1
|
Marcatti M, Tumurbaatar B, Borghi M, Guptarak J, Zhang WR, Krishnan B, Kayed R, Fracassi A, Taglialatela G. Inhibition of Calcineurin with FK506 Reduces Tau Levels and Attenuates Synaptic Impairment Driven by Tau Oligomers in the Hippocampus of Male Mouse Models. Int J Mol Sci 2024; 25:9092. [PMID: 39201779 PMCID: PMC11354963 DOI: 10.3390/ijms25169092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is the most common age-associated neurodegenerative disorder, characterized by progressive cognitive decline, memory impairment, and structural brain changes, primarily involving Aβ plaques and neurofibrillary tangles of hyperphosphorylated tau protein. Recent research highlights the significance of smaller Aβ and Tau oligomeric aggregates (AβO and TauO, respectively) in synaptic dysfunction and disease progression. Calcineurin (CaN), a key calcium/calmodulin-dependent player in regulating synaptic function in the central nervous system (CNS) is implicated in mediating detrimental effects of AβO on synapses and memory function in AD. This study aims to investigate the specific impact of CaN on both exogenous and endogenous TauO through the acute and chronic inhibition of CaN. We previously demonstrated the protective effect against AD of the immunosuppressant CaN inhibitor, FK506, but its influence on TauO remains unclear. In this study, we explored the short-term effects of acute CaN inhibition on TauO phosphorylation and TauO-induced memory deficits and synaptic dysfunction. Mice received FK506 post-TauO intracerebroventricular injection and TauO levels and phosphorylation were assessed, examining their impact on CaN and GSK-3β. The study investigated FK506 preventive/reversal effects on TauO-induced clustering of CaN and GSK-3β. Memory and synaptic function in TauO-injected mice were evaluated with/without FK506. Chronic FK506 treatment in 3xTgAD mice explored its influence on CaN, Aβ, and Tau levels. This study underscores the significant influence of CaN inhibition on TauO and associated AD pathology, suggesting therapeutic potential in targeting CaN for addressing various aspects of AD onset and progression. These findings provide valuable insights for potential interventions in AD, emphasizing the need for further exploration of CaN-targeted strategies.
Collapse
|
2
|
Xing Y, Shi H, Gao X, Zhu X, Zhang D, Fang L, Wang J, Liu C, Wu D, Wang X, Min W. Walnut-Derived Peptides Alleviate Learning and Memory Impairments in a Mice Model via Inhibition of Microglia Phagocytose Synapses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38853533 DOI: 10.1021/acs.jafc.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microglia phagocytose synapses have an important effect on the pathogenesis of neurological disorders. Here, we investigated the neuroprotective effects of the walnut-derived peptide, TWLPLPR(TW-7), against LPS-induced cognitive deficits in mice and explored the underlying C1q-mediated microglia phagocytose synapses mechanisms in LPS-treated HT22 cells. The MWM showed that TW-7 improved the learning and memory capacity of the LPS-injured mice. Both transmission electron microscopy and immunofluorescence analysis illustrated that synaptic density and morphology were increased while associated with the decreased colocalized synapses with C1q. Immunohistochemistry and immunofluorescence demonstrated that TW-7 effectively reduced the microglia phagocytosis of synapses. Subsequently, overexpression of C1q gene plasmid was used to verify the contribution of the TW-7 via the classical complement pathway-regulated mitochondrial function-mediated microglia phagocytose synapses in LPS-treated HT22 cells. These data suggested that TW-7 improved the learning and memory capability of LPS-induced cognitively impaired mice through a mechanism associated with the classical complement pathway-mediated microglia phagocytose synapse.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Haoyuan Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xi Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xinyu Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
3
|
Hong JM, Munna AN, Moon JH, Seol JW, Park SY. Melatonin-mediated calcineurin inactivation attenuates amyloid beta-induced apoptosis. IBRO Neurosci Rep 2024; 16:336-344. [PMID: 38390232 PMCID: PMC10882114 DOI: 10.1016/j.ibneur.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disorder. The accumulation of amyloid beta-peptide is a neuropathological marker of AD. While melatonin is recognized to have protective effects on aging and neurodegenerative disorders, the therapeutic effect of melatonin on calcineurin in AD is poorly understood. In this study, we examined the effect and underlying molecular mechanisms of melatonin treatment on amyloid beta-mediated neurotoxicity in neuroblastoma cells. Melatonin treatment decreased calcineurin and autophagy in neuroblastoma cells. Electron microscopy images showed that melatonin inhibited amyloid beta-induced autophagic vacuoles. The increase in the amyloid beta-induced apoptosis rate was observed more in PrPC-expressing ZW cells than in PrPC-silencing Zpl cells. Taken together, the results suggest that by mitigating the effect of calcineurin and autophagy flux activation, melatonin could also rescue amyloid beta-induced neurotoxic effects. These findings may be relevant to therapy for neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk 54596, Republic of Korea
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk 54596, Republic of Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
4
|
Kaur S, Sehrawat A, Mastana SS, Kandimalla R, Sharma PK, Bhatti GK, Bhatti JS. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson's disease. Life Sci 2023; 330:121995. [PMID: 37541578 DOI: 10.1016/j.lfs.2023.121995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Current therapeutic strategies for PD are limited and mainly involve symptomatic relief, with no available treatment for the underlying causes of the disease. Therefore, there is a need for new therapeutic approaches that target the underlying pathophysiological mechanisms of PD. Calcium homeostasis is an essential process for maintaining proper cellular function and survival, including neuronal cells. Calcium dysregulation is also observed in various organelles, including the endoplasmic reticulum (ER), mitochondria, and lysosomes, resulting in organelle dysfunction and impaired inter-organelle communication. The ER, as the primary calcium reservoir, is responsible for folding proteins and maintaining calcium homeostasis, and its dysregulation can lead to protein misfolding and neurodegeneration. The crosstalk between ER and mitochondrial calcium signaling is disrupted in PD, leading to neuronal dysfunction and death. In addition, a lethal network of calcium cytotoxicity utilizes mitochondria, ER and lysosome to destroy neurons. This review article focused on the complex role of calcium dysregulation and its role in aggravating functioning of organelles in PD so as to provide new insight into therapeutic strategies for treating this disease. Targeting dysfunctional organelles, such as the ER and mitochondria and lysosomes and whole network of calcium dyshomeostasis can restore proper calcium homeostasis and improve neuronal function. Additionally targeting calcium dyshomeostasis that arises from miscommunication between several organelles can be targeted so that therapeutic effects of calcium are realised in whole cellular territory.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, India
| | | | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
5
|
Kim S, Choi J, Kwon J. Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106-126) via Neurotrophic Factor Signaling. Molecules 2023; 28:molecules28093920. [PMID: 37175330 PMCID: PMC10180446 DOI: 10.3390/molecules28093920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Prion protein peptide (PrP) has demonstrated neurotoxicity in brain cells, resulting in the progression of prion diseases with spongiform degenerative, amyloidogenic, and aggregative properties. Thymosin beta 4 (Tβ4) plays a role in the nervous system and may be related to motility, axonal enlargement, differentiation, neurite outgrowth, and proliferation. However, no studies about the effects of Tβ4 on prion disease have been performed yet. In the present study, we investigated the protective effect of Tβ4 against synthetic PrP (106-126) and considered possible mechanisms. Hippocampal neuronal HT22 cells were treated with Tβ4 and PrP (106-126) for 24 h. Tβ4 significantly reversed cell viability and reactive oxidative species (ROS) affected by PrP (106-126). Apoptotic proteins induced by PrP (106-126) were reduced by Tβ4. Interestingly, a balance of neurotrophic factors (nerve growth factor and brain-derived neurotrophic factor) and receptors (nerve growth factor receptor p75, tropomyosin related kinase A and B) were competitively maintained by Tβ4 through receptors reacting to PrP (106-126). Our results demonstrate that Tβ4 protects neuronal cells against PrP (106-126) neurotoxicity via the interaction of neurotrophic factors/receptors.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
- Knotus Co., Ltd., Incheon 22014, Republic of Korea
| | - Jihye Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Lim D, Tapella L, Dematteis G, Talmon M, Genazzani AA. Calcineurin Signalling in Astrocytes: From Pathology to Physiology and Control of Neuronal Functions. Neurochem Res 2023; 48:1077-1090. [PMID: 36083398 PMCID: PMC10030417 DOI: 10.1007/s11064-022-03744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Calcineurin (CaN), a Ca2+/calmodulin-activated serine/threonine phosphatase, acts as a Ca2+-sensitive switch regulating cellular functions through protein dephosphorylation and activation of gene transcription. In astrocytes, the principal homeostatic cells in the CNS, over-activation of CaN is known to drive pathological transcriptional remodelling, associated with neuroinflammation in diseases such as Alzheimer's disease, epilepsy and brain trauma. Recent reports suggest that, in physiological conditions, the activity of CaN in astrocytes is transcription-independent and is required for maintenance of basal protein synthesis rate and activation of astrocytic Na+/K+ pump thereby contributing to neuronal functions such as neuronal excitability and memory formation. In this contribution we overview the role of Ca2+ and CaN signalling in astroglial pathophysiology focusing on the emerging physiological role of CaN in astrocytes. We propose a model for the context-dependent switch of CaN activity from the post-transcriptional regulation of cell proteostasis in healthy astrocytes to the CaN-dependent transcriptional activation in neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale "Amedeo Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
7
|
Li J, Cao J. Case report: A novel PPP3CA truncating mutation within the regulatory domain causes severe developmental and epileptic encephalopathy in a Chinese patient. Front Neurol 2022; 13:889167. [PMID: 36158964 PMCID: PMC9491239 DOI: 10.3389/fneur.2022.889167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Developmental and epileptic encephalopathy 91 (DEE91; OMIM#617711) is a severe neurodevelopmental disorder caused by heterozygous PPP3CA variants. To the best of our knowledge, only a few DEE91 cases have been reported. Results This study reports a boy who experienced recurrent afebrile convulsions and spasms at the age of 2 months. After being given multiple antiepileptic treatments with levetiracetam, adrenocorticotropic hormone (ACTH), prednisone, topiramate, and clonazepam, his seizures were not completely relieved. At the age of 4 months, the patient exhibited delayed neuromotor development and difficulty in feeding; at the age of 6 months, he was diagnosed with developmental regression with recurrent spasms and myoclonic seizures that could respond to vigabatrin. At the age of 1 year and 4 months, the patient showed profound global developmental delay (GDD) with intermittent absence seizures. Whole-exome sequencing (WES) identified a novel loss-of-function variant c.1258_1259insAGTG (p. Val420Glufs*32) in PPP3CA. Conclusion This finding expands the genetic spectrum of the PPP3CA gene and reinforces the theory that DEE91-associated truncating variants cluster within a 26-amino acid region in the regulatory domain (RD) of PPP3CA.
Collapse
Affiliation(s)
- Jieling Li
- Department of Medical General Ward, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Cao
- Department of Medical General Ward, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jie Cao
| |
Collapse
|
8
|
Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Front Cell Neurosci 2022; 16:905218. [PMID: 35966209 PMCID: PMC9374064 DOI: 10.3389/fncel.2022.905218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Krista M. Wartchow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Chen L, Song M, Yao C. Calcineurin in development and disease. Genes Dis 2022; 9:915-927. [PMID: 35685477 PMCID: PMC9170610 DOI: 10.1016/j.gendis.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Calcineurin (CaN) is a unique calcium (Ca2+) and calmodulin (CaM)-dependent serine/threonine phosphatase that becomes activated in the presence of increased intracellular Ca2+ level. CaN then functions to dephosphorylate target substrates including various transcription factors, receptors, and channels. Once activated, the CaN signaling pathway participates in the development of multiple organs as well as the onset and progression of various diseases via regulation of different cellular processes. Here, we review current literature regarding the structural and functional properties of CaN, highlighting its crucial role in the development and pathogenesis of immune system disorders, neurodegenerative diseases, kidney disease, cardiomyopathy and cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Min Song
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| |
Collapse
|
10
|
Baindara P, Agrawal S, Franco OL. Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Rev Anti Infect Ther 2022; 20:849-869. [DOI: 10.1080/14787210.2022.2044794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Missouri, Columbia, MO, USA
| | - Sonali Agrawal
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - O. L. Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
11
|
Dematteis G, Restelli E, Vanella VV, Manfredi M, Marengo E, Corazzari M, Genazzani AA, Chiesa R, Lim D, Tapella L. Calcineurin Controls Cellular Prion Protein Expression in Mouse Astrocytes. Cells 2022; 11:cells11040609. [PMID: 35203261 PMCID: PMC8870693 DOI: 10.3390/cells11040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Prion diseases arise from the conformational conversion of the cellular prion protein (PrPC) into a self-replicating prion isoform (PrPSc). Although this process has been studied mostly in neurons, a growing body of evidence suggests that astrocytes express PrPC and are able to replicate and accumulate PrPSc. Currently, prion diseases remain incurable, while downregulation of PrPC represents the most promising therapy due to the reduction of the substrate for prion conversion. Here we show that the astrocyte-specific genetic ablation or pharmacological inhibition of the calcium-activated phosphatase calcineurin (CaN) reduces PrPC expression in astrocytes. Immunocytochemical analysis of cultured CaN-KO astrocytes and isolation of synaptosomal compartments from the hippocampi of astrocyte-specific CaN-KO (ACN-KO) mice suggest that PrPC is downregulated both in vitro and in vivo. The downregulation occurs without affecting the glycosylation of PrPC and without alteration of its proteasomal or lysosomal degradation. Direct assessment of the protein synthesis rate and shotgun mass spectrometry proteomics analysis suggest that the reduction of PrPC is related to the impairment of global protein synthesis in CaN-KO astrocytes. When WT-PrP and PrP-D177N, a mouse homologue of a human mutation associated with the inherited prion disease fatal familial insomnia, were expressed in astrocytes, CaN-KO astrocytes showed an aberrant localization of both WT-PrP and PrP-D177N variants with predominant localization to the Golgi apparatus, suggesting that ablation of CaN affects both WT and mutant PrP proteins. These results provide new mechanistic details in relation to the regulation of PrP expression in astrocytes, suggesting the therapeutic potential of astroglial cells.
Collapse
Affiliation(s)
- Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.R.); (R.C.)
| | - Virginia Vita Vanella
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (V.V.V.); (M.M.)
| | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (V.V.V.); (M.M.)
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Marco Corazzari
- Department of Health Science (DSS), Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.R.); (R.C.)
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
- Correspondence: (D.L.); (L.T.); Tel.: +39-0321-375822 (L.T.)
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
- Correspondence: (D.L.); (L.T.); Tel.: +39-0321-375822 (L.T.)
| |
Collapse
|
12
|
Decoding the Phosphatase Code: Regulation of Cell Proliferation by Calcineurin. Int J Mol Sci 2022; 23:ijms23031122. [PMID: 35163061 PMCID: PMC8835043 DOI: 10.3390/ijms23031122] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Calcineurin, a calcium-dependent serine/threonine phosphatase, integrates the alterations in intracellular calcium levels into downstream signaling pathways by regulating the phosphorylation states of several targets. Intracellular Ca2+ is essential for normal cellular physiology and cell cycle progression at certain critical stages of the cell cycle. Recently, it was reported that calcineurin is activated in a variety of cancers. Given that abnormalities in calcineurin signaling can lead to malignant growth and cancer, the calcineurin signaling pathway could be a potential target for cancer treatment. For example, NFAT, a typical substrate of calcineurin, activates the genes that promote cell proliferation. Furthermore, cyclin D1 and estrogen receptors are dephosphorylated and stabilized by calcineurin, leading to cell proliferation. In this review, we focus on the cell proliferative functions and regulatory mechanisms of calcineurin and summarize the various substrates of calcineurin. We also describe recent advances regarding dysregulation of the calcineurin activity in cancer cells. We hope that this review will provide new insights into the potential role of calcineurin in cancer development.
Collapse
|
13
|
Calcineurin Activation by Prion Protein Induces Neurotoxicity via Mitochondrial Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5572129. [PMID: 34394828 PMCID: PMC8363446 DOI: 10.1155/2021/5572129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
Prion diseases are caused by PrPsc accumulation in the brain, which triggers dysfunctional mitochondrial injury and reactive oxygen species (ROS) generation in neurons. Recent studies on prion diseases suggest that endoplasmic reticulum (ER) stress induced by misfolding proteins such as misfolded prion protein results in activation of calcineurin. Calcineurin is a calcium-related protein phosphatase of type 2B that exists in copious quantities in the brain and acts as a critical nodal component in the control of cellular functions. To investigate the relationship between calcineurin and intracellular ROS, we assessed the alteration of CaN and ROS induced by prion peptide (PrP) 106-126. Human prion peptide increased mitochondrial ROS by activating calcineurin, and the inhibition of calcineurin activity protected mitochondrial function and neuronal apoptosis in neuronal cells. These results suggest that calcineurin plays a pivotal role in neuronal apoptosis by mediating mitochondrial injury and ROS in prion diseases.
Collapse
|
14
|
Lu H, Fang L, Wang J, Zhao F, Liu C, Gao Y, Liu J, Min W. Pine nut antioxidant peptides ameliorate the memory impairment in a scopolamine-induced mouse model via SIRT3-induced synaptic plasticity. Food Funct 2021; 12:8026-8036. [PMID: 34269783 DOI: 10.1039/d1fo01817e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the effects of a pine nut albumin hydrolysate (fraction <3 kDa) and of its short peptide derivative, Trp-Tyr-Pro-Gly-Lys (WYPGK), on synaptic plasticity and memory function in scopolamine-induced memory-impaired mice, as well as the potential underlying mechanism in PC12 cells. In the scopolamine-induced mouse model, the results revealed that the fraction <3 kDa and WYPGK enhanced synaptic plasticity and improved learning and memory function. H&E and Nissl staining analysis showed that the damage in hippocampal neurons was decreased. Golgi staining and transmission electron microscopy further revealed that the enhanced synaptic plasticity was associated with increased dendritic spine abundance and synaptic density. In an H2O2-induced PC12 cell model, treatment with mitochondrial sirtuin 3 (SIRT3) inhibitor and inducer molecules confirmed that the <3 kDa fraction and WYPGK activated SIRT3, leading to the decrease in Ace-SOD2 acetylation and increasing the expression of SYP, SYN-1, SNAP25, and PSD95, thus enhancing synaptic plasticity. The <3 kDa fraction and WYPGK also activated the ERK/CREB pathway and upregulated the expression of brain-derived neurotrophic factor. Our results show that fraction <3 kDa and WYPGK improve learning and memory ability through SIRT3-induced synaptic plasticity in vitro and in vivo.
Collapse
Affiliation(s)
- Hongyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The serine/threonine phosphatase calcineurin acts as a crucial connection between calcium signaling the phosphorylation states of numerous important substrates. These substrates include, but are not limited to, transcription factors, receptors and channels, proteins associated with mitochondria, and proteins associated with microtubules. Calcineurin is activated by increases in intracellular calcium concentrations, a process that requires the calcium sensing protein calmodulin binding to an intrinsically disordered regulatory domain in the phosphatase. Despite having been studied for around four decades, the activation of calcineurin is not fully understood. This review largely focuses on what is known about the activation process and highlights aspects that are currently not understood. Video abstract.
Collapse
Affiliation(s)
- Trevor P Creamer
- Center for Structural Biology, Department of Molecular & Cellular Biochemistry, 741 S. Limestone Street, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
16
|
Mechanistic Insights of Astrocyte-Mediated Hyperactive Autophagy and Loss of Motor Neuron Function in SOD1 L39R Linked Amyotrophic Lateral Sclerosis. Mol Neurobiol 2020; 57:4117-4133. [PMID: 32676988 DOI: 10.1007/s12035-020-02006-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no cure. The reports showed the role of nearby astrocytes around the motor neurons as one among the causes of the disease. However, the exact mechanistic insights are not explored so far. Thus, in the present investigations, we employed the induced pluripotent stem cells (iPSCs) of Cu/Zn-SOD1L39R linked ALS patient to convert them into the motor neurons (MNs) and astrocytes. We report that the higher expression of stress granule (SG) marker protein G3BP1, and its co-localization with the mutated Cu/Zn-SOD1L39R protein in patient's MNs and astrocytes are linked with AIF1-mediated upregulation of caspase 3/7 and hyper activated autophagy. We also observe the astrocyte-mediated non-cell autonomous neurotoxicity on MNs in ALS. The secretome of the patient's iPSC-derived astrocytes exerts significant oxidative stress in MNs. The findings suggest the hyperactive status of autophagy in MNs, as witnessed by the co-distribution of LAMP1, P62 and LC3 I/II with the autolysosomes. Conversely, the secretome of normal astrocytes has shown neuroprotection in patient's iPSC-derived MNs. The whole-cell patch-clamp assay confirms our findings at a physiological functional level in MNs. Perhaps for the first time, we are reporting that the MN degeneration in ALS triggered by the hyper-activation of autophagy and induced apoptosis in both cell-autonomous and non-cell autonomous conditions.
Collapse
|
17
|
Sun M, Chen X, Yin YX, Gao Y, Zhang L, Chen B, Ji Y, Fukunaga K, Han F, Lu YM. Role of pericyte-derived SENP1 in neuronal injury after brain ischemia. CNS Neurosci Ther 2020; 26:815-828. [PMID: 32495523 PMCID: PMC7366739 DOI: 10.1111/cns.13398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Aims SUMOylation is a posttranslational modification related to multiple human diseases. SUMOylation can be reversed by classes of proteases known as the sentrin/SUMO‐specific proteases (SENPs). In the present study, we investigate the potential role of SENP1 in pericytes in the brain ischemia. Methods Pericyte‐specific deletion of senp1 mice (Cspg4‐Cre; senp1f/f) were used for brain function and neuronal damage evaluation following brain ischemia. The cerebral blood vessels of diameter, velocity, and flux were performed in living mice by two‐photon laser scanning microscopy (TPLSM). Biochemical analysis and immunohistochemistry methods were used to address the role and mechanism of pericyte‐specific SENP1 in the pathological process of brain ischemia. A coculture model of HBVPs and HBMECs mimicked the BBB in vitro and was used to evaluate BBB integrity after glucose deprivation. Results Our results showed that senp1‐specific deletion in pericytes did not affect the motor function and cognitive function of mice. However, the pericyte‐specific deletion of senp1 aggravated the infarct size and motor deficit following focal brain ischemia. Consistently, the TPLSM data demonstrated that SENP1 deletion in pericytes accelerated thrombosis formation in brain microvessels. We also found that pericyte‐specific deletion of senp1 exaggerated the neuronal damage significantly following brain ischemia in mice. Moreover, SENP1 knockdown in pericytes could activate the apoptosis signaling and disrupt the barrier integrity in vitro coculture model. Conclusions Our findings revealed that targeting SENP1 in pericytes may represent a novel therapeutic strategy for neurovascular protection in stroke.
Collapse
Affiliation(s)
- Meiling Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yi-Xuan Yin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yinping Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Li Zhang
- Department of Geriatrics, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Boqian Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yin Ji
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Simcere Pharmaceutical Group, Nanjing, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ying-Mei Lu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Calcineurin Controls Expression of EAAT1/GLAST in Mouse and Human Cultured Astrocytes through Dynamic Regulation of Protein Synthesis and Degradation. Int J Mol Sci 2020; 21:ijms21062213. [PMID: 32210081 PMCID: PMC7139922 DOI: 10.3390/ijms21062213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023] Open
Abstract
Alterations in the expression of glutamate/aspartate transporter (GLAST) have been associated with several neuropathological conditions including Alzheimer's disease and epilepsy. However, the mechanisms by which GLAST expression is altered are poorly understood. Here we used a combination of pharmacological and genetic approaches coupled with quantitative PCR and Western blot to investigate the mechanism of the regulation of GLAST expression by a Ca2+/calmodulin-activated phosphatase calcineurin (CaN). We show that treatment of cultured hippocampal mouse and fetal human astrocytes with a CaN inhibitor FK506 resulted in a dynamic modulation of GLAST protein expression, being downregulated after 24-48 h, but upregulated after 7 days of continuous FK506 (200 nM) treatment. Protein synthesis, as assessed by puromycin incorporation in neo-synthesized polypeptides, was inhibited already after 1 h of FK506 treatment, while the use of a proteasome inhibitor MG132 (1 μM) shows that GLAST protein degradation was only suppressed after 7 days of FK506 treatment. In astrocytes with constitutive genetic ablation of CaN both protein synthesis and degradation were significantly inhibited. Taken together, our data suggest that, in cultured astrocytes, CaN controls GLAST expression at a posttranscriptional level through regulation of GLAST protein synthesis and degradation.
Collapse
|
19
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
20
|
Rodríguez-Cruz F, Torres-Cruz FM, Monroy-Ramírez HC, Escobar-Herrera J, Basurto-Islas G, Avila J, García-Sierra F. Fragmentation of the Golgi Apparatus in Neuroblastoma Cells Is Associated with Tau-Induced Ring-Shaped Microtubule Bundles. J Alzheimers Dis 2019; 65:1185-1207. [PMID: 30124450 DOI: 10.3233/jad-180547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abnormal fibrillary aggregation of tau protein is a pathological condition observed in Alzheimer's disease and other tauopathies; however, the presence and pathological significance of early non-fibrillary aggregates of tau remain under investigation. In cell and animal models expressing normal or modified tau, toxic effects altering the structure and function of several membranous organelles have also been reported in the absence of fibrillary structures; however, how these abnormalities are produced is an issue yet to be addressed. In order to obtain more insights into the mechanisms by which tau may disturb intracellular membranous elements, we transiently overexpressed human full-length tau and several truncated tau variants in cultured neuroblastoma cells. After 48 h of transfection, either full-length or truncated tau forms produced significant fragmentation of the Golgi apparatus (GA) with no changes in cell viability. Noteworthy is that in the majority of cells exhibiting dispersion of the GA, a ring-shaped array of cortical or perinuclear microtubule (Mt) bundles was also generated under the expression of either variant of tau. In contrast, Taxol treatment of non-transfected cells increased the amount of Mt bundles but not sufficiently to produce fragmentation of the GA. Tau-induced ring-shaped Mt bundles appeared to be well-organized and stable structures because they were resistant to Nocodazole post-treatment and displayed a high level of tubulin acetylation. These results further indicate that a mechanical force generated by tau-induced Mt-bundling may be responsible for Golgi fragmentation and that the repeated domain region of tau may be the main promoter of this effect.
Collapse
Affiliation(s)
- Fanny Rodríguez-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Francisco Miguel Torres-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jaime Escobar-Herrera
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
21
|
Effect of Different Doses and Times of FK506 on Different Areas of the Hippocampus in the Rat Model of Transient Global Cerebral Ischemia-Reperfusion. Neurol Res Int 2019; 2019:8047672. [PMID: 31467711 PMCID: PMC6699343 DOI: 10.1155/2019/8047672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
Background Stroke is a major worldwide problem that is leading to a high mortality rate in humans. Ischemia, as the most common type of stroke, is characterized by tissue damage that can occur due to insufficient blood flow to the brain even for a brief duration, leading to the release of inflammatory factors, cytokines, and free radicals. In this study, we investigated the effective dose and injection time of FK506 as an immunophilin ligand for providing a suitable effect on cells of CA2, CA3, and dentate gyrus of the hippocampus. Methods In this in vivo study, a total of 48 male Wistar rats were divided into nine groups. The ischemia model was induced by the ligation of bilateral common carotid arteries. The doses of FK506 (3, 6, and 10 mg/kg) were administered intravenously (IV) at the beginning of reperfusion, followed by repeated injections (10 mg/kg) at 6, 24, 48, and 72 hours after ischemia, respectively. Brains were removed and prepared for Nissl staining and the TdT-mediated dUTP Nick End Labeling method. Results Data showed that global ischemia did not decrease the number of viable pyramidal cells in CA2 and CA3 regions, but significant differences were observed in the number of viable granular cells and apoptotic bodies in the dentate gyrus between the control and ischemia groups. Repeated doses of 6 mg/kg of FK506 at an interval of 48 hours were deemed to be the suitable dose and best time of injection. Conclusions It seems that FK506 can ameliorate the extent of apoptosis and may be a good candidate for the treatment of ischemia-induced brain damage.
Collapse
|
22
|
Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, Murray IVJ, Khan SA. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev Neurosci 2019; 30:339-358. [PMID: 30742586 DOI: 10.1515/revneuro-2016-0035] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
Protein folding is a complex, multisystem process characterized by heavy molecular and cellular footprints. Chaperone machinery enables proper protein folding and stable conformation. Other pathways concomitant with the protein folding process include transcription, translation, post-translational modifications, degradation through the ubiquitin-proteasome system, and autophagy. As such, the folding process can go awry in several different ways. The pathogenic basis behind most neurodegenerative diseases is that the disruption of protein homeostasis (i.e. proteostasis) at any level will eventually lead to protein misfolding. Misfolded proteins often aggregate and accumulate to trigger neurotoxicity through cellular stress pathways and consequently cause neurodegenerative diseases. The manifestation of a disease is usually dependent on the specific brain region that the neurotoxicity affects. Neurodegenerative diseases are age-associated, and their incidence is expected to rise as humans continue to live longer and pursue a greater life expectancy. We presently review the sequelae of protein misfolding and aggregation, as well as the role of these phenomena in several neurodegenerative diseases including Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, transmissible spongiform encephalopathies, and spinocerebellar ataxia. Strategies for treatment and therapy are also conferred with respect to impairing, inhibiting, or reversing protein misfolding.
Collapse
Affiliation(s)
- Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA.,Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Anthony C Antonelli
- Department of Pathology, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA
| | - Adil Afridi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA
| | - Sohrab Vatsia
- Department of Cardiothoracic Surgery, Lenox Hill Hospital, 130 East 77th Street, New York, NY 10075, USA
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, 240 Meeting House Lane, Southampton, NY 11968, USA
| | - Victor Romanov
- Department of Urology, Health Sciences Center T9-040, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8093, USA
| | - Ian V J Murray
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Sardar Ali Khan
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA.,Department of Urology, Health Sciences Center T9-040, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8093, USA
| |
Collapse
|
23
|
Shah SZA, Zhao D, Taglialatela G, Hussain T, Dong H, Sabir N, Mangi MH, Wu W, Lai M, Zhang X, Duan Y, Wang L, Zhou X, Yang L. Combinatory FK506 and Minocycline Treatment Alleviates Prion-Induced Neurodegenerative Events via Caspase-Mediated MAPK-NRF2 Pathway. Int J Mol Sci 2019; 20:E1144. [PMID: 30845718 PMCID: PMC6429086 DOI: 10.3390/ijms20051144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/04/2023] Open
Abstract
Transcription factors play a significant role during the symptomatic onset and progression of prion diseases. We previously showed the immunomodulatory and nuclear factor of activated T cells' (NFAT) suppressive effects of an immunosuppressant, FK506, in the symptomatic stage and an antibiotic, minocycline, in the pre-symptomatic stage of prion infection in hamsters. Here we used for the first time, a combinatory FK506+minocycline treatment to test its transcriptional modulating effects in the symptomatic stage of prion infection. Our results indicate that prolonged treatment with FK506+minocycline was effective in alleviating astrogliosis and neuronal death triggered by misfolded prions. Specifically, the combinatory therapy with FK506+minocycline lowered the expression of the astrocytes activation marker GFAP and of the microglial activation marker IBA-1, subsequently reducing the level of pro-inflammatory cytokines interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), and increasing the levels of anti-inflammatory cytokines IL-10 and IL-27. We further found that FK506+minocycline treatment inhibited mitogen-activated protein kinase (MAPK) p38 phosphorylation, NF-kB nuclear translocation, caspase expression, and enhanced phosphorylated cAMP response element-binding protein (pCREB) and phosphorylated Bcl2-associated death promoter (pBAD) levels to reduce cognitive impairment and apoptosis. Interestingly, FK506+minocycline reduced mitochondrial fragmentation and promoted nuclear factor⁻erythroid2-related factor-2 (NRF2)-heme oxygenase 1 (HO-1) pathway to enhance survival. Taken together, our results show that a therapeutic cocktail of FK506+minocycline is an attractive candidate for prolonged use in prion diseases and we encourage its further clinical development as a possible treatment for this disease.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan.
| | - Deming Zhao
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch at Galveston, Texas, TX 77555-1044, USA.
| | - Tariq Hussain
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Haodi Dong
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Naveed Sabir
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mazhar Hussain Mangi
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Wei Wu
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mengyu Lai
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xixi Zhang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yuhan Duan
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lu Wang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lifeng Yang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 DOI: 10.3389/fnmol.2018.00310/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 05/26/2023] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual's brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Front Mol Neurosci 2018; 11:310. [PMID: 30337853 PMCID: PMC6180192 DOI: 10.3389/fnmol.2018.00310] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of fatal and debilitating neurodegenerative diseases affecting humans and animal species. The conversion of a non-pathogenic normal cellular protein (PrPc) into an abnormal infectious, protease-resistant, pathogenic form prion protein scrapie (PrPSc), is considered the etiology of these diseases. PrPSc accumulates in the affected individual’s brain in the form of extracellular plaques. The molecular pathways leading to neuronal cell death in prion diseases are still unclear. The free radical damage, oxidative stress and mitochondrial dysfunction play a key role in the pathogenesis of the various neurodegenerative disorders including prion diseases. The brain is very sensitive to changes in the redox status. It has been demonstrated that PrPc behaves as an antioxidant, while the neurotoxic prion peptide PrPSc increases hydrogen peroxide toxicity in the neuronal cultures leading to mitochondrial dysfunction and cell death. The nuclear factor erythroid 2-related factor 2 (NRF2) is an oxidative responsive pathway and a guardian of lifespan, which protect the cells from free radical stress-mediated cell death. The reduced glutathione, a major small molecule antioxidant present in all mammalian cells, and produced by several downstream target genes of NRF2, counterbalances the mitochondrial reactive oxygen species (ROS) production. In recent years, it has emerged that the ubiquitin-binding protein, p62-mediated induction of autophagy, is crucial for NRF2 activation and elimination of mitochondrial dysfunction and oxidative stress. The current review article, focuses on the role of NRF2 pathway in prion diseases to mitigate the disease progression.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Naveed Sabir
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mazhar Hussain Mangi
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Brás IC, Tenreiro S, Silva AM, Outeiro TF. Identification of novel protein phosphatases as modifiers of alpha-synuclein aggregation in yeast. FEMS Yeast Res 2018; 18:5113455. [DOI: 10.1093/femsyr/foy108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/30/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Walweg 33, 37073 Goettingen, Germany
| | - Sandra Tenreiro
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
| | - Andreia M Silva
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Walweg 33, 37073 Goettingen, Germany
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Goettingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
27
|
Tarasova EO, Gaydukov AE, Balezina OP. Calcineurin and Its Role in Synaptic Transmission. BIOCHEMISTRY (MOSCOW) 2018; 83:674-689. [PMID: 30195324 DOI: 10.1134/s0006297918060056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre- and postsynaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.
Collapse
Affiliation(s)
- E O Tarasova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A E Gaydukov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - O P Balezina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
28
|
Francis CE, Bai Y. Differential expression of cyclosporine A-Induced calcineurin isoform-specific matrix metalloproteinase 9 (MMP-9) in renal fibroblasts. Biochem Biophys Res Commun 2018; 503:2549-2554. [PMID: 30007437 DOI: 10.1016/j.bbrc.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023]
Abstract
Long-term treatment with the potent immunosuppressive drug cyclosporine A (CsA) results in chronic nephrotoxicity. Its immunosuppressive properties are due to the inhibition of the calcium- and calmodulin-dependent phosphatase protein calcineurin A (CnA) which has three catalytic isoforms. Of those, the CnAα and β isoforms are ubiquitously expressed, particularly in the kidney. Additionally, chronic nephrotoxicity has been associated with an imbalance of extracellular matrix (ECM) synthesis and degradation resulting in an accumulation of ECM molecules. This study evaluates whether the expressions of matrix metalloproteinases (MMP-2 and MMP-9) induced by CsA are calcineurin isoform specific. Wild-type (WT), CnAα knockout (CnAα-/-) and CnAβ knockout (CnAβ-/-) kidney fibroblast cell lines (an in vitro innovative tool that was previously created in our lab) were treated with CsA at 10 ng/ml for 48 h. ELISA analysis demonstrated that the CsA-induced secretion profile of MMP-9 was highest in CnAα-/- cells and lowest in CnAβ-/- cells vs. WT cells. In contrast, CsA did not induce an increase in MMP-2 protein levels in WT, CnAα-/- nor CnAβ-/- renal fibroblasts. These results indicate that MMP-9 secretion is CnA-isoform specific, i.e. the CnAβ isoform contributes to the CsA-induced upregulation of MMP-9 while the CnAα does not. As such, understanding the role of calcineurin A isoforms in the regulation of the homeostasis of ECM degradation in the kidney after long-term CsA treatment needs to be further investigated.
Collapse
Affiliation(s)
- Cynthia E Francis
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| | - Yun Bai
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| |
Collapse
|
29
|
Jiang L, Wang J, Asghar F, Snyder N, Cunningham KW. CaGdt1 plays a compensatory role for the calcium pump CaPmr1 in the regulation of calcium signaling and cell wall integrity signaling in Candida albicans. Cell Commun Signal 2018; 16:33. [PMID: 29954393 PMCID: PMC6025805 DOI: 10.1186/s12964-018-0246-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae ScGdt1 and mammalian TMEM165 are two members of the UPF0016 membrane protein family that is likely to form a new group of Ca2+/H+ antiporter and/or a Mn2+ transporter in the Golgi apparatus. We have previously shown that Candida albicans CaGDT1 is a functional ortholog of ScGDT1 in the response of S. cerevisiae to calcium stress. However, how CaGdt1 together with the Golgi calcium pump CaPmr1 regulate calcium homeostasis and cell wall integrity in this fungal pathogen remains unknown. METHODS Chemical sensitivity was tested by dilution assay. Cell survival was examined by measuring colony-forming units and staining with Annexin V-FITC and propidium iodide. Calcium signaling was examined by expression of downstream target gene CaUTR2, while cell wall integrity signaling was revealed by detection of phosphorylated Mkc1 and Cek1. Subcellular localization of CaGdt1 was examined through direct and indirect immunofluorescent approaches. Transcriptomic analysis was carried out with RNA sequencing. RESULTS This study shows that Candida albicans CaGDT1 is also a functional ortholog of ScGDT1 in the response of S. cerevisiae to cell wall stress. CaGdt1 is localized in the Golgi apparatus but at distinct sites from CaPmr1 in C. albicans. Loss of CaGDT1 increases the sensitivity of cell lacking CaPMR1 to cell wall and ER stresses. Deletion of CaGDT1 and/or CaPMR1 increases calcium uptake and activates the calcium/calcineurin signaling. Transcriptomic profiling reveals that core functions shared by CaGdt1 and CaPmr1 are involved in the regulation of cellular transport of metal ions and amino acids. However, CaGdt1 has distinct functions from CaPmr1. Chitin synthase gene CHS2 is up regulated in all three mutants, while CHS3 is only up regulated in the pmr1/pmr1 and the gdt1/gdt1 pmr1/pmr1 mutants. Five genes (DIE2, STT3, OST3, PMT1 and PMT4) of glycosylation pathway and one gene (SWI4) of the cell wall integrity (CWI) pathway are upregulated due to deletion of CaGDT1 and/or CaPMR1. Consistently, deletion of either CaPMR1 or CaGDT1 activates the CaCek1-mediated CWI signaling in a cell wall stress-independent fashion. Calcineurin function is required for the integrity of the cell wall and vacuolar compartments of cells lacking both GDT1 and CaPMR1. CONCLUSIONS CaPmr1 is the major player in the regulation of calcium homeostasis and cell wall stress, while CaGdt1 plays a compensatory role for CaPmr1 in the Golgi compartment in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China.
| | - Junjun Wang
- Department of Food Engineering, Weihai Ocean Vocational College, Weihai, Shandong, China
| | - Faiza Asghar
- Laboratory for Yeast Molecular and Cell Biology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Nathan Snyder
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| | - Kyle W Cunningham
- Department of Biology, the Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
O'Neal MA, Stallings NR, Malter JS. Alzheimer's Disease, Dendritic Spines, and Calcineurin Inhibitors: A New Approach? ACS Chem Neurosci 2018; 9:1233-1234. [PMID: 29757603 DOI: 10.1021/acschemneuro.8b00213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Therapeutics to effectively treat Alzheimer's disease (AD) are lacking. In vitro, animal and human studies have implicated the excessive activation of the protein phosphatase calcineurin (CN) as an early step in the pathogenesis of AD. We discuss recent data showing that the prolyl isomerase Pin1 is suppressed by CN-mediated dephosphorylation induced by Aβ42 signaling. Pin1 loss directly leads to the reductions in dendritic spines and synapses characteristic of early AD pathology. Pin1 activity, and synapse and dendritic spine numbers are rescued by FK506, a highly specific and United States Food and Drug Administration approved CN inhibitor. Solid organ transplant recipients chronically treated with FK506 showed much lower AD incidence than expected. As such, we suggest prospective clinical trials to determine if systemic FK506 can normalize CN activity in the brain, preserve Pin1 function and support synaptic health in early AD.
Collapse
Affiliation(s)
- Melissa A O'Neal
- Department of Pathology, O'Donnell Brain Institute , UT Southwestern Medical Center , Dallas , Texas 75390-9072 , United States
| | - Nancy R Stallings
- Department of Pathology, O'Donnell Brain Institute , UT Southwestern Medical Center , Dallas , Texas 75390-9072 , United States
| | - James S Malter
- Department of Pathology, O'Donnell Brain Institute , UT Southwestern Medical Center , Dallas , Texas 75390-9072 , United States
| |
Collapse
|
31
|
Calcineurin Regulatory Subunit Calcium-Binding Domains Differentially Contribute to Calcineurin Signaling in Saccharomyces cerevisiae. Genetics 2018; 209:801-813. [PMID: 29735720 DOI: 10.1534/genetics.118.300911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
The protein phosphatase calcineurin is central to Ca2+ signaling pathways from yeast to humans. Full activation of calcineurin requires Ca2+ binding to the regulatory subunit CNB, comprised of four Ca2+-binding EF hand domains, and recruitment of Ca2+-calmodulin. Here we report the consequences of disrupting Ca2+ binding to individual Cnb1 EF hand domains on calcineurin function in Saccharomyces cerevisiae Calcineurin activity was monitored via quantitation of the calcineurin-dependent reporter gene, CDRE-lacZ, and calcineurin-dependent growth under conditions of environmental stress. Mutation of EF2 dramatically reduced CDRE-lacZ expression and failed to support calcineurin-dependent growth. In contrast, Ca2+ binding to EF4 was largely dispensable for calcineurin function. Mutation of EF1 and EF3 exerted intermediate phenotypes. Reduced activity of EF1, EF2, or EF3 mutant calcineurin was also observed in yeast lacking functional calmodulin and could not be rescued by expression of a truncated catalytic subunit lacking the C-terminal autoinhibitory domain either alone or in conjunction with the calmodulin binding and autoinhibitory segment domains. Ca2+ binding to EF1, EF2, and EF3 in response to intracellular Ca2+ signals therefore has functions in phosphatase activation beyond calmodulin recruitment and displacement of known autoinhibitory domains. Disruption of Ca2+ binding to EF1, EF2, or EF3 reduced Ca2+ responsiveness of calcineurin, but increased the sensitivity of calcineurin to immunophilin-immunosuppressant inhibition. Mutation of EF2 also increased the susceptibility of calcineurin to hydrogen peroxide inactivation. Our observations indicate that distinct Cnb1 EF hand domains differentially affect calcineurin function in vivo, and that EF4 is not essential despite conservation across taxa.
Collapse
|
32
|
Maruyama Y, Ueno S, Morita M, Hayashi F, Maekawa S. Inhibitory effect of several sphingolipid metabolites on calcineurin. Neurosci Lett 2018. [PMID: 29524645 DOI: 10.1016/j.neulet.2018.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). NAP-22 is one of the major protein components of neuronal DRM. In a previous study, we showed that DRM-derived NAP-22 binds ganglioside and the inhibitory effect of ganglioside to calcineurin (CaN), a neuron-enriched calmodulin-regulated phosphoprotein phosphatase. Considering the important roles of CaN in neurons, identification of other cellular regulators of CaN could be a good clue to understand the molecular background of neuronal function. In this study, we screened the effect of several membrane lipid-derived molecules on the CaN activity and found sphingosine and some sphingosine-derived metabolites such as sphingosylphosphorylcholine, galactosylsphingosine (psychosine), and glucosylsphingosine, have inhibitory effect on CaN through the interaction with calmodulin.
Collapse
Affiliation(s)
- Yoko Maruyama
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Satoko Ueno
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Fumio Hayashi
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Shohei Maekawa
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan.
| |
Collapse
|
33
|
Rozzi SJ, Avdoshina V, Fields JA, Mocchetti I. Human immunodeficiency virus Tat impairs mitochondrial fission in neurons. Cell Death Discov 2018. [PMID: 29531805 PMCID: PMC5841280 DOI: 10.1038/s41420-017-0013-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV) infection of the central nervous system promotes neuronal injury that culminates in HIV-associated neurocognitive disorders. Viral proteins, including transactivator of transcription (Tat), have emerged as leading candidates to explain HIV-mediated neurotoxicity, though the mechanisms remain unclear. Tat transgenic mice or neurons exposed to Tat, which show neuronal loss, exhibit smaller mitochondria as compared to controls. To provide an experimental clue as to which mechanisms are used by Tat to promote changes in mitochondrial morphology, rat cortical neurons were exposed to Tat (100 nM) for various time points. Within 30 min, Tat caused a significant reduction in mitochondrial membrane potential, a process that is regulated by fusion and fission. To further assess whether Tat changes these processes, fission and fusion proteins dynamin-related protein 1 (Drp1) and mitofusin-2 (Mfn2), respectively, were measured. We found that Drp1 levels increased beginning at 2 h after Tat exposure while Mfn2 remained unchanged. Moreover, increased levels of an active form of Drp1 were found to be present following Tat exposure. Furthermore, Drp1 and calcineurin inhibitors prevented Tat-mediated effects on mitochondria size. These findings indicate that mitochondrial fission is likely the leading factor in Tat-mediated alterations to mitochondrial morphology. This disruption in mitochondria homeostasis may contribute to the instability of the organelle and ultimately neuronal cell death following Tat exposure.
Collapse
Affiliation(s)
- Summer J Rozzi
- 1Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC USA.,2Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Valeria Avdoshina
- 2Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Jerel A Fields
- 3Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Italo Mocchetti
- 1Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC USA.,2Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| |
Collapse
|
34
|
Chyan CL, Irene D, Lin SM. The Recognition of Calmodulin to the Target Sequence of Calcineurin-A Novel Binding Mode. Molecules 2017; 22:E1584. [PMID: 28934144 PMCID: PMC6151454 DOI: 10.3390/molecules22101584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022] Open
Abstract
Calcineurin (CaN) is a Ca2+/calmodulin-dependent Ser/Thr protein phosphatase, which plays essential roles in many cellular and developmental processes. CaN comprises two subunits, a catalytic subunit (CaN-A, 60 kDa) and a regulatory subunit (CaN-B, 19 kDa). CaN-A tightly binds to CaN-B in the presence of minimal levels of Ca2+, but the enzyme is inactive until activated by CaM. Upon binding to CaM, CaN then undergoes a conformational rearrangement, the auto inhibitory domain is displaced and thus allows for full activity. In order to elucidate the regulatory role of CaM in the activation processes of CaN, we used NMR spectroscopy to determine the structure of the complex of CaM and the target peptide of CaN (CaNp). The CaM/CaNp complex shows a compact ellipsoidal shape with 8 α-helices of CaM wrapping around the CaNp helix. The RMSD of backbone and heavy atoms of twenty lowest energy structures of CaM/CaNp complex are 0.66 and 1.14 Å, respectively. The structure of CaM/CaNp complex can be classified as a novel binding mode family 1-18 with major anchor residues Ile396 and Leu413 to allocate the largest space between two domains of CaM. The relative orientation of CaNp to CaM is similar to the CaMKK peptide in the 1-16 binding mode with N- and C-terminal hydrophobic anchors of target sequence engulfed in the hydrophobic pockets of the N- and C-domain of CaM, respectively. In the light of the structural model of CaM/CaNp complex reported here, we provide new insight in the activation processes of CaN by CaM. We propose that the hydrophobic interactions between the Ca2+-saturated C-domain and C-terminal half of the target sequence provide driving forces for the initial recognition. Subsequent folding in the target sequence and structural readjustments in CaM enhance the formation of the complex and affinity to calcium. The electrostatic repulsion between CaM/CaNp complex and AID may result in the displacement of AID from active site for full activity.
Collapse
Affiliation(s)
- Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| | - Deli Irene
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| | - Sin-Mao Lin
- Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
| |
Collapse
|
35
|
Inhibition of Calcineurin A by FK506 Suppresses Seizures and Reduces the Expression of GluN2B in Membrane Fraction. Neurochem Res 2017; 42:2154-2166. [PMID: 28299629 DOI: 10.1007/s11064-017-2221-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
FK506, a calcineurin inhibitor, shows neuroprotective effects and has been associated with neurodegenerative diseases. Calcineurin A (CaNA), a catalytic subunit of calcineurin, mediates the dephosphorylation of various proteins. N-methyl-D-aspartate receptor (GluN) is closely related to epileptogenesis, and various phosphorylation sites of GluN2B, a regulatory subunit of the GluN complex, have different functions. Thus, we hypothesized that one of the potential anti-epileptic mechanisms of FK506 is mediated by its ability to promote the phosphorylation of GluN2B and reduce the expression of GluN2B in membrane fraction by down-regulating CaNA. CaNA expression was increased in the cortex of patients with temporal lobe epilepsy and pentylenetetrazol (PTZ)-induced epileptic models. CaNA was shown to be expressed in neurons using immunofluorescence staining. According to our behavioral observations, epileptic rats exhibited less severe seizures and were less sensitive to PTZ after a systemic injection of FK506. The levels of phosphorylated GluN2B were decreased in epileptic rats but increased after the FK506 treatment. Moreover, there was no difference in the total GluN2B levels before and after FK506 treatment. However, the expression of GluN2B in membrane fraction was suppressed after FK506 treatment. Based on these results, FK506 may reduce the severity and frequency of seizures by reducing the expression of GluN2B in membrane fraction.
Collapse
|
36
|
Aufschnaiter A, Kohler V, Büttner S. Taking out the garbage: cathepsin D and calcineurin in neurodegeneration. Neural Regen Res 2017; 12:1776-1779. [PMID: 29239314 PMCID: PMC5745822 DOI: 10.4103/1673-5374.219031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathepsin D to the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2+ homeostasis as well as lysosomal impairment is connected to a plethora of neurodegenerative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Determining the Roles of Inositol Trisphosphate Receptors in Neurodegeneration: Interdisciplinary Perspectives on a Complex Topic. Mol Neurobiol 2016; 54:6870-6884. [PMID: 27771899 DOI: 10.1007/s12035-016-0205-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
It is well known that calcium (Ca2+) is involved in the triggering of neuronal death. Ca2+ cytosolic levels are regulated by Ca2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
|