1
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
2
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
3
|
Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics 2024; 19:2293409. [PMID: 38232183 PMCID: PMC10795783 DOI: 10.1080/15592294.2023.2293409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1β, interleukin-1β; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.
Collapse
Affiliation(s)
- Kai Chen
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Baiqing Ou
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Quan Huang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Daqing Deng
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yi Xiang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Hu
- Comprehensive internal medicine of Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
4
|
Zan H, Liu J, Yang M, Zhao H, Gao C, Dai Y, Wang Z, Liu H, Zhang Y. Melittin alleviates sepsis-induced acute kidney injury by promoting GPX4 expression to inhibit ferroptosis. Redox Rep 2024; 29:2290864. [PMID: 38149613 PMCID: PMC10763831 DOI: 10.1080/13510002.2023.2290864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVES Melittin, the main component of bee venom, is a natural anti-inflammatory substance, in addition to its ability to fight cancer, antiviral, and useful in diabetes treatment. This study seeks to determine whether melittin can protect renal tissue from sepsis-induced damage by preventing ferroptosis and explore the protective mechanism. METHODS In this study, we investigated the specific protective mechanism of melittin against sepsis-induced renal injury by screening renal injury indicators and ferroptosis -related molecules and markers in animal and cellular models of sepsis. RESULTS Our results showed that treatment with melittin attenuated the pathological changes in mice with lipopolysaccharide-induced acute kidney injury. Additionally, we found that melittin attenuated ferroptosis in kidney tissue by enhancing GPX4 expression, which ultimately led to the reduction of kidney tissue injury. Furthermore, we observed that melittin enhanced NRF2 nuclear translocation, which consequently upregulated GPX4 expression. our findings suggest that melittin may be a potential therapeutic agent for the treatment of sepsis-associated acute kidney injury by inhibiting ferroptosis through the GPX4/NRF2 pathway. CONCLUSIONS Our study reveals the protective mechanism of melittin in septic kidney injury and provides a new therapeutic direction for Sepsis-AKI.
Collapse
Affiliation(s)
- Hongyan Zan
- Departments of Emergency Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jizheng Liu
- Clinical laboratory, The Second Peoples Hospital of Liaocheng, Liaocheng, People’s Republic of China
| | - Meixia Yang
- Departments of Emergency Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Honghui Zhao
- Departments of Emergency Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chunyan Gao
- Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yunyan Dai
- Department of General Surgery, Shanxi Bethune Hospital, Taiyuan, People’s Republic of China
| | - Zhiming Wang
- Department of General Surgery, Shanxi Bethune Hospital, Taiyuan, People’s Republic of China
| | - Hongxuan Liu
- Departments of Emergency Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yunfei Zhang
- Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
5
|
AL-Hashem FH, Bashir SO, Dawood AF, Aboonq MS, Bin-Jaliah I, Al-Garni AM, Morsy MD. Vanillylacetone attenuates cadmium chloride-induced hippocampal damage and memory loss through up-regulation of nuclear factor erythroid 2-related factor 2 gene and protein expression. Neural Regen Res 2024; 19:2750-2759. [PMID: 38595292 PMCID: PMC11168521 DOI: 10.4103/1673-5374.391300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00030/figure1/v/2024-04-08T165401Z/r/image-tiff Memory loss and dementia are major public health concerns with a substantial economic burden. Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment. To investigate whether the antioxidant and anti-inflammatory compound vanillylacetone (zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride (CdCl2) administration in rats, we explored the potential involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which is known to modulate oxidative stress and inflammation. Sixty healthy male Wistar rats were divided into five groups: vehicle-treated (control), vanillylacetone, CdCl2, vanillylacetone + CdCl2, vanillylacetone + CdCl2 + brusatol (a selective pharmacological Nrf2 inhibitor) groups. Vanillylacetone effectively attenuated CdCl2-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test. Additionally, vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, intracellular cell adhesive molecules) and apoptosis biomarkers (Bax and cleaved caspase-3). The control and CdCl2-treated groups treated with vanillylacetone showed reduced generation of reactive oxygen species, decreased malondialdehyde levels, and increased superoxide dismutase and glutathione activities, along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue. All the protective effects of vanillylacetone were substantially blocked by the co-administration of brusatol (a selective Nrf2 inhibitor). Vanillylacetone mitigated hippocampal damage and memory loss induced by CdCl2, at least in part, by activating the nuclear transcription factor Nrf2. Additionally, vanillylacetone exerted its potent antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Fahaid H. AL-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Salah O. Bashir
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Moutasem S. Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Mohamed D. Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Wu Z, Hu J, Li Y, Yao X, Ouyang S, Ren K. Assessment of renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury in type 1 diabetic mice using diffusion tensor imaging. Redox Rep 2024; 29:2398380. [PMID: 39284588 PMCID: PMC11407404 DOI: 10.1080/13510002.2024.2398380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose: To investigate the renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury (CI-AKI) in mice with type 1 diabetic mellitus(DM) using diffusion tensor imaging(DTI).Methods: Mice with DM were divided into two groups. In the diabetic + contrast medium(DCA) group, the changes of the mice kidneys were monitored at 1, 24, 48, and 72 h after the injection of iodixanol(4gI/kg). The mice in the diabetic + contrast medium + quercetin(DCA + QE) group were orally given different concentrations of quercetin for seven days before injection of iodixanol. In vitro experiments, renal tubular epithelial (HK-2) cells exposed to high glucose conditions were treated with various quercetin concentrations before treatment with iodixanol(250 mgI/mL).Results: DTI-derived mean diffusivity(MD) and fractional anisotropy(FA) values can be used to evaluate CI-AKI effectively. Quercetin significantly increased the expression of Sirt 1 and reduced oxidative stress by increasing Nrf 2/HO-1/SOD1. The antiapoptotic effect of quercetin on CI-AKI was revealed by decreasing proteins level and by reducing the number of apoptosis-positive cells. In addition, flow cytometry indicated quercetin-mediated inhibition of M1 macrophage polarization in the CI-AKI.Conclusions: DTI will be an effective noninvasive tool in diagnosing CI-AKI. Quercetin attenuates CI-AKI on the basis of DM through anti-oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Jingyi Hu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Yanfei Li
- Cell Therapy Research Center, Xiamen Humanity Hospital, Xiamen, People's Republic of China
| | - Xiang Yao
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Siyu Ouyang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| |
Collapse
|
7
|
Lu W. Sulforaphane regulates AngII-induced podocyte oxidative stress injury through the Nrf2-Keap1/ho-1/ROS pathway. Ren Fail 2024; 46:2416937. [PMID: 39417305 PMCID: PMC11488169 DOI: 10.1080/0886022x.2024.2416937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the therapeutic effects of sulforaphane and the role of the Nrf2-Keap1/HO-1/ROS pathway in AngII-induced oxidative stress in podocyte injury. METHODS Mouse mpc5 podocytes were divided into four groups: control (Con), AngII, AngII + sulforaphane (AngII + SFN), and control + sulforaphane (Con + SFN). Western blotting was used to detect protein expression of Nrf2-Keap1, antioxidant enzyme HO-1, and apoptosis-related proteins. ROS levels were measured using a ROS assay kit, and cell survival and viability were assayed using the CCK-8 kit. Molecular interactions between Nrf2 and sulforaphane were analyzed computationally. RESULTS Compared with the Con group, podocytes treated with AngII alone exhibited inhibited proliferation, reduced cell viability, lower Bcl-2 expression, and higher cleaved caspase 3 expression. In the presence of sulforaphane, AngII group showed a mild inhibition on podocyte proliferation but did not induce the aforementioned changes in Bcl-2 and cleaved caspase 3 expression. Similarly, compared to the Con group, AngII treatment alone had lower Nrf2 expression and higher Keap1 expression in podocytes, accompanied by a significant decrease in ROS content. However, in the presence of sulforaphane, AngII failed to induce increases in Nrf2 and a decrease in Keap1 expression, as well as ROS levels. Furthermore, cells treated with sulforaphane exhibited higher HO-1 levels than control cells, and co-incubation with AngII did not alter HO-1 levels. Computational modeling revealed hydrophobic interactions between sulforaphane and the amino acid LYS-462 of Nrf2, as well as hydrogen bonding with amino acid HIS-465. The binding score between sulforaphane and Nrf2 was -4.7. CONCLUSION Sulforaphane alleviated AngII-induced podocyte oxidative stress injury via the Nrf2-Keap1/HO-1/ROS pathway, providing new insights into therapeutic compounds for mitigating chronic kidney disease.
Collapse
Affiliation(s)
- Wen Lu
- Department of General Medicine, Rizhao People’s Hospital, Rizhao, China
| |
Collapse
|
8
|
Shaikh II, Bhandari R, Singh S, Zhu X, Ali Shahzad K, Shao C, Cheng L, Xiao J. Therapeutic potential of EVs loaded with CB2 receptor agonist in spinal cord injury via the Nrf2/HO-1 pathway. Redox Rep 2024; 29:2420572. [PMID: 39466990 PMCID: PMC11520104 DOI: 10.1080/13510002.2024.2420572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) poses a challenge due to limited treatment options. Recently, the effect and mechanism of Exo-loaded cannabinoid receptor type 2 (CB2) agonist AM1241(Exo + AM1241) have been applied in other inflammatory diseases but not in SCI. METHODS The SCI model was set up using C57BL/6 mice, followed by the treatment of Exo, AM1241, and Exo + AM1241. We assessed the effects of the following treatments on motor function recovery using BMS, and evaluated histological changes, apoptosis activity, inflammation, and oxidative stress in the SCI mice model. Additionally, the effect of following treatments on spinal cord neural stem cells (NSCs) was evaluated under lipopolysaccharides (LPS) induced inflammatory and oxidative models and, glutamate (Gluts) induced cell apoptosis models. RESULT Our results demonstrated that Exo + AM1241 treatment significantly improved motor function recovery, after SCI by decreasing proinflammatory cytokines, and suppressing astrocyte/microglia (GFAP/Iba1) activation in the injury zone. Additionally, this treatment reduces pro-apoptotic proteins (Bax and caspase 3), increases the levels of the anti-apoptotic protein Bcl-2, enhances antioxidant defenses by boosting SOD and GSH, and lowers oxidative stress markers such as MDA. It also activates the Nuclear factor erythroid-2 (Nrf2) related factor 2 signaling pathway, thereby enhancing tissue protection against damage and cell death.
Collapse
Affiliation(s)
- Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People’s Republic of China
- Ministry of Education, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Shanghai, People’s Republic of China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ramesh Bhandari
- Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Shekhar Singh
- Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xu Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People’s Republic of China
| | - Liming Cheng
- Ministry of Education, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Shanghai, People’s Republic of China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jian Xiao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
9
|
Ajibare AJ, Odetayo AF, Akintoye OO, Olayaki LA. Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway. Redox Rep 2024; 29:2341537. [PMID: 38629506 PMCID: PMC11025409 DOI: 10.1080/13510002.2024.2341537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1β and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Lead City University, Ibadan, Nigeria
| | | | - Olabode Oluwadare Akintoye
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | | |
Collapse
|
10
|
Bove M, Sikora V, Santoro M, Agosti LP, Palmieri MA, Dimonte S, Tucci P, Schiavone S, Morgese MG, Trabace L. Sex differences in the BTBR idiopathic mouse model of autism spectrum disorders: Behavioural and redox-related hippocampal alterations. Neuropharmacology 2024; 260:110134. [PMID: 39208979 DOI: 10.1016/j.neuropharm.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental diseases. Epidemiological data report that males have been diagnosed with autism more frequently than females. However, recent studies hypothesize that females' low incidence might be underestimated due to standard clinical measures of ASD behavioural symptoms, mostly derived from males. Indeed, up to now, ASD mouse models focused mainly on males, considering the prevalence of the diagnosis in that sex. Regarding ASD aetiopathogenesis, it has been recently reported that oxidative stress might be implicated in its onset and development, suggesting an association with ASD typical repetitive behaviours that still need to be disentangled. Here, we investigated possible behavioural and molecular sex-related differences by using the BTBR mouse model of idiopathic ASD. To this aim, animals were exposed to behavioural tests related to different ASD core symptoms and comorbidities, i.e. stereotyped repertoire, social dysfunctions, hyperlocomotion and risk-taking behaviours. Moreover, we analyzed hippocampal levels of pro-oxidant and anti-oxidant enzymes, together with biomarkers of oxidative stress and lipid peroxidation. Our results showed that BTBR females did not display the same patterns for repetitive behaviours as the male counterpart. From a biomolecular point of view, we found an increase in oxidative stress and pro-oxidant enzymes, accompanied by deficient enzymatic anti-oxidant response, only in BTBR males compared to C57BL/6 male mice, while no differences were retrieved in females. Overall, our study suggests that in females there is an urgent need to depict the distinct ASD symptomatology, accompanied by the identification of sex-specific pharmacological targets.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy; Department of Pathology, Sumy State University, 40007, Sumy, Ukraine
| | - Martina Santoro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy.
| |
Collapse
|
11
|
Liu J, Tan G, Wang S, Tong B, Wu Y, Zhang L, Jiang B. Artesunate induces HO-1-mediated cell cycle arrest and senescence to protect against ocular fibrosis. Int Immunopharmacol 2024; 141:112882. [PMID: 39151383 DOI: 10.1016/j.intimp.2024.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-β1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-β-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Liu J, Ren J, Zhou L, Tan K, Du D, Xu L, Cao W, Zhang Y. Proteomic and lipidomic analysis of the mechanism underlying astragaloside IV in mitigating ferroptosis through hypoxia-inducible factor 1α/heme oxygenase 1 pathway in renal tubular epithelial cells in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118517. [PMID: 38972525 DOI: 10.1016/j.jep.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The limitations of modern medicine in mitigating the pathological process of diabetic kidney disease (DKD) necessitate novel, precise, and effective prevention and treatment methods. Huangqi, the root of Astragalus membranaceus Fisch. ex Bunge has been used in traditional Chinese medicine for various kidney ailments. Astragaloside IV (AS-IV), the primary pharmacologically active compound in A. membranaceus, is involved in lipid metabolism regulation; however, its potential in ameliorating renal damage in DKD remains unexplored. AIM OF THE STUDY To elucidate the specific mechanism by which AS-IV moderates DKD progression. MATERIALS AND METHODS A murine model of DKD and high glucose-induced HK-2 cells were treated with AS-IV. Furthermore, multiomics analysis, molecular docking, and molecular dynamics simulations were performed to elucidate the mechanism of action of AS-IV in DKD, which was validated using molecular biological methods. RESULTS AS-IV regulated glucose and lipid metabolism in DKD, thereby mitigating lipid deposition in the kidneys. Proteomic analysis identified 12 proteins associated with lipid metabolism regulated by AS-IV in the DKD renal tissue. Additionally, lipid metabolomic analysis revealed that AS-IV upregulated and downregulated 4 beneficial and 79 harmful lipid metabolites, respectively. Multiomics analysis further indicated a positive correlation between the top-ranked differential protein heme oxygenase (HMOX)1 and the levels of various harmful lipid metabolites and a negative correlation with the levels of beneficial lipid metabolites. Furthermore, enrichment of both ferroptosis and hypoxia-inducible factor (HIF)-1 signaling pathways during the AS-IV treatment of DKD was observed using proteomic analysis. Validation results showed that AS-IV effectively reduced ferroptosis in DKD-affected renal tubular epithelial cells by inhibiting HIF-1α/HMOX1 pathway activity, upregulating glutathione peroxidase-4 and ferritin heavy chain-1 expression, and downregulating acyl-CoA synthetase long-chain family member-4 and transferrin receptor-1 expression. Our findings demonstrate the potential of AS-IV in mitigating DKD pathology by downregulating the HIF-1α/HMOX1 signaling pathway, thereby averting ferroptosis in renal tubular epithelial cells. CONCLUSIONS AS-IV is a promising treatment strategy for DKD via the inhibition of ferroptosis in renal tubular epithelial cells. The findings of this study may help facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jun Liu
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Jing Ren
- College of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, No. 82, University Town Middle Road, Shapingba District, Chongqing, 401331, PR China.
| | - Linlan Zhou
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Kaiyue Tan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China.
| | - Donglin Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Lei Xu
- Laboratory Animal Center, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China.
| | - Wenfu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China; College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China.
| | - Yudi Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China; College of Combination of Chinese and Western Medicine, Chongqing College of Traditional Chinese Medicine, No. 61, Puguobao Road, Bicheng Street, Bishan District, Chongqing, 402760, PR China.
| |
Collapse
|
13
|
Kavyani B, Ahmadi S, Nabizadeh E, Abdi M. Anti-oxidative activity of probiotics; focused on cardiovascular disease, cancer, aging, and obesity. Microb Pathog 2024; 196:107001. [PMID: 39384024 DOI: 10.1016/j.micpath.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
By disturbing the prooxidant-antioxidant balance in the cell, a condition called oxidative stress is created, causing severe damage to the nucleic acid, protein, and lipid of the host cell, and as a result, endangers the viability of the host cell. A relationship between oxidative stress and several different diseases such as cardiovascular diseases, cancer, and obesity has been reported. Therefore, maintaining this prooxidant-antioxidant balance is vital for the cell. Probiotics as one of the potent antioxidants have recently received attention. Many health-promoting and beneficial effects of probiotics are known, and it has been found that the consumption of certain strains of probiotics alone or in combination with food exerts antioxidant efficacy and reduces oxidative damage. Studies have reported that certain probiotic strains implement their antioxidant effects by producing metabolites and antioxidant enzymes, increasing the antioxidant capacity, and reducing host oxidant metabolites. Therefore, we aimed to review and summarize the latest anti-oxidative activity of probiotics and its efficacy in aging, cardiovascular diseases, cancer, and obesity.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Imam Khomeini Hospital of Piranshahr City, Urmia University of Medical Sciences, Piranshahr, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Wu SY, Liao EC, Wen YF, Wang YS, Meng H, Chou HC, Chan HL. Exploring the effects of pemetrexed on drug resistance mechanisms in human lung adenocarcinoma and its association with PGRMC1. Chem Biol Interact 2024; 403:111259. [PMID: 39368770 DOI: 10.1016/j.cbi.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
According to the 2022 cancer statistics of the World Health Organization, lung cancer ranks among the top ten causes of death, with lung adenocarcinoma being the most prevalent type. Despite significant advancements in lung cancer therapeutics, many clinical limitations remain, primarily due to the development of drug resistance. The present study investigated the effects of pemetrexed on the drug resistance mechanisms in human lung adenocarcinoma and its association with progesterone receptor membrane component 1 (PGRMC1) expression. Given that KRAS-mutant lung adenocarcinoma cell lines (e.g., A549) exhibit a high folate synthesis activity, pemetrexed, which is structurally similar to folate, was selected as the therapeutic drug. The present study used a lung adenocarcinoma cell line (A549) and established a drug-resistant lung adenocarcinoma cell line (A549/PEM). The findings demonstrated that PGRMC1 expression was elevated in the A549/PEM cells. It has been hypothesized that PGRMC1 regulates iron absorption through heme binding, resulting in a preference for iron-related cell death pathways (ferroptosis). Our findings indicate that drug-resistant lung adenocarcinoma cells with high PGRMC1 levels exhibit elevated antioxidant activity on the cell membrane and increased reliance on iron-dependent cell death pathways. This suggests a correlation between PGRMC1 and pemetrexed-induced iron-dependent cell death. Our study contributes to the development of more effective therapeutic strategies to improve the prognosis of patients with lung adenocarcinoma, particularly those facing drug resistance challenges.
Collapse
Affiliation(s)
- Ssu-Yun Wu
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - Yueh-Feng Wen
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - Han Meng
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National TsiFng Hua University, Hsinchu, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
15
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
16
|
McCormick E, Han H, Abdel Azim S, Whiting C, Bhamidipati N, Kiss A, Efimova T, Berman B, Friedman A. Topical nanoencapsulated cannabidiol cream as an innovative strategy combating UV-A-induced nuclear and mitochondrial DNA injury: A pilot randomized clinical study. J Am Acad Dermatol 2024; 91:855-862. [PMID: 39025264 DOI: 10.1016/j.jaad.2024.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND UV-A radiation contributes to photoaging/photocarcinogenesis by generating inflammation and oxidative damage. Current photoprotective strategies are limited by the availability/utilization of UV-A filters, highlighting an unmet need. Cannabidiol (CBD), having anti-inflammatory/antioxidant properties via regulation of nuclear erythroid 2-related factor, heme oxygenase 1, and peroxisome proliferator-activated receptor gamma, could potentially mitigate damage from UV-A exposure. OBJECTIVE/METHODS This is a prospective, single-center, pilot clinical trial (NCT05279495). Nineteen participants applied nano-CBD (nCBD) or vehicle (VC) cream to randomized, blinded buttock sites twice daily for 14 days; then, the treated sites were irradiated with ≤3× UV-A minimal erythema dose. After 24 hours, punch biopsies were obtained for histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS At 24 hours, 21% of participants had less observed erythema on CBD-treated skin than on VC skin. Histologically, nCBD-treated skin had reduced UV-A-induced epidermal hyperplasia than VC (P = .01). Immunohistochemistry detected reduced cytoplasmic/nuclear 8-oxoguanine glycosylase 1 staining in nCBD-treated skin compared with VC (P < .01). Quantitative mtDNA polymerase chain reaction demonstrated that UV-A-induced deletion of ND4 (proxy:4977 bp deletion; P = .003) and ND1 (proxy:3895 bp deletion; P = .002) was significantly reduced by in vivo nCBD treatment compared with VC. LIMITATIONS Small sample size is this study's limitation. CONCLUSION Topically applied nCBD cream reduced UV-A-induced formation of a frequent mutagenic nuclear DNA base lesion and protected against mtDNA mutations associated with UV-A-induced skin aging. To our knowledge, this trial is the first to identify UV-protective capacity of CBD-containing topicals in humans.
Collapse
Affiliation(s)
- Erika McCormick
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | - Haowei Han
- Center for Clinical and Cosmetic Research, Aventura, Florida
| | - Sara Abdel Azim
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | - Cleo Whiting
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | | | - Alexi Kiss
- George Washington Cancer Center, Washington, District of Columbia
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Brian Berman
- Center for Clinical and Cosmetic Research, Aventura, Florida; Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida.
| | - Adam Friedman
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
17
|
Wang S, Hong Y, Li Y, Zhang Z, Han J, Yang Z, Yang Y, Ma Z, Wang Q. Ferulic Acid Inhibits Arsenic-Induced Colon Injury by Improving Intestinal Barrier Function. ENVIRONMENTAL TOXICOLOGY 2024; 39:4821-4831. [PMID: 38881217 DOI: 10.1002/tox.24360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
The prolonged exposure to arsenic results in intestinal barrier dysfunction, which is strongly concerned with detrimental processes such as oxidative stress and the inflammatory response. Ferulic acid (FA), as a phenolic acid, possesses the capability to mitigate arsenic-induced liver damage and cardiotoxic effects dependent on inhibition of oxidative stress and inflammatory responses. FA can mitigate testicular tissue damage and alveolar epithelial dysfunction, the mechanism of which may rely on nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) activation and nuclear factor-kappa B (NF-κB) pathway blocking. Based on the antioxidant and anti-inflammatory properties of FA, we speculated that FA might have the potential to inhibit arsenic-induced intestinal damage. To confirm this scientific hypothesis, mice exposed to sodium arsenite were treated with FA to observe colonic histopathology and TJ protein levels, and oxidative stress and TJ protein levels in Caco-2 cells exposed to sodium arsenite were assessed after FA intervention. In addition, molecular levels of NF-κB and Nrf2/HO-1 pathway in colon and Caco-2 cells were also detected. As shown in our data, FA inhibited arsenic-induced colon injury, which was reflected in the improvement of mucosal integrity, the decrease of down-regulated expression of tight junction (TJ) proteins (Claudin-1, Occludin, and ZO-1) and the inhibition of oxidative stress. Similarly, treatment with FA attenuated the inhibitory effect of arsenic on TJ protein expression in Caco-2 cells. In addition to suppressing the activation of NF-κB pathway, FA retrieved the activation of Nrf2/HO-1 pathway in colon and intestinal epithelial cells induced by arsenic. In summary, our findings propose that FA has the potential to mitigate arsenic-induced intestinal damage by preserving the integrity of intestinal epithelial TJs and suppressing oxidative stress. These results lay the groundwork for the potential use of FA in treating colon injuries caused by arsenic.
Collapse
Affiliation(s)
- Shumin Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yuxiu Li
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhenfen Zhang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhaolei Ma
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
18
|
Baldensperger T, Jung T, Heinze T, Schwerdtle T, Höhn A, Grune T. The Age pigment lipofuscin causes oxidative stress, lysosomal dysfunction, and pyroptotic cell death. Free Radic Biol Med 2024:S0891-5849(24)01019-0. [PMID: 39486751 DOI: 10.1016/j.freeradbiomed.2024.10.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Accumulation of the age pigment lipofuscin represents a ubiquitous hallmark of the aging process. However, our knowledge about cellular effects of lipofuscin accumulation is potentially flawed, because previous research mainly utilized highly artificial methods of lipofuscin generation. In order to address this tremendous problem, we developed a convenient protocol for isolation of authentic lipofuscin from human and equine cardiac tissue in high purity and quantity. Isolated lipofuscin aggregates contained elevated concentrations of proline and metals such as calcium or iron. The material was readily incorporated by fibroblasts and caused cell death at low concentrations (LC50 = 5.0 μg/mL) via a pyroptosis-like pathway. Lipofuscin boosted mitochondrial ROS production and caused lysosomal dysfunction by lysosomal membrane permeabilization leading to reduced lysosome quantity and impaired cathepsin D activity. In conclusion, this is the first study utilizing authentic lipofuscin to experimentally validate the concept of the lysosomal-mitochondrial axis theory of aging and cell death.
Collapse
Affiliation(s)
- Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tom Heinze
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Shan H, Wang Z, Chen Y, Ma TF, Zhang J, Zhang J, Cheng Z, Jia L. Etomidate Inhibits Hepatic Ischemia-Reperfusion Injury Depending on the Activation of Nrf2-HO-1 Signaling Pathway. DNA Cell Biol 2024. [PMID: 39470379 DOI: 10.1089/dna.2024.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Hepatic ischemia-reperfusion (I/R) injury (HIRI) is recognized as a local aseptic inflammatory response driven by innate immunity and is considered a leading cause of early organ dysfunction and failure following liver transplantation. Etomidate (Eto), an anesthetic drug known for its ability to inhibit inflammatory response and apoptosis, was the focus of our investigation. In this study, we conducted hepatic I/R surgery in vivo on C57 mice, analyzing liver damage through histopathology. Additionally, primary hepatocytes isolated from mice were cultured and subjected to hypoxia/reoxygenation (H/R) insult in vitro, with cell activity assessed using the CCK8 assay and immunofluorescence staining employed to analyze liver inflammatory cell infiltration and apoptosis. Results showed that Eto effectively inhibited liver injury, inflammatory response, and apoptosis induced by HIRI surgery, with the greatest effect observed at an Eto concentration of 10 mg/kg. Furthermore, Eto also showed the ability to inhibit H/R-induced cell damage, inflammatory activation, and apoptosis in primary hepatocytes. Further mechanistic studies revealed that Eto could promote the activation of the Nrf2-HO-1 signaling pathway, and the protective effect of Eto on HIRI was nullified when the Nrf2 inhibitor ML385 was utilized. This study highlights the potential of Eto to protect against HIRI by promoting the Nrf2-HO-1 signaling axis.
Collapse
Affiliation(s)
- Huajing Shan
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
| | - Zhifang Wang
- Department of Nephrology, Huanggang Central Hospital, Huanggang, China
| | - Yun Chen
- Clinical Trial Centers, Huanggang Central Hospital, Huanggang, China
| | - Teng-Fei Ma
- Clinical Trial Centers, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jianqing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinpeng Zhang
- Department of Critical Care Medicine, Huanggang Central Hospital, Huanggang, China
| | - Zhonghua Cheng
- Department of Orthopedics, Huanggang Central Hospital, Huanggang, China
| | - Liping Jia
- Respiratory and Critical Care Medicine, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
20
|
Chen SY, Xu H, Qin Y, He TQ, Shi RR, Xing YR, Xu J, Cong RC, Wang MR, Yang JS, Gu JH, He BS. Nicotinamide adenine dinucleotide phosphate alleviates intestinal ischemia/reperfusion injury via Nrf2/HO-1 pathway. Int Immunopharmacol 2024; 143:113478. [PMID: 39471691 DOI: 10.1016/j.intimp.2024.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a critical condition in the abdomen that has significant morbidity and fatality rates. Prior studies have noted the defensive role of the coenzymatic antioxidant reduced nicotinamide adenine dinucleotide phosphate (NADPH) in heart and brain I/R damage, yet its impact on intestinal I/R trauma required further exploration. Through the application of an in vitro oxygen-glucose deprivation-reoxygenation model and a mouse model of short-term intestinal I/R, this study clarified the defensive mechanisms of NADPH against intestinal I/R injury. We demonstrated that intraperitoneal NADPH administration markedly reduced interleukin-1β (IL-1β) levels and blocked NLRP3 inflammasome activation, hence reducing inflammation. The antioxidative properties of NADPH were established by the reduction of oxidative stress markers and enhancement of glutathione levels. Importantly, NADPH improved intestinal barrier integrity, indicated by an upregulation of zonula occludens-1 and the promotion of a balanced gut microbiome profile. Furthermore, we identified the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathway as a crucial conduit for NADPH's beneficence. When this pathway was inhibited by ML385, the favorable outcomes conferred by NADPH were significantly abrogated. These results demonstrate that NADPH functions as an antioxidative, anti-inflammatory, microbiota-balancing, barrier-strengthening, and anti-inflammatory agent against intestinal I/R damage through activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Su-Ying Chen
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Ultrasonography, Wuxi City Rehabilitation Hospital, Liangxi District Chinese Medicine Hospital, Wuxi 214000, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Yan Qin
- Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Yu-Run Xing
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Ruo-Chen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Mei-Rong Wang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Ju-Shun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Bo-Sheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Translational Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, China.
| |
Collapse
|
21
|
Milan KL, Gayatri V, Kriya K, Sanjushree N, Vishwanathan Palanivel S, Anuradha M, Ramkumar KM. MiR-142-5p mediated Nrf2 dysregulation in gestational diabetes mellitus and its impact on placental angiogenesis. Placenta 2024; 158:192-199. [PMID: 39488088 DOI: 10.1016/j.placenta.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) presents significant risks during pregnancy, including adverse perinatal outcomes and placental dysfunction. Impaired angiogenesis, involving crucial factors like Vascular Endothelial Growth Factor (VEGF), contributes to these complications. The Nrf2/Keap1 pathway, crucial for vascular redox homeostasis, has been linked to GDM-associated angiogenesis dysregulation. METHODS This study aimed to investigate the molecular mechanisms underlying placental Nrf2 regulation, focusing on angiomiRs, key regulators of angiogenesis in GDM. Computational analysis identified miR-142-5p targeting Nrf2 mRNA. Expression levels of miR-142-5p were assessed in GDM placenta and correlated with Nrf2 expression. Experimental validation utilized human trophoblastic cell lines (BeWo) exposed to hyperglycemic conditions, assessing the effects of anti-miR-142 transfection on Nrf2 expression and angiogenic marker levels. RESULTS miR-142-5p expression was significantly downregulated in GDM placenta, correlating positively with Nrf2 expression. In BeWo cells exposed to hyperglycemia, anti-miR-142 transfection notably increased Nrf2 expression alongside angiogenic marker levels, confirming the computational predictions. DISCUSSION Our findings highlight the pivotal role of miRNAs in GDM-associated impaired angiogenesis by modulating Nrf2 expression. Understanding these molecular mechanisms provides insights into potential therapeutic targets for improving pregnancy outcomes in GDM cases.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - V Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kumaran Kriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Sanjushree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Sri Vishwanathan Palanivel
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - M Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur, 603203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
22
|
Lee IT, Yang CC, Lin YJ, Wu WB, Lin WN, Lee CW, Tseng HC, Tsai FJ, Hsiao LD, Yang CM. Mevastatin-Induced HO-1 Expression in Cardiac Fibroblasts: A Strategy to Combat Cardiovascular Inflammation and Fibrosis. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39431643 DOI: 10.1002/tox.24429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Mevastatin (MVS) is known for its anti-inflammatory effects, potentially achieved by upregulating heme oxygenase-1 (HO-1), an enzyme involved in cytoprotection against oxidative injury. Nonetheless, the specific processes by which MVS stimulates HO-1 expression in human cardiac fibroblasts (HCFs) are not yet fully understood. In this study, we found that MVS treatment increased HO-1 mRNA and protein levels in HCFs. This induction was inhibited by pretreatment with specific inhibitors of p38 MAPK, JNK1/2, and FoxO1, and by siRNAs targeting NOX2, p47phox, p38, JNK1, FoxO1, Keap1, and Nrf2. MVS also triggered ROS generation and activated JNK1/2 and p38 MAPK, both attenuated by NADPH oxidase or ROS inhibitors. Additionally, MVS promoted the phosphorylation of FoxO1 and Nrf2, which was suppressed by p38 MAPK or JNK1/2 inhibitor. Furthermore, MVS inhibited TNF-α-induced NF-κB activation and vascular cell adhesion molecule-1 (VCAM-1) expression via the HO-1/CO pathway in HCFs. In summary, the induction of HO-1 expression in HCFs by MVS is mediated through two primary signaling pathways: NADPH oxidase/ROS/p38 MAPK, and JNK1/2/FoxO1 and Nrf2. This research illuminates the underlying processes through which MVS exerts its anti-inflammatory effects by modulating HO-1 in cardiac fibroblasts.
Collapse
Affiliation(s)
- I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Jyun Lin
- Institute of Translational Medicine and new Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hui-Ching Tseng
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
23
|
Jung KM, Yu GR, Kim DH, Lim DW, Park WH. Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects. Antioxidants (Basel) 2024; 13:1271. [PMID: 39456523 PMCID: PMC11504248 DOI: 10.3390/antiox13101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Massa Medicata Fermentata (MMF) is a naturally fermented product used to treat indigestion and increase stomach activity in traditional medicine. This study examined the ability of the hydrothermal extract of MMF to scavenge free radicals corresponding to biological oxidative stresses, further protecting essential biomolecules. The anti-inflammatory effects of MMF were evaluated in LPS-induced RAW264.7 macrophages and zebrafish. In addition, the effects of MMF on the body mass index (BMI) and cholesterol accumulation in adult zebrafish fed a high-cholesterol diet (HCD) for three weeks were examined. MMF prevented the DNA and lipid damage caused by oxidative stress, inhibited LDL oxidation, and reduced the expression of cytokines and related proteins (MAPK and NFκB), with prominent anti-oxidative pathway (NRF2-HO-1) activation properties. LPS-induced NO production was reduced, and the increase in BMI and TC caused by the HCD diet was suppressed by MMF in zebrafish embryos or adult zebrafish. The bioactive aglycone of quercetin may be contributing to the mechanisms of systemic effects. MMF has excellent antioxidant properties and is useful for improving inflammation status and metabolic profile, thus highlighting its potential as a healthy, functional food.
Collapse
Affiliation(s)
- Kyung-Mi Jung
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Ga-Ram Yu
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Da-Hoon Kim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| |
Collapse
|
24
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
25
|
Biabani N, Taherpour K, Ghasemi HA, Akbari Gharaei M, Hafizi M, Nazaran MH. Advanced chelate technology-based trace minerals reduce inflammation and oxidative stress in Eimeria-infected broilers by modulating NF-kB and Nrf2 pathways. Sci Rep 2024; 14:24227. [PMID: 39415045 PMCID: PMC11484868 DOI: 10.1038/s41598-024-75695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
This study investigated the effects of substituting inorganic trace minerals (ITM) with advanced chelate technology-based TM (ACTM) in broiler chicken feed on productive performance, metabolic profile, humoral immunity, antioxidant status, and modulation of NF-kB and Nrf2 signaling pathways in mixed Eimeria species exposure. The study involved 480 newly hatched male broiler chickens, which were divided into 5 treatment groups, each with 6 replicate cages and 16 chickens per replicate. The experimental treatments included an uninfected negative control group fed a basal diet with recommended inorganic TM levels (NC), an infected positive control group fed the same diet (PC), a PC group supplemented with salinomycin (SAL), and two PC groups in which the basal diet was replaced with 50% and 100% ACTM instead of inorganic TM (ACTM50 and ACTM100, respectively). All groups, except for the NC group, were orally challenged with mixed Eimeria species oocysts on day 14. According to the results, the PC group showed lower feed intake, breast yield, low-density lipoprotein-cholesterol concentration, lactobacillus spp. counts, and serum IgG levels, but higher jejunal TGF-β expression versus the NC group. The broilers in the NC, SAL, and ACTM100 groups showed higher body weight gain, carcass yield, and TGF-β expression, but lower serum alkaline phosphatase activity, ileal E. coli count, and jejunal expression levels of IL-1β, IL-6, IFN-γ, Nrf2, and SOD1 compared to the PC group, with the NC group having the highest body weight gain and lowest IL-1β and Nrf2 expression levels. Furthermore, the administration of ACTM100 treatment improved feed efficiency, increased serum iron, zinc, manganese, and copper levels, enhanced total antioxidant capacity and different antioxidant enzyme activities, and reduced malondialdehyde concentration. In conclusion, complete replacement of ITM with ACTM effectively protects broilers from Eimeria infection, with similar positive effects to SAL treatment in terms of productive performance and anti-inflammatory responses and better antioxidant responses and mineral availability.
Collapse
Affiliation(s)
- Nasim Biabani
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | | | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
26
|
Li S, Ma S, Wang L, Zhan D, Jiang S, Zhang Z, Xiong M, Jiang Y, Huang Q, Zhang J, Li X. ATF3 as a response factor to regulate Cd-induced reproductive damage by activating the NRF2/HO-1 ferroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117114. [PMID: 39357374 DOI: 10.1016/j.ecoenv.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) has garnered significant attention due to reproductive toxicity in inducing ferroptosis. However, the specific mechanisms underlying Cd-induced germ cell ferroptosis remain poorly understood. This study aimed to systematically explore the molecular mechanisms of germ cell ferroptosis by investigating differential changes in transcription factors and proteins in male mice treated orally with CdCl2 (0.5 g/L) reaching postnatal day 60, alongside Leydig cell (TM3) and Sertoli cell (TM4) lines. Results demonstrated that Cd exposure led to increased iron overload and oxidative stress in mouse testes, disrupted intracellular mitochondrial morphology characteristic of ferroptosis. RNA sequencing revealed significant upregulation of Atf3 and Hmox1 in Cd-exposed germ cells, along with increased expression of ATF3 and HO-1. Intervention in ferroptosis or HO-1 effectively rescued cells from Cd-induced mortality by breaking the detrimental cycle between lipid peroxidation and HO-1 activation. Further findings showed that NRF2 and HO-1 expression was notably elevated upon ATF3 overexpression in TM3 and TM4 cells, activating the Keap1-Nrf2 pathway and triggering ferroptosis in testes, whereas NRF2 and HO-1 expression levels were reversed when ATF3 was silenced. This study provides novel insights into ATF3-mediated NRF2/HO-1 signaling in Cd-induced mitochondrial ferroptosis in testes, shedding light on the mechanisms underlying Cd-induced ferroptosis and testicular injury.
Collapse
Affiliation(s)
- Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Dian Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Shengyao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manyi Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Yanping Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Qixian Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Jian Zhang
- Department of Agriculture, Hetao College, Bayannur 015000, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China.
| |
Collapse
|
27
|
Cai J, Song L, Hu Z, Gao X, Wang Y, Chen Y, Xi K, Lu X, Shi Y. Astragalin alleviates oligoasthenospermia via promoting nuclear translocation of Nrf2 and reducing ferroptosis of testis. Heliyon 2024; 10:e38778. [PMID: 39444397 PMCID: PMC11497445 DOI: 10.1016/j.heliyon.2024.e38778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Oligoasthenospermia (OAS) is a global human developmental disease and the most common type of male infertility. There are currently no sufficiently effective therapeutic strategies for OAS. Wuziyanzong Pill (WZYZP) is a traditional Chinese prescription for the clinical treatment of male infertility, and its efficacy is well known in China. Therefore, due to the complexity of traditional Chinese medicine, the specific mechanism of action of WZYZP on OAS has not been elucidated. Astragalin (AG), one of the main active substances in WZYZP, has good antioxidant effect. The aim of this research is to investigate whether AG, the active substance in WZYZP, can treat OAS by promoting Nrf2 nuclear translocation and inhibiting ferroptosis. The OAS model was established by intraperitoneal injection of cyclophosphamide, and the therapeutic effects of AG and WZYZP on OAS were evaluated by detecting sperm quality, sex hormone levels and testicular pathological changes after intragastric administration of AG and WZYZP. Western blot was used to measure the expression levels of TFR1, SLC7A11, GPX4 and FTH1. The nuclear translocation of Nrf2 was detected by immunofluorescence staining and nuclear/intracellular expression of Nrf2. The results showed that AG could improve sperm quality and serum sex hormone levels in OAS rats, reduce the expression of testicular Fe2+ and TFR1, up-regulate testicular SLC7A11, GPX4 and FTH1, and inhibit testicular ferroptosis. At the same time, AG can promote the expression and nuclear translocation of Nrf2 in the testis of OAS rats. AG can alleviate OAS via promoting nuclear translocation of Nrf2 and inhibiting ferroptosis of testis.
Collapse
Affiliation(s)
- Jiayu Cai
- Traditional Chinese Medicine Department, Jinling Hospital, Nanjing 210002,China
| | - Lingxiong Song
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Zebo Hu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xiaojiao Gao
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yuhan Wang
- School of Public Health and Management, Ningxia Medicine University, Ningxia, China
| | - Yang Chen
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Ke Xi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xin Lu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
29
|
Tian Y, Luan J, Wang Q, Li C, Peng X, Jiang N, Zhao G, Lin J. Licochalcone A Ameliorates Aspergillus fumigatus Keratitis by Reducing Fungal Load and Activating the Nrf2/HO-1 Signaling Pathway. ACS Infect Dis 2024; 10:3516-3527. [PMID: 39283729 DOI: 10.1021/acsinfecdis.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fungal keratitis (FK) is a blinding corneal infectious disease. The prognosis is frequently unfavorable due to fungal invasion and an excessive host inflammatory response. Licochalcone A (Lico A) exhibits a broad spectrum of pharmacological activities, encompassing antifungal, anti-inflammatory, antioxidation, and antitumor properties. However, the role of Lico A has not yet been studied in FK. In this study, we discovered that Lico A could disrupt Aspergillus fumigatus (A. fumigatus) biofilms, inhibit fungal growth and adhesion to host cells, induce alterations of hyphal morphology, and impair the cell membrane and cell wall integrity and mitochondrial structure of A. fumigatus. Lico A can alleviate the severity of FK in mice, reduce neutrophil infiltration and fungal load, and significantly decrease the pro-inflammatory cytokines in mouse corneas infected with A. fumigatus. In vitro, we also demonstrated that Lico A increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) around the nucleus in human corneal epithelial cells (HCECs) stimulated with A. fumigatus. We verified that the anti-inflammatory effect of Lico A is associated with the activation of the Nrf2/HO-1 axis. These results indicated that Lico A could provide a protective role in A. fumigatus keratitis through its anti-inflammatory and antifungal activities.
Collapse
Affiliation(s)
- Yiran Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, 750 Republican St, Seattle, Washington 98109, United States
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | | | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| |
Collapse
|
30
|
Kim Y, Kim J, Kim B, Kim R, Kim HJ, Lee EH, Kim J, Park J, Jeong Y, Park SI, Kim H, Kang M, Lee J, Bahn YS, Choi JW, Park JH, Park KD. Discovery and Optimization of a Series of Vinyl Sulfoximine-Based Analogues as Potent Nrf2 Activators for the Treatment of Multiple Sclerosis. J Med Chem 2024; 67:17866-17892. [PMID: 39323296 PMCID: PMC11472819 DOI: 10.1021/acs.jmedchem.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease of the central nervous system (CNS), which leads to demyelination, axonal loss, and neurodegeneration. Increased oxidative stress and neurodegeneration have been implicated in all stages of MS, making neuroprotective therapeutics a promising strategy for its treatment. We previously have reported vinyl sulfones with antioxidative and anti-inflammatory properties that activate nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces the expression of cytoprotective genes against oxidative stress. In this study, we synthesized vinyl sulfoximine derivatives by modifying the core structure and determined therapeutic potential as Nrf2 activators. Among them, 10v effectively activated Nrf2 (EC50 = 83.5 nM) and exhibited favorable drug-like properties. 10v successfully induced expression of Nrf2-dependent antioxidant enzymes and suppressed lipopolysaccharide (LPS)-induced inflammatory responses in BV-2 microglial cells. We also confirmed that 10v effectively reversed disease progression and attenuated demyelination in an experimental autoimmune encephalitis (EAE) mouse model of MS.
Collapse
Affiliation(s)
- Yoowon Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehwan Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoo Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeeun Jeong
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang In Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyemin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsik Kang
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Yong-Sun Bahn
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Cureverse
Co., Ltd., Seoul Biohub, Seoul 02455, Republic
of Korea
| | - Jong-Hyun Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
31
|
Shin S, Kim NS. Chemical Analysis of SU-Eohyeol Pharmacopuncture and Its In Vitro Biological Activities. Int J Med Sci 2024; 21:2562-2577. [PMID: 39439454 PMCID: PMC11492884 DOI: 10.7150/ijms.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction: Pharmacopuncture (PA) is widely used in traditional Korean medicine to treat various diseases, including abdominal obesity, nervous system diseases, and musculoskeletal disorders. In the present study, we attempted to identify the chemical components of SU-Eohyeol PA (SUEHP), comprising extracts of eight medicinal herbs and Cervi Parvum Cornu, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) and evaluated the in vitro anti-inflammatory and antioxidant activities of SUEHP. Methods: Volatile components of SUEHP were identified by GC-MS analysis of the n-hexane, dichloromethane (DCM), and distilled water-acetonitrile (DW-CAN) solvent fractions. LC-MS was performed to identify small metabolites of SUEHP using a water-methanol solvent fraction. In vitro anti-inflammatory and antioxidant potential of SUEHP was evaluated using cell-free biochemical assays and a BV2 microglial cell culture system. Results: GC-MS of SUEHP using the n-hexane, DCM, and DW-ACN solvent fractions detected 32 components. The major components (>3%) were 9-octadecenamide (25.9%) and eicosane (5.4%) in n-hexane fraction, 9-octadecenamide (29.1%) and cis-11-octadecenoic acid (3.1%) in DCM fraction, and 9-octadecenamide (31.1%) and 9-octadecenoic acid (17.9%) in DW-CAN fraction. LC-MS of SUEHP using a water-methanol solvent fraction detected 36 primary metabolites, including (a)symmetric dimethylarginine, L-pyroglutamic acid, n,n-dimethylglycine, n-acetyl-L-aspartic acid, and amino acids. Enrichment analysis and subsequent network analysis of the primary metabolites suggested their association with neurodegenerative diseases, including Alzheimer's disease and schizophrenia. Cell-free biochemical assays and molecular signaling studies of lipopolysaccharide-stimulated BV2 murine microglial cells demonstrated the anti-inflammatory and antioxidant activities of SUEHP. Conclusion: The present study identified the biochemically active components of SUEHP and suggested their therapeutic potential against diseases related to inflammatory and oxidative stress.
Collapse
Affiliation(s)
- Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
32
|
Wongsirisuwan S, Intarak N, Prommanee S, Sa-Ard-Iam N, Namano S, Nantanapiboon D, Porntaveetus T. Influence of light-polymerizing units and zirconia on the physical, chemical and biological properties of self-adhesive resin cements. BMC Oral Health 2024; 24:1172. [PMID: 39363275 PMCID: PMC11451154 DOI: 10.1186/s12903-024-04941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Self-adhesive resin cements (SARCs) are widely used for fixed prostheses, but incomplete cleaning near the gingival margin can cause inflammation. However, the factors influencing cement properties and the biological response of gingival fibroblasts to cement eluates are not well understood. This study examines the impact of two light-polymerizing units (LPUs) on the physical and chemical properties of two SARCs under simulated clinical conditions, as well as the subsequent response of human gingival fibroblasts (hGFs) to these eluates. METHODS Dental cement discs of SARCs were polymerized using Kerr DemiPlus and 3 M Elipar DeepCure-S LED LPUs with or without a 2-mm thick zirconia screen. Physical properties (microhardness, surface roughness, residual monomers) were evaluated. hGFs' cell viability, wound healing potency, and gene expression were assessed. RESULTS Both Maxcem and RelyX exhibited reduced microhardness and increased surface roughness when polymerized through zirconia or with DemiPlus LPU. Higher residual monomers (HEMA and GDMA in Maxcem; TEGDMA in RelyX) concentration was observed with DemiPlus and zirconia polymerization. Maxcem polymerized with DemiPlus exhibited lower cell viability, impaired healing, and altered gene expression in hGFs compared to those polymerized with Elipar LPU. Gene expression changes included downregulated NRF2 and HO-1 and upregulated CCR-3. CONCLUSIONS Light-polymerizing Maxcem through zirconia with DemiPlus LPU compromised SARCs' properties, leading to higher residual monomers and negatively impacting hGFs' viability, healing, and gene expression. Careful material selection and polymerization techniques are crucial to minimize adverse effects on surrounding tissues. CLINICAL SIGNIFICANCE Clinicians should exercise caution when using LPUs and SARCs, especially when polymerizing through zirconia. This will help optimize the physical and chemical properties of SARCs and minimize potential adverse effects on the surrounding gingival soft tissues.
Collapse
Affiliation(s)
- Siriwong Wongsirisuwan
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasiprapa Prommanee
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sunporn Namano
- Implant and Esthetic Dentistry Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Dusit Nantanapiboon
- Department of Operative Dentistry, Dental Material Research and Development Center, Faculty of Dentistry, University, Bangkok, Thailand
- Clinic of General, Special Care, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Geriatric Dentistry and Special Patients Care International Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
33
|
Ayub Mohammed Salih S, Jabarpour M, Sedighi Gilani MA, Sajadi H, Saedi Marghmaleki M, Shabani Nashtaei M, Salem M, Amidi F. The effect of astaxanthin after varicocele surgery on antioxidant status and semen quality in infertile men: A triple-blind randomized clinical trial. Food Sci Nutr 2024; 12:7977-7988. [PMID: 39479675 PMCID: PMC11521721 DOI: 10.1002/fsn3.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 11/02/2024] Open
Abstract
Varicocele (VC) is widely recognized as a prevalent etiological factor contributing to male infertility. It has been established that the generation of reactive oxygen species (ROS) plays a significant role in the progression and development of VC. Antioxidants may regulate ROS levels in these patients. Astaxanthin (ASX) is a carotenoid compound with notable antioxidant and anti-inflammatory characteristics. The current study postulated that the administration of ASX following varicocelectomy (VCT) could potentially enhance antioxidant status and semen quality in these patients. A total of 40 infertile males with clinical VC and abnormal semen analyses were randomly assigned to take part in the current trial. For 3 months following surgery, the intervention group took ASX (6 mg/day) while the control group received a placebo. After intervention, semen parameters, antioxidant status, and pro-inflammatory cytokines were compared between the two groups. Regarding semen parameters, antioxidant treatment led to a significant improvement in total and progressive motility in the treatment group (p < 0.05). Additionally, ASX led to a considerable increase in the expression levels of NRF2, Keap1, SOD2, SOD3, and BCL2, though the enhancement in the expression level of SOD3 was not statistically significant (p > .05). However, ASX significantly decreased the BAX expression level (p < .05). Even though the level of total antioxidant capacity (TAC) of seminal fluid (SF) increased significantly in the treatment group (p < .05), the level of total oxidative stress (TOS) in SF did not differ substantially between treatment and control groups (p > .05). Based on inflammatory factors in SF, ASX led to a considerable reduction in levels of TNF-α, IL-1β, and IL-6 (p < .05). Our findings demonstrated that ASX treatment provides an important contribution to VCT outcomes by modulating antioxidant status and pro-inflammatory cytokines. Our results indicated that ASX may be beneficial as an adjuvant therapy for infertile men following VCT.
Collapse
Affiliation(s)
| | - Masoome Jabarpour
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Sedighi Gilani
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | | | - Maryam Shabani Nashtaei
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Maryam Salem
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fardin Amidi
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
34
|
Zhang Y, Liu J, Yuan S, Liu S, Zhang M, Hu H, Cao Y, Hu G, Fu S, Guo W. Unveiling the regulatory role of SIRT1 in the oxidative stress response of bovine mammary cells. J Dairy Sci 2024; 107:8722-8735. [PMID: 38876213 DOI: 10.3168/jds.2024-24936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
High-yield dairy cows typically undergo intense cellular metabolism, leading to oxidative stress in their mammary tissues. Our study found that compared with ordinary cows, these high-yield cows had significantly elevated levels of H2O2, lipoperoxidase, and total antioxidant capacity in their blood. This increased oxidative stress is associated with heightened expression of genes such as GCLC, GCLM, and SIRT1 and proteins such as SIRT1 in the mammary tissue of high-yield cows. We stimulated MAC-T cells with H2O2 at a concentration equal to the average H2O2 level in the serum of ethically high-yielding cows, as detected by an assay kit. Our observations revealed that short-term exposure (12 h) to H2O2 upregulated the expression of the SIRT1 gene and SIRT1 protein. It also increased gene expression for SOD2, CAT, GCLC, GCLM, PGC-1α, and NQO1, elevated the phosphorylation of AMPK, and enhanced protein expression of PGC-1α, NQO1, Nrf2, and HO-1, as well as reduced the phosphorylation of NF-κB. Additionally, short-term H2O2 stimulation resulted in increased total antioxidant capacity and levels of superoxide dismutase, glutathione, and catalase in the mammary epithelial cells of dairy cows. In contrast, prolonged exposure to H2O2 (24 h) yielded opposite results, indicating reduced antioxidant capacity. Further investigation showed that the SIRT1 inhibitor EX 527 could reverse the enhanced cellular antioxidant capacity triggered by short-term oxidative stress. However, it is crucial to note that although 12 h of H2O2 stimulation improved antioxidant capacity, reactive oxygen species (ROS) and malondialdehyde (MDA) levels inside the cell gradually increased over time, suggesting greater damage under long-term stimulation. Conversely, the SIRT1 activator SRT 2104 could reverse the reduced cellular antioxidant capacity caused by long-term oxidative stress and significantly inhibit the accumulation of ROS and MDA. Notably, SRT 2104 demonstrated similar effects in MAC-T cells during lactation. In summary, SIRT1 plays a crucial role in regulating the antioxidant capacity of mammary epithelial cells in dairy cows. This discovery provides valuable insights into the antioxidant mechanisms of mammary cells, which can serve as a theoretical foundation for future mammary health strategies.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuai Yuan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Meng Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijie Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Chongqing Research Institute, Jilin University, 401120 Chongqing, China.
| |
Collapse
|
35
|
Liu X, Huang Q, Li W, Yu J, Yu J, Yang Y, Song H, Liu Y, Niu X, Li W. The inhibitory impact of Schisandrin on inflammation and oxidative stress alleviates LPS-induced acute kidney injury. Biotechnol Appl Biochem 2024; 71:1116-1128. [PMID: 38798098 DOI: 10.1002/bab.2602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Inflammation and oxidative stress (OS) are the major pathogenic characteristics of acute kidney injury (AKI). Studies have shown that Schisandrin (Sch) could regulate inflammatory disease. However, the function and mechanism of Sch in AKI progression are still unknown. Here, we investigated Sch's potential effects and mechanism on mice's renal damage and macrophages induced by lipopolysaccharide (LPS). Sch decreased LPS-induced inflammatory factor production while increasing the activity of related antioxidant enzymes in macrophages and mouse kidney tissues. Hematoxylin and eosin staining revealed that Sch may have the ability to profoundly inhibit inflammatory cell invasion and tissue damage caused by LPS in renal tissue. Furthermore, Western blot and immunohistochemical studies showed that Sch exerted its effects mainly through up-regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 and inhibition of Toll-like receptor 4‒mitogen-activated protein kinases/nuclear factor-kappa B pathways. Collectively, this study illustrates that Sch suppresses LPS-stimulated AKI by descending inflammation and OS, illuminating prospective AKI treatment options.
Collapse
Affiliation(s)
- Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Wenqi Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
36
|
Liu W, Qi Y, Diao W, Lin J, Zhang L, Wang Q, Gu L, Feng Z, Chi M, Wang Y, Yi W, Li Y, Li C, Zhao G. Chelerythrine ameliorates Aspergillus fumigatus keratitis through suppressing the LOX-1/p38 MAPK signaling pathway. Cytokine 2024; 182:156717. [PMID: 39067394 DOI: 10.1016/j.cyto.2024.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Aspergillus fumigatus (A. fumigatus) keratitis is a type of infectious corneal disease that significantly impairs vision. The objective of this study is to evaluate the therapeutic potential of chelerythrine (CHE) on A. fumigatus keratitis. METHODS The antifungal activity of CHE was assessed through various tests including the minimum inhibitory concentration test, scanning electron microscopy, transmission electron microscopy, propidium iodide uptake test and plate count. Neutrophil infiltration and activity were assessed using immunofluorescence staining and the myeloperoxidase test. RT-PCR, western blotting assay, and ELISA were performed to measure the expression levels of proinflammatory cytokines (IL-1β and IL-6), NF-E2-related factor (Nrf2), heme oxygenase-1 (HO-1), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), as well as to determine the ratio of phosphorylated-p38 (p-p38) mitogen-activated protein kinase (MAPK) to p38 MAPK. RESULTS In vitro, CHE inhibited the growth of A. fumigatus conidia, reduced fungal hyphae survival, and prevented fungal biofilm formation. In vivo, CHE reduced the severity of A. fumigatus keratitis and exhibited an excellent anti-inflammatory effect by blocking neutrophil infiltration. Furthermore, CHE decreased the expression levels of proinflammatory cytokines and LOX-1 at both mRNA and protein levels, while also decreasing the p-p38 MAPK/p38 MAPK ratio. Additionally, CHE increased the expression levels of Nrf2 and HO-1. CONCLUSION CHE provides protection against A. fumigatus keratitis through multiple mechanisms, including reducing fungal survival, inducing anti-inflammatory effects, enhancing Nrf2 and HO-1 expression, and suppressing the signaling pathway of LOX-1/p38 MAPK.
Collapse
Affiliation(s)
- Wenyao Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yinghe Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Weilin Diao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yuwei Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wendan Yi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yuqi Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
37
|
Feng J, Ji K, Pan Y, Huang P, He T, Xing Y. Resveratrol Ameliorates Retinal Ischemia-Reperfusion Injury by Modulating the NLRP3 Inflammasome and Keap1/Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024; 61:8454-8466. [PMID: 38517616 DOI: 10.1007/s12035-024-04105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Glaucoma, as an ischemia-reperfusion (I/R) injury disease, leading irreversible blindness through the loss of retinal ganglion cells (RGCs), mediated by various pathways. Resveratrol (Res) is a polyphenolic compound that exerts protective effects against I/R injury in many tissues. This article aimed to expound the underlying mechanisms through which Res protects RGCs and reduces visual dysfunction in vivo. An experimental glaucoma model was created using 6-8-week wild-type male C57BL/6J mice. Res was injected intraperitoneally for 5 days. The mice were then grouped according to the number of days after surgery and whether Res treatment was administered. We applied the Brn3a-labeled immunofluorescence staining and flash electroretinography (ERG) to assess the survival of RGCs and visual function. The expression of components of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the interleukin-1-beta (IL-1β), and vital indicators of kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway at the protein and RNA levels were detected respectively. The survival of RGCs was reduced after surgery compared to controls, whereas Res application rescued RGCs and improved visual dysfunction. In conclusion, our results discovered that Res administration showed neuroprotective effects through inhibition of the NLRP3 inflammasome pathway and activation of Keap1/Nrf2/HO-1 pathway. Thus, we further elucidated the potential of Res in glaucoma therapy.
Collapse
Affiliation(s)
- Jiazhen Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Yiji Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Pingping Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
- Eye Institute of Wuhan University, Hubei, China.
| |
Collapse
|
38
|
Yeh KL, Wu SW, Chiang CY, Chen CJ, Chen WY, Tseng CC, Kuan YH, Chou CC. Enhancing ocular protection against UVB: The role of irigenin in modulating oxidative stress and apoptotic pathways In Vivo. Biomed Pharmacother 2024; 179:117346. [PMID: 39232385 DOI: 10.1016/j.biopha.2024.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Oxidative damage contributes to age-related macular degeneration. Irigenin possesses diverse pharmacologic properties, including antioxidative and antiapoptotic effects. Our in vivo experiments indicated that irigenin mitigates UVB-induced histopathologic changes and oxidative DNA damage. Histologic analyses and TUNEL staining revealed that this compound dose-dependently ameliorated UVB-induced retinal damage and apoptosis. Furthermore, irigenin substantially reduced the level of 8-hydroxyguanosine, a biomarker of UVB-induced oxidative DNA damage. We further explored the molecular mechanisms that mediate the protective effects of irigenin. Our findings suggested that UVB-induced generation of ROS disrupts the stability of the mitochondrial membrane, activating intrinsic apoptotic pathways; the underlying mechanisms include the release of cytochrome c, activation of caspase-9 and caspase-3, and subsequent degradation of PARP-1. Notably, irigenin reversed mitochondrial disruption and apoptosis. It also modulated the Bax and Bcl-2 expression but influenced the mitochondrial apoptotic pathways. Our study highlights the role of the Nrf2 pathway in mitigating the effects of oxidative stress. We found that UVB exposure downregulated, but irigenin treatment upregulated the expression of Nrf2 and antioxidant enzymes. Therefore, irigenin activates the Nrf2 pathway to address oxidative stress. In conclusion, irigenin exhibits protective effects against UVB-induced ocular damage, evidenced by the diminution of histological alterations. It mitigates oxidative DNA damage and apoptosis in the retinal tissues by modulating the intrinsic apoptotic pathways and the AIF mechanisms. Furthermore, irigenin effectively reduces lipid peroxidation, enhancing the activity of antioxidant enzymes by stimulating the Nrf2 pathway. This protective mechanism underscores the potential benefit of irigenin in combating UVB-mediated ocular damage.
Collapse
Affiliation(s)
- Kun-Lin Yeh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Yu Chiang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Dermatology, Shiso Municipal Hospital, Hyogo, Japan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
39
|
Deng X, Wu Q, Liu Y. Eucommia ulmoidesOliv. leaves flavonoids attenuate methylglyoxal-induced endothelial cell apoptosis in vitro and in vivo by upregulating AKT-Nrf2 signaling and downregulating oxidative stress. Food Sci Nutr 2024; 12:7938-7953. [PMID: 39479661 PMCID: PMC11521679 DOI: 10.1002/fsn3.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 08/04/2024] [Indexed: 11/02/2024] Open
Abstract
Methylglyoxal (MGO) triggers oxidative stress responses in vascular endothelial cells, leading to apoptosis linked to diabetic vascular complications. Total flavonoids of Eucommia ulmoides leaves (TFEL) display antioxidant activity, yet its prevention of MGO-induced apoptosis and mechanisms are unclear. Our study used western blotting and ELISA to evaluate protein levels and enzyme activities. Cell viability and apoptosis were evaluated using CCK8 assay and PE Annexin V/7-AAD double staining. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured using fluorescence probes. Vascular pathological changes and apoptosis were analyzed through H&E and TUNEL staining. In vitro, MGO-stimulated human umbilical vein endothelial cells (HUVECs) were treated with varying TFEL concentrations. Our results demonstrated that TFEL significantly enhanced cell viability, reduced apoptosis, downregulated caspase-3 activity, and Bax/Bcl-2 ratio. Moreover, TFEL markedly suppressed MGO-induced ROS and malondialdehyde (MDA) production while restoring antioxidant enzyme activity and MMP. TFEL pretreatment promoted the expression of p-Akt, Nrf2, and HO-1 proteins. Pharmacological inhibition of p-Akt significantly suppressed the upregulation of Nrf2 and HO-1 protein levels mediated by TFEL. Consistently, pharmacological inhibition of Nrf2 or p-Akt partially abrogated the protective effects of TFEL against MGO-induced damage in HUVECs. In vivo studies revealed that TFEL (100 and 200 mg/kg) partially restored antioxidant capacity and reduced aortic thickness and apoptosis in MGO-injured mice. In conclusion, the findings indicate that TFEL mitigates MGO-induced apoptosis via activation of p-Akt/Nrf2/HO-1 and scavenging of oxidative stress, highlighting its potential in diabetic vascular complication management.
Collapse
Affiliation(s)
- Xin Deng
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Qianfeng Wu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Youping Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
40
|
Ahn SY, Kim KA, Lee S, Kim KH. Potential skin anti-aging effects of main phenolic compounds, tremulacin and tremuloidin from Salix chaenomeloides leaves on TNF-α-stimulated human dermal fibroblasts. Chem Biol Interact 2024; 402:111192. [PMID: 39127184 DOI: 10.1016/j.cbi.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging. Utilizing LC/MS-guided chemical analysis of the ethanol extract of S. chaenomeloides leaves, with a focus on major compounds, we successfully isolated two main phenolic compounds, tremulacin (1) and tremuloidin (2). Subsequently, we investigated the protective effects of tremulacin (1) and tremuloidin (2) in TNF-α-stimulated human dermal fibroblasts (HDFs). The results revealed that both tremulacin (1) and tremuloidin (2) inhibited TNF-α-stimulation-induced ROS, suppressed matrix metalloproteinase-1 (MMP-1) expression, and enhanced collagen secretion. This implies that both tremulacin (1) and tremuloidin (2) hold promise as preventive agents against photoaging-induced skin aging. Furthermore, we assessed the activity of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and heme oxygenase 1 (HO-1) to elucidate the mechanism of photoaging inhibition by tremuloidin (2), which exhibited superior efficacy. We found that tremuloidin (2) inhibited ERK and p38 phosphorylation and notably suppressed COX-2 expression while significantly upregulating HO-1 expression. These findings suggest potent anti-inflammatory and antioxidant properties of tremuloidin (2), positioning it as a potential candidate for combating photoaging-induced skin aging.
Collapse
Affiliation(s)
- Si-Young Ahn
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung Ah Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
41
|
Tu JJ, Yu ZZ, Ou ML, Cen JX, Xue K, Zhou J, Li SJ, Lu GD. Differential impacts of nonsteroidal anti-inflammatory drugs on lifespan and healthspan in aged Caenorhabditis elegans. J Appl Toxicol 2024; 44:1528-1539. [PMID: 38840409 DOI: 10.1002/jat.4655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Aging and age-related diseases are intricately associated with oxidative stress and inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown their promise in mitigating age-related conditions and potentially extending lifespan in various model organisms. However, the efficacy of NSAIDs in older individuals may be influenced by age-related changes in drug metabolism and tolerance, which could result in age-dependent toxicities. This study aimed to evaluate the potential risks of toxicities associated with commonly used NSAIDs (aspirin, ibuprofen, acetaminophen, and indomethacin) on lifespan, healthspan, and oxidative stress levels in both young and old Caenorhabditis elegans. The results revealed that aspirin and ibuprofen were able to extend lifespan in both young and old worms by suppressing ROS generation and enhancing the expression of antioxidant SOD genes. In contrast, acetaminophen and indomeacin accelerated aging process in old worms, leading to oxidative stress damage and reduced resistance to heat stress through the pmk-1/skn-1 pathway. Notably, the harmful effects of acetaminophen and indomeacin were mitigated when pmk-1 was knocked out in the pmk-1(km25) strain. These results underscore the potential lack of benefit from acetaminophen and indomeacin in elderly individuals due to their increased susceptibility to toxicity. Further research is essential to elucidate the underlying mechanisms driving these age-dependent responses and to evaluate the potential risks associated with NSAID use in the elderly population.
Collapse
Affiliation(s)
- Jia-Jun Tu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhen-Zhen Yu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Mei-Ling Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Jin-Xiong Cen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Kun Xue
- School of Public Health, Fudan University, Shanghai, China
| | - Jing Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
43
|
Wu W, Tang J, Bao W, Feng Q, Zheng J, Hong M, Guo S, Zhu Y, Huang S, Zhao M, Duan JA, Liu R. Thiols-rich peptide from water buffalo horn keratin alleviates oxidative stress and inflammation through co-regulating Nrf2/Hmox-1 and NF-κB signaling pathway. Free Radic Biol Med 2024; 223:131-143. [PMID: 39084576 DOI: 10.1016/j.freeradbiomed.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Water buffalo horn (WBH), a traditional Chinese medicine, is known for its antipyretic, anti-inflammatory and antioxidant properties. This study aims to investigate the therapeutic potential of WBH keratin (WBHK) and its derived thiol-rich peptide fractions (SHPF) for oxidative stress and inflammation. WBHK and SHPF were prepared and tested using various models including LPS-induced fever in rabbits, H2O2-induced oxidative damage in bEnd.3 cells, TNF-α-induced inflammation in bEnd.3 cells and LPS-induced inflammation in RAW 264.7 cells. Expression of key markers, such as Nrf2, Hmox-1 and NF-κB, were analyzed using qRT-PCR, ELISA and Western blotting. Label-free quantitative proteomic analysis was used to identify key differential proteins associated with the efficacy of SHPF. Our results demonstrated that treatment with WBHK significantly reduced body temperature after 0.5 h of administration in the fever rabbit model. SHPF could alleviate cellular inflammatory injury and oxidative damage by activating the key transcription factor Nrf2 and increasing the expression level of Hmox-1. SHPF could inhibit the NF-κB pathway by reducing IκB phosphorylation. It was also found that SHPF could reduce pro-inflammatory cytokine (IL-6, COX-2 and PGE2) and inhibit the expression of VCAM-1, ICAM-1, IL-6 and MCP-1. Proteomics analysis showed that SHPF could inhibit HMGB1 expression and release. The results indicated that SHPF could significantly reduce inflammation and oxidative stress by regulating the Nrf2/Hmox-1 and NF-κB pathways. These findings suggest the potential therapeutic applications of WBH components in the treatment of oxidative stress and inflammation-related diseases.
Collapse
Affiliation(s)
- Wenxing Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiayao Tang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Zhangzhou Institute for Drug Control, ZhangZhou 363099, PR China
| | - Wanglin Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qiyuan Feng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Min Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Zhu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Siying Huang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Rui Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China.
| |
Collapse
|
44
|
Yuan K, Yang Y, Lin Y, Zhou F, Huang K, Yang S, Kong W, Li F, Kan T, Wang Y, Cheng C, Liang Y, Chang H, Huang J, Ao H, Yu Z, Li H, Liu Y, Tang T. Targeting Bacteria-Induced Ferroptosis of Bone Marrow Mesenchymal Stem Cells to Promote the Repair of Infected Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404453. [PMID: 39166412 PMCID: PMC11497072 DOI: 10.1002/advs.202404453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/30/2024] [Indexed: 08/22/2024]
Abstract
The specific mechanisms underlying bacteria-triggered cell death and osteogenic dysfunction in host bone marrow mesenchymal stem cells (BMSCs) remain unclear, posing a significant challenge to the repair of infected bone defects. This study identifies ferroptosis as the predominant cause of BMSCs death in the infected bone microenvironment. Mechanistically, the bacteria-induced activation of the innate immune response in BMSCs leads to upregulation and phosphorylation of interferon regulatory factor 7 (IRF7), thus facilitating IRF7-dependent ferroptosis of BMSCs through the transcriptional upregulation of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4). Moreover, it is found that intervening in ferroptosis can partially rescue cell injuries and osteogenic dysfunction. Based on these findings, a hydrogel composite 3D-printed scaffold is designed with reactive oxygen species (ROS)-responsive release of antibacterial quaternized chitosan and sustained delivery of the ferroptosis inhibitor Ferrostatin-1 (Fer-1), capable of eradicating pathogens and promoting bone regeneration in a rat model of infected bone defects. Together, this study suggests that ferroptosis of BMSCs is a promising therapeutic target for infected bone defect repair.
Collapse
Affiliation(s)
- Kai Yuan
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yiqi Yang
- Department of OrthopedicsThe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RdHangzhou310003P. R. China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Feng Zhou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversityNo. 899 Ping Hai RoadSuzhouJiangsu215006P. R. China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Weiqing Kong
- Department of Orthopaedic SurgeryXuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical University199 Jiefang South RoadXuzhou221009P. R. China
| | - Fupeng Li
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yao Wang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Caiqi Cheng
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yakun Liang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Haishuang Chang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Jie Huang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and EngineeringEast China Jiaotong UniversityNanchang330000P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| |
Collapse
|
45
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
46
|
Tang QQ, Wang ZD, An XH, Zhou XY, Zhang RZ, Zhan X, Zhang W, Zhou J. Apigenin Ameliorates H 2O 2-Induced Oxidative Damage in Melanocytes through Nuclear Factor-E2-Related Factor 2 (Nrf2) and Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (Akt)/Mammalian Target of Rapamycin (mTOR) Pathways and Reducing the Generation of Reactive Oxygen Species (ROS) in Zebrafish. Pharmaceuticals (Basel) 2024; 17:1302. [PMID: 39458943 PMCID: PMC11510047 DOI: 10.3390/ph17101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Apigenin is one of the natural flavonoids found mainly in natural plants, as well as some fruits and vegetables, with celery in particular being the most abundant. Apigenin has antioxidant, anti-tumor, anti-inflammatory, and anticancer effects. In this research, we attempted to further investigate the effects of apigenin on the mechanism of repairing oxidative cell damage. The present study hopes to provide a potential candidate for abnormal skin pigmentation disorders. Methods: We used 0.4 mM H2O2 to treat B16F10 cells for 12 h to establish a model of oxidative stress in melanocytes, and then we gave apigenin (0.1~5 μM) to B16F10 cells for 48 h, and detected the expression levels of melanin synthesis-related proteins, dendritic regulation-related proteins, antioxidant signaling pathway- and Nrf2 signaling pathway-related proteins, autophagy, and autophagy-regulated pathways by immunoblotting using Western blotting. The expression levels of PI3K/Akt/mTOR proteins were measured by β-galactosidase staining and Western blotting for cellular decay, JC-1 staining for mitochondrial membrane potential, and Western blotting for mitochondrial fusion- and mitochondrial autophagy-related proteins. Results: Apigenin exerts antioxidant effects by activating the Nrf2 pathway, and apigenin up-regulates the expression of melanin synthesis-related proteins Tyr, TRP1, TRP2, and gp100, which are reduced in melanocytes under oxidative stress. By inhibiting the expression of senescence-related proteins p53 and p21, and delaying cellular senescence, we detected the mitochondrial membrane potential using JC-1, and found that apigenin improved the reduction in mitochondrial membrane potential in melanocytes under oxidative stress, and maintained the normal function of mitochondria. In addition, we further detected the key regulatory proteins of mitochondrial fusion and division, MFF, p-DRP1 (S637), and p-DRP1 (S616), and found that apigenin inhibited the down-regulation of fusion-associated protein, p-DRP1 (S637), and the up-regulation of division-associated proteins, MFF and p-DRP1 (S616), due to oxidative stress in melanocytes, and promoted the mitochondrial fusion and ameliorated the imbalance between mitochondrial division and fusion. We further detected the expression of fusion-related proteins OPA1 and Mitofusion-1, and found that apigenin restored the expression of the above fusion proteins under oxidative stress, which further indicated that apigenin promoted mitochondrial fusion, improved the imbalance between mitochondrial division and fusion, and delayed the loss of mitochondrial membrane potential. Apigenin promotes the expression of melanocyte autophagy-related proteins and the key mitochondrial autophagy proteins BNIP3L/Nix under oxidative stress, and activates the PINK1/Parkin signaling pathway by up-regulating the expression of autophagy-related proteins, as well as the expression of PINK1 and Parkin proteins, to promote melanocyte autophagy and mitochondrial autophagy. Conclusions: Apigenin exerts anti-melanocyte premature aging and detachment effects by promoting melanin synthesis, autophagy, and mitochondrial autophagy in melanocytes, and inhibiting oxidative cell damage and senescence.
Collapse
Affiliation(s)
- Qing-Qing Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Zu-Ding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xiao-Hong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xin-Yuan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Rong-Zhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| |
Collapse
|
47
|
Distefano A, Orlando L, Partsinevelos K, Longhitano L, Emma R, Caruso M, Vicario N, Denaro S, Sun A, Giordano A, Tomasello B, Alanazi AM, Li Volti G, Amorini AM. Comparative evaluation of cigarette smoke and a heated tobacco product on microglial toxicity, oxidative stress and inflammatory response. J Transl Med 2024; 22:876. [PMID: 39350202 PMCID: PMC11440907 DOI: 10.1186/s12967-024-05688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Tobacco smoking is the leading cause of preventable death and disease worldwide, with over 8 million annual deaths attributed to cigarette smoking. This study investigates the impact of cigarette smoke and heated tobacco products (HTPs) on microglial function, focusing on toxicological profiles, inflammatory responses, and oxidative stress using ISO standard and clinically relevant conditions of exposure. METHODS We assessed cell viability, reactive oxygen species (ROS) production, lipid peroxidation, mitochondrial function, unfolded protein response, and inflammation in human microglial cells (HMC3) exposed to cigarette smoke, HTP aerosol or nicotine. RESULTS Our findings show that cigarette smoke significantly reduces microglial viability, increases ROS formation, induces lipid peroxidation, and reduces intracellular glutathione levels. Cigarette smoke also alters the expression of genes involved in mitochondrial dynamics and biogenesis, leading to mitochondrial dysfunction. Additionally, cigarette smoke impairs the unfolded protein response, activates the NF-κB pathway, and induces a pro-inflammatory state characterized by increased TNF and IL-18 expression. Furthermore, cigarette smoke causes DNA damage and decreases the expression of the aging marker Klotho β. In contrast, HTP, exhibited a lesser degree of microglial toxicity, with reduced ROS production, lipid peroxidation, and mitochondrial dysfunction compared to conventional cigarettes. CONCLUSION These results highlight the differential toxicological profile of cigarette smoke and HTP on microglial cells, suggesting a potential harm reduction strategy for neurodegenerative disease for smokers unwilling or unable to quit.
Collapse
Affiliation(s)
- Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Konstantinos Partsinevelos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Rosalia Emma
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 89, Catania, 95123, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Ang Sun
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Barbara Tomasello
- Department of Drug and Health Science, Section of Biochemistry, University of Catania, Catania, 95125, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy.
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy.
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| |
Collapse
|
48
|
Lv Y, Peng J, Ma X, Liang Z, Salekdeh GH, Ke Q, Shen W, Yan Z, Li H, Wang S, Ding X. Network Analysis of Gut Microbial Communities Reveals Key Reason for Quercetin Protects against Colitis. Microorganisms 2024; 12:1973. [PMID: 39458282 PMCID: PMC11509604 DOI: 10.3390/microorganisms12101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
As one of the most representative natural products among flavonoids, quercetin (QUE) has been reported to exhibit beneficial effects on gut health in recent years. In this study, we utilized a dextran sulfate sodium (DSS)-induced colitis mice model to explore the protective effects and underlying mechanisms of QUE on colitis. Our data demonstrated that QUE oral gavage administration significantly ameliorates the symptoms and histopathological changes associated with colitis. Additionally, the concentration of mucin-2, the number of goblet cells, and the expression of tight junction proteins (such as ZO-1, Occludin, and Claudin-1) were all found to be increased. Furthermore, QUE treatment regulated the levels of inflammatory cytokines and macrophage polarization, as well as the oxidative stress-related pathway (Nrf2/HO-1) and associated enzymes. Additionally, 16S rDNA sequencing revealed that QUE treatment rebalances the alterations in colon microbiota composition (inlcuding Bacteroidaceae, Bacteroides, and Odoribacter) in DSS-induced colitis mice. The analysis of network dynamics reveals a significant correlation between gut microbial communities and microenvironmental factors associated with inflammation and oxidative stress, in conjunction with the previously mentioned findings. Collectively, our results suggest that QUE has the potential to treat colitis by maintaining the mucosal barrier, modulating inflammation, and reducing oxidation stress, which may depend on the reversal of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yanan Lv
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Jing Peng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj 3135933151, Iran;
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Qunhua Ke
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Hongsheng Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| |
Collapse
|
49
|
Yu P, Su L, Li B, Su J, Yuan G. Selenomethionine alleviates Aeromonas hydrophila-induced oxidative stress and ferroptosis via the Nrf2/HO1/GPX4 pathway in grass carp. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109927. [PMID: 39349229 DOI: 10.1016/j.fsi.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Aeromonas hydrophila infection is a severe, acute, and life-threatening disease affecting grass carp (Ctenopharyngodon idella) in aquaculture. Ferroptosis is a novel form of cell death characterized by the accumulation of free iron and harmful lipid peroxides within cells. While selenomethionine (Se-Met) is known to effectively inhibit ferroptosis and alleviate cell damage, its ability to counteract oxidative stress and ferroptosis induced by A. hydrophila remains unclear. The objective of this study is to reveal the possible mechanism behind the ferroptosis phenomenon during A. hydrophila infection. We established a macrophage model of A. hydrophila invasion to monitor the dynamic changes in iron metabolism markers to evaluate the correlation between ferroptotic stress and A. hydrophila infection. A. hydrophila infection induces cytotoxicity and mitochondrial membrane damage via ferroptosis. This damage is attributed to the accumulation of lipid peroxides due to intracellular ferrous ion overload and glutathione depletion. Supplementation of Se-Met reduced mitochondrial damage, enhanced antioxidant enzyme activity and reduced ferroptosis by activating the Nrf2/HO1/GPX4 axis. These findings provide new insights into the regulatory mechanisms of A. hydrophila-induced ferroptosis in teleosts and suggest that targeted inhibition of ferroptosis may offer a novel therapeutic strategy for managing A. hydrophila infections.
Collapse
Affiliation(s)
- Penghui Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China
| | - Lei Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China.
| |
Collapse
|
50
|
Li Z, Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed Pharmacother 2024; 180:117513. [PMID: 39341075 DOI: 10.1016/j.biopha.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|