1
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
2
|
Mohammad T, Zolotovskaia MA, Suntsova MV, Buzdin AA. Cancer fusion transcripts with human non-coding RNAs. Front Oncol 2024; 14:1415801. [PMID: 38919532 PMCID: PMC11196610 DOI: 10.3389/fonc.2024.1415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.
Collapse
Affiliation(s)
- Tharaa Mohammad
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Anton A. Buzdin
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Li C, Qian Q, Yan C, Lu M, Li L, Li P, Fan Z, Lei W, Shang K, Wang P, Wang J, Lu T, Huang Y, Yang H, Wei H, Han J, Xiao J, Chen F. HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Res 2024; 52:D1315-D1326. [PMID: 37870452 PMCID: PMC10767980 DOI: 10.1093/nar/gkad904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiheng Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Pan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenyan Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Shang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihan Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongwei Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haobin Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing100101, China
| |
Collapse
|
4
|
Katoh H, Honda T. Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity. Biomolecules 2023; 13:1706. [PMID: 38136578 PMCID: PMC10741599 DOI: 10.3390/biom13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
Collapse
Affiliation(s)
- Hirokazu Katoh
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Tomoyuki Honda
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
5
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
6
|
Wen X, Shen J, De Miglio MR, Zeng D, Sechi LA. Endogenous retrovirus group FRD member 1 is a potential biomarker for prognosis and immunotherapy for kidney renal clear cell carcinoma. Front Cell Infect Microbiol 2023; 13:1252905. [PMID: 37780849 PMCID: PMC10534008 DOI: 10.3389/fcimb.2023.1252905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The activation of endogenous retroviral (ERV) genes in kidney renal clear cell carcinoma (KIRC) suggests the necessity for further research on their functions. Methods In this study, KIRC and healthy cohorts were obtained from TGGA and GEO datasets. Subsequently, differential analysis and functional annotation were conducted using GO, KEGG, and GSEA. Clinical outcomes were then observed and utilized in the development of a nomogram. Results We observed the general low expression of ERVFRD-1 in KIRC tumors compared to normal tissue (P < 0.001) across multiple cohorts. Differential analysis and functional annotation using GO, KEGG, GSEA analysis revealed significant involvement of ERVFRD-1 in tumor immunoregulation: a close relation to the infiltration levels of mast cells and Treg cell (P < 0.001) and occurrence with a variety of immune markers. Methylation status was then applied to uncover potential mechanisms of ERVFRD-1 in KIRC. Notably, higher expression levels of ERVFRD-1 were associated with extended overall survival, disease-specific survival, and progression-free survival. Finally, based on Cox regression analysis, we constructed a nomogram incorporating ERVFRD-1, pathologic T, and age, which exhibited promising predictive power in assessing the survival outcomes of KIRC patients. Discussion To sum up, our study suggests that ERVFRD-1 plays a role in regulating immunological activity within the tumor microenvironment and is associated with overall survival in KIRC patients. ERVFRD-1 may therefore be a sensitive biomarker for diagnosis, immunotherapy, and prognosis assessment of KIRC.
Collapse
Affiliation(s)
- Xiaofen Wen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiaxin Shen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Struttura Complessa (SC) Microbiologia e Virologia, Azienda Ospedaliera Universitaria, Sassari, Italy
| |
Collapse
|
7
|
Tavakolian S, Iranshahi M, Faghihloo E. The Evaluation of HERV-K np9, rec, gag Expression in Isolated Human Peripheral Blood Mononuclear Cell (PBMC) of Gastric and Colon Cancer. Adv Biomed Res 2023; 12:131. [PMID: 37434925 PMCID: PMC10331531 DOI: 10.4103/abr.abr_288_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 07/13/2023] Open
Abstract
Background In the current age of diagnostic approaches in cancer, countless efforts have been allocated to identify novel and efficient biomarkers to detect cancer in its early stages. We focused on evaluating the correlation between the progression of gastrointestinal cancer, a leading cause of cancer death worldwide, and human endogenous retrovirus (HERV). Materials and Methods In this study, we conducted a study on the peripheral blood mononuclear cells (PBMC) gathered from gastric and colon cancer patients. We focused on HERV-K rec, np9, gag expression analysis by quantitative real-time PCR, after extraction of RNA and synthesizing cDNA. Results Unlike np9 whose expression increased significantly in the colon and gastric cancers, the mRNA level of the rec gene declined in both cancers. Moreover, our data illustrated that the over-expression of the gag gene was only observed in colon cancerous cells rather than gastric malignancy. Conclusions Overall, given the correlation between the expression level of HERV-associated genes and gastrointestinal cancer, our study suggests that these genes could be considered beneficial markers for cancer diagnosis. However, researchers should conduct studies in future articles on whether these genes can be employed as biomarkers in gastrointestinal cancer.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Iranshahi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
9
|
Dhillon P, Mulholland KA, Hu H, Park J, Sheng X, Abedini A, Liu H, Vassalotti A, Wu J, Susztak K. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. Nat Commun 2023; 14:559. [PMID: 36732547 PMCID: PMC9895454 DOI: 10.1038/s41467-023-36212-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammation is a common feature of all forms of chronic kidney disease; however, the underlying mechanism remains poorly understood. Evolutionarily inherited endogenous retroviruses (ERVs) have the potential to trigger an immune reaction. Comprehensive RNA-sequencing of control and diseased kidneys from human and mouse disease models indicated higher expression of transposable elements (TEs) and ERVs in diseased kidneys. Loss of cytosine methylation causing epigenetic derepression likely contributes to an increase in ERV levels. Genetic deletion/pharmacological inhibition of DNA methyltransferase 1 (DNMT1) induces ERV expression. In cultured kidney tubule cells, ERVs elicit the activation of cytosolic nucleotide sensors such as RIG-I, MDA5, and STING. ERVs expressions in kidney tubules trigger RIG-I/STING, and cytokine expression, and correlate with the presence of immune cells. Genetic deletion of RIG-I or STING or treatment with reverse transcriptase inhibitor ameliorates kidney fibroinflammation. Our data indicate an important role of epigenetic derepression-induced ERV activation triggering renal fibroinflammation.
Collapse
Affiliation(s)
- Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Kelly Ann Mulholland
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Allison Vassalotti
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
| |
Collapse
|
10
|
Wu X, Yan Q, Liu L, Xue X, Yao W, Li X, Li W, Ding S, Xia Y, Zhang D, Zhu F. Domesticated HERV-W env contributes to the activation of the small conductance Ca 2+-activated K + type 2 channels via decreased 5-HT4 receptor in recent-onset schizophrenia. Virol Sin 2023; 38:9-22. [PMID: 36007838 PMCID: PMC10006216 DOI: 10.1016/j.virs.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The human endogenous retroviruses type W family envelope (HERV-W env) gene is located on chromosome 7q21-22. Our previous studies show that HERV-W env is elevated in schizophrenia and HERV-W env can increase calcium influx. Additionally, the 5-HTergic system and particularly 5-hydroxytryptamine (5-HT) receptors play a prominent role in the pathogenesis and treatment of schizophrenia. 5-hydroxytryptamine receptor 4 (5-HT4R) agonist can block calcium channels. However, the underlying relationship between HERV-W env and 5-HT4R in the etiology of schizophrenia has not been revealed. Here, we used enzyme-linked immunosorbent assay to detect the concentration of HERV-W env and 5-HT4R in the plasma of patients with schizophrenia and we found that there were decreased levels of 5-HT4R and a negative correlation between 5-HT4R and HERV-W env in schizophrenia. Overexpression of HERV-W env decreased the transcription and protein levels of 5-HT4R but increased small conductance Ca2+-activated K+ type 2 channels (SK2) expression levels. Further studies revealed that HERV-W env could interact with 5-HT4R. Additionally, luciferase assay showed that an essential region (-364 to -176 from the transcription start site) in the SK2 promoter was required for HERV-W env-induced SK2 expression. Importantly, 5-HT4R participated in the regulation of SK2 expression and promoter activity. Electrophysiological recordings suggested that HERV-W env could increase SK2 channel currents and the increase of SK2 currents was inhibited by 5-HT4R. In conclusion, HERV-W env could activate SK2 channels via decreased 5-HT4R, which might exhibit a novel mechanism for HERV-W env to influence neuronal activity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
11
|
Fan TJ, Cui J. Human Endogenous Retroviruses in Diseases. Subcell Biochem 2023; 106:403-439. [PMID: 38159236 DOI: 10.1007/978-3-031-40086-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Human endogenous retroviruses (HERVs), which are conserved sequences of ancient retroviruses, are widely distributed in the human genome. Although most HERVs have been rendered inactive by evolution, some have continued to exhibit important cytological functions. HERVs in the human genome perform dual functions: on the one hand, they are involved in important physiological processes such as placental development and immune regulation; on the other hand, their aberrant expression is closely associated with the pathological processes of several diseases, such as cancers, autoimmune diseases, and viral infections. HERVs can also regulate a variety of host cellular functions, including the expression of protein-coding genes and regulatory elements that have evolved from HERVs. Here, we present recent research on the roles of HERVs in viral infections and cancers, including the dysregulation of HERVs in various viral infections, HERV-induced epigenetic modifications of histones (such as methylation and acetylation), and the potential mechanisms of HERV-mediated antiviral immunity. We also describe therapies to improve the efficacy of vaccines and medications either by directly or indirectly targeting HERVs, depending on the HERV.
Collapse
Affiliation(s)
- Tian-Jiao Fan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Chitcharoen S, Phokaew C, Mauleekoonphairoj J, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, Nademanee K, Payungporn S. Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome. Genomics Inform 2022; 20:e44. [PMID: 36617651 PMCID: PMC9847385 DOI: 10.5808/gi.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/25/2022] [Indexed: 12/31/2022] Open
Abstract
Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performeda new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipelinewas applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had noviral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases andcontrols by blastn and blastx analysis. This study is the first report on the full-length HERV-Kassembled genomes in the Thai population. Furthermore, the HERV-K integration breakpointpositions were validated and compared between the case and control datasets. Interestingly,Brugada cases contained HERV-K integration breakpoints at promoters five times more oftenthan controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positionsthat were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and longnon-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the humangenome.
Collapse
Affiliation(s)
- Suwalak Chitcharoen
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand,Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| | - John Mauleekoonphairoj
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichai Khongphatthanayothin
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Bangkok General Hospital, Bangkok 10330, Thailand
| | - Boosamas Sutjaporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pharawee Wandee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonlawee Nademanee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok 10110, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| |
Collapse
|
13
|
Modulation of HERV Expression by Four Different Encephalitic Arboviruses during Infection of Human Primary Astrocytes. Viruses 2022; 14:v14112505. [PMID: 36423114 PMCID: PMC9694637 DOI: 10.3390/v14112505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Human retroelements (HERVs) are retroviral origin sequences fixed in the human genome. HERVs induction is associated with neurogenesis, cellular development, immune activation, and neurological disorders. Arboviruses are often associated with the development of encephalitis. The interplay between these viruses and HERVs has not been fully elucidated. In this work, we analyzed RNAseq data derived from infected human primary astrocytes by Zika (ZikV), Mayaro (MayV), Oropouche (OroV) and Chikungunya (ChikV) viruses, and evaluated the modulation of HERVs and their nearby genes. Our data show common HERVs expression modulation by both alphaviruses, suggesting conserved evolutionary routes of transcription regulation. A total of 15 HERVs were co-modulated by the four arboviruses, including the highly upregulated HERV4_4q22. Data on the upregulation of genes nearby to these elements in ChikV, MayV and OroV infections were also obtained, and interaction networks were built. The upregulation of 14 genes common among all viruses was observed in the networks, and 93 genes between MayV and ChikV. These genes are related to cellular processes such as cellular replication, cytoskeleton, cell vesicle traffic and antiviral response. Together, our results support the role of HERVs induction in the transcription regulation process of genes during arboviral infections.
Collapse
|
14
|
She J, Du M, Xu Z, Jin Y, Li Y, Zhang D, Tao C, Chen J, Wang J, Yang E. The landscape of hervRNAs transcribed from human endogenous retroviruses across human body sites. Genome Biol 2022; 23:231. [PMID: 36329469 PMCID: PMC9632151 DOI: 10.1186/s13059-022-02804-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs), the remnants of ancient retroviruses, account for 8% of the human genome, but most have lost their transcriptional abilities under physiological conditions. However, mounting evidence shows that several expressed HERVs do exert biological functions. Here, we systematically characterize physiologically expressed HERVs and examine whether they may give insight into the molecular fundamentals of human development and disease. RESULTS We systematically identify 13,889 expressed HERVs across normal body sites and demonstrate that they are expressed in body site-specific patterns and also by sex, ethnicity, and age. Analyzing cis-ERV-related quantitative trait loci, we find that 5435 hervRNAs are regulated by genetic variants. Combining this with a genome-wide association study, we elucidate that the dysregulation of expressed HERVs might be associated with various complex diseases, particularly neurodegenerative and psychiatric diseases. We further find that physiologically activated hervRNAs are associated with histone modifications rather than DNA demethylation. CONCLUSIONS Our results present a locus-specific landscape of physiologically expressed hervRNAs, which represent a hidden layer of genetic architecture in development and disease.
Collapse
Affiliation(s)
- Jianqi She
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, China
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, China
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhanzhan Xu
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yueqi Jin
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, China
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Li
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Daoning Zhang
- Peking University First Hospital, Beijing, 100034, China
| | - Changyu Tao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jian Chen
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, China.
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- Taizhou Medical New & Hi-tech Industrial Development Zone, Jiangsu, 225326, China.
| |
Collapse
|
15
|
A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. GeroScience 2022; 44:1525-1550. [PMID: 35585302 PMCID: PMC9213607 DOI: 10.1007/s11357-022-00580-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer’s disease (LOAD) over a relatively short period of time (12–48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.
Collapse
|
16
|
Yang C, Guo X, Li J, Han J, Jia L, Wen HL, Sun C, Wang X, Zhang B, Li J, Chi Y, An T, Wang Y, Wang Z, Li H, Li L. Significant Upregulation of HERV-K (HML-2) Transcription Levels in Human Lung Cancer and Cancer Cells. Front Microbiol 2022; 13:850444. [PMID: 35359739 PMCID: PMC8960717 DOI: 10.3389/fmicb.2022.850444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the second most common cancer worldwide and the leading cause of cancer death in the world. Therefore, there is an urgent need to develop new and effective biomarkers for diagnosis and treatment. Under this circumstance, human endogenous retroviruses (HERVs) were recently introduced as novel biomarkers for cancer diagnosis. This study focused on the correlation between lung cancer and HERV-K (HML-2) transcription levels. At the cellular level, different types of lung cancer cells and human normal lung epithelial cells were used to analyze the transcription levels of the HERV-K (HML-2) gag, pol, and env genes by RT–qPCR. At the level of lung cancer patients, blood samples with background information from 734 lung cancer patients and 96 healthy persons were collected to analyze the transcription levels of HERV-K (HML-2) gag, pol, and env genes. The results showed that the transcriptional levels of the HERV-K (HML-2) gag, pol, and env genes in lung cancer cells and lung cancer patient blood samples were significantly higher than those in the healthy controls, which was also verified by RNAScope ISH technology. In addition, we also found that there was a correlation between the abnormal transcription levels of HERV-K (HML-2) genes in lung cancer patients and the clinicopathological parameters of lung cancer. We also identified the distribution locations of the gag, pol, and env primer sequences on each chromosome and analyzed the function of these loci. In conclusion, HERV-K (HML-2) genes may be a potential biomarker for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Caiqin Yang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingwan Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Lei Jia
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hong-Ling Wen
- Key Laboratory for the Prevention and Control of Infectious Diseases, Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengxi Sun
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Bohan Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jingyun Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yujia Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongtong An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Ziping Wang,
| | - Hanping Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Hanping Li,
| | - Lin Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Lin Li,
| |
Collapse
|
17
|
Fayzullina D, Kharwar RK, Acharya A, Buzdin A, Borisov N, Timashev P, Ulasov I, Kapomba B. FNC: An Advanced Anticancer Therapeutic or Just an Underdog? Front Oncol 2022; 12:820647. [PMID: 35223502 PMCID: PMC8867032 DOI: 10.3389/fonc.2022.820647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Azvudine (FNC) is a novel cytidine analogue that has both antiviral and anticancer activities. This minireview focuses on its underlying molecular mechanisms of suppressing viral life cycle and cancer cell growth and discusses applications of this nucleoside drug for advanced therapy of tumors and malignant blood diseases. FNC inhibits positive-stand RNA viruses, like HCV, EV, SARS-COV-2, HBV, and retroviruses, including HIV, by suppressing their RNA-dependent polymerase enzymes. It may also inhibit such enzyme (reverse transcriptase) in the human retrotransposons, including human endogenous retroviruses (HERVs). As the activation of retrotransposons can be the major factor of ongoing cancer genome instability and consequently higher aggressiveness of tumors, FNC has a potential to increase the efficacy of multiple anticancer therapies. Furthermore, FNC also showed other aspects of anticancer activity by inhibiting adhesion, migration, invasion, and proliferation of malignant cells. It was also reported to be involved in cell cycle arrest and apoptosis, thereby inhibiting the progression of cancer through different pathways. To the date, the grounds of FNC effects on cancer cells are not fully understood and hence additional studies are needed for better understanding molecular mechanisms of its anticancer activities to support its medical use in oncology.
Collapse
Affiliation(s)
- Daria Fayzullina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rajesh Kumar Kharwar
- Endocrine Research Lab, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, India
| | - Arbind Acharya
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anton Buzdin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nicolas Borisov
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ilya Ulasov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Byron Kapomba
- Department of General Surgery, Parirenyatwa Group of Hospitals, Harare, Zimbabwe,*Correspondence: Byron Kapomba,
| |
Collapse
|
18
|
Shimode S, Yamamoto T. Characterization of DNA methylation and promoter activity of long terminal repeat elements of feline endogenous retrovirus RDRS C2a. Virus Genes 2021; 58:70-74. [PMID: 34787790 DOI: 10.1007/s11262-021-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Endogenous retroviruses (ERVs) are genomic elements derived from retroviral infections in ancestral germ lines. Most ERVs are inactivated by genetic or epigenetic mechanisms, such as DNA methylation. RD-114-virus-related sequence (RDRS) C2a is a feline endogenous retrovirus present in all domestic cats; however, its expression and function are not clearly known. DNA methylation at CpG dinucleotides is a hallmark of silenced ERVs. This study aimed to investigate whether long terminal repeats (LTRs) of RDRS C2a function as a gene regulatory region. The DNA methylation status of RDRS C2a was examined by bisulfite sequencing, and CpG sites in 5' LTR of RDRS C2a were found hypomethylated, whereas those in 3' LTR were hypermethylated in feline cells. Several transcription factor-binding sites were identified in LTRs of RDRS C2a. Luciferase assay suggested that 5' LTR of RDRS C2a exhibited strong transcriptional activity, which was suppressed by in vitro DNA methylation. The study indicates that 5' LTR of RDRS C2a possibly functions as a promoter for itself or neighboring genes.
Collapse
Affiliation(s)
- Sayumi Shimode
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| |
Collapse
|
19
|
Karlik E, Gurbuz O, Yildiz Y, Gozukirmizi N. Endogenous retrovirus HERV-K6 and HERV-K11 polymorphisms’ analyses in head and neck squamous cell carcinoma patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:ph14060495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
|
21
|
Stearrett N, Dawson T, Rahnavard A, Bachali P, Bendall ML, Zeng C, Caricchio R, Pérez-Losada M, Grammer AC, Lipsky PE, Crandall KA. Expression of Human Endogenous Retroviruses in Systemic Lupus Erythematosus: Multiomic Integration With Gene Expression. Front Immunol 2021; 12:661437. [PMID: 33986751 PMCID: PMC8112243 DOI: 10.3389/fimmu.2021.661437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies predominantly to nuclear material. Many aspects of disease pathology are mediated by the deposition of nucleic acid containing immune complexes, which also induce the type 1interferon response, a characteristic feature of SLE. Notably, SLE is remarkably heterogeneous, with a variety of organs involved in different individuals, who also show variation in disease severity related to their ancestries. Here, we probed one potential contribution to disease heterogeneity as well as a possible source of immunoreactive nucleic acids by exploring the expression of human endogenous retroviruses (HERVs). We investigated the expression of HERVs in SLE and their potential relationship to SLE features and the expression of biochemical pathways, including the interferon gene signature (IGS). Towards this goal, we analyzed available and new RNA-Seq data from two independent whole blood studies using Telescope. We identified 481 locus specific HERV encoding regions that are differentially expressed between case and control individuals with only 14% overlap of differentially expressed HERVs between these two datasets. We identified significant differences between differentially expressed HERVs and non-differentially expressed HERVs between the two datasets. We also characterized the host differentially expressed genes and tested their association with the differentially expressed HERVs. We found that differentially expressed HERVs were significantly more physically proximal to host differentially expressed genes than non-differentially expressed HERVs. Finally, we capitalized on locus specific resolution of HERV mapping to identify key molecular pathways impacted by differential HERV expression in people with SLE.
Collapse
Affiliation(s)
- Nathaniel Stearrett
- Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Tyson Dawson
- Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Ali Rahnavard
- Computational Biology Institute, George Washington University, Washington, DC, United States
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Prathyusha Bachali
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, United States
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, United States
| | - Roberto Caricchio
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marcos Pérez-Losada
- Computational Biology Institute, George Washington University, Washington, DC, United States
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Amrie C. Grammer
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, United States
| | - Peter E. Lipsky
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, United States
| | - Keith A. Crandall
- Computational Biology Institute, George Washington University, Washington, DC, United States
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| |
Collapse
|
22
|
Martinez A, Buckley M, Scalise CB, Katre AA, Dholakia JJ, Crossman D, Birrer MJ, Berry JL, Arend RC. Understanding the effect of mechanical forces on ovarian cancer progression. Gynecol Oncol 2021; 162:154-162. [PMID: 33888338 DOI: 10.1016/j.ygyno.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Mechanical forces including tension, compression, and shear stress are increasingly implicated in tumor progression and metastasis. Understanding the mechanisms behind epithelial ovarian cancer (EOC) progression and metastasis is critical, and this study aimed to elucidate the effect of oscillatory and constant tension on EOC. METHODS SKOV-3 and OVCAR-8 EOC cell lines were placed under oscillatory tension for 3 days and compared to cells placed under no tension. Cell proliferation, migration, and invasion were analyzed while RNAseq and Western Blots helped investigate the biological mechanisms underlying the increasingly aggressive state of the experimental cells. Finally, in vivo experiments using SCID mice assisted in confirming the in vitro results. RESULTS Oscillatory tension (OT) and constant tension (CT) significantly increased SKOV-3 proliferation, while OT caused a significant increase in proliferative genes, migration, and invasion in this cell line. CT did not cause significant increases in these areas. Neither OT nor CT increased proliferation or invasion in OVCAR-8 cells, while both tension types significantly increased cellular migration. Two proteins involved in metastasis, E-cadherin and Snail, were both significantly affected by OT in both cell lines, with E-cadherin levels decreasing and Snail levels increasing. In vivo, tumor growth and weight for both cell types were significantly increased, and ascites development was significantly higher in the experimental OVCAR-8 group than in the control group. CONCLUSIONS This study found that mechanical forces are influential in EOC progression and metastasis. Further analysis of downstream mechanisms involved in EOC metastasis will be critical for improvements in EOC treatment.
Collapse
Affiliation(s)
- A Martinez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - M Buckley
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - C B Scalise
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - A A Katre
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - J J Dholakia
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - D Crossman
- University of Alabama at Birmingham, Department of Genetics, Birmingham, AL 35294, USA
| | - M J Birrer
- University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, Little Rock, AR 72205, USA
| | - J L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - R C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
23
|
de Oliveira RTG, Cordeiro JVA, Vitoriano BF, de Lima Melo MM, Sampaio LR, de Paula Borges D, Magalhães SMM, Pinheiro RF. ERVs-TLR3-IRF axis is linked to myelodysplastic syndrome pathogenesis. Med Oncol 2021; 38:27. [PMID: 33594613 DOI: 10.1007/s12032-021-01466-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022]
Abstract
Toll-like receptors are mutated or overexpressed in up to 50% of patients with myelodysplastic syndrome (MDS). Endogenous retroviruses (ERV) trigger TLR3 leading to interferon regulatory genes (IRFs) activation. We evaluated if the ERVs-TLR3-IRF axis activation would be linked to MDS pathogenesis and we also conducted a detailed cancer analysis of the ERVs, TLR3 and IRFs gene expression in 30 cancer types using GEPIA database. Seventy-nine bone marrow samples from patients with MDS were evaluated for cytogenetics and quantitative real‑time PCR of TLR3, ERVK6, ERVW-1, ERV3-1, IRF3 and IRF7. Patients with dyserythropoiesis showed higher TLR3 (p = 0.035), ERVK6 (p = 0.001), ERVW1 (p = 0.045) and ERV3-1 (p = 0.016) expression than patients without dyserythropoiesis. Upregulation of Interferon Regulatory Factors, IRF3 and IRF7, was associated with poor prognostic markers in MDS such as > 10% of blasts (p = 0.003-IRF3; p = 0.009-IRF7), low platelets count (< 50.000/mm3) (p = 0.001-IRF3; p = 0.021-IRF7), transfusion dependence (p = 0.014-IRF3) and chromosomal abnormalities (p = 0.036-IRF7). We found strong correlations between ERVK6-ERVW1 (r = 0.800; r2 = 0.640; p = 0.000), ERVW1-ERV3-1 (r = 0.715; r2 = 0.511; p = 0.000), and IRF7-IRF3 (r = 0.567; r2 = 0.321; p = 0.000) and moderate correlation between ERVK6-ERV3-1(r = 0.485; r2 = 0.235; p = 0.000), ERVW1-IRF7 (r = 0.389; r2 = 0.151; p = 0.001), ERVW1-IRF3 (r = 0.357; r2 = 0.127; p = 0.004), ERV3-1-IRF7 (r = 0.314; r2 = 0.098; p = 0.009), and ERV3-1-IRF3 (r = 0.324; r2 = 0.104; p = 0.007). Using GEPIA Database in 30 cancer types, we detected a typical pattern of upregulation as here presented in MDS. We suggest TLR3 activation by ERVs is linked to MDS pathogenesis leading to bone marrow failure. Abnormal double-stranded RNA (dsRNA) expression of Endogenous Retroviruses (ERV) triggers TLR3 hyperactivation. This induces IRF3, IRF7, and NF-kB to translocate to the nucleus and activate transcription of IFNα/β which binds to the type I-IFN receptor promoting interferon response. Thus, just as TLR4 induces a crucial myeloid shift, the ERVs-TLR3 axis may play an important role in establishing one of the most striking characteristics in MDS, dyserythropoiesis.
Collapse
Affiliation(s)
- Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Center for Research and Drug Development (NPDM), Fortaleza, Ceará, Brazil.,Post-Graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - João Victor Alves Cordeiro
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Center for Research and Drug Development (NPDM), Fortaleza, Ceará, Brazil.,Post-Graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruna Ferreira Vitoriano
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Center for Research and Drug Development (NPDM), Fortaleza, Ceará, Brazil.,Post-Graduate Program in Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Mayara Magna de Lima Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Center for Research and Drug Development (NPDM), Fortaleza, Ceará, Brazil.,Post-Graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Letícia Rodrigues Sampaio
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Center for Research and Drug Development (NPDM), Fortaleza, Ceará, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Center for Research and Drug Development (NPDM), Fortaleza, Ceará, Brazil.,Post-Graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Clinical Medicine Department, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Post-Graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil. .,Center for Research and Drug Development (NPDM), Fortaleza, Ceará, Brazil. .,Clinical Medicine Department, Federal University of Ceará, Fortaleza, Ceará, Brazil. .,Post-Graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Ceará, Brazil. .,Post-Graduate Program in Pathology, Federal University of Ceará, Fortaleza, Ceará, Brazil. .,Center for Research and Drug Development (NPDM), Federal University of Ceará, 1000 Coronel Nunes de Melo St. Rodolfo Teófilo, Fortaleza, Ceará, 60430-275, Brazil.
| |
Collapse
|
24
|
Unexpected Discovery and Expression of Amphibian Class II Endogenous Retroviruses. J Virol 2021; 95:JVI.01806-20. [PMID: 33177199 DOI: 10.1128/jvi.01806-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of past retroviral infections. Fossil records of class II retroviruses have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Through genomic mining of all available amphibian genomes, we identified, for the first time, class II ERVs in amphibians. The class II ERVs were found only in Gymnophiona (caecilians) and not in the genomes of the other amphibian orders, Anura (frogs and toads) and Caudata (salamanders and newts), which are phylogenetically closely related. Therefore, the ERV endogenization occurred after the split of Gymnophiona, Anura, and Caudata (323 million years ago). Investigation of phylogenetic relationship and genomic structure revealed that the ERVs may originate from alpha- or betaretroviruses. We offer evidence that class II ERVs infiltrated amphibian genomes recently and may still have infectious members. Remarkably, certain amphibian class II ERVs can be expressed in diverse tissues. This discovery closes the major gap in the retroviral fossil record of class II ERVs and provides important insights into the evolution of class II ERVs in vertebrates.IMPORTANCE Class II retroviruses, largely distributed among mammals and birds, are of particular importance for medicine and economics. Class II ERVs have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Here, for the first time, we discovered class II ERVs in amphibians. We also revealed that the ERVs may originate from alpha- or betaretroviruses. We revealed that class II ERVs were integrated into amphibian genomes recently and certain amphibian class II ERVs can be expressed in diverse tissues. Our discovery closes the major gap in the retroviral fossil record of class II ERVs, and also indicates that amphibians may be still infected by class II retroviruses.
Collapse
|
25
|
Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proc Natl Acad Sci U S A 2020; 117:17842-17853. [PMID: 32669437 DOI: 10.1073/pnas.2002427117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stem cells are capable of unlimited proliferation but can be induced to form brain cells. Factors that specifically regulate human development are poorly understood. We found that human stem cells expressed high levels of the envelope protein of an endogenized human-specific retrovirus (HERV-K, HML-2) from loci in chromosomes 12 and 19. The envelope protein was expressed on the cell membrane of the stem cells and was critical in maintaining the stemness via interactions with CD98HC, leading to triggering of human-specific signaling pathways involving mammalian target of rapamycin (mTOR) and lysophosphatidylcholine acyltransferase (LPCAT1)-mediated epigenetic changes. Down-regulation or epigenetic silencing of HML-2 env resulted in dissociation of the stem cell colonies and enhanced differentiation along neuronal pathways. Thus HML-2 regulation is critical for human embryonic and neurodevelopment, while it's dysregulation may play a role in tumorigenesis and neurodegeneration.
Collapse
|
26
|
Mashanov V, Akiona J, Khoury M, Ferrier J, Reid R, Machado DJ, Zueva O, Janies D. Active Notch signaling is required for arm regeneration in a brittle star. PLoS One 2020; 15:e0232981. [PMID: 32396580 PMCID: PMC7217437 DOI: 10.1371/journal.pone.0232981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United states of America
- * E-mail:
| | - Jennifer Akiona
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Maleana Khoury
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Jacob Ferrier
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Robert Reid
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Olga Zueva
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| |
Collapse
|
27
|
Arroyo M, Bautista R, Larrosa R, Cobo MÁ, Claros MG. Biomarker potential of repetitive-element transcriptome in lung cancer. PeerJ 2019; 7:e8277. [PMID: 31875158 PMCID: PMC6925957 DOI: 10.7717/peerj.8277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Since repetitive elements (REs) account for nearly 53% of the human genome, profiling its transcription after an oncogenic change might help in the search for new biomarkers. Lung cancer was selected as target since it is the most frequent cause of cancer death. A bioinformatic workflow based on well-established bioinformatic tools (such as RepEnrich, RepBase, SAMTools, edgeR and DESeq2) has been developed to identify differentially expressed RNAs from REs. It was trained and tested with public RNA-seq data from matched sequencing of tumour and healthy lung tissues from the same patient to reveal differential expression within the RE transcriptome. Healthy lung tissues express a specific set of REs whose expression, after an oncogenic process, is strictly and specifically changed. Discrete sets of differentially expressed REs were found for lung adenocarcinoma, for small-cell lung cancer, and for both cancers. Differential expression affects more HERV-than LINE-derived REs and seems biased towards down-regulation in cancer cells. REs behaving consistently in all patients were tested in a different patient cohort to validate the proposed biomarkers. Down-regulation of AluYg6 and LTR18B was confirmed as potential lung cancer biomarkers, while up-regulation of HERVK11D-Int is specific for lung adenocarcinoma and up-regulation of UCON88 is specific for small cell lung cancer. Hence, the study of RE transcriptome might be considered another research target in cancer, making REs a promising source of lung cancer biomarkers.
Collapse
Affiliation(s)
- Macarena Arroyo
- U.G.C. Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Regional Universitario de Málaga, Málaga, Spain.,Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | - Rocío Bautista
- Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain
| | - Rafael Larrosa
- Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain.,Department of Computer Architecture, Universidad de Málaga, Málaga, Spain
| | - Manuel Ángel Cobo
- Area of Oncology and Rare Diseases (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.,Andalusian Platform for Bioinformatics-SCBI, Universidad de Málaga, Málaga, Spain.,Area of Oncology and Rare Diseases (IBIMA), Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
28
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
29
|
Nikitin D, Kolosov N, Murzina A, Pats K, Zamyatin A, Tkachev V, Sorokin M, Kopylov P, Buzdin A. Retroelement-Linked H3K4me1 Histone Tags Uncover Regulatory Evolution Trends of Gene Enhancers and Feature Quickly Evolving Molecular Processes in Human Physiology. Cells 2019; 8:cells8101219. [PMID: 31597351 PMCID: PMC6830109 DOI: 10.3390/cells8101219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Retroelements (REs) are mobile genetic elements comprising ~40% of human DNA. They can reshape expression patterns of nearby genes by providing various regulatory sequences. The proportion of regulatory sequences held by REs can serve a measure of regulatory evolution rate of the respective genes and molecular pathways. Methods: We calculated RE-linked enrichment scores for individual genes and molecular pathways based on ENCODE project epigenome data for enhancer-specific histone modification H3K4me1 in five human cell lines. We identified consensus groups of molecular processes that are enriched and deficient in RE-linked H3K4me1 regulation. Results: We calculated H3K4me1 RE-linked enrichment scores for 24,070 human genes and 3095 molecular pathways. We ranked genes and pathways and identified those statistically significantly enriched and deficient in H3K4me1 RE-linked regulation. Conclusion: Non-coding RNA genes were statistically significantly enriched by RE-linked H3K4me1 regulatory modules, thus suggesting their high regulatory evolution rate. The processes of gene silencing by small RNAs, DNA metabolism/chromatin structure, sensory perception/neurotransmission and lipids metabolism showed signs of the fastest regulatory evolution, while the slowest processes were connected with immunity, protein ubiquitination/degradation, cell adhesion, migration and interaction, metals metabolism/ion transport, cell death, intracellular signaling pathways.
Collapse
Affiliation(s)
- Daniil Nikitin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
| | | | | | - Karina Pats
- ITMO University, 195251 Saint-Petersburg, Russia.
| | | | | | - Maxim Sorokin
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Philippe Kopylov
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Anton Buzdin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
30
|
Canli T. A model of human endogenous retrovirus (HERV) activation in mental health and illness. Med Hypotheses 2019; 133:109404. [PMID: 31557593 DOI: 10.1016/j.mehy.2019.109404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
Despite strong evidence for the heritability of major depressive disorder (MDD), efforts to identify causal genes have been disappointing. Furthermore, although there is strong support for life stress as a major predictor of MDD, there are also considerable individual differences in susceptibility and resilience that remain poorly understood. Efforts to identify specific gene-by-environment risk factors produced results that were initially encouraging, but that were not supported by later large-scale studies. Here I propose a novel mechanism that could address the "missing heritability" of MDD, the role of environmental risk factors, and individual differences in susceptibility and resilience. This mechanism focuses on a class of transposable elements, Human Endogenous Retroviruses (HERVs), which make up approximately 8% of the human genome as the result of ancient retroviral infections that entered mammalian germ lines throughout the course of evolution. My primary hypothesis is that exposure to either exogenous viruses or traumatic experiences can activate HERVs in the brain to cause depressive (and possibly other psychiatric) symptoms. My secondary hypothesis is that individual differences in vulnerability or resilience result from the balance of activated HERVs with pathogenic versus protective functions in the brain. Future research can test these hypotheses by analysis of postmortem human brain tissue from donors with known viral or trauma histories; animal studies manipulating HERV expression; cell culture studies examining regulatory mechanisms of HERV expression; and from brain imaging studies of individuals with known HERV-expression. Such research may reveal novel functions of HERVs in neural tissue and may lead to a new generation of psychiatric interventions designed to target aberrant HERV activation.
Collapse
MESH Headings
- Animals
- Brain/virology
- Cells, Cultured
- Cytokines/physiology
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/immunology
- Depressive Disorder, Major/virology
- Disease Models, Animal
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Environmental Exposure
- Epigenesis, Genetic
- Gene Expression Regulation, Viral
- Gene-Environment Interaction
- Genes, Viral
- Humans
- Intercellular Signaling Peptides and Proteins/physiology
- Mice, Transgenic
- Models, Biological
- Models, Psychological
- Schizophrenia/pathology
- Schizophrenia/virology
- Stress, Psychological
- Terminal Repeat Sequences/genetics
- Virus Activation
- Virus Diseases/complications
- Virus Diseases/psychology
Collapse
Affiliation(s)
- Turhan Canli
- Departments of Psychology and Psychiatry, Stony Brook University, Stony Brook, NY 11794-2500, USA.
| |
Collapse
|
31
|
Guffanti G, Bartlett A, Klengel T, Klengel C, Hunter R, Glinsky G, Macciardi F. Novel Bioinformatics Approach Identifies Transcriptional Profiles of Lineage-Specific Transposable Elements at Distinct Loci in the Human Dorsolateral Prefrontal Cortex. Mol Biol Evol 2019; 35:2435-2453. [PMID: 30053206 PMCID: PMC6188555 DOI: 10.1093/molbev/msy143] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of transposable elements (TE) is transiently activated during human preimplantation embryogenesis in a developmental stage- and cell type-specific manner and TE-mediated epigenetic regulation is intrinsically wired in developmental genetic networks in human embryos and embryonic stem cells. However, there are no systematic studies devoted to a comprehensive analysis of the TE transcriptome in human adult organs and tissues, including human neural tissues. To investigate TE expression in the human Dorsolateral Prefrontal Cortex (DLPFC), we developed and validated a straightforward analytical approach to chart quantitative genome-wide expression profiles of all annotated TE loci based on unambiguous mapping of discrete TE-encoded transcripts using a de novo assembly strategy. To initially evaluate the potential regulatory impact of DLPFC-expressed TE, we adopted a comparative evolutionary genomics approach across humans, primates, and rodents to document conservation patterns, lineage-specificity, and colocalizations with transcription factor binding sites mapped within primate- and human-specific TE. We identified 654,665 transcripts expressed from 477,507 distinct loci of different TE classes and families, the majority of which appear to have originated from primate-specific sequences. We discovered 4,687 human-specific and transcriptionally active TEs in DLPFC, of which the prominent majority (80.2%) appears spliced. Our analyses revealed significant associations of DLPFC-expressed TE with primate- and human-specific transcription factor binding sites, suggesting potential cross-talks of concordant regulatory functions. We identified 1,689 TEs differentially expressed in the DLPFC of Schizophrenia patients, a majority of which is located within introns of 1,137 protein-coding genes. Our findings imply that identified DLPFC-expressed TEs may affect human brain structures and functions following different evolutionary trajectories. On one side, hundreds of thousands of TEs maintained a remarkably high conservation for ∼8 My of primates’ evolution, suggesting that they are likely conveying evolutionary-constrained primate-specific regulatory functions. In parallel, thousands of transcriptionally active human-specific TE loci emerged more recently, suggesting that they could be relevant for human-specific behavioral or cognitive functions.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Andrew Bartlett
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Goettingen, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Richard Hunter
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Gennadi Glinsky
- Translational & Functional Genomics, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
32
|
Williams JW, Huang LH, Randolph GJ. Cytokine Circuits in Cardiovascular Disease. Immunity 2019; 50:941-954. [PMID: 30995508 PMCID: PMC6924925 DOI: 10.1016/j.immuni.2019.03.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1β (IL-1β), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA.
| |
Collapse
|
33
|
Retroelement-Linked Transcription Factor Binding Patterns Point to Quickly Developing Molecular Pathways in Human Evolution. Cells 2019; 8:cells8020130. [PMID: 30736359 PMCID: PMC6406739 DOI: 10.3390/cells8020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Retroelements (REs) are transposable elements occupying ~40% of the human genome that can regulate genes by providing transcription factor binding sites (TFBS). RE-linked TFBS profile can serve as a marker of gene transcriptional regulation evolution. This approach allows for interrogating the regulatory evolution of organisms with RE-rich genomes. We aimed to characterize the evolution of transcriptional regulation for human genes and molecular pathways using RE-linked TFBS accumulation as a metric. Methods: We characterized human genes and molecular pathways either enriched or deficient in RE-linked TFBS regulation. We used ENCODE database with mapped TFBS for 563 transcription factors in 13 human cell lines. For 24,389 genes and 3124 molecular pathways, we calculated the score of RE-linked TFBS regulation reflecting the regulatory evolution rate at the level of individual genes and molecular pathways. Results: The major groups enriched by RE regulation deal with gene regulation by microRNAs, olfaction, color vision, fertilization, cellular immune response, and amino acids and fatty acids metabolism and detoxication. The deficient groups were involved in translation, RNA transcription and processing, chromatin organization, and molecular signaling. Conclusion: We identified genes and molecular processes that have characteristics of especially high or low evolutionary rates at the level of RE-linked TFBS regulation in human lineage.
Collapse
|
34
|
Damas ND, Fossat N, Scheel TKH. Functional Interplay between RNA Viruses and Non-Coding RNA in Mammals. Noncoding RNA 2019; 5:ncrna5010007. [PMID: 30646609 PMCID: PMC6468702 DOI: 10.3390/ncrna5010007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Exploring virus–host interactions is key to understand mechanisms regulating the viral replicative cycle and any pathological outcomes associated with infection. Whereas interactions at the protein level are well explored, RNA interactions are less so. Novel sequencing methodologies have helped uncover the importance of RNA–protein and RNA–RNA interactions during infection. In addition to messenger RNAs (mRNAs), mammalian cells express a great number of regulatory non-coding RNAs, some of which are crucial for regulation of the immune system whereas others are utilized by viruses. It is thus becoming increasingly clear that RNA interactions play important roles for both sides in the arms race between virus and host. With the emerging field of RNA therapeutics, such interactions are promising antiviral targets. In this review, we discuss direct and indirect RNA interactions occurring between RNA viruses or retroviruses and host non-coding transcripts upon infection. In addition, we review RNA virus derived non-coding RNAs affecting immunological and metabolic pathways of the host cell typically to provide an advantage to the virus. The relatively few known examples of virus–host RNA interactions suggest that many more await discovery.
Collapse
Affiliation(s)
- Nkerorema Djodji Damas
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
35
|
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer 2018; 1871:160-169. [PMID: 30599187 DOI: 10.1016/j.bbcan.2018.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a very recently discovered class of small non-coding RNAs (ncRNAs), with approximately 20,000 piRNA genes already identified within the human genome. These short RNAs were originally described as key functional regulators for the germline maintenance and transposon silencing. However, due to our limited knowledge regarding their function, piRNAs were for a long time assumed to be the "dark matter" of ncRNAs in our genome. However, recent evidence has now changed our viewpoint of their biological and clinical significance in various diseases, as newly emerging data reveals that aberrant expression of piRNAs is a unique and distinct feature in many diseases, including multiple human cancers. Furthermore, their altered expression in cancer patients has been significantly associated with clinical outcomes, highlighting their important biological functional role in disease progression. Functionally, piRNAs maintain genomic integrity by silencing transposable elements, and are capable of regulating the expression of specific downstream target genes in a post-transcriptional manner. Moreover, accumulating evidences demonstrates that analogous to other small ncRNAs (e.g. miRNAs) piRNAs have both oncogenic and tumor suppressive roles in cancer development. In this article, we discuss emerging insights into roles of piRNAs in a variety of cancers, reveal new findings underpinning various mechanisms of piRNAs-mediated gene regulation, and highlight their potential clinical significance in the management of cancer patients.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hanhua Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246-2017, USA.
| |
Collapse
|
36
|
Feng M, Wang X, Ren F, Zhang N, Zhou Y, Sun J. Genome-Wide Characterization of Endogenous Retroviruses in Bombyx mori Reveals the Relatives and Activity of env Genes. Front Microbiol 2018; 9:1732. [PMID: 30123193 PMCID: PMC6085415 DOI: 10.3389/fmicb.2018.01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 01/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are retroviral sequences that remain fixed in the host genome, where they could play an important role. Some ERVs have been identified in insects and proven to have infectious properties. However, no information is available regarding Bombyx mori ERVs (BmERVs) to date. Here, we systematically identified 256 potential BmERVs in the silkworm genome via a whole-genome approach. BmERVs were relatively evenly distributed across each of the chromosomes and accounted for about 25% of the silkworm genome. All BmERVs were classified as young ERVs, with insertion times estimated to be less than 10 million years. Seven BmERVs possessing the env genes were identified. With the exception of the Orf133 Helicoverpa armigera nuclear polyhedrosis virus, the env sequences of BmERVs were distantly related to genes encoding F (Fa and Fb) and GP64 proteins from Group I and Group II NPVs. In addition, only the amino acid sequence of the BmERV-21 envelope protein shared a similar putative furin-like cleavage site and fusion peptide with Group II baculoviruses. All of the env genes in the seven BmERVs were verified to exist in the genome and be expressed in the midgut and fat bodies, which suggest that BmERVs might play an important role in the host biology.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiong Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion. Proc Natl Acad Sci U S A 2018; 115:8609-8614. [PMID: 30082403 PMCID: PMC6112702 DOI: 10.1073/pnas.1807598115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endogenous retroviruses (ERVs) are proviral sequences that result from host germ-line invasion by exogenous retroviruses. The majority of ERVs are degraded. Using the koala retrovirus (KoRV) as a model system, we demonstrate that recombination with an ancient koala retroelement disables KoRV, and that recombination occurs frequently and early in the invasion process. Recombinant KoRVs (recKoRVs) are then able to proliferate in the koala germ line. This may in part explain the generally degraded nature of ERVs in vertebrate genomes and suggests that degradation via recombination is one of the earliest processes shaping retroviral genomic invasions. Endogenous retroviruses (ERVs) are proviral sequences that result from colonization of the host germ line by exogenous retroviruses. The majority of ERVs represent defective retroviral copies. However, for most ERVs, endogenization occurred millions of years ago, obscuring the stages by which ERVs become defective and the changes in both virus and host important to the process. The koala retrovirus, KoRV, only recently began invading the germ line of the koala (Phascolarctos cinereus), permitting analysis of retroviral endogenization on a prospective basis. Here, we report that recombination with host genomic elements disrupts retroviruses during the earliest stages of germ-line invasion. One type of recombinant, designated recKoRV1, was formed by recombination of KoRV with an older degraded retroelement. Many genomic copies of recKoRV1 were detected across koalas. The prevalence of recKoRV1 was higher in northern than in southern Australian koalas, as is the case for KoRV, with differences in recKoRV1 prevalence, but not KoRV prevalence, between inland and coastal New South Wales. At least 15 additional different recombination events between KoRV and the older endogenous retroelement generated distinct recKoRVs with different geographic distributions. All of the identified recombinant viruses appear to have arisen independently and have highly disrupted ORFs, which suggests that recombination with existing degraded endogenous retroelements may be a means by which replication-competent ERVs that enter the germ line are degraded.
Collapse
|
38
|
Morris G, Maes M, Murdjeva M, Puri BK. Do Human Endogenous Retroviruses Contribute to Multiple Sclerosis, and if So, How? Mol Neurobiol 2018; 56:2590-2605. [PMID: 30047100 PMCID: PMC6459794 DOI: 10.1007/s12035-018-1255-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The gammaretroviral human endogenous retrovirus (HERV) families MRSV/HERV-W and HERV-H (including the closely related HERV-Fc1) are associated with an increased risk of multiple sclerosis (MS). Complete HERV sequences betray their endogenous retroviral origin, with open reading frames in gag, pro, pol and env being flanked by two long terminal repeats containing promoter and enhancer sequences with the capacity to regulate HERV transactivation and the activity of host genes in spite of endogenous epigenetic repression mechanisms. HERV virions, RNA, cDNA, Gag and Env, and antibodies to HERV transcriptional products, have variously been found in the blood and/or brain and/or cerebrospinal fluid of MS patients, with the HERV expression level being associated with disease status. Furthermore, some HERV-associated single nucleotide polymorphisms (SNPs), such as rs662139 T/C in a 3-kb region of Xq22.3 containing a HERV-W env locus, and rs391745, upstream of the HERV-Fc1 locus on the X chromosome, are associated with MS susceptibility, while a negative association has been reported with SNPs in the tripartite motif-containing (TRIM) protein-encoding genes TRIM5 and TRIM22. Factors affecting HERV transcription include immune activation and inflammation, since HERV promoter regions possess binding sites for related transcription factors; oxidative stress, with oxidation of guanine to 8-oxoguanine and conversion of cytosine to 5-hydroxymethylcytosine preventing binding of methyl groups transferred by DNA methyltransferases; oxidative stress also inhibits the activity of deacetylases, thereby favouring the acetylation of histone lysine residues favouring gene expression; interferon beta; natalizumab treatment; impaired epigenetic regulation; and the sex of patients.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Medical University, Plovdiv, Bulgaria
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
39
|
Balestrieri E, Argaw-Denboba A, Gambacurta A, Cipriani C, Bei R, Serafino A, Sinibaldi-Vallebona P, Matteucci C. Human Endogenous Retrovirus K in the Crosstalk Between Cancer Cells Microenvironment and Plasticity: A New Perspective for Combination Therapy. Front Microbiol 2018; 9:1448. [PMID: 30013542 PMCID: PMC6036167 DOI: 10.3389/fmicb.2018.01448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
Abnormal activation of human endogenous retroviruses (HERVs) has been associated with several diseases such as cancer, autoimmunity, and neurological disorders. In particular, in cancer HERV activity and expression have been specifically associated with tumor aggressiveness and patient outcomes. Cancer cell aggressiveness is intimately linked to the acquisition of peculiar plasticity and heterogeneity based on cell stemness features, as well as on the crosstalk between cancer cells and the microenvironment. The latter is a driving factor in the acquisition of aggressive phenotypes, associated with metastasis and resistance to conventional cancer therapies. Remarkably, in different cell types and stages of development, HERV expression is mainly regulated by epigenetic mechanisms and is subjected to a very precise temporal and spatial regulation according to the surrounding microenvironment. Focusing on our research experience with HERV-K involvement in the aggressiveness and plasticity of melanoma cells, this perspective aims to highlight the role of HERV-K in the crosstalk between cancer cells and the tumor microenvironment. The implications for a combination therapy targeted at HERVs with standard approaches are discussed.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
40
|
Daskalakis M, Brocks D, Sheng YH, Islam MS, Ressnerova A, Assenov Y, Milde T, Oehme I, Witt O, Goyal A, Kühn A, Hartmann M, Weichenhan D, Jung M, Plass C. Reactivation of endogenous retroviral elements via treatment with DNMT- and HDAC-inhibitors. Cell Cycle 2018; 17:811-822. [PMID: 29633898 DOI: 10.1080/15384101.2018.1442623] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inhibitors of DNA methyltransferases (DNMTis) or histone deacetylases (HDACis) are epigenetic drugs which are investigated since decades. Several have been approved and are applied in the treatment of hematopoietic and lymphatic malignancies, although their mode of action has not been fully understood. Two recent findings improved mechanistic insights: i) activation of human endogenous retroviral elements (HERVs) with concomitant synthesis of double-stranded RNAs (dsRNAs), and ii) massive activation of promoters from long terminal repeats (LTRs) which originated from past HERV invasions. These dsRNAs activate an antiviral response pathway followed by apoptosis. LTR promoter activation leads to synthesis of non-annotated transcripts potentially encoding novel or cryptic proteins. Here, we discuss the current knowledge of the molecular effects exerted by epigenetic drugs with a focus on DNMTis and HDACis. We highlight the role in LTR activation and provide novel data from both in vitro and in vivo epigenetic drug treatment.
Collapse
Affiliation(s)
- Michael Daskalakis
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - David Brocks
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Yi-Hua Sheng
- b School of Pharmacy, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Md Saiful Islam
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Alzbeta Ressnerova
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Yassen Assenov
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Till Milde
- c Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ) , Germany.,d CCU Pediatric Oncology , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,e Department of Pediatric Oncology, Hematology and Immunology , University Hospital, and Clinical Cooperation Unit Pediatric Oncology, DKFZ , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - Ina Oehme
- c Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ) , Germany.,d CCU Pediatric Oncology , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,e Department of Pediatric Oncology, Hematology and Immunology , University Hospital, and Clinical Cooperation Unit Pediatric Oncology, DKFZ , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - Olaf Witt
- c Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ) , Germany.,d CCU Pediatric Oncology , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,e Department of Pediatric Oncology, Hematology and Immunology , University Hospital, and Clinical Cooperation Unit Pediatric Oncology, DKFZ , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - Ashish Goyal
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Alexander Kühn
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Mark Hartmann
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany.,g Regulation of Cellular Differentiation Group , German Cancer Research Center , Heidelberg , Germany
| | - Dieter Weichenhan
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Manfred Jung
- h Institute of Pharmaceutical Sciences, University of Freiburg , Germany
| | - Christoph Plass
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| |
Collapse
|
41
|
Mustafin RN, Khusnutdinova EK. The Role of Transposable Elements in Emergence of Metazoa. BIOCHEMISTRY (MOSCOW) 2018; 83:185-199. [PMID: 29625540 DOI: 10.1134/s000629791803001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Systems initially emerged for protecting genomes against insertions of transposable elements and represented by mechanisms of splicing regulation, RNA-interference, and epigenetic factors have played a key role in the evolution of animals. Many studies have shown inherited transpositions of mobile elements in embryogenesis and preservation of their activities in certain tissues of adult organisms. It was supposed that on the emergence of Metazoa the self-regulation mechanisms of transposons related with the gene networks controlling their activity could be involved in intercellular cell coordination in the cascade of successive divisions with differentiated gene expression for generation of tissues and organs. It was supposed that during evolution species-specific features of transposons in the genomes of eukaryotes could form the basis for creation of dynamically related complexes of systems for epigenetic regulation of gene expression. These complexes could be produced due to the influence of noncoding transposon-derived RNAs on DNA methylation, histone modifications, and processing of alternative splicing variants, whereas the mobile elements themselves could be directly involved in the regulation of gene expression in cis and in trans. Transposons are widely distributed in the genomes of eukaryotes; therefore, their activation can change the expression of specific genes. In turn, this can play an important role in cell differentiation during ontogenesis. It is supposed that transposons can form a species-specific pattern for control of gene expression, and that some variants of this pattern can be favorable for adaptation. The presented data indicate the possible influence of transposons in karyotype formation. It is supposed that transposon localization relative to one another and to protein-coding genes can influence the species-specific epigenetic regulation of ontogenesis.
Collapse
|
42
|
Nikitin D, Penzar D, Garazha A, Sorokin M, Tkachev V, Borisov N, Poltorak A, Prassolov V, Buzdin AA. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins. Front Immunol 2018; 9:30. [PMID: 29441061 PMCID: PMC5797644 DOI: 10.3389/fimmu.2018.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Endogenous retroviruses and retrotransposons also termed retroelements (REs) are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs). We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged) elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle progression and apoptosis, PDGF, TGF beta, EGFR, and p38 signaling, transcriptional repression, structure of nuclear lumen, catabolism of phospholipids, and heterocyclic molecules, insulin and AMPK signaling, retrograde Golgi-ER transport, and estrogen signaling. The immunity-linked pathways were highly represented in both categories, but their functional roles were different and did not overlap. Our results point to the most quickly evolving molecular pathways in the recent and ancient evolution of human genome.
Collapse
Affiliation(s)
- Daniil Nikitin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Penzar
- The Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,OmicsWay Corp., Walnut, CA, United States
| | - Maxim Sorokin
- OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Nicolas Borisov
- OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Alexander Poltorak
- Program in Immunology, Sackler Graduate School, Tufts University, Boston, MA, United States
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anton A Buzdin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| |
Collapse
|
43
|
Jenkins RW, Thummalapalli R, Carter J, Cañadas I, Barbie DA. Molecular and Genomic Determinants of Response to Immune Checkpoint Inhibition in Cancer. Annu Rev Med 2018; 69:333-347. [DOI: 10.1146/annurev-med-060116-022926] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Russell W. Jenkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Rohit Thummalapalli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jacob Carter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Israel Cañadas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
44
|
Grandi N, Cadeddu M, Blomberg J, Mayer J, Tramontano E. HERV-W group evolutionary history in non-human primates: characterization of ERV-W orthologs in Catarrhini and related ERV groups in Platyrrhini. BMC Evol Biol 2018; 18:6. [PMID: 29351742 PMCID: PMC5775608 DOI: 10.1186/s12862-018-1125-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/14/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The genomes of all vertebrates harbor remnants of ancient retroviral infections, having affected the germ line cells during the last 100 million years. These sequences, named Endogenous Retroviruses (ERVs), have been transmitted to the offspring in a Mendelian way, being relatively stable components of the host genome even long after their exogenous counterparts went extinct. Among human ERVs (HERVs), the HERV-W group is of particular interest for our physiology and pathology. A HERV-W provirus in locus 7q21.2 has been coopted during evolution to exert an essential role in placenta, and the group expression has been tentatively linked to Multiple Sclerosis and other diseases. Following up on a detailed analysis of 213 HERV-W insertions in the human genome, we now investigated the ERV-W group genomic spread within primate lineages. RESULTS We analyzed HERV-W orthologous loci in the genome sequences of 12 non-human primate species belonging to Simiiformes (parvorders Catarrhini and Platyrrhini), Tarsiiformes and to the most primitive Prosimians. Analysis of HERV-W orthologous loci in non-human Catarrhini primates revealed species-specific insertions in the genomes of Chimpanzee (3), Gorilla (4), Orangutan (6), Gibbon (2) and especially Rhesus Macaque (66). Such sequences were acquired in a retroviral fashion and, in the majority of cases, by L1-mediated formation of processed pseudogenes. There were also a number of LTR-LTR homologous recombination events that occurred subsequent to separation of Catarrhini sub-lineages. Moreover, we retrieved 130 sequences in Marmoset and Squirrel Monkeys (family Cebidae, Platyrrhini parvorder), identified as ERV1-1_CJa based on RepBase annotations, which appear closely related to the ERV-W group. Such sequences were also identified in Atelidae and Pitheciidae, representative of the other Platyrrhini families. In contrast, no ERV-W-related sequences were found in genome sequence assemblies of Tarsiiformes and Prosimians. CONCLUSIONS Overall, our analysis now provides a detailed picture of the ERV-W sequences colonization of the primate lineages genomes, revealing the exact dynamics of ERV-W locus formations as well as novel insights into the evolution and origin of the group.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| |
Collapse
|
45
|
Gensterblum-Miller E, Wu W, Sawalha AH. Novel Transcriptional Activity and Extensive Allelic Imbalance in the Human MHC Region. THE JOURNAL OF IMMUNOLOGY 2018; 200:1496-1503. [PMID: 29311362 DOI: 10.4049/jimmunol.1701061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
The MHC region encodes HLA genes and is the most complex region in the human genome. The extensively polymorphic nature of the HLA hinders accurate localization and functional assessment of disease risk loci within this region. Using targeted capture sequencing and constructing individualized genomes for transcriptome alignment, we identified 908 novel transcripts within the human MHC region. These include 593 novel isoforms of known genes, 137 antisense strand RNAs, 119 novel long intergenic noncoding RNAs, and 5 transcripts of 3 novel putative protein-coding human endogenous retrovirus genes. We revealed allele-dependent expression imbalance involving 88% of all heterozygous transcribed single nucleotide polymorphisms throughout the MHC transcriptome. Among these variants, the genetic variant associated with Behçet's disease in the HLA-B/MICA region, which tags HLA-B*51, is within novel long intergenic noncoding RNA transcripts that are exclusively expressed from the haplotype with the protective but not the disease risk allele. Further, the transcriptome within the MHC region can be defined by 14 distinct coexpression clusters, with evidence of coregulation by unique transcription factors in at least 9 of these clusters. Our data suggest a very complex regulatory map of the human MHC, and can help uncover functional consequences of disease risk loci in this region.
Collapse
Affiliation(s)
| | - Weisheng Wu
- Biomedical Research Core Facilities, Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109; and
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; .,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
46
|
Honda T. Potential Links between Hepadnavirus and Bornavirus Sequences in the Host Genome and Cancer. Front Microbiol 2017; 8:2537. [PMID: 29312227 PMCID: PMC5742130 DOI: 10.3389/fmicb.2017.02537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Various viruses leave their sequences in the host genomes during infection. Such events occur mainly in retrovirus infection but also sometimes in DNA and non-retroviral RNA virus infections. If viral sequences are integrated into the genomes of germ line cells, the sequences can become inherited as endogenous viral elements (EVEs). The integration events of viral sequences may have oncogenic potential. Because proviral integrations of some retroviruses and/or reactivation of endogenous retroviruses are closely linked to cancers, viral insertions related to non-retroviral viruses also possibly contribute to cancer development. This article focuses on genomic viral sequences derived from two non-retroviral viruses, whose endogenization is already reported, and discusses their possible contributions to cancer. Viral insertions of hepatitis B virus play roles in the development of hepatocellular carcinoma. Endogenous bornavirus-like elements, the only non-retroviral RNA virus-related EVEs found in the human genome, may also be involved in cancer formation. In addition, the possible contribution of the interactions between viruses and retrotransposons, which seem to be a major driving force for generating EVEs related to non-retroviral RNA viruses, to cancers will be discussed. Future studies regarding the possible links described here may open a new avenue for the development of novel therapeutics for tumor virus-related cancers and/or provide novel insights into EVE functions.
Collapse
Affiliation(s)
- Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
47
|
Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand 2017; 136:606-616. [PMID: 28542724 PMCID: PMC7159535 DOI: 10.1111/ane.12775] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is an immune-mediated disease with an environmental component. According to a long-standing but unproven hypothesis dating to initial descriptions of multiple sclerosis (MS) at the end of the 19th century, viruses are either directly or indirectly implicated in MS pathogenesis. Whether viruses in MS are principally causal or simply contributory remains to be proven, but many viruses or viral elements-predominantly Epstein-Barr virus, human endogenous retroviruses (HERVs) and human herpesvirus 6 (HHV-6) but also less common viruses such as Saffold and measles viruses-are associated with MS. Here, we present an up-to-date and comprehensive review of the main candidate viruses implicated in MS pathogenesis and summarize how these viruses might cause or lead to the hallmark demyelinating and inflammatory lesions of MS. We review data from epidemiological, animal and in vitro studies and in doing so offer a transdisciplinary approach to the topic. We argue that it is crucially important not to interpret "absence of evidence" as "evidence of absence" and that future studies need to focus on distinguishing correlative from causative associations. Progress in the MS-virus field is expected to arise from an increasing body of knowledge on the interplay between viruses and HERVs in MS. Such interactions suggest common HERV-mediated pathways downstream of viral infection that cause both neuroinflammation and neurodegeneration. We also comment on the limitations of existing studies and provide future research directions for the field.
Collapse
Affiliation(s)
- A.-F. A. Mentis
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
- The Johns Hopkins University, AAP; Baltimore MD USA
| | - E. Dardiotis
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; B’ Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - E. Petinaki
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - G. M. Hadjigeorgiou
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| |
Collapse
|
48
|
Grandi N, Cadeddu M, Pisano MP, Esposito F, Blomberg J, Tramontano E. Identification of a novel HERV-K(HML10): comprehensive characterization and comparative analysis in non-human primates provide insights about HML10 proviruses structure and diffusion. Mob DNA 2017; 8:15. [PMID: 29118853 PMCID: PMC5667498 DOI: 10.1186/s13100-017-0099-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background About half of the human genome is constituted of transposable elements, including human endogenous retroviruses (HERV). HERV sequences represent the 8% of our genetic material, deriving from exogenous infections occurred millions of years ago in the germ line cells and being inherited by the offspring in a Mendelian fashion. HERV-K elements (classified as HML1–10) are among the most studied HERV groups, especially due to their possible correlation with human diseases. In particular, the HML10 group was reported to be upregulated in persistent HIV-1 infected cells as well as in tumor cells and samples, and proposed to have a role in the control of host genes expression. An individual HERV-K(HML10) member within the major histocompatibility complex C4 gene has even been studied for its possible contribution to type 1 diabetes susceptibility. Following a first characterization of the HML10 group at the genomic level, performed with the innovative software RetroTector, we have characterized in detail the 8 previously identified HML10 sequences present in the human genome, and an additional HML10 partial provirus in chromosome 1p22.2 that is reported here for the first time. Results Using a combined approach based on RetroTector software and a traditional Genome Browser Blat search, we identified a novel HERV-K(HML10) sequence in addition to the eight previously reported in the human genome GRCh37/hg19 assembly. We fully characterized the nine HML10 sequences at the genomic level, including their classification in two types based on both structural and phylogenetic characteristics, a detailed analysis of each HML10 nucleotide sequence, the first description of the presence of an Env Rec domain in the type II HML10, the estimated time of integration of individual members and the comparative map of the HML10 proviruses in non-human primates. Conclusions We performed an unambiguous and exhaustive analysis of the nine HML10 sequences present in GRCh37/hg19 assembly, useful to increase the knowledge of the group’s contribution to the human genome and laying the foundation for a better understanding of the potential physiological effects and the tentative correlation of these sequences with human pathogenesis. Electronic supplementary material The online version of this article (10.1186/s13100-017-0099-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Pisano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
49
|
Gillberg L, Ørskov AD, Liu M, Harsløf LBS, Jones PA, Grønbæk K. Vitamin C - A new player in regulation of the cancer epigenome. Semin Cancer Biol 2017; 51:59-67. [PMID: 29102482 DOI: 10.1016/j.semcancer.2017.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022]
Abstract
Over the past few years it has become clear that vitamin C, as a provider of reduced iron, is an essential factor for the function of epigenetic regulators that initiate the demethylation of DNA and histones. Vitamin C deficiency is rare in the general population, but is frequently observed in patients with cancer. Genes encoding epigenetic regulators are often mutated in cancer, underscoring their central roles in carcinogenesis. In hematological cancers, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), drugs that reverse epigenetic aberrations are now the standard of care. Recent in vitro studies suggest that vitamin C at physiological concentrations, combined with hypomethylating agents may act synergistically to cause DNA demethylation through active and passive mechanisms, respectively. Additionally, several recent studies have renewed interest in the use of pharmacological doses of vitamin C injected intravenously to selectively kill tumor cells. This review will focus on the potential of vitamin C to optimize the outcome of epigenetic therapy in cancer patients and alternatively to act as a therapeutic at high doses.
Collapse
Affiliation(s)
- Linn Gillberg
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Ørskov
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Minmin Liu
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Laurine B S Harsløf
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
50
|
Marttila S, Nevalainen T, Jylhävä J, Kananen L, Jylhä M, Hervonen A, Hurme M. Human endogenous retrovirus HERV-K(HML-2) env expression is not associated with markers of immunosenescence. Exp Gerontol 2017; 97:60-63. [PMID: 28774724 DOI: 10.1016/j.exger.2017.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/09/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022]
Abstract
Ageing of the human immune system, or immunosenescence, is characterised by distinct changes in the proportion of the various cell types, e.g., increase of the CD14+ monocytic cells, decrease of CD19+ B lymphocytes, and changes in T cell subpopulations, namely increase of CD4+ and CD8+ cells which have lost the costimulatory CD28 antigen. Currently, it is believed that the lifelong antigenic burden may be one of the inducers of immunosenescence. Thus far, only one exogenous stimulus, cytomegalovirus infection, has shown to be a major factor in this respect. To find other possible candidates, we evaluated the role of the evolutionary youngest group of human endogenous retroviruses, namely HERV-K(HML-2), on immunosenescence. HERVs exist in the genome as proviruses, but their activation has been detected in several immunopathologic conditions. The expression of HERV-K(HML-2) env was observed to be lower in the peripheral blood mononuclear cells of nonagenarians (n=61) than in those of young controls (n=37). These mRNA levels did not correlate with the age-associated differences in the proportions of CD14+, CD4+CD28- and CD8+CD28- cells, but in the case of CD19+ B cells a strong positive correlation was observed in the nonagenarians. Thus, these data suggest that HERVs do not function as antigenic drivers of immunosenescence. On the contrary, expression of HERV-K(HML-2) env is associated with more youthful levels of B cells.
Collapse
Affiliation(s)
- Saara Marttila
- Faculty of Medicine and Biosciences, University of Tampere, Tampere, Finland.
| | - Tapio Nevalainen
- Faculty of Medicine and Biosciences, University of Tampere, Tampere, Finland.
| | - Juulia Jylhävä
- Faculty of Medicine and Biosciences, University of Tampere, Tampere, Finland.
| | - Laura Kananen
- Faculty of Medicine and Biosciences, University of Tampere, Tampere, Finland.
| | - Marja Jylhä
- Faculty of Social Sciences and Gerontology Research Center, University of Tampere, Tampere, Finland.
| | - Antti Hervonen
- Faculty of Social Sciences and Gerontology Research Center, University of Tampere, Tampere, Finland.
| | - Mikko Hurme
- Faculty of Medicine and Biosciences, University of Tampere, Tampere, Finland.
| |
Collapse
|