1
|
Wang X, Niu X, Wang Y, Liu Y, Yang C, Chen X, Qi Z. C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury. Neural Regen Res 2025; 20:2231-2244. [PMID: 39104168 DOI: 10.4103/nrr.nrr-d-24-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage. The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury. Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury, suggesting that this axis is a novel target and regulatory control point for treatment. This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis, along with the regenerative and repair mechanisms linking the axis to spinal cord injury. Additionally, we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs, along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs. Nevertheless, there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
Collapse
Affiliation(s)
- Xiangzi Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingkai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yang Liu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cheng Yang
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Song Y, Guo N, Zi F, Zheng J, Cheng J. lncRNA H19 plays a role in multiple myeloma via interacting with hnRNPA2B1 to stabilize BET proteins by targeting osteoclasts and osteoblasts. Int Immunopharmacol 2024; 142:113080. [PMID: 39288624 DOI: 10.1016/j.intimp.2024.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Multiple myeloma (MM), characterized with bone marrow microenvironment disorder, accounts for about 20% of hematological cancer deaths globally. Tissue extracellular communication, especially extracellular vesicles, has been defined as important mediator among cell-to-cell cross-talk. Our previous study revealed an elevated level of H19 in MM, whereas, its role in MM exosomes in the development of osteolysis remains largely unknown. METHOD MM exosomes referring to 5TGM1 cells were isolated and characterized using transmission electron microscopy (TEM), nanoparticle tracking and western blot analysis. The biological effects of blocking H19 were examined on osteolysis in vivo of C57Bl6/KalwRij mice, as well as on the osteoclast differentiation in vitro of RAW264.7 cells, by the application of TRAP, either with osteogenic differentiation in vitro of bone marrow mesenchymal stem cells (BMSCs), by the detection of alkaline phosphatase (ALP), alizarin red dye staining (ARS). The targeted relationships among H19/hnRNPA2B1/BET proteins were validated through RNA immunoprecipitation (RIP) and RNA pull-down assays. RESULTS 5TGM1 cells derived-exosomes lacking H19 dramatically blocked osteolysis and boosted osteogeneis in C57Bl6/KalwRij mice, either with osteoclastic differentiation of RAW264.7 cells and osteogenic differentiation of BMSCs, thereby enhancing their resorptive activity. Physically, H19 interacted with hnRNPA2B1 by preferentially adhering to it and enhancing its nuclear-cytoplasmic translocation. Further mechanistic research validated that H19 promoted the stabilization of BET proteins through hnRNA2B1 to be involved in osteoclast differentiation for contributing to MM progression. CONCLUSION Altogether, our findings suggest that H19, serving as an essential role for exosomes in the bone marrow environment, might be a viable diagnostic and therapeutic target for MM therapy.
Collapse
Affiliation(s)
- Yuan Song
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Ninghong Guo
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Fuming Zi
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jifu Zheng
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jing Cheng
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
3
|
Sho T, Li Y, Jiao H, Yu L. Migratory autolysosome disposal mitigates lysosome damage. J Cell Biol 2024; 223:e202403195. [PMID: 39347717 PMCID: PMC11457477 DOI: 10.1083/jcb.202403195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
Lysosomes, essential for intracellular degradation and recycling, employ damage-control strategies such as lysophagy and membrane repair mechanisms to maintain functionality and cellular homeostasis. Our study unveils migratory autolysosome disposal (MAD), a response to lysosomal damage where cells expel LAMP1-LC3 positive structures via autolysosome exocytosis, requiring autophagy machinery, SNARE proteins, and cell migration. This mechanism, crucial for mitigating lysosomal damage, underscores the role of cell migration in lysosome damage control and facilitates the release of small extracellular vesicles, highlighting the intricate relationship between cell migration, organelle quality control, and extracellular vesicle release.
Collapse
Affiliation(s)
- Takami Sho
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- Cryo-EM Facility of Tsinghua University, Branch of National Protein Science Facility, Tsinghua University, Beijing, China
| | - Haifeng Jiao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Meng K, Meng F, Wu Y, Lin L. Multi-omics analysis identified extracellular vesicles as biomarkers for cardiovascular diseases. Talanta 2024; 280:126710. [PMID: 39213888 DOI: 10.1016/j.talanta.2024.126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cell-derived extracellular vesicles (EVs) have emerged as a promising non-invasive liquid biopsy technique due to their accessibility and their ability to encapsulate and transport diverse biomolecules. EVs have garnered substantial research interest, notably in cardiovascular diseases (CVDs), where their roles in pathophysiology and as diagnostic and prognostic biomarkers are increasingly recognized. This review provides a comprehensive overview of EVs, starting with their origins, followed by the techniques used for their isolation and characterization. We explore the diverse cargo of EVs, including nucleic acids, proteins, lipids, and metabolites, highlighting their roles in intercellular communication and as potential biomarkers. We then delve into the application of genomics, transcriptomics, proteomics, and metabolomics in the analysis of EVs, particularly within the context of CVDs. Finally, we discuss how integrated multi-omics approaches are unveiling novel biomarkers, offering fresh insights into the diagnosis and prognosis of CVDs. This review underscores the growing importance of EVs in clinical diagnostics and the potential of multi-omics to propel future advancements in CVD biomarker discovery.
Collapse
Affiliation(s)
- Ke Meng
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Fanqi Meng
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Yuan Wu
- Department of Cardiac Surgery, Yuebei People's Hospital, Shaoguan, Guangdong, China.
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Zhao X, Yu Z, Wang X, Li X, Liu Y, Wang L. The administration of human amniotic epithelial cells in premature ovarian insufficiency: From preclinical to clinical. Gynecol Endocrinol 2024; 40:2382818. [PMID: 39039858 DOI: 10.1080/09513590.2024.2382818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongna Yu
- Department of Gynecology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
DaCunza JT, Wickman JR, Ajit SK. miRNA packaging into small extracellular vesicles and implications in pain. Pain Rep 2024; 9:e1198. [PMID: 39450410 PMCID: PMC11500789 DOI: 10.1097/pr9.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 10/26/2024] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of lipid bilayer bound particles naturally released by cells. These vesicles are classified based on their biogenesis pathway and diameter. The overlap in size of exosomes generated from the exosomal pathway and macrovesicles that are pinched off from the surface of the plasma membrane makes it challenging to isolate pure populations. Hence, isolated vesicles that are less than 200 nm are called small extracellular vesicles (sEVs). Extracellular vesicles transport a variety of cargo molecules, and multiple mechanisms govern the packaging of cargo into sEVs. Here, we discuss the current understanding of how miRNAs are targeted into sEVs, including the role of RNA binding proteins and EXOmotif sequences present in miRNAs in sEV loading. Several studies in human pain disorders and rodent models of pain have reported alterations in sEV cargo, including miRNAs. The sorting mechanisms and target regulation of miR-939, a miRNA altered in individuals with complex regional pain syndrome, is discussed in the context of inflammation. We also provide a broad overview of the therapeutic strategies being pursued to utilize sEVs in the clinic and the work needed to further our understanding of EVs to successfully deploy sEVs as a pain therapeutic.
Collapse
Affiliation(s)
- Jason T. DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Yi J, Kim S, Han C, Park J. Evaluation of extracellular vesicle aggregation by single vesicle analysis. Analyst 2024. [PMID: 39499028 DOI: 10.1039/d4an01112k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Extracellular vesicles (EVs) play pivotal roles in intercellular communication and are implicated in numerous physiological and pathological processes. Here, we introduce a quantitative technique using total internal reflection fluorescence microscopy (TIRFm)-based single vesicle analysis (SVA) to assess EV aggregation, a critical factor influencing their biological functionality. Employing two-colored fluorescent recombinant EV mixtures, this method enables precise discrimination between aggregated and non-aggregated EVs. It allows for calculating an aggregation ratio from the colocalization of fluorescence signals. We evaluate the impact of isolation methods, storage conditions, and biochemical environments on EV aggregation, including salt and pH variations and the presence of antibodies. Additionally, we quantitatively assess the efficacy of aggregation removal techniques, revealing significant variability in removal methods depending on the type of aggregates. This analytical approach is expected to enhance our understanding of EV aggregation dynamics and set a new standard for the characterization and functional analysis of EVs.
Collapse
Affiliation(s)
- Johan Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, the Republic of Korea.
| | - Suyeon Kim
- Division of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, the Republic of Korea
| | - Chungmin Han
- Division of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, the Republic of Korea
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 201 Brookline Ave., Boston, Massachusetts 02215, USA
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, the Republic of Korea.
- Division of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, the Republic of Korea
| |
Collapse
|
8
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. Biomater Sci 2024; 12:5728-5741. [PMID: 39403853 PMCID: PMC11474809 DOI: 10.1039/d4bm00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
Affiliation(s)
- James Johnston
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyunsu Jeon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yun Young Choi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tiger Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Courtney Khong
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Wang T, Zhang H. Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res 2024; 65:105-123. [PMID: 38030125 PMCID: PMC11518959 DOI: 10.1016/j.jare.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) play a role in sorting non-coding RNAs (ncRNAs) into exosomes. These ncRNAs, carried by exosomes, are involved in regulating various aspects of tumor progression, including metastasis, angiogenesis, control of the tumor microenvironment, and drug resistance. Recent studies have emphasized the importance of the RBP-ncRNA-exosome mechanism in tumor regulation. AIM OF REVIEW This comprehensive review aims to explore the RBP-ncRNA-exosome mechanism and its influence on tumor development. By understanding this intricate mechanism provides novel insights into tumor regulation and may lead to innovative treatment strategies in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW The review discusses the formation of exosomes and the complex relationships among RBPs, ncRNAs, and exosomes. The RBP-ncRNA-exosome mechanism is shown to affect various aspects of tumor biology, including metastasis, multidrug resistance, angiogenesis, the immunosuppressive microenvironment, and tumor progression. Tumor development relies on the transmission of information between cells, with RBPs selectively mediating sorting of ncRNAs into exosomes through various mechanisms, which in turn carry ncRNAs to regulate RBPs. The review also provides an overview of potential therapeutic strategies, such as targeted drug discovery and genetic engineering for modifying therapeutic exosomes, which hold great promise for improving cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Tam NW, Becker A, Mangiarotti A, Cipitria A, Dimova R. Extracellular Vesicle Mobility in Collagen I Hydrogels Is Influenced by Matrix-Binding Integrins. ACS NANO 2024; 18:29585-29601. [PMID: 39400273 PMCID: PMC11526431 DOI: 10.1021/acsnano.4c07186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are a diverse population of membrane structures produced and released by cells into the extracellular space for the intercellular trafficking of cargo molecules. They are implicated in various biological processes, including angiogenesis, immunomodulation, and cancer cell signaling. While much research has focused on their biogenesis or their effects on recipient cells, less is understood about how EVs are capable of traversing diverse tissue environments and crossing biological barriers. Their interactions with extracellular matrix components are of particular interest, as such interactions govern diffusivity and mobility, providing a potential basis for organotropism. To start to untangle how EV-matrix interactions affect diffusivity, we use high speed epifluorescence microscopy, single particle tracking, and confocal reflectance microscopy to analyze particle mobility and localization in extracellular matrix-mimicking hydrogels composed of collagen I. EVs are compared with synthetic liposomes and extruded plasma membrane vesicles to better understand the importance of membrane composition on these interactions. By treating EVs with trypsin to digest surface proteins, we determine that proteins are primarily responsible for EV immobilization in collagen I hydrogels. We next use a synthetic peptide competitive inhibitor to narrow down the identity of the proteins involved to argynylglycylaspartic acid (RGD) motif-binding integrins, which interact with unincorporated or denatured nonfibrillar collagen. Moreover, the effect of integrin inhibition with RGD peptides has strong implications for the use of RGD-peptide-based drugs to treat certain cancers, as integrin inhibition appears to increase EV mobility, improving their ability to infiltrate tissue-like environments.
Collapse
Affiliation(s)
- Nicky W. Tam
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | | | - Agustín Mangiarotti
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | - Amaia Cipitria
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
- Group
of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research
Institute, San Sebastián 20014, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| |
Collapse
|
11
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
12
|
Selvadoss A, Baby HM, Zhang H, Bajpayee AG. Harnessing exosomes for advanced osteoarthritis therapy. NANOSCALE 2024; 16:19174-19191. [PMID: 39323205 DOI: 10.1039/d4nr02792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Exosomes are nanosized, lipid membrane vesicles secreted by cells, facilitating intercellular communication by transferring cargo from parent to recipient cells. This capability enables biological crosstalk across multiple tissues and cells. Extensive research has been conducted on their role in the pathogenesis of degenerative musculoskeletal diseases such as osteoarthritis (OA), a chronic and painful joint disease that particularly affects cartilage. Currently, no effective treatment exists for OA. Given that exosomes naturally modulate synovial joint inflammation and facilitate cartilage matrix synthesis, they are promising candidates as next generation nanocarriers for OA therapy. Recent advancements have focused on engineering exosomes through endogenous and exogenous approaches to enhance their joint retention, cartilage and chondrocyte targeting properties, and therapeutic content enrichment, further increasing their potential for OA drug delivery. Notably, charge-reversed exosomes that utilize electrostatic binding interactions with cartilage anionic aggrecan glycosaminoglycans have demonstrated the ability to penetrate the full thickness of early-stage arthritic cartilage tissue following intra-articular administration, maximizing their therapeutic potential. These exosomes offer a non-viral, naturally derived, cell-free carrier for OA drug and gene delivery applications. Efforts to standardize exosome harvest, engineering, and property characterization methods, along with scaling up production, will facilitate more efficient and rapid clinical translation. This article reviews the current state-of-the-art, explores opportunities for exosomes as OA therapeutics, and identifies potential challenges in their clinical translation.
Collapse
Affiliation(s)
- Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Gu X, He L, Zhang J, Xu H, Shen H, Huang R, Li Z. Recent Advances in Wash-Free Detection Methods of Extracellular Vesicles: A Mini Review. ACS Sens 2024. [PMID: 39446112 DOI: 10.1021/acssensors.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are emerging biomarkers in liquid biopsy that have gained increasing attention in disease diagnosis and prognosis monitoring. Most reported detection methods require the isolation of EVs from complex body liquids, often involving multiple washing steps to remove excess reagents and eliminate background interference. Nonetheless, these methods not only cause the loss of EVs but also result in poor repeatability and prolonged detection duration. The focus on wash-free detection methods is increasing due to the specific ability to avoid the removal of surplus reagents and, in some cases, even the isolation and purification of EVs. Viewing from different methodological perspectives, this review summarizes the recent advances in wash-free detection of EVs, containing aggregation induction, proximity sensing, allosteric probes, phase separation, Roman spectroscopy, field-effect transistor and microcantilever. The pros and cons of each detection strategy are impartially evaluated and this review concludes the prospects for future developments in this field.
Collapse
Affiliation(s)
- Xinrui Gu
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Lei He
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Jinsong Zhang
- Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Hongpan Xu
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Han Shen
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, South Puzhu Road 30, Nanjing, Jiangsu Province 211816, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| |
Collapse
|
14
|
Lee SJ, Jung DK, Im S, You C, Kim JE, Bae JS, Kim MS, Yea K, Park EK. Ank-mediated pyrophosphate regulates shear stress-induced small extracellular vesicle production in 3D-cultured osteocytes. Anim Cells Syst (Seoul) 2024; 28:495-505. [PMID: 39445097 PMCID: PMC11497576 DOI: 10.1080/19768354.2024.2409460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Osteocytes are located in the lacunae of fluid-filled bone and communicate with neighboring or distant cells by secreting small extracellular vesicles (sEVs) and growth factors as well as via dendrite-dendrite direct connections. However, the mechanism regulating sEV production in osteocytes is yet to be elucidated. In this study, we investigated sEV production and its underlying mechanism in osteocytes cultured on a three dimensional (3D) scaffold. We employed a perfusion system to apply shear stress stimulation to MLO-Y4 cells cultured on a 3D biphasic calcium phosphate (BCP) scaffold and analyzed sEV production and gene expression using RNA sequencing. We found that the expression of genes associated with sEV biogenesis and the secretory pathway were enhanced by fluid shear stress in MLO-Y4 cells cultured on a 3D BCP scaffold. In particular, fluid shear stress induced the expression of Ank, a pyrophosphate transporter, in 3D-cultured MLO-Y4 cells. The role of Ank in sEV production was further examined. Probenecid, an Ank inhibitor, significantly suppressed shear stress-induced sEV production, whereas Ank cDNA overexpression stimulated it. The inhibition of shear stress-induced sEV production by probenecid was recovered by the exogenous addition of pyrophosphate to MLO-Y4 cells. These findings suggest that shear stress-mediated sEV production in 3D-cultured osteocytes is regulated by extracellular pyrophosphate transported by Ank.
Collapse
Affiliation(s)
- Su Jeong Lee
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Deuk Kju Jung
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Soomin Im
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Changkook You
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute (CMRI), School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mee-seon Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Esparza D, Lima C, Abuelreich S, Ghaeli I, Hwang J, Oh E, Lenz A, Gu A, Jiang N, Kandeel F, Thurmond DC, Jovanovic-Talisman T. Pancreatic β-cells package double C2-like domain beta protein into extracellular vesicles via tandem C2 domains. Front Endocrinol (Lausanne) 2024; 15:1451279. [PMID: 39497805 PMCID: PMC11532064 DOI: 10.3389/fendo.2024.1451279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Double C2-like domain beta (DOC2B) is a vesicle priming protein critical for glucose-stimulated insulin secretion in β-cells. Individuals with type 1 diabetes (T1D) have lower levels of DOC2B in their residual functional β-cell mass and platelets, a phenotype also observed in a mouse model of T1D. Thus, DOC2B levels could provide important information on β-cell dys(function). Objective Our objective was to evaluate the DOC2B secretome of β-cells. In addition to soluble extracellular protein, we assessed DOC2B localized within membrane-delimited nanoparticles - extracellular vesicles (EVs). Moreover, in rat clonal β-cells, we probed domains required for DOC2B sorting into EVs. Method Using Single Extracellular VEsicle Nanoscopy, we quantified EVs derived from clonal β-cells (human EndoC-βH1, rat INS-1 832/13, and mouse MIN6); two other cell types known to regulate glucose homeostasis and functionally utilize DOC2B (skeletal muscle rat myotube L6-GLUT4myc and human neuronal-like SH-SY5Y cells); and human islets sourced from individuals with no diabetes (ND). EVs derived from ND human plasma, ND human islets, and cell lines were isolated with either size exclusion chromatography or differential centrifugation. Isolated EVs were comprehensively characterized using dotblots, transmission electron microscopy, nanoparticle tracking analysis, and immunoblotting. Results DOC2B was present within EVs derived from ND human plasma, ND human islets, and INS-1 832/13 β-cells. Compared to neuronal-like SH-SY5Y cells and L6-GLUT4myc myotubes, clonal β-cells (EndoC-βH1, INS-1 832/13, and MIN6) produced significantly more EVs. DOC2B levels in EVs (over whole cell lysates) were higher in INS-1 832/13 β-cells compared to L6-GLUT4myc myotubes; SH-SY5Y neuronal-like cells did not release appreciable DOC2B. Mechanistically, we show that DOC2B was localized to the EV lumen; the tandem C2 domains were sufficient to confer sorting to INS-1 832/13 β-cell EVs. Discussion Clonal β-cells and ND human islets produce abundant EVs. In cell culture, appreciable DOC2B can be packaged into EVs, and a small fraction is excreted as a soluble protein. While DOC2B-laden EVs and soluble protein are present in ND plasma, further studies will be necessary to determine if DOC2B originating from β-cells significantly contributes to the plasma secretome.
Collapse
Affiliation(s)
- Diana Esparza
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Carinna Lima
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Sarah Abuelreich
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Ima Ghaeli
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Jinhee Hwang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Ayelet Lenz
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Angel Gu
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Nan Jiang
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
16
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Jasim SA, Ahmed AT, Kubaev A, Kyada A, Alshahrani MY, Sharma S, Al-Hetty HRAK, Vashishth R, Chauhan AS, Abosaoda MK. Exosomal microRNA as a key regulator of PI3K/AKT pathways in human tumors. Med Oncol 2024; 41:265. [PMID: 39400677 DOI: 10.1007/s12032-024-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
MicroRNAs (miRNAs) are conserved non-protein-coding RNAs that are naturally present in organisms and can control gene expression by suppressing the translation of mRNA or causing the degradation of mRNA. MicroRNAs are highly concentrated in the PI3K/AKT pathway, and abnormal activation of the PI3K/AKT pathway plays a role in cancer progression. The AKT/PI3K pathway is critical for cellular functions and can be stimulated by cytokines and in normal situations. It is involved in regulating various intracellular signal transduction, including development, differentiation, transcriptional regulation, protein, and synthesis. There is a growing body of evidence indicating that miRNAs, which are abundant in exosomes released by different cells, can control cellular biological activities via modulating the PI3K/AKT pathway, hence influencing cancer progression and drug resistance. This article provides an overview of the latest research progress regarding the function and medical use of the PI3K/AKT pathway and exosomal miRNA/AKT/PI3K axis in the behaviors of cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, AL-Anbar Governorate, Ramadi, Iraq.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Mohammad Y Alshahrani
- King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | | | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
18
|
Sadique Hussain M, Gupta G, Ghaboura N, Moglad E, Hassan Almalki W, Alzarea SI, Kazmi I, Ali H, MacLoughlin R, Loebenberg R, Davies NM, Kumar Singh S, Dua K. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin Chim Acta 2024; 565:119983. [PMID: 39368685 DOI: 10.1016/j.cca.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs) have become essential contributors to advancing and treating lung cancers (LCs). The development of liquid biopsies that utilize exosomal ncRNAs (exo-ncRNAs) offers an encouraging method for diagnosing, predicting, and treating LC. This thorough overview examines the dual function of exo-ncRNAs as both indicators for early diagnosis and avenues for LC treatment. Exosomes are tiny vesicles secreted by various cells, including cancerous cells, enabling connection between cells by delivering ncRNAs. These ncRNAs, which encompass circular RNAs, long ncRNAs, and microRNAs, participate in the modulation of gene expression and cellular functions. In LC, certain exo-ncRNAs are linked to tumour advancement, spread, and treatment resistance, positioning them as promising non-invasive indicators in liquid biopsies. Additionally, targeting these ncRNAs offers potential for innovative treatment approaches, whether by suppressing harmful ncRNAs or reinstating the activity of tumour-suppressing ones. This review emphasizes recent developments in the extraction and analysis of exo-ncRNAs, their practical applications in LC treatment, and the challenges and prospects for translating these discoveries into clinical usage. Through this detailed examination of the current state of the art, we aim to highlight the significant potential of exo-ncRNAs for LC diagnostics and treatments.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Limited, H91HE94, Galway, Ireland
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Neal M Davies
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123, Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
19
|
de Souza W, Gemini-Piperni S, Ruivo C, Bastos N, Almeida S, Lopes D, Cardoso P, Oliveira MJ, Sumner DR, Ross RD, Jacobs JJ, Granjeiro JM, Fernandes MH, Rocha LA, Melo S, Ribeiro AR. Osteoblasts-derived exosomes as potential novel communicators in particle-induced periprosthetic osteolysis. Mater Today Bio 2024; 28:101189. [PMID: 39221219 PMCID: PMC11364904 DOI: 10.1016/j.mtbio.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The inflammatory response to wear particles derived from hip prothesis is considered a hallmark of periprosthetic osteolysis, which can ultimately lead to the need for revision surgery. Exosomes (Exos) have been associated with various bone pathologies, and there is increasing recognition in the literature that they actively transport molecules throughout the body. The role of wear particles in osteoblast-derived Exos is unknown, and the potential contribution of Exos to osteoimmune communication and periprosthetic osteolysis niche is still in its infancy. Given this, we investigate how titanium dioxide nanoparticles (TiO2 NPs), similar in size and composition to prosthetic wear particles, affect Exos biogenesis. Two osteoblastic cell models commonly used to study the response of osteoblasts to wear particles were selected as a proof of concept. The contribution of Exos to periprosthetic osteolysis was assessed by functional assays in which primary human macrophages were stimulated with bone-derived Exos. We demonstrated that TiO2 NPs enter multivesicular bodies, the nascent of Exos, altering osteoblast-derived Exos secretion and molecular cargo. No significant differences were observed in Exos morphology and size. However, functional assays reveal that Exos cargo enriched in uPA stimulates macrophages to a mixed M1 and M2 phenotype, inducing the release of pro- and anti-inflammatory signals characteristic of periprosthetic osteolysis. In addition, we demonstrated the expression of uPA in exosomes derived from the urine of patients with osteolysis. These results suggest that uPA can be a potential biomarker of osteolysis. In the future, uPa may serve as a possible non-invasive biomarker to identify patients at risk for peri-implant osteolysis.
Collapse
Affiliation(s)
- Wanderson de Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - S. Gemini-Piperni
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil
- Labεn Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina Ruivo
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Nuno Bastos
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Sofia Almeida
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Daniel Lopes
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Patricia Cardoso
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Maria Jose Oliveira
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - D. Rick Sumner
- Department of Orthopedic Surgery of RUSH University, Chicago, USA
| | - Ryan D. Ross
- Department of Orthopedic Surgery of RUSH University, Chicago, USA
| | - Joshua J. Jacobs
- Department of Anatomy & Cell Biology of RUSH University, Chicago, USA
| | - Jose Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil
- Dental School, Fluminense Federal University, Niterói, Brazil
| | - Maria Helena Fernandes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Luis A. Rocha
- proMetheus, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- IBTN/EURO – European Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Izmir Institute of Technology, Izmir, Turkey
| | - Sonia Melo
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Ana R. Ribeiro
- IBTN/EURO – European Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Izmir Institute of Technology, Izmir, Turkey
- Nanosafety group, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| |
Collapse
|
20
|
Sojoudi K, Azizi H, Skutella T. A review of the potential of induced pluripotent stem cell-derived exosome as a novel treatment for male infertility. Biotechnol Genet Eng Rev 2024; 40:1353-1378. [PMID: 36951621 DOI: 10.1080/02648725.2023.2193772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Exosomes are a subset of Extracellular vesicles (EVs) released by most cells in the body and can play a significant role in the intercellular connection. Researchers today claim that exosomes secreted by induced pluripotent stem cells (iPSCs) alone can play the same role as direct cell transplantation and, unlike iPSCs, do not lead to tumorigenesis. As a result, iPSC-derived exosomes (iPSC-Exos) have many applications in cell-free treatments and therapeutic effects on various diseases. Male infertility due to a defect or deficiency of spermatogonia to maintain spermatogenesis is one of the diseases that iPSC-Exos seems to be a new way to cure. However, the studies on the effect of iPSC-Exos on male infertility are very limited. In this review, we intend to provide a broader perspective on understanding the mechanisms of iPSC-Exos on spermatogenesis by collecting and reviewing some of the research conducted in this field.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Kowkabany G, Bao Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024; 29:4672. [PMID: 39407601 PMCID: PMC11477862 DOI: 10.3390/molecules29194672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that have attracted much attention for their potential in disease diagnosis and therapy. However, the clinical translation is limited by the dosing consistency due to their heterogeneity. Among various characterization techniques, nanoparticle tracking analysis (NTA) offers distinct benefits for EV characterization. In this review, we will discuss the NTA technique with a focus on factors affecting the results; then, we will review the two modes of the NTA techniques along with suitable applications in specific areas of EV studies. EVs are typically characterized by their size, size distribution, concentration, protein markers, and RNA cargos. The light-scattering mode of NTA offers accurate size, size distribution, and concentration information in solution, which is useful for comparing EV isolation methods, storage conditions, and EV secretion conditions. In contrast, fluorescent mode of NTA allows differentiating EV subgroups based on specific markers. The success of fluorescence NTA heavily relies on fluorescent tags (e.g., types of dyes and labeling methods). When EVs are labeled with disease-specific markers, fluorescence NTA offers an effective tool for disease detection in biological fluids, such as saliva, blood, and serum. Finally, we will discuss the limitations and future directions of the NTA technique in EV characterization.
Collapse
Affiliation(s)
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
22
|
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects. J Basic Microbiol 2024; 64:e2400221. [PMID: 39148315 DOI: 10.1002/jobm.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, "bacterial extracellular vesicles" (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30-150 nm), microvesicles (100-1000 nm), apoptotic bodies (1000-5000 nm), and oncosomes (1000-10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hafiz Abdullah Shakir
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Marcelo Franco
- Department of Exact Science, State University of Santa Cruz, Ilheus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
23
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
24
|
Dowaidar M. Drug delivery based exosomes uptake pathways. Neurochem Int 2024; 179:105835. [PMID: 39147203 DOI: 10.1016/j.neuint.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Most cells secrete a material called extracellular vesicles (EVs), which play a crucial role in cellular communication. Exosomes are one of the most studied types of EVs. Recent research has shown the many functions and substrates of cellular exosomes. Multiple studies have shown the efficacy of exosomes in transporting a wide variety of cargo to their respective target cells. As a result, they are often utilized to transport medicaments to patients. Natural exosomes as well as exosomes modified with other compounds to enhance transport capabilities have been employed. In this article, we take a look at how different types of exosomes and modified exosomes may transport different types of cargo to their respective targets. Exosomes have a lot of potential as drug delivery vehicles for many synthetic compounds, proteins, nucleic acids, and gene repair specialists because they can stay in the body for a long time, are biocompatible, and can carry natural materials. A good way to put specific protein particles into exosomes is still not clear, though, and the exosomes can't be used in many situations yet. The determinants for exosome production, as well as ways for loading certain therapeutic molecules (proteins, nucleic acids, and small compounds), were covered in this paper. Further study and the development of therapeutic exosomes may both benefit from the information collected in this review.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
25
|
Sankarappan K, Shetty AK. Promise of mesenchymal stem cell-derived extracellular vesicles for alleviating subarachnoid hemorrhage-induced brain dysfunction by neuroprotective and antiinflammatory effects. Brain Behav Immun Health 2024; 40:100835. [PMID: 39165307 PMCID: PMC11334735 DOI: 10.1016/j.bbih.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Subarachnoid hemorrhage (SAH), accounting for ∼5% of all strokes, represents a catastrophic subtype of cerebrovascular accident. SAH predominantly results from intracranial aneurysm ruptures and affects ∼30,000 individuals annually in the United States and ∼6 individuals per 100,000 people worldwide. Recent studies have implicated that administering mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be beneficial in inducing neuroprotective and antiinflammatory effects following SAH. EVs are nanosized particles bound by a lipid bilayer. MSC-EVs comprise a therapeutic cargo of nucleic acids, lipids, and proteins, having the promise to ease SAH-induced long-term brain impairments. This review evaluated the findings of published studies on the therapeutic efficacy of MSC-EVs in the context of SAH. A growing body of evidence points out the therapeutic potential of MSC-EVs for improving brain function in animal models of SAH. Specifically, studies demonstrated their ability to reduce neuronal apoptosis and neuroinflammation and enhance neurological recovery through neuroprotective and antiinflammatory mechanisms. Such outcomes reported in various studies suggest that MSC-EVs hold great potential as a novel and minimally invasive approach to ameliorate SAH-induced neurological damage and improve patient outcomes. The review also discusses the limitations of EV therapy and the required future research efforts toward harnessing the full potential of MSC-EVs in treating SAH.
Collapse
Affiliation(s)
- Kiran Sankarappan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
26
|
Abbas A, Huang X, Ullah A, Luo L, Xi W, Qiao Y, Zeng K. Enhanced spinal cord repair using bioengineered induced pluripotent stem cell-derived exosomes loaded with miRNA. Mol Med 2024; 30:168. [PMID: 39354344 PMCID: PMC11446086 DOI: 10.1186/s10020-024-00940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND A spinal cord injury (SCI) can result in severe impairment and fatality as well as significant motor and sensory abnormalities. Exosomes produced from IPSCs have demonstrated therapeutic promise for accelerating spinal cord injury recovery, according to a recent study. OBJECTIVE This study aims to develop engineered IPSCs-derived exosomes (iPSCs-Exo) capable of targeting and supporting neurons, and to assess their therapeutic potential in accelerating recovery from spinal cord injury (SCI). METHODS iPSCs-Exo were characterized using Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and western blot. To enhance neuronal targeting, iPSCs-Exo were bioengineered, and their uptake by neurons was visualized using PKH26 labeling and fluorescence microscopy. In vitro, the anti-inflammatory effects of miRNA-loaded engineered iPSCs-Exo were evaluated by exposing neurons to LPS and IFN-γ. In vivo, biodistribution of engineered iPSC-Exo was monitored using a vivo imaging system. The therapeutic efficacy of miRNA-loaded engineered iPSC-Exo in a SCI mouse model was assessed by Basso Mouse Scale (BMS) scores, H&E, and Luxol Fast Blue (LFB) staining. RESULTS The results showed that engineered iPSC-Exo loaded with miRNA promoted the spinal cord injure recovery. Thorough safety assessments using H&E staining on major organs revealed no evidence of systemic toxicity, with normal organ histology and biochemistry profiles following engineered iPSC-Exo administration. CONCLUSION These results suggest that modified iPSC-derived exosomes loaded with miRNA have great potential as a cutting-edge therapeutic approach to improve spinal cord injury recovery. The observed negligible systemic toxicity further underscores their potential safety and efficacy in clinical applications.
Collapse
Affiliation(s)
- Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, P.R. China
| | - Xiaosheng Huang
- Department of Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Hospital of Jinan University, No. 18, Zetian Road, Futian District, Shenzhen, Guangdong Province, 518040, P.R. China
| | - Aftab Ullah
- School of Medicine, Huaqiao University, No. 269, Chenghua North Road, Fengze District, Quanzhou, Fujian, 362021, P.R. China
| | - Lishi Luo
- Department of Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Hospital of Jinan University, No. 18, Zetian Road, Futian District, Shenzhen, Guangdong Province, 518040, P.R. China
| | - Wenqun Xi
- Department of Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Hospital of Jinan University, No. 18, Zetian Road, Futian District, Shenzhen, Guangdong Province, 518040, P.R. China
| | - Yuanjiao Qiao
- Department of Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Hospital of Jinan University, No. 18, Zetian Road, Futian District, Shenzhen, Guangdong Province, 518040, P.R. China
| | - Kun Zeng
- Department of Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Hospital of Jinan University, No. 18, Zetian Road, Futian District, Shenzhen, Guangdong Province, 518040, P.R. China.
| |
Collapse
|
27
|
Tang C, Hu W. Biomarkers and diagnostic significance of non-coding RNAs in extracellular vesicles of pathologic pregnancy. J Assist Reprod Genet 2024; 41:2569-2584. [PMID: 39316328 PMCID: PMC11534934 DOI: 10.1007/s10815-024-03268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Intercellular communication is an important mechanism for the development and maintenance of normal biological processes in all organs, including the female reproductive system. Extracellular vesicles, as important carriers of intercellular communication, contain a variety of biologically active molecules, such as mRNAs, miRNAs, lncRNAs, and circRNAs, which are involved in cell-to-cell exchanges as well as in many physiological and pathological processes in the body. Compared with biomarkers found in tissues or body fluids, extracellular vesicles show better stability due to the presence of their envelope membrane which prevents the degradation of the RNA message in their vesicles. Therefore, the genomic and proteomic information contained in extracellular vesicles can serve as important markers and potential therapeutic targets for female reproductive system-related diseases or placental function. Moreover, changes in the expression of non-coding RNAs (mainly miRNAs, lncRNAs, and circRNAs) in maternal extracellular vesicles can accurately and promptly reflect the progress of female reproductive system diseases. The aim of this review is to collect information on different types of non-coding RNAs with key molecular carriers in female pathologic pregnancies (preeclampsia and recurrent spontaneous abortion), so as to explore the relevant molecular mechanisms in female pathologic pregnancies and provide a theoretical basis for clinical research on the pathogenesis and therapeutic approaches of reproductive system diseases. The current state of the art of exosome isolation and extraction is also summarized.
Collapse
Affiliation(s)
- Cen Tang
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China
| | - Wanqin Hu
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China.
| |
Collapse
|
28
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
29
|
Liu X, Gao J, Yang L, Yuan X. Roles of Exosomal miRNAs in Asthma: Mechanisms and Applications. J Asthma Allergy 2024; 17:935-947. [PMID: 39376731 PMCID: PMC11457472 DOI: 10.2147/jaa.s485910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
Asthma is a chronic inflammatory disorder of the airways, characterized by a complex interplay of genetic, environmental, and immunological factors that contribute to its onset and progression. Recent advances in researches have illuminated the critical role of exosomal microRNAs (miRNAs) in the pathogenesis and development of asthma. Exosomes are nano-sized extracellular vesicles that facilitate intercellular communication by transporting a variety of bioactive molecules, including miRNAs, and play a crucial role in regulating gene expression and immune responses, which are central to the inflammatory processes underlying asthma. Exosomal miRNAs are emerging as key players in asthma due to their involvement in various aspects of the disease, including the regulation of inflammation, airway hyperresponsiveness, and remodeling. Their ability to influence the behavior of target cells and tissues makes them valuable both as diagnostic biomarkers and as potential therapeutic targets. This review aims to provide a comprehensive overview of the biogenesis of exosomes, the functional roles of exosomal miRNAs in asthma, and their clinical potential. It will explore the mechanisms by which these miRNAs contribute to asthma pathophysiology, discuss their utility in diagnosing and monitoring the disease, and highlight ongoing research efforts to harness their therapeutic potential.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Paediatrics, Harbin Hospital of Traditional Chinese Medicine, Harbin, 150010, People’s Republic of China
| | - Jiawei Gao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150006, People’s Republic of China
| |
Collapse
|
30
|
Sharma S, Xiao L, Chung HK, Chen T, Mallard CG, Warner B, Yu TX, Kwon MS, Chae S, Raufman JP, Kozar R, Wang JY. Noncoding Vault RNA1-1 Impairs Intestinal Epithelial Renewal and Barrier Function by Interacting With CUG-binding Protein 1. Cell Mol Gastroenterol Hepatol 2024:101410. [PMID: 39349247 DOI: 10.1016/j.jcmgh.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Small noncoding vault RNAs (vtRNAs) are involved in many cell processes important for health and disease, but their pathobiological functions in the intestinal epithelium are underexplored. Here, we investigated the role of human vtRNA1-1 in regulating intestinal epithelial renewal and barrier function. METHODS Studies were conducted in vtRNA1-1 transgenic (vtRNA1-1Tg) mice, primary enterocytes, and Caco-2 cells. Extracellular vesicles (EVs) were isolated from the serum of shock patients and septic mice. Intestinal organoids (enteroids) were prepared from vtRNA1-1Tg and littermate mice. Mucosal growth was measured by Ki67 immunostaining or BrdU incorporation, and gut permeability was assessed using the FITC-dextran assay. RESULTS Intestinal tissues recovered from shock patients and septic mice evidenced mucosal injury and gut barrier dysfunction; vtRNA levels were elevated in EVs isolated from their sera. In mice, intestinal epithelial-specific transgenic expression of vtRNA1-1 inhibited mucosal growth, reduced Paneth cell numbers and intercellular junction (IJ) protein expression, and increased gut barrier vulnerability to lipopolysaccharide exposure. Conversely, in vitro silencing of vtRNA1-1 increased IJ protein levels and enhanced epithelial barrier function. Exposing enteroids to vtRNA1-1-rich EVs augmented paracellular permeability. Mechanistically, vtRNA1-1 interacted with CUG-binding protein 1 (CUGBP1) and increased CUGBP1 association with claudin-1 and occludin mRNAs, thereby inhibiting their expression. CONCLUSIONS These findings indicate that elevated levels of vtRNA1-1 in EVs and mucosal tissues repress intestinal epithelial renewal and barrier function. Notably, this work reveals a novel role for dysregulation of the vtRNA1-1/CUGBP1 axis in the pathogenesis of gut mucosal disruption in critical illness.
Collapse
Affiliation(s)
- Shweta Sharma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bridgette Warner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Songah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jean-Pierre Raufman
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
31
|
Mishra DD, Maurya PK, Tiwari S. Reference gene panel for urinary exosome-based molecular diagnostics in patients with kidney disease. World J Nephrol 2024; 13:99105. [PMID: 39351186 PMCID: PMC11439094 DOI: 10.5527/wjn.v13.i3.99105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Kidney disease is a severe complication of diabetes that often leads to end-stage renal disease. Early diagnosis is crucial for prevention or delay. However, the current diagnostic methods, with their limitations in detecting the disease in its early stages, underscore the urgency and importance of finding new solutions. miRNAs encapsulated inside urinary exosomes (UEs) have potential as early biomarkers for kidney diseases. The need for reference miRNAs for accurate interpretation currently limits their translational potential. AIM To identify consistently expressing reference miRNAs from UEs of controls and patients with type 2 diabetesmellitus (T2DM) and biopsy-confirmed kidney diseases. METHODS miRNA profiling was performed on UEs from 31 human urine samples using a rigorous and unbiased method. The UEs were isolated from urine samples collected from healthy individuals (n = 6), patients with T2DM (n = 13), and T2DM patients who also had kidney diseases (including diabetic nephropathy, n = 5; membranous nephropathy, n = 5; and IgA nephropathy, n = 2) through differential ultracentrifugation. After characterizing the UEs, miRNA expression profiling using microarray technology was conducted. RESULTS Microarray data analysis identified 14 miRNAs that were consistently expressed in UEs from 31 human samples, representing various kidney conditions: diabetic controls, diabetic nephropathy, membrane nephropathy, IgA nephropathy, and healthy controls. Through in silico analysis, we determined that 10 of these miRNAs had significant potential to serve as reference genes in UEs. CONCLUSION We identified uniformly expressing UE miRNAs that could serve as reference genes kidney disease biomarkers.
Collapse
Affiliation(s)
- Deendayal D Mishra
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Pramod K Maurya
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
32
|
Hsu CY, Ahmed AT, Bansal P, Hjazi A, Al-Hetty HRAK, Qasim MT, Sapaev I, Deorari M, Mustafa YF, Elawady A. MicroRNA-enriched exosome as dazzling dancer between cancer and immune cells. J Physiol Biochem 2024:10.1007/s13105-024-01050-x. [PMID: 39316240 DOI: 10.1007/s13105-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Exosomes are widely recognized for their roles in numerous biological processes and as intercellular communication mediators. Human cancerous and normal cells can both produce massive amounts of exosomes. They are extensively dispersed in tumor-modeling animals' pleural effusions, ascites, and plasma from people with cancer. Tumor cells interact with host cells by releasing exosomes, which allow them to interchange various biological components. Tumor growth, invasion, metastasis, and even tumorigenesis can all be facilitated by this delicate and complex system by modifying the nearby and remote surroundings. Due to the existence of significant levels of biomolecules like microRNA, exosomes can modulate the immune system's stimulation or repression, which in turn controls tumor growth. However, the role of microRNA in exosome-mediated communication between immunological and cancer cells is still poorly understood. This study aims to get the most recent information on the "yin and yang" of exosomal microRNA in the regulation of tumor immunity and immunotherapy, which will aid current cancer treatment and diagnostic techniques.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Ibrokhim Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan
- Western Caspian University, Scientific researcher, Baku, Azerbaijan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
33
|
Chang WC, Li SH, Tsai PS. Seminal Vesicle-Derived Exosomes for the Regulation of Sperm Activity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024. [PMID: 39287631 DOI: 10.1007/102_2024_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The seminal vesicle contributes to a large extent of the semen volume and composition. Removal of seminal vesicle or lack of seminal vesicle proteins leads to decreased fertility. Seminal plasma proteome revealed that seminal fluid contained a wide diversity of proteins. Many of them are known to modulate sperm capacitation and serve as capacitation inhibitors or decapacitation factors. Despite identifying secretory vesicles from the male reproductive tract, such as epididymosomes or prostasomes, isolation, identification, and characterization of seminal vesicle-derived exosomes are still unknown. This chapter aims to review the current understanding of the function of seminal vesicles on sperm physiology and male reproduction and provide ultracentrifugation-based isolation protocols for the isolation of seminal vesicle exosomes. Moreover, via proteomic analysis and functional categorization, a total of 726 proteins IDs were identified in the purified seminal vesicle exosomes fraction. Preliminary data showed seminal vesicle-derived exosomes inhibited sperm capacitation; however, more studies will be needed to reveal other functional involvements of seminal vesicle-derived exosomes on the sperm physiology and, more importantly, how these exosomes interact with sperm membrane to achieve their biological effects.
Collapse
Affiliation(s)
- Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, Tamsui, Taiwan.
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
WANG YUN, LI XIAOJIANG, LIU DALONG, WANG ZHIFENG, XIA JICHEN, WANG LIJUN, ZHANG XUDONG. Research progress on the role of adipocyte exosomes in cancer progression. Oncol Res 2024; 32:1649-1660. [PMID: 39308520 PMCID: PMC11413817 DOI: 10.32604/or.2024.043482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/07/2024] [Indexed: 09/25/2024] Open
Abstract
Exosomes, minute vesicles ubiquitously released by diverse cell types, serve as critical mediators in intercellular communication. Their pathophysiological relevance, especially in malignancies, has garnered significant attention. A meticulous exploration of the exosomal impact on cancer development has unveiled avenues for innovative and clinically valuable techniques. The cargo conveyed by exosomes exerts transformative effects on both local and distant microenvironments, thereby influencing a broad spectrum of biological responses in recipient cells. These membrane-bound extracellular vesicles (EVs) play a pivotal role in delivering bioactive molecules among cells and organs. Cellular and biological processes in recipient cells, ranging from stromal cell reprogramming to immunological responses, extracellular matrix formation, and modulation of cancer cell activation, expansion, and metastasis, are subject to exosome-mediated cell-to-cell communication. Moreover, exosomes have been implicated in endowing cancer cells with resistance to treatment. Extensive research has explored the potential of exosomes as therapeutic targets and diagnostic indicators. This comprehensive review seeks to provide an in-depth understanding of the pivotal components and roles of exosomes in tumorigenesis, growth, progression, and therapeutic responses. The insights into the multifaceted involvement of exosomes in malignant cancers are essential for the scientific community, fostering the development of novel therapeutic and diagnostic strategies in the relentless pursuit of cancer.
Collapse
Affiliation(s)
- YUN WANG
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - XIAOJIANG LI
- Department of Orthopaedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - DALONG LIU
- Department of Orthopaedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - ZHIFENG WANG
- Department of Internal Medicine, Changchun Chaoyang District Hospital of Traditional Chinese Medicine, Changchun, 130061, China
| | - JICHEN XIA
- Department of Orthopedics and Traumatology, Jilin Integrated Traditional Chinese and Western Medicine Hospital of Jilin Province, Jilin, 132012, China
| | - LIJUN WANG
- Department of Oncology, Liaoyuan Second People’s Hospital, Liaoyuan, 136299, China
| | - XUDONG ZHANG
- Department of Brain Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| |
Collapse
|
35
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Liu J, Qin J, Liang L, Zhang X, Gao J, Hao Y, Zhao P. Novel insights into the regulation of exosomal PD-L1 in cancer: From generation to clinical application. Eur J Pharmacol 2024; 979:176831. [PMID: 39047964 DOI: 10.1016/j.ejphar.2024.176831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death 1 (PD-1), leading to T cell exhaustion and promoting tumor cell survival, ultimately mediating immunosuppression. While FDA-approved monoclonal antibodies targeting the PD-1/PD-L1 interaction have shown success in cancer treatment, some patients experience limited and short-lived therapeutic outcomes. Recent studies have identified PD-L1 expression not only on tumor cell surfaces but also on exosomes, with secretion pathways including both conventional and unconventional endocytosis routes, presenting a unique therapeutic opportunity. Emerging evidence suggests that exosomal PD-L1 contributes to systemic immunosuppression, potentially counteracting the effects of anti-PD-1 checkpoint therapies. However, the significance of exosomal PD-L1 in clinical cancer patients unresponsive to anti-PD-1/PD-L1 immunotherapy, as well as the factors regulating its generation, remain unclear. Moreover, the mechanisms underlying PD-L1 expression on exosomes and its regulation in cancer are yet to be fully elucidated. This review primarily focuses on the mechanisms modulating exosomal PD-L1 generation in cancer, while also outlining its involvement in immunosuppression, tumor proliferation, and response to cancer immunotherapy. Additionally, we explore the potential of exosomal PD-L1 as a cancer biomarker and therapeutic target, aiming to provide a comprehensive overview of this emerging field and its implications for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Jie Liu
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China; Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052, Erlangen, Germany
| | - Junxia Qin
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Lili Liang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xinzhong Zhang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Jie Gao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Youwei Hao
- Department of Cardiology, Taiyuan People's Hospital, Taiyuan, 030000, China
| | - Peng Zhao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
37
|
Quirino A, Marascio N, Branda F, Ciccozzi A, Romano C, Locci C, Azzena I, Pascale N, Pavia G, Matera G, Casu M, Sanna D, Giovanetti M, Ceccarelli G, Alaimo di Loro P, Ciccozzi M, Scarpa F, Maruotti A. Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens 2024; 13:766. [PMID: 39338957 PMCID: PMC11435051 DOI: 10.3390/pathogens13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, GO, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Antonello Maruotti
- Department GEPLI, Libera Università Maria Ss Assunta, 00193 Rome, Italy;
| |
Collapse
|
38
|
Athira AP, Sreekanth S, Chandran A, Lahon A. Dual Role of Extracellular Vesicles as Orchestrators of Emerging and Reemerging Virus Infections. Cell Biochem Biophys 2024:10.1007/s12013-024-01495-3. [PMID: 39225901 DOI: 10.1007/s12013-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Current decade witnessed the emergence and re-emergence of many viruses, which affected public health significantly. Viruses mainly utilize host cell machinery to promote its growth, and spread of these diseases. Numerous factors influence virus-host cell interactions, of which extracellular vesicles play an important role, where they transfer information both locally and distally by enclosing viral and host-derived proteins and RNAs as their cargo. Thus, they play a dual role in mediating virus infections by promoting virus dissemination and evoking immune responses in host organisms. Moreover, it acts as a double-edged sword during these infections. Advances in extracellular vesicles regulating emerging and reemerging virus infections, particularly in the context of SARS-CoV-2, Dengue, Ebola, Zika, Chikungunya, West Nile, and Japanese Encephalitis viruses are discussed in this review.
Collapse
Affiliation(s)
- A P Athira
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Smrithi Sreekanth
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Ananthu Chandran
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Anismrita Lahon
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
39
|
Lai G, Malavolta M, Marcozzi S, Bigossi G, Giuliani ME, Casoli T, Balietti M. Late-onset major depressive disorder: exploring the therapeutic potential of enhancing cerebral brain-derived neurotrophic factor expression through targeted microRNA delivery. Transl Psychiatry 2024; 14:352. [PMID: 39227372 PMCID: PMC11371930 DOI: 10.1038/s41398-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 09/05/2024] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments, experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems, it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the trade-offs, liposomes emerge as the most suitable option.
Collapse
Affiliation(s)
- Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marta Balietti
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
40
|
Wu B, Huang X, Shi X, Jiang M, Liu H, Zhao L. LAMTOR1 decreased exosomal PD-L1 to enhance immunotherapy efficacy in non-small cell lung cancer. Mol Cancer 2024; 23:184. [PMID: 39223601 PMCID: PMC11367890 DOI: 10.1186/s12943-024-02099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Great progress has been made in utilizing immune checkpoint blockade (ICB) for the treatment of non-small-cell lung cancer (NSCLC). Therapies targeting programmed cell death protein 1 (PD-1) and its ligand PD-L1, expressed on tumor cells, have demonstrated potential in improving patient survival rates. An unresolved issue involves immune suppression induced by exosomal PD-L1 within the tumor microenvironment (TME), particularly regarding CD8+ T cells. Our study unveiled the crucial involvement of LAMTOR1 in suppressing the exosomes of PD-L1 and promoting CD8+ T cell infiltration in NSCLC. Through its interaction with HRS, LAMTOR1 facilitates PD-L1 lysosomal degradation, thereby reducing exosomal PD-L1 release. Notably, the ability of LAMTOR1 to promote PD-L1 lysosomal degradation relies on a specific ubiquitination site and an HRS binding sequence. The findings suggest that employing LAMTOR1 to construct peptides could serve as a promising strategy for bolstering the efficacy of immunotherapy in NSCLC. The discovery and comprehension of how LAMTOR1 inhibits the release of exosomal PD-L1 offer insights into potential therapeutic strategies for improving immunotherapy. It is imperative to conduct further research and clinical trials to investigate the feasibility and efficacy of targeting LAMTOR1 in NSCLC treatment.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110136, China
| | - Xin Huang
- Department of General practice medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Xiang Shi
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110136, China.
| |
Collapse
|
41
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
43
|
Ou H, Yang Q, Zhang Y, Tang X, Xiao M, Li S, Lei L, Xie Z. The role of cells and their derivatives in otorhinolaryngologic diseases treatment. Life Sci 2024; 352:122898. [PMID: 38997061 DOI: 10.1016/j.lfs.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.
Collapse
Affiliation(s)
- Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
44
|
Zimmerman AJ, Serrano-Rodriguez A, Wilson SJ, Linsenbardt DN, Brigman JL, Weick J. Knockout of AMPA receptor binding protein Neuron-Specific Gene 2 (NSG2) enhances associative learning and cognitive flexibility. RESEARCH SQUARE 2024:rs.3.rs-4790348. [PMID: 39257983 PMCID: PMC11384823 DOI: 10.21203/rs.3.rs-4790348/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
|
45
|
Gao C, Xiong R, Zhang ZY, Peng H, Gu YK, Xu W, Yang WT, Liu Y, Gao J, Yin Y. Hybrid nanostructures for neurodegenerative disease theranostics: the art in the combination of biomembrane and non-biomembrane nanostructures. Transl Neurodegener 2024; 13:43. [PMID: 39192378 DOI: 10.1186/s40035-024-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) remains challenging, and existing therapeutic approaches demonstrate little efficacy. NDD drug delivery can be achieved through the utilization of nanostructures, hence enabling multimodal NDD theranostics. Nevertheless, both biomembrane and non-biomembrane nanostructures possess intrinsic shortcomings that must be addressed by hybridization to create novel nanostructures with versatile applications in NDD theranostics. Hybrid nanostructures display improved biocompatibility, inherent targeting capabilities, intelligent responsiveness, and controlled drug release. This paper provides a concise overview of the latest developments in hybrid nanostructures for NDD theranostics and emphasizes various engineering methodologies for the integration of diverse nanostructures, including liposomes, exosomes, cell membranes, and non-biomembrane nanostructures such as polymers, metals, and hydrogels. The use of a combination technique can significantly augment the precision, intelligence, and efficacy of hybrid nanostructures, therefore functioning as a more robust theranostic approach for NDDs. This paper also addresses the issues that arise in the therapeutic translation of hybrid nanostructures and explores potential future prospects in this field.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Ran Xiong
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhi-Yu Zhang
- Department of Health Management, Second Affliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Hua Peng
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Yuan-Kai Gu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Wei Xu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wei-Ting Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China.
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
46
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589114. [PMID: 38659930 PMCID: PMC11042190 DOI: 10.1101/2024.04.12.589114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
|
47
|
Tong S, Niu J, Wang Z, Jiao Y, Fu Y, Li D, Pan X, Sheng N, Yan L, Min P, Chen D, Cui S, Liu Y, Lin S. The Evolution of Microfluidic-Based Drug-Loading Techniques for Cells and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403422. [PMID: 39152940 DOI: 10.1002/smll.202403422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.
Collapse
Affiliation(s)
- Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Peiru Min
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
48
|
Fakouri A, Razavi ZS, Mohammed AT, Hussein AHA, Afkhami H, Hooshiar MH. Applications of mesenchymal stem cell-exosome components in wound infection healing: new insights. BURNS & TRAUMA 2024; 12:tkae021. [PMID: 39139205 PMCID: PMC11319788 DOI: 10.1093/burnst/tkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024]
Abstract
The healing process at a wound is made up of many types of cells, growth factors, the extracellular matrix, nerves and blood vessels all interacting with each other in complex and changing ways. Microbial colonization and proliferation are possible at the place of injury, which makes infection more likely. Because of this, any cut has a chance of getting an infection. Researchers have found that wound infections make patients more upset and cost the healthcare system a lot of money. Surgical site infections happen a lot to people who have recently had surgery. This study shows that such surgical infection is linked to a high rate of illness and death. This is shown by the fact that 25% of patients get serious sepsis and need to be transferred to an intensive care unit. In both animal models and people, mesenchymal stem cells (MSCs) play an active role in all stages of wound healing and have positive effects. Exosomes are one of the main things MSCs release. They have effects that are similar to those of the parent MSCs. Various effector proteins, messenger RNA and microRNAs can be transported by extracellular vesicles to control the activity of target cells. This has a big impact on the healing process. These results suggest that using MSC-exosomes as a new type of cell-free therapy could be a better and safer option than whole cell therapy. This review is mostly about how to use parts of MSC-exosomes to help wound infections heal.
Collapse
Affiliation(s)
- Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| | - Zahra-Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
49
|
Röhrborn K, Krueger M, Kalusa M, Fietz SA, Ewe A, Aigner A, Stumvoll M, Kovacs P, Blüher M, Schamarek I, Rohde-Zimmermann K. The Concentration of Salivary Extracellular Vesicles Is Related to Obesity. Nutrients 2024; 16:2633. [PMID: 39203770 PMCID: PMC11356876 DOI: 10.3390/nu16162633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND AND AIMS Saliva is essential for the proper dilution and distribution of taste molecules on the tongue. It harbors extracellular vesicles (EVs), which mediate cell-cell communication. Changes in the composition of salivary EVs may arise under obese conditions and may potentially be involved in taste sensation and dysregulated eating behavior. Therefore, this study addresses the relationship between the size and concentration of salivary EVs and metabolic shifts in obesity or factors of taste sensation. MATERIALS AND METHODS A total of 119 participants in the Obese Taste Bud (OTB) Study were included, who performed a standardized taste test, underwent taste bud density assessment, and were phenotypically characterized for anthropometrics, blood- and saliva adipokine levels, and various metabolic factors. Utilizing size exclusion chromatography followed by ultrafiltration, EVs were extracted from 2 mL of actively secreted saliva. EVs were characterized using nanoparticle tracking analyses, Western blot, and scanning transmission electron microscopy. Finally, group comparisons and bivariate correlation analyses were conducted. RESULTS Among the total cohort, the median size of salivary EVs was 190.05 nm, and the overall concentration ranged from 1.4 × 107 to 1.76 × 109 per mL of saliva. The size range and concentration of EVs per mL are negatively correlated (p = 0.0002, r = -0.264). Comparing lean participants (mean rank of 45.98) with those presenting obesity (mean rank of 34.46), a significant difference in the salivary EV content was observed (p = 0.029). Body weight, BMI, arm and calf circumferences, as well as the percentage of body fat were all negatively related to the concentration of EVs in all study participants (all p < 0.05, r > -0.2). No associations were found between the EV parameters and taste perception but serum alkaline phosphatase levels were negatively correlated (p = 0.007, r = -0.284) and adiponectin serum levels were positively correlated to the EV concentration (p = 0.036, r = 0.208). CONCLUSION The current study provides evidence for the relation between salivary EVs and anthropometric as well as metabolic parameters of obesity. This can provide the basis for further research on the cargo of salivary EVs and how they may influence taste sensation, and may elucidate their potential connection to altered eating habits in obesity.
Collapse
Affiliation(s)
- Kristin Röhrborn
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
| | - Martin Krueger
- Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Mirjam Kalusa
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone A. Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04103 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Imke Schamarek
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Kerstin Rohde-Zimmermann
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
| |
Collapse
|
50
|
Sigdel S, Udoh G, Albalawy R, Wang J. Perivascular Adipose Tissue and Perivascular Adipose Tissue-Derived Extracellular Vesicles: New Insights in Vascular Disease. Cells 2024; 13:1309. [PMID: 39195199 DOI: 10.3390/cells13161309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a special deposit of fat tissue surrounding the vasculature. Previous studies suggest that PVAT modulates the vasculature function in physiological conditions and is implicated in the pathogenesis of vascular diseases. Understanding how PVAT influences vasculature function and vascular disease progression is important. Extracellular vesicles (EVs) are novel mediators of intercellular communication. EVs encapsulate molecular cargo such as proteins, lipids, and nucleic acids. EVs can influence cellular functions by transferring the carried bioactive molecules. Emerging evidence indicates that PVAT-derived EVs play an important role in vascular functions under health and disease conditions. This review will focus on the roles of PVAT and PVAT-EVs in obesity, diabetic, and metabolic syndrome-related vascular diseases, offering novel insights into therapeutic targets for vascular diseases.
Collapse
Affiliation(s)
- Smara Sigdel
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Gideon Udoh
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rakan Albalawy
- Department of Internal Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|