM, He XZ, Wang SM, Xia Y. δ-Opioid Receptors, microRNAs, and Neuroinflammation in Cerebral Ischemia/Hypoxia. Front Immunol 2020; 11:421. [PMID: 32269564 PMCID: PMC7109255 DOI: 10.3389/fimmu.2020.00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Hypoxia and ischemia are the main underlying pathogenesis of stroke and other neurological disorders. Cerebral hypoxia and/or ischemia (e.g., stroke) can lead to neuronal injury/death and eventually cause serious neurological disorders or even death in the patients. Despite knowing these serious consequences, there are limited neuroprotective strategies against hypoxic and ischemic insults in clinical settings. Recent studies indicate that microRNAs (miRNAs) are of great importance in regulating cerebral responses to hypoxic/ischemic stress in addition to the neuroprotective effect of the δ-opioid receptor (DOR). Moreover, new discovery shows that DOR can regulate miRNA expression and inhibit inflammatory responses to hypoxia/ischemia. We, therefore, summarize available data in current literature regarding the role of DOR and miRNAs in regulating the neuroinflammatory responses in this article. In particular, we focus on microglia activation, cytokine production, and the relevant signaling pathways triggered by cerebral hypoxia/ischemia. The intent of this review article is to provide a novel clue for developing new strategies against neuroinflammatory injury resulting from cerebral hypoxia/ischemia.
Collapse
Affiliation(s)
- Yi-Meng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shu-Ming Wang
- Department of Anesthesiology, University of Connecticut, Mansfield, CT, United States
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Electroacupuncture Ameliorates Cerebral I/R-Induced Inflammation through DOR-BDNF/TrkB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3495836. [PMID: 32256638 PMCID: PMC7102411 DOI: 10.1155/2020/3495836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/17/2020] [Indexed: 12/01/2022]
Abstract
The beneficial effects of electroacupuncture (EA) at Shuigou (GV26) and Neiguan (PC6) on poststroke rehabilitation are critically related to the activation of the delta-opioid receptor (DOR). The underlying anti-inflammatory mechanisms in DOR activation and EA-mediated neuroprotection in cerebral ischemia/reperfusion (I/R) injury were investigated in the current study. Cell proliferation and apoptosis were detected by morphological changes, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) release, and TUNEL staining. The mRNA levels were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR), and the protein expression was measured by western blot or enzyme-linked immunosorbent assay (ELISA) in vitro. Infarct volume was examined by cresyl violet (CV) staining, neurologic recovery was assessed by neurological deficit scores, and pro- and anti-inflammatory cytokines were determined by immunofluorescence in vivo. DOR activation greatly ameliorated morphological injury, reduced LDH leakage and apoptosis, and increased cell viability. It reversed the oxygen-glucose deprivation/reoxygenation- (OGD/R-) induced downregulation of DOR mRNA and protein, as well as BDNF protein. DOR activation also reduced proinflammatory cytokine gene expression, including TNF-α, IL-1β, and IL-6, and at the same time, increased anti-inflammatory cytokines IL-4 and IL-10 in OGD/R challenged PC12 cells. EA significantly reduced middle cerebral artery occlusion/reperfusion- (MCAO/R-) induced infarct volume and attenuated neurologic deficit scores. It markedly increased the expression of IL-10 and decreased IL-1β, while sham EA did not have any protective effect in MCAO/R-injured rats. DOR activation plays an important role in neuroprotection against OGD/R injury by inhibiting inflammation via the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) pathway. The neuroprotective efficacy of EA at Shuigou (GV26) and Neiguan (PC6) on cerebral I/R injury may be also related to the inhibition of inflammatory response through the DOR-BDNF/TrkB pathway.
Collapse
|
21
|
Luo F, Xu R, Song G, Lu H, He X, Xia Y. The δ-Opioid Receptor Differentially Regulates MAPKs and Anti-inflammatory Cytokines in Rat Kidney Epithelial Cells Under Hypoxia. Front Physiol 2020; 10:1572. [PMID: 32038276 PMCID: PMC6985288 DOI: 10.3389/fphys.2019.01572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Hypoxic injury is one of the most important factors in progressive kidney disorders. Since we have found that δ-opioid receptor (DOR) is neuroprotective against hypoxic stress through a differential regulation of mitogen-activated protein kinases (MAPKs) and anti-inflammatory cytokines, we asked if DOR that is highly expressed in the kidney can modulate renal MAPKs and anti-inflammatory cytokines under hypoxia. We exposed cultured rat kidney epithelial cells (NRK-52E) to prolonged hypoxia (1% O2) with applications of specific DOR agonist or/and antagonist to examine if DOR affects hypoxia-induced changes in MAPKs and anti-inflammatory cytokines. The results showed that endogenous DOR expression remained unchanged under hypoxia, while DOR activation with UFP-512 (a specific DOR agonist) reversed the hypoxia-induced up-regulation of ERK1/2 and p38 phosphorylation. DOR inhibition with naltrindole had no appreciable effect on the hypoxia-induced changes in ERK1/2 phosphorylation, but increased p38 phosphorylation. DOR inhibition with naltrindole attenuated the effects of DOR activation on the changes in ERK1/2 and p38 phosphorylation in hypoxia. Moreover, DOR activation/inhibition differentially affected the expression of transcriptional repressor B-cell lymphoma 6 (Bcl-6), anti-inflammatory cytokines tristetraprolin (TTP), and interleukin-10 (IL-10). Taken together, our novel data suggest that DOR activation differentially regulates ERK1/2, p38, Bcl-6, TTP, and IL-10 in the renal cells under hypoxia.
Collapse
Affiliation(s)
- Fengbao Luo
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanglai Song
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Cassell RJ, Sharma KK, Su H, Cummins BR, Cui H, Mores KL, Blaine AT, Altman RA, van Rijn RM. The Meta-Position of Phe 4 in Leu-Enkephalin Regulates Potency, Selectivity, Functional Activity, and Signaling Bias at the Delta and Mu Opioid Receptors. Molecules 2019; 24:molecules24244542. [PMID: 31842282 PMCID: PMC6943441 DOI: 10.3390/molecules24244542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
As tool compounds to study cardiac ischemia, the endogenous δ-opioid receptors (δOR) agonist Leu5-enkephalin and the more metabolically stable synthetic peptide (d-Ala2, d-Leu5)-enkephalin are frequently employed. However, both peptides have similar pharmacological profiles that restrict detailed investigation of the cellular mechanism of the δOR’s protective role during ischemic events. Thus, a need remains for δOR peptides with improved selectivity and unique signaling properties for investigating the specific roles for δOR signaling in cardiac ischemia. To this end, we explored substitution at the Phe4 position of Leu5-enkephalin for its ability to modulate receptor function and selectivity. Peptides were assessed for their affinity to bind to δORs and µ-opioid receptors (µORs) and potency to inhibit cAMP signaling and to recruit β-arrestin 2. Additionally, peptide stability was measured in rat plasma. Substitution of the meta-position of Phe4 of Leu5-enkephalin provided high-affinity ligands with varying levels of selectivity and bias at both the δOR and µOR and improved peptide stability, while substitution with picoline derivatives produced lower-affinity ligands with G protein biases at both receptors. Overall, these favorable substitutions at the meta-position of Phe4 may be combined with other modifications to Leu5-enkephalin to deliver improved agonists with finely tuned potency, selectivity, bias and drug-like properties.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cricetulus
- Enkephalin, Leucine/genetics
- Enkephalin, Leucine/pharmacology
- Humans
- Phenylalanine
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Robert J. Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Krishna K. Sharma
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | | | - Haoyue Cui
- College of Wuya, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Kendall L. Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Ryan A. Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
- Correspondence: (R.A.A.); (R.M.v.R.)
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (R.A.A.); (R.M.v.R.)
| |
Collapse
|
23
|
Abstract
Since ancient times, opioids have been used clinically and abused recreationally. In the early stages (about 1,000 AD) of opium history, an Arab physician, Avicenna, administered opioids to control diarrhea and eye diseases. 1 Opioids have very strong pain relieving properties and they also regulate numerous cellular responses. Opioid receptors are expressed throughout the body, including the nervous system, heart, lungs, liver, gastrointestinal tract, and retina. 2-6 Delta opioid receptors (DORs) are a very attractive target from the perspective of both receptor function and their therapeutic potential. Due to a rapid progress in mouse mutagenesis and development of small molecules as DOR agonist, novel functions and roles of DORs have emerged in recent years. This review article focuses on the recent advances in the neuroprotective roles of DOR agonists in general and retina neuroprotection in particular. Rather than being exhaustive, this review highlights the selected studies of DOR function in neuroprotection. We also highlight our preclinical studies using rodent models to demonstrate the potentials of DOR agonists for retinal neuroprotection. Based on existing literature and our recently published data on the eye, DOR agonists possess therapeutic abilities that protect the retina and optic nerve injury against glaucoma and perhaps other retinopathies as well. This review also highlights the signaling events associated with DOR for neuroprotection in the eye. There is a need for translational research on DORs to recognize their potential for clinical application such as in glaucoma.
Collapse
Affiliation(s)
- Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
24
|
Güney Ş, Dinçer S, Göktaş G, Take-Kaplanoğlu G. Neuroprotective role of delta opioid receptors in hypoxic preconditioning. Turk J Med Sci 2019; 49:1568-1576. [PMID: 31652039 PMCID: PMC7018290 DOI: 10.3906/sag-1810-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background/aim The purpose of the present study was to explore the neuroprotective role of delta opioid receptors (DOR) in the rat cortex in hypoxic preconditioning. Materials and methods Rats were randomly divided into 8 groups: control (C), sham (S), hypoxic preconditioning (PC), severe hypoxia (SH), PC + SH, PC + SH + Saline (PS), PC + SH + DPDPE (DPDPE, selective DOR agonist), PC + SH + NT (NT, Naltrindole, selective DOR antagonist). Drugs were administered intracerebroventrically. Twenty four h after the end of 3 consecutive days of PC (10% O2, 2 h/day), the rats were subjected to severe hypoxia (7% O2 for 3 h). Bcl-2 and cyt-c were measured by western blot, and caspase-3 was observed immunohistochemically. Results Bcl-2 expressions in the PC group were higher than in control, SH, and PC + SH groups. Even though there were no significant differences between the groups in terms of cyt-c levels, caspase-3 immunoreactivity of cortical neurons and glial cells in the severe hypoxia and NT groups were higher than in the control, sham, and hypoxic preconditioning groups. DPDPE administration diminished caspase-3 immunoreactivity compared with all of the severe hypoxia groups. Conclusions These results suggest that cortical cells are resistant to apoptosis via increased expression of Bcl-2 and decreased immunoreactivity of caspase-3 in the cortex, and that DOR is involved in neuroprotection induced by hypoxic preconditioning via the caspase-3 pathway in cortical neurons.
Collapse
Affiliation(s)
- Şevin Güney
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sibel Dinçer
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Güleser Göktaş
- Department of Histology and Embryology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Gülnur Take-Kaplanoğlu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
25
|
Hong JS, Moran MT, Eaton LA, Grafton LM. Neurologic, Cognitive, and Behavioral Consequences of Opioid Overdose: a Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2019. [DOI: 10.1007/s40141-019-00247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Pan C, Meng H, Zhang S, Zuo Z, Shen Y, Wang L, Chang KJ. Homology modeling and 3D-QSAR study of benzhydrylpiperazine δ opioid receptor agonists. Comput Biol Chem 2019; 83:107109. [PMID: 31445419 DOI: 10.1016/j.compbiolchem.2019.107109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
The binding affinity of a series of benzhydrylpiperazine δ opioid receptor agonists were pooled and evaluated by using 3D-QSAR and homology modeling/molecular docking methods. Ligand-based CoMFA and CoMSIA 3D-QSAR analyses with 46 compounds were performed on benzhydrylpiperazine analogues by taking the most active compound BW373U86 as the template. The models were generated successfully with q2 value of 0.508 and r2 value of 0.964 for CoMFA, and q2 value of 0.530 and r2 value of 0.927 for CoMSIA. The predictive capabilities of the two models were validated on the test set with R2pred value of 0.720 and 0.814, respectively. The CoMSIA model appeared to work better in this case. A homology model of active form of δ opioid receptor was established by Swiss-Model using a reported crystal structure of active μ opioid receptor as a template, and was further optimized using nanosecond scale molecular dynamics simulation. The most active compound BW373U86 was docked to the active site of δ opioid receptor and the lowest energy binding pose was then used to identify binding residues such as s Gln105, Lys108, Leu125, Asp128, Tyr129, Leu200, Met132, Met199, Lys214, Trp274, Ile277, Ile304 and Tyr308. The docking and 3D-QSAR results showed that hydrogen bond and hydrophobic interactions played major roles in ligand-receptor interactions. Our results highlight that an approach combining structure-based homology modeling/molecular docking and ligand-based 3D-QSAR methods could be useful in designing of new opioid receptor agonists.
Collapse
Affiliation(s)
- Chenling Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Meng
- Beijing Beike Deyuan Bio-Pharm Technology Co., Ltd., Beijing, 100094, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuehai Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Liangliang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Kwen-Jen Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
27
|
Wang S, Cao X, Duan Y, Zhang G. Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin (DADLE) Exerts a Cytoprotective Effect in Astrocytes Exposed to Oxygen-Glucose Deprivation by Inducing Autophagy. Cell Transplant 2019; 28:775-782. [PMID: 30666890 PMCID: PMC6686437 DOI: 10.1177/0963689719825619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Astrocytes protection and functional regulation are important strategies to protect against neuronal damage caused by ischemia. Activation of the delta opioid receptor (DOR) could reduce astrocytes damage, although the mechanism remains unclear. The present study aimed to test the effect of DOR activation on autophagy in astrocytes exposed to oxygen-glucose deprivation (OGD), and to further investigate whether this effect has a protective effect on astrocytes. Primary cultured rat cortical astrocytes were treated with various doses of [d-Ala2, d-Leu5]-Enkephalin (DADLE, a selective DOR agonist) followed by 6 h OGD. Cell viability was evaluated by CCK-8 assay and lactate dehydrogenase release. Autophagic vacuole was analyzed with LC3 immunofluorescent staining. The levels of autophagy and apoptosis-related proteins were analyzed by western blot. Results demonstrated that treatment with 10 nM DADLE was sufficient to increase cell viability and induced autophagy in astrocytes. The DADLE-induced autophagy displayed a cytoprotective effect on astrocytes. Inhibition of autophagy by 3-methyladenine (3-MA, an autophagy inhibitor) reversed the protective effect of DADLE. Naltrindole (a DOR antagonist) only partially antagonized the role of DADLE, which indicated that DADLE might have a cytoprotective mechanism independent of DOR. Further results showed that DADLE significantly enhanced the level of Bcl-2 protein and reduced the level of Bax protein in astrocytes exposed to OGD. Our results suggest a novel mechanism in which DADLE induces autophagy in astrocytes and exerts cytoprotective effects by inhibiting apoptosis.
Collapse
Affiliation(s)
- Shuyan Wang
- 1 Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoqiong Cao
- 1 Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yale Duan
- 2 Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, China
| | - Guangming Zhang
- 1 Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
28
|
δ-Opioid Receptor-Nrf-2-Mediated Inhibition of Inflammatory Cytokines in Neonatal Hypoxic-Ischemic Encephalopathy. Mol Neurobiol 2018; 56:5229-5240. [PMID: 30560518 DOI: 10.1007/s12035-018-1452-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) causes serious neurological disability; there are, however, currently few promising therapies for it. We have recently shown that δ-opioid receptor (DOR) is neuroprotective by downregulating TNF-α. Since hypoxia-ischemia (HI) triggers a robust inflammatory response, which exacerbates HI brain damage, we investigated, in this study, whether DOR activation could regulate inflammatory cytokine expression, thereby playing a protective effect on the neonatal brain under HI. Twenty-five neonatal rats were randomly divided into five groups: (1) control (control); (2) HI; (3) HI with saline (HI + NS); (4) DOR activation with UFP-512 (a potent and specific DOR agonist) under HI conditions (HI + U); and (5) DOR inhibition using NT treatment under HI conditions (HI + NT). The rats were sacrificed by decapitation at 24 h after HI, and their brains were rapidly removed for measurements. The protein expression of TNF-α, IL-6, ICAM-1, IL-10, IL-18, NQO-1, Nrf-2, and HO-1 was measured using Western blot. In the hemispheres exposed to HI, DOR activation significantly decreased the expressions of TNF-α, IL-6, and ICAM-1 in the cortex, while it significantly increased IL-10 and had no effect on IL-18 in the same region. In contrast, DOR had no appreciable effect on inflammatory cytokine expression in non-cortical tissues including hippocampal, subcortical, and cerebellar tissues. Moreover, HI stress triggered an upregulation of Nrf-2 nuclear protein as well as some of its downstream anti-inflammatory genes such as HO-1 and NQO-1 in the cortex, while DOR activation further augmented such a protective reaction against HI injury. DOR plays an important role in protecting against HI by regulating the expression of inflammatory and anti-inflammatory cytokines in the cortex, which is likely mediated by the Nrf-2/HO-1/NQO-1 signaling.
Collapse
|
29
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
30
|
Huang J, Ren Y, Xu Y, Chen T, Xia TC, Li Z, Zhao J, Hua F, Sheng S, Xia Y. The delta-opioid receptor and Parkinson's disease. CNS Neurosci Ther 2018; 24:1089-1099. [PMID: 30076686 PMCID: PMC6489828 DOI: 10.1111/cns.13045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative neurological disease leading to a series of familial, medical, and social problems. Although it is known that the major characteristics of PD pathophysiology are the dysfunction of basal ganglia due to injury/loss of dopaminergic neurons in the substantia nigra pars compacta dopaminergic and exhaustion of corpus striatum dopamine, therapeutic modalities for PD are limited in clinical settings up to date. It is of utmost importance to better understand PD pathophysiology and explore new solutions for this serious neurodegenerative disorder. Our recent work and those of others suggest that the delta-opioid receptor (DOR) is neuroprotective and serves an antiparkinsonism role in the brain. This review summarizes recent progress in this field and explores potential mechanisms for DOR-mediated antiparkinsonism.
Collapse
Affiliation(s)
- Jin‐Zhong Huang
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yi Ren
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yuan Xu
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Tao Chen
- Hainan General HospitalHaikouHainanChina
| | | | - Zhuo‐Ri Li
- Hainan General HospitalHaikouHainanChina
| | | | - Fei Hua
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Shi‐Ying Sheng
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint FunctionFudan UniversityShanghaiChina
- Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina
| |
Collapse
|
31
|
δ-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Mol Neurobiol 2018; 56:3463-3475. [DOI: 10.1007/s12035-018-1316-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
|
32
|
The neuroprotective role of the brain opioid system in stroke injury. Drug Discov Today 2018; 23:1385-1395. [DOI: 10.1016/j.drudis.2018.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 11/18/2022]
|
33
|
Ou Y, Weber SG. Higher Aminopeptidase Activity Determined by Electroosmotic Push-Pull Perfusion Contributes to Selective Vulnerability of the Hippocampal CA1 Region to Oxygen Glucose Deprivation. ACS Chem Neurosci 2018; 9:535-544. [PMID: 29078045 DOI: 10.1021/acschemneuro.7b00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been known for over a century that the hippocampus, the center for learning and memory in the brain, is selectively vulnerable to ischemic damage, with the CA1 being more vulnerable than the CA3. It is also known that leucine enkephalin, or YGGFL, is neuroprotective. We hypothesized that the extracellular hydrolysis of YGGFL may be greater in the CA1 than the CA3, which would lead to the observed difference in susceptibility to ischemia. In rat organotypic hippocampal slice cultures, we estimated the Michaelis constant and the maximum velocity for membrane-bound aminopeptidase activity in the CA1 and CA3 regions. Using electroosmotic push-pull perfusion and offline capillary liquid chromatography, we inferred enzyme activity based on the production rate of GGFL, a natural and inactive product of the enzymatic hydrolysis of YGGFL. We found nearly 3-fold higher aminopeptidase activity in the CA1 than the CA3. The aminopeptidase inhibitor bestatin significantly reduced hydrolysis of YGGFL in both regions by increasing apparent Km. Based on propidium iodide cell death measurements 24 h after oxygen-glucose deprivation, we demonstrate that inhibition of aminopeptidase activity using bestatin selectively protected CA1 against delayed cell death due to oxygen-glucose deprivation and that this neuroprotection occurs through enkephalin-dependent pathways.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
34
|
Abstract
Delta opioid receptors (δORs) regulate a number of physiological functions, and agonists for this receptor are being pursued for the treatment of mood disorders, chronic pain, and migraine. A major challenge to the development of these compounds is that, like many G-protein coupled receptors (GPCRs), agonists at the δOR can induce very different signaling and receptor trafficking events. This concept, known as ligand-directed signaling, functional selectivity, or biased agonism, can result in different agonists producing highly distinct behavioral consequences. In this chapter, we highlight the in vitro and in vivo evidence for ligand-directed signaling and trafficking at the δOR. A number of biological implications of agonist-directed signaling at the δOR have been demonstrated. Importantly, ligand-specific effects can impact both acute behavioral effects of delta agonists, as well as the long-term adaptations induced by chronic drug treatment. A better understanding of the specific signaling cascades that regulate these differential behavioral effects would help to guide rational drug design, ultimately resulting in δOR agonists with fewer adverse effects.
Collapse
Affiliation(s)
- Ana Vicente-Sanchez
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Psychiatry, UIC, 1601 W Taylor St (MC 912), Chicago, IL, 60612, USA.
| |
Collapse
|
35
|
Simankova AA, Sazonova EN, Lebed’ko OA. Delayed Effects of Neonatal Administration of Non-Opioid Analog of Leu-Enkephalin on Cerebral Consequences of Antenal Hypoxia. Bull Exp Biol Med 2017; 163:594-598. [DOI: 10.1007/s10517-017-3856-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 10/18/2022]
|
36
|
Cho YJ, Jo WY, Oh H, Koo CH, Oh J, Cho JY, Yu KS, Jeon Y, Kim TK. Performance of the Minto model for the target-controlled infusion of remifentanil during cardiopulmonary bypass. Anaesthesia 2017; 72:1196-1205. [PMID: 28891056 DOI: 10.1111/anae.14019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 02/05/2023]
Abstract
We studied the predictive performance of the Minto pharmacokinetic model during cardiopulmonary bypass in patients undergoing cardiac surgery. Patients received remifentanil target-controlled infusion using the Minto model during total intravenous anaesthesia with propofol. From 56 patients, 275 arterial blood samples were drawn before, during and after bypass to determine the plasma concentration of remifentanil, and the predicted concentrations were recorded at each time. For pooled data, the median prediction error and median absolute prediction error were 21.3% and 21.8%, respectively, and 22.1% and 22.3% during bypass. Both were 148.4% during hypothermic circulatory arrest and measured concentrations were more than three times greater than predicted (26.9 (17.0) vs. 7.1 (1.6) ng.ml-1 ). The Minto model showed considerable bias but overall acceptable precision during bypass. The target concentration of remifentanil should be reduced when using the Minto model during hypothermic circulatory arrest.
Collapse
Affiliation(s)
- Y J Cho
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, South Korea
| | - W Y Jo
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, South Korea
| | - H Oh
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, South Korea
| | - C-H Koo
- CHA Bundang Medical Centre, Department of Anaesthesiology and Pain Medicine, Seongnam-si, South Korea
| | - J Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - J-Y Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - K-S Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Y Jeon
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, South Korea
| | - T K Kim
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
37
|
The opioid receptor triple agonist DPI-125 produces analgesia with less respiratory depression and reduced abuse liability. Acta Pharmacol Sin 2017; 38:977-989. [PMID: 28502978 DOI: 10.1038/aps.2017.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/23/2017] [Indexed: 12/23/2022]
Abstract
Opioid analgesics remain the first choice for the treatment of moderate to severe pain, but they are also notorious for their respiratory depression and addictive effects. This study focused on the pharmacology of a novel opioid receptor mixed agonist DPI-125 and attempted to elucidate the relationship between the δ-, μ- and κ-receptor potency ratio and respiratory depression and abuse liability. Five diarylmethylpiperazine compounds (DPI-125, DPI-3290, DPI-130, KUST202 and KUST13T02) were selected for this study. PKA fluorescence redistribution assays in CHO cells individually expressing δ-, μ- or κ-receptors were used to measure the agonist potency. The respiratory safety profiles were estimated in rats by the ratio of ED50 (pCO2 increase)/ED50 (antinociception). The abuse liability of DPI-125 was evaluated with a self-administration model in rhesus monkeys. The observed agonist potencies of DPI-125 for δ-, μ- and κ-opioid receptors were 4.29±0.36, 11.10±3.04, and 16.57±4.14 nmol/L, respectively. The other four compounds were also mixed agonists with varying potencies. DPI-125 exhibited a high respiratory safety profile, clearly related to its high δ-receptor potency. The ratio of the EC50 potencies for the μ- and δ-receptors was found to be positively correlated with the respiratory safety ratio. DPI-125 has similar potencies for μ- and κ-receptors, which is likely the reason for its reduced abuse potential. Our results demonstrate that the opioid receptor mixed agonist DPI-125 is safer and less addictive than traditional μ-agonist analgesics. These findings suggest that the development of δ>μ∼κ opioid receptor mixed agonists is feasible, and such compounds could represent a promising class of potent analgesics with wider therapeutic windows.
Collapse
|
38
|
Morrone LA, Scuteri D, Rombolà L, Mizoguchi H, Bagetta G. Opioids Resistance in Chronic Pain Management. Curr Neuropharmacol 2017; 15:444-456. [PMID: 28503117 PMCID: PMC5405610 DOI: 10.2174/1570159x14666161101092822] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Chronic pain management represents a serious healthcare problem worldwide. Chronic pain affects approximately 20% of the adult European population and is more frequent in women and older people. Unfortunately, its management in the community remains generally unsatisfactory and rarely under the control of currently available analgesics. Opioids have been used as analgesics for a long history and are among the most used drugs; however, while there is no debate over their short term use for pain management, limited evidence supports their efficacy of long-term treatment for chronic non-cancer pain. Therapy with opioids is hampered by inter-individual variability and serious side effects and some opioids often result ineffective in the treatment of chronic pain and their use is controversial. Accordingly, for a better control of chronic pain a deeper knowledge of the molecular mechanisms underlying resistance to opiates is mandatory.
Collapse
Affiliation(s)
- Luigi A. Morrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| | - Damiana Scuteri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Laura Rombolà
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende, Italy
| |
Collapse
|
39
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
40
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2016; 68:631-700. [PMID: 27343248 PMCID: PMC4931872 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
41
|
Sazonova EN, Samarina EY, Lebed’ko OA, Maltseva IM, Timoshin SS. Cytoprotective Effect of Peptide Sedatin, an Agonist of μ/δ-Opioid Receptors, on Primary Culture of Pulmonary Fibroblasts of Albino Rats under Conditions of Oxidative Stress. Bull Exp Biol Med 2016; 161:41-4. [DOI: 10.1007/s10517-016-3340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/30/2022]
|
42
|
Lesniak A, Pick CG, Misicka A, Lipkowski AW, Sacharczuk M. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI). Neuropharmacology 2016; 101:506-18. [DOI: 10.1016/j.neuropharm.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|
43
|
Chao D, Wang Q, Balboni G, Ding G, Xia Y. Attenuating Ischemic Disruption of K+ Homeostasis in the Cortex of Hypoxic-Ischemic Neonatal Rats: DOR Activation vs. Acupuncture Treatment. Mol Neurobiol 2015; 53:7213-7227. [DOI: 10.1007/s12035-015-9621-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022]
|
44
|
Liang J, Chao D, Sandhu HK, Yu Y, Zhang L, Balboni G, Kim DH, Xia Y. δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 2015; 171:5417-30. [PMID: 25052197 DOI: 10.1111/bph.12857] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/07/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Astrocytic excitatory amino acid transporters (EAATs) regulate extracellular glutamate concentrations and play a role in preventing neuroexcitotoxicity. As the δ-opioid receptor (DOP receptor) is neuroprotective against excitotoxic injury, we determined whether DOP receptor activation up-regulates EAAT expression and function. EXPERIMENTAL APPROACH We measured mRNA and protein expression of EAAT1, EAAT2 and EAAT3 in cultured mouse astrocytes exposed to a specific DOP receptor agonist (UFP-512) with or without a DOP receptor antagonist, DOP receptor siRNA or inhibitors of PKC, PKA, PI3K, p38, MAPK, MEK and ERK, and evaluated the function of EAATs by measuring glutamate uptake. KEY RESULTS Astrocytic DOP receptor mRNA and protein were suppressed by DOP receptor siRNA knockdown. DOP receptor activation increased mRNA and protein expression of EAAT1 and EAAT2, but not EAAT3, thereby enhancing glutamate uptake of astrocytes. DOP receptor-induced EAAT1 and EAAT2 expression was largely reversed by DOP receptor antagonist naltrindole or by DOP receptor siRNA knockdown, and suppressed by inhibitors of MEK, ERK and p38. DOP receptor-accelerated glutamate uptake was inhibited by EAAT blockers, DOP receptor siRNA knockdown or inhibitors of MEK, ERK or p38. In contrast, inhibitors of PKA, PKC or PI3K had no significant effect on DOP receptor-induced EAAT expression. CONCLUSIONS AND IMPLICATIONS DOP receptor activation up-regulates astrocytic EAATs via MEK-ERK-p38 signalling, suggesting a critical role for DOP receptors in the regulation of astrocytic EAATs and protection against neuroexcitotoxicity. As decreased EAAT expression contributes to pathophysiology in many neurological diseases, including amyotrophic lateral sclerosis, our findings present a new platform for potential treatments of these diseases.
Collapse
Affiliation(s)
- Jianfeng Liang
- Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX, USA; Yale University School of Medicine, New Haven, CT, USA; Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Efectos de la morfina en la plasticidad cerebral. Neurologia 2015; 30:176-80. [DOI: 10.1016/j.nrl.2014.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/08/2014] [Indexed: 01/21/2023] Open
|
46
|
Beltrán-Campos V, Silva-Vera M, García-Campos M, Díaz-Cintra S. Effects of morphine on brain plasticity. NEUROLOGÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.nrleng.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
47
|
Yang L, Islam MR, Karamyan VT, Abbruscato TJ. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment. Brain Res 2015; 1609:1-11. [PMID: 25801116 DOI: 10.1016/j.brainres.2015.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022]
Abstract
To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Mohammad R Islam
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, TX 79106, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
48
|
Cao S, Chao D, Zhou H, Balboni G, Xia Y. A novel mechanism for cytoprotection against hypoxic injury: δ-opioid receptor-mediated increase in Nrf2 translocation. Br J Pharmacol 2015; 172:1869-81. [PMID: 25439010 DOI: 10.1111/bph.13031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia/reoxygenation induces synthesis of reactive oxygen species (ROS) which can attack macromolecules and cause brain injury. The transcription factor, nuclear factor (erythroid-derived 2)-like 2, (Nrf2), ia potent activator of genes with an antioxidant responsive element and Nrf2 can counteract oxidative injury by increasing expression of several antioxidative genes in response to ROS stress. Here, we show that activation of the δ-opioid receptor (DOR) increasedNrf2 protein expression and translocation, thereby leading to cytoprotection. EXPERIMENTAL APPROACH We used HEK293t cells exposed to 0.5% O2 for 16 h and then reoxygenated for 4 h as a model of hypoxia-reperfusion (H/R) injury. Real time PCR, Western blotting, siRNA and immunohistochemical techniques were used to follow Nrf2 expression and activity. Cell viability and damage (as LDH leakage) were also measured. KEY RESULTS H/R injury triggered Nrf2 translocation into the nucleus and up-regulated expression of several downstream genes, relevant to antioxidation, such as NAD(P)H quinone oxidoreductase (NQO1). Incubation with the DOR agonist UFP-512 enhanced Nrf2 protein expression and translocation and up-regulated its downstream genes in normoxia and further increased Nrf2 expression and translocation after H/R, protecting the cells against loss of viability and damage. The effect of UFP-512 on Nrf2 nuclear translocation was blocked by the DOR antagonist, naltrindole. Also, DOR-mediated cytoprotection was strongly inhibited after transfection of HEK293t cells with Nrf2 siRNA. CONCLUSIONS AND IMPLICATIONS The DOR agonist UFP-512 was cytoprotective against H/R injury and this effect was partly dependent on DOR-mediated increase in Nrf2 function.
Collapse
Affiliation(s)
- Shan Cao
- Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, USA; Department of Clinical Pharmacology, Xiangya Hospital and Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
49
|
Gooshe M, Abdolghaffari AH, Aleyasin AR, Chabouk L, Tofigh S, Hassanzadeh GR, Payandemehr B, Partoazar A, Azizi Y, Dehpour AR. Hypoxia/ischemia a key player in early post stroke seizures: modulation by opioidergic and nitrergic systems. Eur J Pharmacol 2015; 746:6-13. [PMID: 25449041 DOI: 10.1016/j.ejphar.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. All attempts at pharmacological reduction of the complications of stroke (e.g. post-stroke seizure, and brain׳s vulnerability to hypoxic/ischemic injury) have failed. Endogenous opioids and nitric oxide (NO) overproduction has been documented in brain hypoxia/ischemia (H/I), which can exert pro-convulsive effects. In this study, we aimed to examine the possible involvement of opioidergic and nitrergic pathways in the pathogenesis of post-stroke seizure. H/I was induced by right common carotid ligation and sham-operated mice served as controls. We demonstrated that right common carotid ligation decreases the threshold for clonic seizures induced by pentylenetetrazole (PTZ), a GABA antagonist. Furthermore, pro-convulsive effect of H/I following right common carotid ligation was blocked by naltrexone (NTX) (3mg/kg), NG-Nitro-l-arginine methyl ester (l-NAME) (10mg/kg), and aminoguanidine (AG) (100mg/kg) administration (P<0.001). Interestingly, co-administration of non-effective doses of NTX and l-NAME (1 and 0.5mg/kg, respectively) reverses epileptogenesis of H/I (P<0.001). In the same way, co-administration of non-effective doses of NTX and AG (1 and 5mg/kg, respectively), reverses epileptogenesis of H/I (P<0.001). Indeed, the histological studies performed on mice exposed to H/I confirmed our previous data. These findings suggest hyper-susceptibility to PTZ induced seizure following H/I is mediated by interaction of opioidergic, and iNOS/NO pathways. Therefore, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries.
Collapse
Affiliation(s)
- Maziar Gooshe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Students׳ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Pharmacology and Applied Medicine, Department of Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; International Campus, ICTUMS, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Aleyasin
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Students׳ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Chabouk
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Tofigh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Lei T, Li H, Fang Z, Lin J, Wang S, Xiao L, Yang F, Liu X, Zhang J, Huang Z, Liao W. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regen Res 2014; 9:260-7. [PMID: 25206810 PMCID: PMC4146141 DOI: 10.4103/1673-5374.128218] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 11/24/2022] Open
Abstract
Angelica sinensis has antioxidative and neuroprotective effects. In the present study, we aimed to determine the neuroprotective effect of polysaccharides isolated from Angelica sinensis. In a preliminary experiment, Angelica sinensis polysaccharides not only protected PC12 neuronal cells from H2O2-induced cytotoxicity, but also reduced apoptosis and intracellular reactive oxygen species levels, and increased the mitochondrial membrane potential induced by H2O2 treatment. In a rat model of local cerebral ischemia, we further demonstrated that Angelica sinensis polysaccharides enhanced the antioxidant activity in cerebral cortical neurons, increased the number of microvessels, and improved blood flow after ischemia. Our findings highlight the protective role of polysaccharides isolated from Angelica sinensis against nerve cell injury and impairment caused by oxidative stress.
Collapse
Affiliation(s)
- Tao Lei
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Haifeng Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Zhen Fang
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Junbin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Shanshan Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Fan Yang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Junjian Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Zebo Huang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital and Cerebral Vascular Diseases Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|