1
|
Zhu T, Du J, Song H, Lei C, Cen Y, Wang C, Li S. Whole genome resequencing reveals the correlation between selection signatures and adaptability of Micropterus salmoides to artificial fed. Sci Rep 2024; 14:30058. [PMID: 39627258 PMCID: PMC11614881 DOI: 10.1038/s41598-024-80904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Largemouth bass (Micropterus salmoides, LMB) is an important aquaculture species due to its excellent flesh quality and environmental adaptability. It has been continuously introduced to many countries and cultured for decades. Here, an LMB population was used for selective breeding to improve growth rate and feed adaptability. After five generations of breeding, the growth rate improved by 38%, and feed adaptability improved by 22% compared to the non-breeding population. To study the underlying genetic mechanism, 100 LMB from the breeding population and 100 from the non-breeding population were sampled for whole-genome resequencing. The population genetics analysis shows that the breeding population has a higher inbreeding coefficient and linkage disequilibrium (LD) level, a lower nucleic acid diversity and effective population size (Ne). Using [Formula: see text] (fixation index), we found that the average [Formula: see text] value between the two populations was 0.07, with the highest [Formula: see text] value reaching 0.38, which overlaps with the trypsin gene. Additionally, other genes exhibiting high [Formula: see text] values are associated with functions such as neural development, glucose metabolism, and growth. Using [Formula: see text] and nucleic acid diversity as criteria, we identified 698 genes that are positively selected in the breeding population, and gene functional enrichment analysis shows that 36 genes are related to the olfactory receptor pathway. Overall, our study found that multiple genes were selected in the LMB breeding population. These genes may be associated with adaptation and digestion of artificial feed in fish.
Collapse
Affiliation(s)
- Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingshen Cen
- Foshan Jiyurunda Fishery Technology Co. Ltd., Foshan, 528247, China
| | - Chenghui Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
2
|
Meng SL, Li MX, Lu Y, Chen X, Wang WP, Song C, Fan LM, Qiu LP, Li DD, Xu HM, Xu P. Effect of environmental level of methomyl on hatching, morphology, immunity and development related genes expression in zebrafish (Danio rerio) embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115684. [PMID: 37976935 DOI: 10.1016/j.ecoenv.2023.115684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The extensive use of carbamate pesticides has led to a range of environmental and health problems, such as surface and groundwater contamination, and endocrine disorders in organisms. In this study, we focused on examining the effects of toxic exposure to the carbamate pesticide methomyl on the hatching, morphology, immunity and developmental gene expression levels in zebrafish embryos. Four concentrations of methomyl (0, 2, 20, and 200 μg/L) were administered to zebrafish embryos for a period of 96 h. The study found that exposure to methomyl accelerated the hatching process of zebrafish embryos, with the strongest effect recorded at the concentration of 2 μg/L. Methomyl exposure also trigged significantly reductions in heart rate and caused abnormalities in larvae morphology, and it also stimulated the synthesis and release of several inflammatory factors such as IL-1β, IL-6, TNF-α and INF-α, lowered the IgM contents, ultimately enhancing inflammatory response and interfering with immune function. All of these showed the significant effects on exposure time, concentration and their interaction (Time × Concentration). Furthermore, the body length of zebrafish exposed to methomyl for 96 h was significantly shorter, particularly at higher concentrations (200 μg/L). Methomyl also affected the expression levels of genes associated with development (down-regulated igf1, bmp2b, vasa, dazl and piwi genes), demonstrating strong developmental toxicity and disruption of the endocrine system, with the most observed at the concentration of 200 μg/L and 96 h exposure to methomyl. The results of this study provide valuable reference information on the potential damage of methomyl concentrations in the environment on fish embryo development, while also supplementing present research on the immunotoxicity of methomyl.
Collapse
Affiliation(s)
- Shun Long Meng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| | - Ming Xiao Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yan Lu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xi Chen
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Wei Ping Wang
- Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nangchang 330029, China
| | - Chao Song
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Min Fan
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Ping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Dan Dan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Hui Min Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| |
Collapse
|
3
|
Klumpe HE, Garcia-Ojalvo J, Elowitz MB, Antebi YE. The computational capabilities of many-to-many protein interaction networks. Cell Syst 2023; 14:430-446. [PMID: 37348461 PMCID: PMC10318606 DOI: 10.1016/j.cels.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Many biological circuits comprise sets of protein variants that interact with one another in a many-to-many, or promiscuous, fashion. These architectures can provide powerful computational capabilities that are especially critical in multicellular organisms. Understanding the principles of biochemical computations in these circuits could allow more precise control of cellular behaviors. However, these systems are inherently difficult to analyze, due to their large number of interacting molecular components, partial redundancies, and cell context dependence. Here, we discuss recent experimental and theoretical advances that are beginning to reveal how promiscuous circuits compute, what roles those computations play in natural biological contexts, and how promiscuous architectures can be applied for the design of synthetic multicellular behaviors.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science 76100, Rehovot, Israel.
| |
Collapse
|
4
|
Huang J, Zhou M, You W, Luo X, Ke C. Molecular Characterization and Function of Bone Morphogenetic Protein 7 ( BMP7) in the Pacific Abalone, Haliotis discus hannai. Genes (Basel) 2023; 14:1128. [PMID: 37372307 DOI: 10.3390/genes14061128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play important roles in a lot of biological processes, such as bone development, cell proliferation, cell differentiation, growth, etc. However, the functions of abalone BMP genes are still unknown. This study aimed to better understand the characterization and biological function of BMP7 of Haliotis discus hannai (hdh-BMP7) via cloning and sequencing analysis. The coding sequence (CDS) length of hdh-BMP7 is 1251 bp, which encodes 416 amino acids including a signal peptide (1-28 aa), a transforming growth factor-β (TGF-β) propeptide (38-272 aa), and a mature TGF-β peptide (314-416 aa). The analysis of expression showed that hdh-BMP7 mRNA was widely expressed in all the examined tissues of H. discus hannai. Four SNPs were related to growth traits. The results of RNA interference (RNAi) showed that the mRNA expression levels of hdh-BMPR I, hdh-BMPR II, hdh-smad1, and hdh-MHC declined after hdh-BMP7 was silenced. After RNAi experiment for 30 days, the shell length, shell width, and total weight were found to be reduced in H. discus hannai (p < 0.05). The results of real-time quantitative reverse transcription PCR revealed that the hdh-BMP7 mRNA was lower in abalone of the S-DD-group than in the L-DD-group. Based on these data, we hypothesized that BMP7 gene has a positive role in the growth of H. discus hannai.
Collapse
Affiliation(s)
- Jianfang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mingcan Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Wu Y, Sun A, Nie C, Gao ZX, Wan SM. Functional differentiation of bmp2a and bmp2b genes in zebrafish. Gene Expr Patterns 2022; 46:119288. [PMID: 36332886 DOI: 10.1016/j.gep.2022.119288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic protein 2 plays an important role in the regulation of osteoblast proliferation and differentiation. Phylogenetic analysis showed that the bmp2 ortholog evolved from the same ancestral gene family in vertebrates and was duplicated in teleost, which were named bmp2a and bmp2b. The results of whole-mount in situ hybridization showed that the expression locations of bmp2a and bmp2b in zebrafish were different in different periods (24 hpf, 48 hpf, 72 hpf), which revealed potential functional differentiation between bmp2a and bmp2b. Phenotypic analysis showed that bmp2a mutations caused partial rib and vertebral deformities in zebrafish, while bmp2b-/- embryos died massively after 12 hpf due to abnormal somite formation. We further explored the expression pattern changes of genes (bmp2a, bmp2b, smad1, fgf4, runx2b, alp) related to skeletal development at different developmental stages (20 dpf, 60 dpf, 90 dpf) in wild-type and bmp2a-/- zebrafish. The results showed that the expression of runx2b in bmp2a-/- was significantly downregulated at three stages and the expression of other genes were significantly downregulated at 90 dpf compared with wild-type zebrafish. The study revealed functional differentiation of bmp2a and bmp2b in zebrafish embryonic and skeletal development.
Collapse
Affiliation(s)
- Yaming Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aili Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunhong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shi-Ming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Gao G, Wu L, Wang T, Zhao N, Li J. Genome-wide identification, characterization and expression analysis of the BMP family associated with beak-like teeth in Oplegnathus. Front Genet 2022; 13:938473. [PMID: 35923711 PMCID: PMC9342863 DOI: 10.3389/fgene.2022.938473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta (TGF-β) family, are critical for the control of developmental processes such as dorsal-ventral axis formation, somite and tooth formation, skeletal development, and limb formation. Despite Oplegnathus having typical healing beak-like teeth and tooth development showing a trend from discrete to healing, the potential role of BMPs in the development of the beak-like teeth is incompletely understood. In the present study, 19 and 16 BMP genes were found in O. fasciatus and O. punctatus, respectively, and divided into the BMP2/4/16, BMP5/6/7/8, BMP9/10, BMP12/13/14, BMP3/15 and BMP11 subfamilies. Similar TGFb and TGF_β gene domains and conserved protein motifs were found in the same subfamily; furthermore, two common tandem repeat genes (BMP9 and BMP3a-1) were identified in both Oplegnathus fasciatus and Oplegnathus punctatus. Selection pressure analysis revealed 13 amino acid sites in the transmembrane region of BMP3, BMP7, and BMP9 proteins of O. fasciatus and O. punctatus, which may be related to the diversity and functional differentiation of genes within the BMP family. The qPCR-based developmental/temporal expression patterns of BMPs showed a trend of high expression at 30 days past hatching (dph), which exactly corresponds to the ossification period of the bones and beak-like teeth in Oplegnathus. Tissue-specific expression was found for the BMP4 gene, which was upregulated in the epithelial and mesenchymal tissues of the beak-like teeth, suggesting that it also plays a regulatory role in the development of the beak-like teeth in O. punctatus. Our investigation not only provides a scientific basis for comprehensively understanding the BMP gene family but also helps screen the key genes responsible for beak-like tooth healing in O. punctatus and sheds light on the developmental regulatory mechanism.
Collapse
Affiliation(s)
- Yuting Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Weihai Haohuigan Marine Biotechnology Co., Weihai, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guang Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lele Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| |
Collapse
|
7
|
Sun Q, Guo W, Wang P, Chang Z, Xia X, Du Q. Toxicity of 2-methyl-4-chlorophenoxy acetic acid alone and in combination with cyhalofop-butyl to Cyprinus carpio embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103697. [PMID: 34216793 DOI: 10.1016/j.etap.2021.103697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Herbicides may pose considerable danger to non-target aquatic organisms and further threaten human health. The present investigation was aimed to assess the effects of 2-methyl-4-chlorophenoxy acetic acid (MCPA-Na) on Cyprinus carpio embryos. Embryos were exposed to six concentrations of MCPA-Na (0, 52, 54, 56, 58 and 60 mg/L) for 96 h. A series of symptoms were observed in developmental embryos during MCPA-Na exposure, including increased death, hatching inhibited and morphological deformities. Further, MCPA-Na exposure leading to a series of morphological changes (pericardial edema, tail deformation, and spine deformation) in embryos, which were consistent with modifications in the associated genes. In this work, we also investigated the joint toxicity of herbicides (MCPA-Na and cyhalofop-butyl) commonly used in paddy fields on carp embryos, using the 96 h-LC50 of herbicides (59.784 mg/L MCPA-Na and 1.472 mg/L cyhalofop-butyl) and confirmed that a synergistic effect existing in the binary mixtures.
Collapse
Affiliation(s)
- Qingyu Sun
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Basic Medical, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453007, People's Republic of China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
8
|
Funk EC, Breen C, Sanketi BD, Kurpios N, McCune A. Changes in Nkx2.1, Sox2, Bmp4, and Bmp16 expression underlying the lung-to-gas bladder evolutionary transition in ray-finned fishes. Evol Dev 2021; 22:384-402. [PMID: 33463017 DOI: 10.1111/ede.12354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/05/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
The key to understanding the evolutionary origin and modification of phenotypic traits is revealing the responsible underlying developmental genetic mechanisms. An important organismal trait of ray-finned fishes is the gas bladder, an air-filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe-finned fishes. The critical morphological difference between lungs and gas bladders, which otherwise share many characteristics, is the general direction of budding during development. Lungs bud ventrally and the gas bladder buds dorsally from the anterior foregut. We investigated the genetic underpinnings of this ventral-to-dorsal shift in budding direction by studying the expression patterns of known lung genes (Nkx2.1, Sox2, and Bmp4) during the development of lungs or gas bladder in three fishes: bichir, bowfin, and zebrafish. Nkx2.1 and Sox2 show reciprocal dorsoventral expression patterns during tetrapod lung development and are important regulators of lung budding; their expression during bichir lung development is conserved. Surprisingly, we find during gas bladder development, Nkx2.1 and Sox2 expression are inconsistent with the hypothesis that they regulate the direction of gas bladder budding. Bmp4 is expressed ventrally during lung development in bichir, akin to the pattern during mouse lung development. During gas bladder development, Bmp4 is not expressed. However, Bmp16, a paralogue of Bmp4, is expressed dorsally in the developing gas bladder of bowfin. Bmp16 is present in the known genomes of Actinopteri (ray-finned fishes excluding bichir) but absent from mammalian genomes. We hypothesize that Bmp16 was recruited to regulate gas bladder development in the Actinopteri in place of Bmp4.
Collapse
Affiliation(s)
- Emily C Funk
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Animal Science Department, Genomic Variation Lab, University of California Davis, Davis, California, USA
| | - Catriona Breen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Bhargav D Sanketi
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York, USA
| | - Natasza Kurpios
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York, USA
| | - Amy McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Silic MR, Black MM, Zhang G. Phylogenetic and developmental analyses indicate complex functions of calcium-activated potassium channels in zebrafish embryonic development. Dev Dyn 2021; 250:1477-1493. [PMID: 33728688 PMCID: PMC8518378 DOI: 10.1002/dvdy.329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Calcium-activated potassium channels (KCa) are a specific type of potassium channel activated by intracellular calcium concentration changes. This group of potassium channels plays fundamental roles ranging from regulating neuronal excitability to immune cell activation. Many human diseases such as schizophrenia, hypertension, epilepsy, and cancers have been linked to mutations in this group of potassium channels. Although the KCa channels have been extensively studied electrophysiologically and pharmacologically, their spatiotemporal gene expression during embryogenesis remains mostly unknown. RESULTS Using zebrafish as a model, we identified and renamed 14 KCa genes. We further performed phylogenetic and syntenic analyses on vertebrate KCa genes. Our data revealed that the number of KCa genes in zebrafish was increased, most likely due to teleost-specific whole-genome duplication. Moreover, we examined zebrafish KCa gene expression during early embryogenesis. The duplicated ohnologous genes show distinct and overlapped gene expression. Furthermore, we found that zebrafish KCa genes are expressed in various tissues and organs (somites, fins, olfactory regions, eye, kidney, and so on) and neuronal tissues, suggesting that they may play important roles during zebrafish embryogenesis. CONCLUSIONS Our phylogenetic and developmental analyses shed light on the potential functions of the KCa genes during embryogenesis related to congenital diseases and human channelopathies.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Maya M Black
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neuroscience; Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
A comparative genomic database of skeletogenesis genes: from fish to mammals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100796. [PMID: 33676152 DOI: 10.1016/j.cbd.2021.100796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/20/2022]
Abstract
Skeletogenesis is a complex process that requires a rigorous control at multiple levels during osteogenesis, such as signaling pathways and transcription factors. The skeleton among vertebrates is a highly conserved organ system, but teleost fish and mammals have evolved unique traits or have lost particular skeletal elements in each lineage. In present study, we constructed a skeletogenesis database containing 4101, 3715, 2996, 3300, 3719 and 3737 genes in Danio rerio, Oryzias latipes, Gallus gallus, Xenopus tropicalis, Mus musculus and Homo sapiens genome, respectively. Then, we found over 55% of the genes are conserved in the six species. Notably, there are 181 specific-genes in the human genome without orthologues in the other five genomes, such as the ZNF family (ZNF100, ZNF101, ZNF14, CALML6, CCL4L2, ZIM2, HSPA6, etc); and 31 genes are identified explicitly in fish species, which are mainly involved in TGF-beta, Wnt, MAPK, Calcium signaling pathways, such as bmp16, bmpr2a, eif4e1c, wnt2ba, etc. Particularly, there are 20 zebrafish-specific genes (calm3a, si:dkey-25li10, drd1a, drd7, etc) and one medaka-specific gene (c-myc17) that may alter skeletogenesis formation in the corresponding species. The database provides the new systematic genomic insights into skeletal development from teleosts to mammals, which may help to explain some of the complexities of skeletal phenotypes among different vertebrates and provide a reference for the treatment of skeletal diseases as well as for applications in the aquaculture industry.
Collapse
|
11
|
Tai Z, Ling S, Cheng J, Tan X. Identification of three members of the Bmp family from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to a high fat diet. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2019.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Ocampo Daza D, Haitina T. Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes. Genome Biol Evol 2020; 12:993-1012. [PMID: 32652010 PMCID: PMC7353957 DOI: 10.1093/gbe/evz274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans are sulfated polysaccharide molecules, essential for many biological processes. The 6-O sulfation of glycosaminoglycans is carried out by carbohydrate 6-O sulfotransferases (C6OSTs), previously named Gal/GalNAc/GlcNAc 6-O sulfotransferases. Here, for the first time, we present a detailed phylogenetic reconstruction, analysis of gene synteny conservation and propose an evolutionary scenario for the C6OST family in major vertebrate groups, including mammals, birds, nonavian reptiles, amphibians, lobe-finned fishes, ray-finned fishes, cartilaginous fishes, and jawless vertebrates. The C6OST gene expansion likely started early in the chordate lineage, giving rise to four ancestral genes after the divergence of tunicates and before the emergence of extant vertebrates. The two rounds of whole-genome duplication in early vertebrate evolution (1R/2R) only contributed two additional C6OST subtype genes, increasing the vertebrate repertoire from four genes to six, divided into two branches. The first branch includes CHST1 and CHST3 as well as a previously unrecognized subtype, CHST16 that was lost in amniotes. The second branch includes CHST2, CHST7, and CHST5. Subsequently, local duplications of CHST5 gave rise to CHST4 in the ancestor of tetrapods, and to CHST6 in the ancestor of primates. The teleost-specific gene duplicates were identified for CHST1, CHST2, and CHST3 and are result of whole-genome duplication (3R) in the teleost lineage. We could also detect multiple, more recent lineage-specific duplicates. Thus, the vertebrate repertoire of C6OST genes has been shaped by gene duplications and gene losses at several stages of vertebrate evolution, with implications for the evolution of skeleton, nervous system, and cell-cell interactions.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Organismal Biology, Uppsala University, Sweden
- School of Natural Sciences, University of California Merced
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Sweden
| |
Collapse
|
13
|
Sun J, Zhu K, Guo H, Zhang N, Jiang S, Zhang D. Genome-wide comparative analysis ofbone morphogenetic proteins: genomic structure, phylogeny, and expression patterns in the golden pompano,Trachinotus ovatus(Linnaeus, 1758). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:345-358. [PMID: 31680186 DOI: 10.1007/s10695-019-00721-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Bone morphogenetic proteins (BMPs) play important roles in various physiological processes, especially during the formation and maintenance of various organs. In this study, we first obtained and characterized twenty BMP genes from the Trachinotus ovatus genome (designated as ToBMPs). Sequence alignment and phylogenetic analysis both indicated that the predicted amino acid sequences of ToBMP were highly conserved with corresponding homologs of other species. Moreover, a comparative analysis was performed with seven representative vertebrate genomes and found difference in number of BMP3 genes in different species, which three members, BMP3a, BMP3b-1, and BMP3b-2, existed in diploid T. ovatus, but there were four and two members in tetraploidized Cyprinus carpio (BMP3a-1, BMP3a-2, BMP3b-1, and BMP3b-2) and diploid Danio rerio (BMP3a and BMP3b), respectively. The amino acid alignment and genomic structure analysis of ToBMP3 also suggested that the BMP3 gene had expanded in T. ovatus. Furthermore, tissue expression patterns were assessed for the small intestine, liver, white muscle, brain, spleen, fin, gill, head kidney, stomach, blood, and gonads. It was discovered that BMP1, BMP2, BMP3a, BMP4, BMP6, BMP7b, BMP11, and BMP16 were ubiquitously expressed in all the tissues tested. To study the regulatory function of BMP in response to the intake of different types of food, the expression changes in BMP mRNAs were detected by qRT-PCR, and the results showed that the majority of the BMP genes had the highest mRNA levels in the small intestine and liver after ingesting pelleted feed. Our data provide a useful resource for further studies on how paralogous genes may have different expression profiles in T. ovatus.
Collapse
Affiliation(s)
- Jinhui Sun
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 231 Xingang Road West, Haizhu District, Guangzhou, 510300, Guangdong Province, People's Republic of China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 231 Xingang Road West, Haizhu District, Guangzhou, 510300, Guangdong Province, People's Republic of China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 231 Xingang Road West, Haizhu District, Guangzhou, 510300, Guangdong Province, People's Republic of China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 231 Xingang Road West, Haizhu District, Guangzhou, 510300, Guangdong Province, People's Republic of China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou, China.
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 231 Xingang Road West, Haizhu District, Guangzhou, 510300, Guangdong Province, People's Republic of China.
| |
Collapse
|
14
|
Yang G, Qin Z, Kou H, Liang R, Zhao L, Jiang S, Lin L, Zhang K. A Comparative Genomic and Transcriptional Survey Providing Novel Insights into Bone Morphogenetic Protein 2 ( bmp2) in Fishes. Int J Mol Sci 2019; 20:E6137. [PMID: 31817477 PMCID: PMC6940749 DOI: 10.3390/ijms20246137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Intermuscular bones (IBs) are only found in the muscles of fish. Bone morphogenetic protein 2 (bmp2) is considered to be the most active single osteogenesis factor. It promotes cell proliferation and differentiation during bone repair, as well as inducing the formation of bones and cartilages in vivo. However, detailed investigations of this family in fish are incredibly limited. Here, we have used a variety of published and unpublished bmp2 sequences for teleosts and cartilage fish in order to explore and expand our understanding of bmp2 genes in fish. Our results confirmed that teleost genomes contain two or more bmp2 genes, and the diversity of bmp2 genes in vertebrates appears to be as a result of a combination of whole genome duplication (WGD) and gene loss. Differences were also observed in tissue distribution and relative transcription abundance of the bmp2s through a transcriptomic analysis. Our data also indicated that bmp2b may play an important role in the formation of IBs in teleosts. In addition, protein sequence alignments and 3D structural predictions of bmp2a and bmp2b supported their similar roles in fishes. To summarize, our existing work provided novel insights into the bmp2 family genes in fishes through a mixture of comparative genomic and transcriptomic analysis.
Collapse
Affiliation(s)
- Guang Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Rishen Liang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Shoujia Jiang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China;
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Kai Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong 93117, China
| |
Collapse
|
15
|
Matsunami M, Suzuki M, Haramoto Y, Fukui A, Inoue T, Yamaguchi K, Uchiyama I, Mori K, Tashiro K, Ito Y, Takeuchi T, Suzuki KIT, Agata K, Shigenobu S, Hayashi T. A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Res 2019; 26:217-229. [PMID: 31006799 PMCID: PMC6589553 DOI: 10.1093/dnares/dsz003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Urodele newts have unique biological properties, notably including prominent regeneration ability. The Iberian ribbed newt, Pleurodeles waltl, is a promising model amphibian distinguished by ease of breeding and efficient transgenic and genome editing methods. However, limited genetic information is available for P. waltl. We conducted an intensive transcriptome analysis of P. waltl using RNA-sequencing to build and annotate gene models. We generated 1.2 billion Illumina reads from a wide variety of samples across 12 different tissues/organs, unfertilized egg, and embryos at eight different developmental stages. These reads were assembled into 1,395,387 contigs, from which 202,788 non-redundant ORF models were constructed. The set is expected to cover a large fraction of P. waltl protein-coding genes, as confirmed by BUSCO analysis, where 98% of universal single-copy orthologs were identified. Ortholog analyses revealed the gene repertoire evolution of urodele amphibians. Using the gene set as a reference, gene network analysis identified regeneration-, developmental-stage-, and tissue-specific co-expressed gene modules. Our transcriptome resource is expected to enhance future research employing this emerging model animal for regeneration research as well as for investigations in other areas including developmental biology, stem cell biology, and cancer research. These data are available via our portal website, iNewt (http://www.nibb.ac.jp/imori/main/).
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomics and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa, Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ikuo Uchiyama
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuki Mori
- Computational Bio Big-Data Open Innovation Lab. (CBBD-OIL), Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-Ku, Tokyo, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ken-ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Toshinori Hayashi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
16
|
Krall M, Htun S, Slavotinek A. Use of PTC124 for nonsense suppression therapy targeting BMP4 nonsense variants in vitro and the bmp4st72 allele in zebrafish. PLoS One 2019; 14:e0212121. [PMID: 31017898 PMCID: PMC6481805 DOI: 10.1371/journal.pone.0212121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/07/2019] [Indexed: 12/04/2022] Open
Abstract
Nonsense suppression therapy (NST) utilizes compounds such as PTC124 (Ataluren) to induce translational read-through of stop variants by promoting the insertion of near cognate, aminoacyl tRNAs that yield functional proteins. We used NST with PTC124 to determine if we could successfully rescue nonsense variants in human Bone Morphogenetic Protein 4 (BMP4) in vitro and in a zebrafish bmp4 allele with a stop variant in vivo. We transfected 293T/17 cells with wildtype or mutant human BMP4 cDNA containing p.Arg198* and p.Glu213* and exposed cells to 0–20 μM PTC124. Treatment with 20 μM PTC124 produced a small, non-significant increase in BMP4 when targeting the p.Arg198* allele, but not the p.Glu213* allele, as measured with an In-cell ELISA assay. We then examined the ability of PTC124 to rescue the ventral tail fin defects associated with homozygosity for the p.Glu209* allele of bmp4 (bmp4st72/st72) in Danio rerio. We in-crossed bmp4st72/+ heterozygous fish and found a statistically significant increase in homozygous larvae without tail fin and ventroposterior defects, consistent with phenotypic rescue, after treatment of dechorionated larvae with 0.5 μM PTC124. We conclude that treatment with PTC124 can rescue bmp4 nonsense variants, but that the degree of rescue may depend on sequence specific factors and the amount of RNA transcript available for rescue. Our work also confirms that zebrafish show promise as a useful animal model for assessing the efficacy of PTC124 treatment on nonsense variants.
Collapse
Affiliation(s)
- Max Krall
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Stephanie Htun
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Asymmetric paralog evolution between the "cryptic" gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Sci Rep 2019; 9:3136. [PMID: 30816280 PMCID: PMC6395752 DOI: 10.1038/s41598-019-40055-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/07/2019] [Indexed: 12/05/2022] Open
Abstract
The vertebrate gene repertoire is characterized by “cryptic” genes whose identification has been hampered by their absence from the genomes of well-studied species. One example is the Bmp16 gene, a paralog of the developmental key genes Bmp2 and -4. We focus on the Bmp2/4/16 group of genes to study the evolutionary dynamics following gen(om)e duplications with special emphasis on the poorly studied Bmp16 gene. We reveal the presence of Bmp16 in chondrichthyans in addition to previously reported teleost fishes and reptiles. Using comprehensive, vertebrate-wide gene sampling, our phylogenetic analysis complemented with synteny analyses suggests that Bmp2, -4 and -16 are remnants of a gene quartet that originated during the two rounds of whole-genome duplication (2R-WGD) early in vertebrate evolution. We confirm that Bmp16 genes were lost independently in at least three lineages (mammals, archelosaurs and amphibians) and report that they have elevated rates of sequence evolution. This finding agrees with their more “flexible” deployment during development; while Bmp16 has limited embryonic expression domains in the cloudy catshark, it is broadly expressed in the green anole lizard. Our study illustrates the dynamics of gene family evolution by integrating insights from sequence diversification, gene repertoire changes, and shuffling of expression domains.
Collapse
|
18
|
Abstract
Among the many anthropogenic chemicals that end up in the aquatic ecosystem, heavy metals, in particular cadmium, are hazardous compounds that have been shown to affect developmental, reproductive, hepatic, hematological, and immunological functions in teleost fish. There is also evidence that cadmium disturbs bone formation and skeletal development, but data is scarce. In this work, zebrafish was used to further characterize the anti-osteogenic/osteotoxic effects of cadmium and gain insights into underlying mechanisms. Upon exposure to cadmium, a reduction of the opercular bone growth was observed in 6-days post-fertilization (dpf) larvae and an increase in the incidence of skeletal deformities was evidenced in 20-dpf post-larvae. The extent and stiffness of newly formed bone was also affected in adult zebrafish exposed to cadmium while regenerating their caudal fin. A pathway reporter assay revealed a possible role of the MTF-1 and cAMP/PKA signaling pathways in mechanisms of cadmium osteotoxicity, while the expression of genes involved in osteoblast differentiation and matrix production was strongly reduced in cadmium-exposed post-larvae. This work not only confirmed cadmium anti-osteogenic activity and identified targeted pathways and genes, but it also suggested that cadmium may affect biomechanical properties of bone.
Collapse
|
19
|
Ramakrishnan Varadarajan A, Mopuri R, Streelman JT, McGrath PT. Genome-wide protein phylogenies for four African cichlid species. BMC Evol Biol 2018; 18:1. [PMID: 29368592 PMCID: PMC5784529 DOI: 10.1186/s12862-017-1072-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022] Open
Abstract
Background The thousands of species of closely related cichlid fishes in the great lakes of East Africa are a powerful model for understanding speciation and the genetic basis of trait variation. Recently, the genomes of five species of African cichlids representing five distinct lineages were sequenced and used to predict protein products at a genome-wide level. Here we characterize the evolutionary relationship of each cichlid protein to previously sequenced animal species. Results We used the Treefam database, a set of preexisting protein phylogenies built using 109 previously sequenced genomes, to identify Treefam families for each protein annotated from four cichlid species: Metriaclima zebra, Astatotilapia burtoni, Pundamilia nyererei and Neolamporologus brichardi. For each of these Treefam families, we built new protein phylogenies containing each of the cichlid protein hits. Using these new phylogenies we identified the evolutionary relationship of each cichlid protein to its nearest human and zebrafish protein. This data is available either through download or through a webserver we have implemented. Conclusion These phylogenies will be useful for any cichlid researchers trying to predict biological and protein function for a given cichlid gene, understanding the evolutionary history of a given cichlid gene, identifying recently duplicated cichlid genes, or performing genome-wide analysis in cichlids that relies on using databases generated from other species. Electronic supplementary material The online version of this article (10.1186/s12862-017-1072-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Rohini Mopuri
- Department of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr., Atlanta, GA, 30332, USA
| | - J Todd Streelman
- Department of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr., Atlanta, GA, 30332, USA
| | - Patrick T McGrath
- Department of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr., Atlanta, GA, 30332, USA.
| |
Collapse
|
20
|
Zhang WZ, Lan T, Nie CH, Guan NN, Gao ZX. Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream. Gene 2017; 642:116-124. [PMID: 29129809 DOI: 10.1016/j.gene.2017.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
Intermuscular bones (IBs) only exist in the myosepta of lower teleosts and its molecular mechanism remains to be clarified. Bone morphogenetic proteins (BMPs) have been demonstrated to be involved in various physiological processes, including bone and cartilage formation. In this study, we firstly obtained and characterized nine bmp genes for Megalobrama amblycephala, which belongs to Cyprinidae and have a certain amount of IBs. Sequence alignment and phylogenetic analysis both documented that the mature proteins of M. amblycephala bmp genes were highly conserved with other corresponding homologs, respectively, indicating that the function of each bmp gene has been conserved throughout evolution. As a step to characterize potential involvement of bmp genes in IB formation and development, spatiotemporal expressions of nine bmp genes (bmp2a, bmp2b, bmp3, bmp4, bmp5, bmp7b, bmp8a, bmp14 and bmp16) were investigated during the key development stages of IBs. During the ossification process from stage I (the IBs haven't emerged) to stage IV (all of the IBs ossified in the tail with the mature morphology), the expression profiles revealed that bmp16 was the most abundant transcript while bmp4 had the lowest abundance. The mRNA levels of bmp3, bmp4, bmp5 and bmp8a increased significantly at stage II, suggesting their roles in stimulating IB formation. The expression of bmp7b reached the highest level at stage III (the rapid period of IB development), suggesting potential involvement of bmp7b in promoting osteoblast differentiation. With the exception of bmp7b and bmp16, most bmp genes appeared a significant increase at IB maturation phase (stage IV), which means that they may play important roles in maintenance of IB morphogenesis. Spatial tissue distribution of bmp genes showed that most bmp genes were observed at the highest level in developing IBs at one year old fish. Spatiotemporal expression patterns suggest the potential key roles of these bmp genes in IBs formation and maintenance in fish, being as possible promoters or inhibitors.
Collapse
Affiliation(s)
- Wei-Zhuo Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Tian Lan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Ning-Nan Guan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China; Collaborative Innovation Center for Healthy Freshwater Aquaculture of Hubei Province, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
21
|
Ma Z, Zhang N, Qin JG, Fu M, Jiang S. Water temperature induces jaw deformity and bone morphogenetic proteins (BMPs) gene expression in golden pompano Trachinotus ovatus larvae. SPRINGERPLUS 2016; 5:1475. [PMID: 27652050 PMCID: PMC5010545 DOI: 10.1186/s40064-016-3142-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/23/2016] [Indexed: 11/18/2022]
Abstract
Golden pompano Trachinotus ovatus larvae were kept at 26, 29 and 33 °C for 15 days from 3-day post hatching (DPH) to 18 DPH to test temperature-dependent growth and jaw malformation. The growth, survival, jaw deformity and the gene expressions of bone morphogenetic proteins (BMPs) were used as criteria to examine the fish response to temperature manipulation. The growth rate of fish at 29 or 33 °C was significantly faster than fish at 26 °C, while fish survival at 29 °C was significantly higher than fish at 33 °C. Jaw deformity was significantly affected by water temperature. The highest jaw deformity occurred on fish at 33 °C, and the lowest jaw deformity was at 26 °C. The expressions of all BMP genes except BMP10 were significantly affected by water temperature. The highest gene expression of BMP2 was on fish at 29 °C, and the lowest expression was at 33 °C. For the BMP4 gene, the highest and lowest expressions were found on fish at 33 and 26 °C, respectively. The present study indicates that jaw deformity of golden pompano larvae increases with increasing temperature, and the gene expression of BMP4 proteins coincides with high jaw deformity and water temperature elevation.
Collapse
Affiliation(s)
- Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China ; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300 China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 Australia
| | - Mingjun Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 China
| |
Collapse
|