1
|
Valente S, Galanti A, Maghin E, Najdi N, Piccoli M, Gobbo P. Matching Together Living Cells and Prototissues: Will There Be Chemistry? Chembiochem 2024; 25:e202400378. [PMID: 39031571 DOI: 10.1002/cbic.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Scientific advancements in bottom-up synthetic biology have led to the development of numerous models of synthetic cells, or protocells. To date, research has mainly focused on increasing the (bio)chemical complexity of these bioinspired micro-compartmentalized systems, yet the successful integration of protocells with living cells remains one of the major challenges in bottom-up synthetic biology. In this review, we aim to summarize the current state of the art in hybrid protocell/living cell and prototissue/living cell systems. Inspired by recent breakthroughs in tissue engineering, we review the chemical, bio-chemical, and mechano-chemical aspects that hold promise for achieving an effective integration of non-living and living matter. The future production of fully integrated protocell/living cell systems and increasingly complex prototissue/living tissue systems not only has the potential to revolutionize the field of tissue engineering, but also paves the way for new technologies in (bio)sensing, personalized therapy, and drug delivery.
Collapse
Affiliation(s)
- Stefano Valente
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Agostino Galanti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Edoardo Maghin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Nahid Najdi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology, Unit of Trieste, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
2
|
Hu J, Anderson W, Hayes E, Strauss EA, Lang J, Bacos J, Simacek N, Vu HH, McCarty OJ, Kim H, Kang Y(A. The development, use, and challenges of electromechanical tissue stimulation systems. Artif Organs 2024; 48:943-960. [PMID: 38887912 PMCID: PMC11321926 DOI: 10.1111/aor.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.
Collapse
Affiliation(s)
- Jie Hu
- Department of Mechanical Engineering; University of Massachusetts; Lowell, MA 01854 USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Emily Hayes
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Ellie Annah Strauss
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Jordan Lang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Josh Bacos
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Noah Simacek
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Helen H. Vu
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology; Oregon Health & Science University; Portland, OR 97201 USA
| | - Hoyeon Kim
- Department of Engineering; Loyola University Maryland; Baltimore, MD 21210 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| |
Collapse
|
3
|
Conner AA, Yao Y, Chan SW, Jain D, Wong SM, Yim EKF, Rizwan M. High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells. NANOTECHNOLOGY 2024; 35:455101. [PMID: 39084233 DOI: 10.1088/1361-6528/ad6994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
The expansion of pluripotent stem cells (PSCs)in vitroremains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markersOct4, Nanog, andSox2and the differentiation markerLmnAas well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1µm pillars (1µm spacing, square arrangement), 2µm wells (c-c (x, y) = 4, 4µm), and 5µm pillars (c-c (x, y) = 7.5, 7.5µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Sarah W Chan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Suzanne M Wong
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
4
|
Yehya H, Raudins S, Padmanabhan R, Jensen J, Bukys MA. Addressing bioreactor hiPSC aggregate stability, maintenance and scaleup challenges using a design of experiment approach. Stem Cell Res Ther 2024; 15:191. [PMID: 38956608 PMCID: PMC11218057 DOI: 10.1186/s13287-024-03802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Stem cell-derived therapies hold the potential for treatment of regenerative clinical indications. Static culture has a limited ability to scale up thus restricting its use. Suspension culturing can be used to produce target cells in large quantities, but also presents challenges related to stress and aggregation stability. METHODS Utilizing a design of experiments (DoE) approach in vertical wheel bioreactors, we evaluated media additives that have versatile properties. The additives evaluated are Heparin sodium salt (HS), polyethylene glycol (PEG), poly (vinyl alcohol) (PVA), Pluronic F68 and dextran sulfate (DS). Multiple response variables were chosen to assess cell growth, pluripotency maintenance and aggregate stability in response to the additive inputs, and mathematical models were generated and tuned for maximal predictive power. RESULTS Expansion of iPSCs using 100 ml vertical wheel bioreactor assay for 4 days on 19 different media combinations resulted in models that can optimize pluripotency, stability, and expansion. The expansion optimization resulted in the combination of PA, PVA and PEG with E8. This mixture resulted in an expansion doubling time that was 40% shorter than that of E8 alone. Pluripotency optimizer highlighted the importance of adding 1% PEG to the E8 medium. Aggregate stability optimization that minimizes aggregate fusion in 3D culture indicated that the interaction of both Heparin and PEG can limit aggregation as well as increase the maintenance capacity and expansion of hiPSCs, suggesting that controlling fusion is a critical parameter for expansion and maintenance. Validation of optimized solution on two cell lines in bioreactors with decreased speed of 40 RPM, showed consistency and prolonged control over aggregates that have high frequency of pluripotency markers of OCT4 and SOX2 (> 90%). A doubling time of around 1-1.4 days was maintained after passaging as clumps in the optimized medium. Controlling aggregate fusion allowed for a decrease in bioreactor speed and therefore shear stress exerted on the cells in a large-scale expansion. CONCLUSION This study resulted in a control of aggregate size within suspension cultures, while informing about concomitant state control of the iPSC state. Wider application of this approach can address media optimization complexity and bioreactor scale-up challenges.
Collapse
Affiliation(s)
- Haneen Yehya
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
- Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Sofija Raudins
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | | | - Jan Jensen
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael A Bukys
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA.
| |
Collapse
|
5
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
6
|
Castro Nava A, Doolaar IC, Labude-Weber N, Malyaran H, Babu S, Chandorkar Y, Di Russo J, Neuss S, De Laporte L. Actuation of Soft Thermoresponsive Hydrogels Mechanically Stimulates Osteogenesis in Human Mesenchymal Stem Cells without Biochemical Factors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30-43. [PMID: 38150508 PMCID: PMC10789260 DOI: 10.1021/acsami.3c11808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/29/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation. Recently, our group developed a thermoresponsive N-ethyl acrylamide/N-isopropylacrylamide (NIPAM/NEAM) hydrogel supplemented with gold nanorods that are able to convert near-infrared light into heat. Using light pulses allows for local hydrogel collapse and swelling with physiologically relevant force and frequency. In this study, MSCs are cultured on this hydrogel system with a patterned surface and exposed to intermittent or continuous actuation of the hydrogel for 3 days to study the effect of actuation on MSC differentiation. First, cells are harvested from the bone marrow of three donors and tested for their MSC phenotype, meeting the following criteria: the harvested cells are adherent and demonstrate a fibroblast-like bipolar morphology. They lack the expression of CD34 and CD45 but do express CD73, CD90, and CD105. Additionally, their differentiation potential into adipogenic, chondrogenic, and osteogenic lineages is validated by the addition of standardized differentiation media. Next, MSCs are exposed to intermittent or continuous actuation, which leads to a significantly enhanced cell spreading compared to nonactuated cells. Moreover, actuation results in nuclear translocation of Runt-related transcription factor 2 and the Yes-associated protein. Together, these results indicate that cyclic mechanical stimulation on a soft, ridged substrate modulates the MSC fate commitment in the direction of osteogenesis.
Collapse
Affiliation(s)
- Arturo Castro Nava
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Iris C. Doolaar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Norina Labude-Weber
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
| | - Hanna Malyaran
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Susan Babu
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Yashoda Chandorkar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
| | - Jacopo Di Russo
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
- Institute
of Molecular and Cellular Anatomy, RWTH
Aachen University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Sabine Neuss
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Institute
of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen D-52074, Germany
| | - Laura De Laporte
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
- Institute
of Applied Medical Engineering, Department of Advanced Materials for
Biomedicine, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| |
Collapse
|
7
|
Rosado-Galindo H, Domenech M. Substrate topographies modulate the secretory activity of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2023; 14:208. [PMID: 37605275 PMCID: PMC10441765 DOI: 10.1186/s13287-023-03450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability. METHODS The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24-48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology tool enrichGO from the clusterprofiler. One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combined P < 0.05 for at least three independent experiments. RESULTS Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs. CONCLUSIONS This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.
Collapse
Affiliation(s)
- Heizel Rosado-Galindo
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA
| | - Maribella Domenech
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
| |
Collapse
|
8
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
9
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
10
|
Villata S, Canta M, Baruffaldi D, Pavan A, Chiappone A, Pirri CF, Frascella F, Roppolo I. 3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing. Biomater Sci 2023; 11:2950-2959. [PMID: 36912680 DOI: 10.1039/d3bm00152k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Nowadays, most of the microfluidic devices for biological applications are fabricated with only few well-established materials. Among these, polydimethylsiloxane (PDMS) is the most used and known. However, it has many limitations, like the operator dependent and time-consuming manufacturing technique and the high molecule retention. TEGORad or Acrylate PDMS is an acrylate polydimethylsiloxane copolymer that can be 3D printed through Digital Light Processing (DLP), a technology that can boast reduction of waste products and the possibility of low cost and rapid manufacturing of complex components. Here, we developed 3D printed Acrylate PDMS-based devices for cell culture and drug testing. Our in vitro study shows that Acrylate PDMS can sustain cell growth of lung and skin epithelium, both of great interest for in vitro drug testing, without causing any genotoxic effect. Moreover, flow experiments with a drug-like solution (Rhodamine 6G) show that Acrylate PDMS drug retention is negligible unlike the high signal shown by PDMS. In conclusion, the study demonstrates that this acrylate resin can be an excellent alternative to PDMS to design stretchable platforms for cell culture and drug testing.
Collapse
Affiliation(s)
- Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Marta Canta
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Alice Pavan
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Annalisa Chiappone
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy. .,Center for Sustainable Futures @PolitoIstituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Ignazio Roppolo
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| |
Collapse
|
11
|
Shin E, Kwon TY, Cho Y, Kim Y, Shin JH, Han YM. ECM Architecture-Mediated Regulation of β-Cell Differentiation from hESCs via Hippo-Independent YAP Activation. ACS Biomater Sci Eng 2023; 9:680-692. [PMID: 36580628 DOI: 10.1021/acsbiomaterials.2c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Changes in the extracellular matrix (ECM) influence stem cell fate. When hESCs were differentiated on a thin layer of Matrigel coated onto PDMS (Matrigel_PDMS), they exhibited a substantial increase in focal adhesion and focal adhesion-associated proteins compared with those cultured on Matrigel coated onto TCPS (Matrigel_TCPS), resulting in YAP/TEF1 activation and ultimately promoting the transcriptional activities of pancreatic endoderm (PE)-associated genes. Interestingly, YAP activation in PE cells was mediated through integrin α3-FAK-CDC42-PP1A signaling rather than the typical Hippo signaling pathway. Furthermore, pancreatic islet-like organoids (PIOs) generated on Matrigel_PDMS secreted more insulin than those generated from Matrigel_TCPS. Electron micrographs revealed differential Matrigel architectures depending on the underlying substrate, resulting in varying cell-matrix anchorage resistance levels. Accordingly, the high apparent stiffness of the unique mucus-like network structure of Matrigel_PDMS was the critical factor that directly upregulated focal adhesion, thereby leading to better maturation of the pancreatic development of hESCs in vitro.
Collapse
Affiliation(s)
- Eunji Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Yoon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngjin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Magnetomechanical Stress-Induced Colon Cancer Cell Growth Inhibition. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of magnetomechanical stress in cells using internalized magnetic nanoparticles (MNPs) actuated by low-frequency magnetic fields has been attracting considerable interest in the field of cancer research. Recent developments prove that magnetomechanical stress can inhibit cancer cells’ growth. However, the MNPs’ type and the magnetic field’s characteristics are crucial parameters. Their variability allows multiple combinations, which induce specific biological effects. We previously reported the antiproliferative effects induced in HT29 colon cancer cells by static-magnetic-field (200 mT)-actuated spherical MNPs (100 nm). Herein, we show that similar growth inhibitory effects are induced in other colon cancer cell lines. The effect of magnetomechanical stress was also examined in the growth rate of tumor spheroids. Moreover, we examined the biological mechanisms involved in the observed cell growth inhibition. Under the experimental conditions employed, no cell death was detected by PI (propidium iodide) staining analysis. Flow cytometry and Western blotting revealed that G2/M cell cycle arrest might mediate the antiproliferative effects. Furthermore, MNPs were found to locate in the lysosomes, and a decreased number of lysosomes was detected in cells that had undergone magnetomechanical stress, implying that the mechanical activation of the internalized MNPs could induce lysosome membrane disruption. Of note, the lysosomal acidic conditions were proven to affect the MNPs’ magnetic properties, evidenced by vibrating sample magnetometry (VSM) analysis. Further research on the combination of the described magnetomechanical stress with lysosome-targeting chemotherapeutic drugs could lay the groundwork for the development of novel anticancer combination treatment schemes.
Collapse
|
13
|
Munawar MA, Schubert DW. Thermal-Induced Percolation Phenomena and Elasticity of Highly Oriented Electrospun Conductive Nanofibrous Biocomposites for Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158451. [PMID: 35955588 PMCID: PMC9369359 DOI: 10.3390/ijms23158451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Highly oriented electrospun conductive nanofibrous biocomposites (CNBs) of polylactic acid (PLA) and polyaniline (PANi) are fabricated using electrospinning. At the percolation threshold (φc), the growth of continuous paths between PANi particles leads to a steep increase in the electrical conductivity of fibers, and the McLachlan equation is fitted to identify φc. Annealing generates additional conductive channels, which lead to higher conductivity for dynamic percolation. For the first time, dynamic percolation is investigated for revealing time-temperature superposition in oriented conductive nanofibrous biocomposites. The crystallinity (χc) displays a linear dependence on annealing temperature within the confined fiber of CNBs. The increase in crystallinity due to annealing also increases the Young’s modulus E of CNBs. The present study outlines a reliable approach to determining the conductivity and elasticity of nanofibers that are highly desirable for a wide range of biological tissue applications.
Collapse
Affiliation(s)
- Muhammad A. Munawar
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| | - Dirk W. Schubert
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| |
Collapse
|
14
|
Eini E, Ghaemi A, Rahim F. Bone Using Stem Cells for Maxillofacial Bone Disorders: A Systematic Review and Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:119-135. [PMID: 35389197 DOI: 10.1007/5584_2022_706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Due to economic, cultural, environmental, and social factors, the prevalence of maxillofacial bone disorders varies in different parts of the world. The present meta-analysis was conducted to assess the efficacy and safety of different type of stem cells-based scaffolds and their construction methods in maxillofacial bone disorders. We searched major indexing databases, including PubMed/Medline, ISI Web of Science, Scopus, Embase, and Cochrane Central without any language, study region, or type restrictions. A systematic search of articles published up to July 2021 was done. Of the 428 studies found through initial searches, 36 met the inclusion criteria. After applying the exclusion criteria, the main properties of 32 articles on 643 animals and 4 experimental studies on 52 patients (age range from 43 to 74 years) included in this meta-analysis. Our pooled analysis showed that stem cells-based scaffolds significantly improved the bone regeneration and formation in maxillofacial bone disorders (Prevalence: 0.54; 95% CI: 0.43, 0.64, P < 00001, I2 = 90 2). According to the results of these studies, in most studies, bone marrow-derived mesenchymal stem cells (BMSCs) have been used to regenerate bone, and these cells are still the gold standard in bone tissue engineering, a growth factor that is one of the three sides of the tissue engineering triangle. Bone morphogenetic proteins (BMP) especially BMP2 and platelet-rich plasma (PRP) are the most widely used growth factor and scaffold respectively. Platelet-rich plasma (PRP) is used as a scaffold and since it contains proteins, it also used as a growth factor and can be a stimulant of ossification. It seems that the future perspective of bone tissue engineering is to use the prototyping rapid method to build a composite and patient-specific scaffold from CT and MRI images, along with genetically modified stem cells.
Collapse
Affiliation(s)
- Ebrahim Eini
- MSD, Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Nasrollahzadeh N, Karami P, Wang J, Bagheri L, Guo Y, Abdel-Sayed P, Laurent-Applegate L, Pioletti DP. Temperature evolution following joint loading promotes chondrogenesis by synergistic cues via calcium signaling. eLife 2022; 11:72068. [PMID: 35256051 PMCID: PMC8903839 DOI: 10.7554/elife.72068] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/12/2022] [Indexed: 12/29/2022] Open
Abstract
During loading of viscoelastic tissues, part of the mechanical energy is transformed into heat that can locally increase the tissue temperature, a phenomenon known as self-heating. In the framework of mechanobiology, it has been accepted that cells react and adapt to mechanical stimuli. However, the cellular effect of temperature increase as a by-product of loading has been widely neglected. In this work, we focused on cartilage self-heating to present a 'thermo-mechanobiological' paradigm, and demonstrate how the coupling of a biomimetic temperature evolution and mechanical loading could influence cell behavior. We thereby developed a customized in vitro system allowing to recapitulate pertinent in vivo physical cues and determined the cells chondrogenic response to thermal and/or mechanical stimuli. Cellular mechanisms of action and potential signaling pathways of thermo-mechanotransduction process were also investigated. We found that co-existence of thermo-mechanical cues had a superior effect on chondrogenic gene expression compared to either signal alone. Specifically, the expression of Sox9 was significantly upregulated by application of the physiological thermo-mechanical stimulus. Multimodal transient receptor potential vanilloid 4 (TRPV4) channels were identified as key mediators of thermo-mechanotransduction process, which becomes ineffective without external calcium sources. We also observed that the isolated temperature evolution, as a by-product of loading, is a contributing factor to the cell response and this could be considered as important as the conventional mechanical loading. Providing an optimal thermo-mechanical environment by synergy of heat and loading portrays new opportunity for development of novel treatments for cartilage regeneration and can furthermore signal key elements for emerging cell-based therapies.
Collapse
Affiliation(s)
- Naser Nasrollahzadeh
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | - Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | - Jian Wang
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Lausanne, Switzerland
| | - Lida Bagheri
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | - Yanheng Guo
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Lee Laurent-Applegate
- Regenerative Therapy Unit, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| |
Collapse
|
16
|
Petzold J, Gentleman E. Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Front Cell Dev Biol 2021; 9:761871. [PMID: 34820380 PMCID: PMC8606660 DOI: 10.3389/fcell.2021.761871] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Although understanding how soluble cues direct cellular processes revolutionised the study of cell biology in the second half of the 20th century, over the last two decades, new insights into how mechanical cues similarly impact cell fate decisions has gained momentum. During development, extrinsic cues such as fluid flow, shear stress and compressive forces are essential for normal embryogenesis to proceed. Indeed, both adult and embryonic stem cells can respond to applied forces, but they can also detect intrinsic mechanical cues from their surrounding environment, such as the stiffness of the extracellular matrix, which impacts differentiation and morphogenesis. Cells can detect changes in their mechanical environment using cell surface receptors such as integrins and focal adhesions. Moreover, dynamic rearrangements of the cytoskeleton have been identified as a key means by which forces are transmitted from the extracellular matrix to the cell and vice versa. Although we have some understanding of the downstream mechanisms whereby mechanical cues are translated into changes in cell behaviour, many of the signalling pathways remain to be defined. This review discusses the importance of intrinsic mechanical cues on adult cell fate decisions, the emerging roles of cell surface mechano-sensors and the cytoskeleton in enabling cells to sense its microenvironment, and the role of intracellular signalling in translating mechanical cues into transcriptional outputs. In addition, the contribution of mechanical cues to fundamental processes during embryogenesis such as apical constriction and convergent extension is discussed. The continued development of tools to measure the biomechanical properties of soft tissues in vivo is likely to uncover currently underestimated contributions of these cues to adult stem cell fate decisions and embryogenesis, and may inform on regenerative strategies for tissue repair.
Collapse
Affiliation(s)
- Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Miniaturized droplet microarray platform enables maintenance of human induced pluripotent stem cell pluripotency. Mater Today Bio 2021; 12:100153. [PMID: 34765963 PMCID: PMC8569722 DOI: 10.1016/j.mtbio.2021.100153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022] Open
Abstract
The capacity of human induced pluripotent stem cells (hiPSCs) for indefinite self-renewal warrants their application in disease modeling, drug discovery, toxicity assays and efficacy screening. However, their poor proliferation ability, inability to adhere to surfaces without Matrigel coating and tendency to spontaneously differentiate in vitro hinder the application of hiPSCs in these fields. Here we study the ability to culture hiPSCs inside 200 nL droplets on the droplet microarray (DMA) platform. We demonstrate that (1) hiPSCs can attach to the Matrigel (MG)-free surface of DMA and show good viability after 24 h culture; (2) hiPSC do not spontaneously differentiate when cultured on the MG-free surface of DMAs; (3) culturing of hiPSCs in 200 nL as compared to 2 mL culture leads to higher expression of the Nanog pluripotency marker. Overall, the results demonstrate the possibility to culture undifferentiated hiPSCs in 200 nL droplets on DMA, thereby opening the possibility for high-throughput screenings of hiPSCs with various factors without compromising the results through the involvement of animal-derived materials, such as Matrigel.
Collapse
|
18
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
19
|
Bertels S, Jaggy M, Richter B, Keppler S, Weber K, Genthner E, Fischer AC, Thiel M, Wegener M, Greiner AM, Autenrieth TJ, Bastmeyer M. Geometrically defined environments direct cell division rate and subcellular YAP localization in single mouse embryonic stem cells. Sci Rep 2021; 11:9269. [PMID: 33927254 PMCID: PMC8084931 DOI: 10.1038/s41598-021-88336-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/01/2021] [Indexed: 01/09/2023] Open
Abstract
Mechanotransduction via yes-associated protein (YAP) is a central mechanism for decision-making in mouse embryonic stem cells (mESCs). Nuclear localization of YAP is tightly connected to pluripotency and increases the cell division rate (CDR). How the geometry of the extracellular environment influences mechanotransduction, thereby YAP localization, and decision-making of single isolated mESCs is largely unknown. To investigate this relation, we produced well-defined 2D and 2.5D microenvironments and monitored CDR and subcellular YAP localization in single mESCs hence excluding cell–cell interactions. By systematically varying size and shape of the 2D and 2.5D substrates we observed that the geometry of the growth environment affects the CDR. Whereas CDR increases with increasing adhesive area in 2D, CDR is highest in small 2.5D micro-wells. Here, mESCs attach to all four walls and exhibit a cross-shaped cell and nuclear morphology. This observation indicates that changes in cell shape are linked to a high CDR. Inhibition of actomyosin activity abrogate these effects. Correspondingly, nuclear YAP localization decreases in inhibitor treated cells, suggesting a relation between cell shape, intracellular forces, and cell division rate. The simplicity of our system guarantees high standardization and reproducibility for monitoring stem cell reactions and allows addressing a variety of fundamental biological questions on a single cell level.
Collapse
Affiliation(s)
- Sarah Bertels
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Mona Jaggy
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Benjamin Richter
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Stephan Keppler
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Kerstin Weber
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Elisa Genthner
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Andrea C Fischer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany
| | - Michael Thiel
- Nanoscribe GmbH, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Alexandra M Greiner
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany. .,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany. .,Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
20
|
Mechanically Stretched Mesenchymal Stem Cells Can Reduce the Effects of LPS-Induced Injury on the Pulmonary Microvascular Endothelium Barrier. Stem Cells Int 2020; 2020:8861407. [PMID: 33178288 PMCID: PMC7647750 DOI: 10.1155/2020/8861407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) may improve the treatment of acute respiratory distress syndrome (ARDS). However, few studies have investigated the effects of mechanically stretched -MSCs (MS-MSCs) in in vitro models of ARDS. The aim of this study was to evaluate the potential therapeutic effects of MS-MSCs on pulmonary microvascular endothelium barrier injuries induced by LPS. We introduced a cocultured model of pulmonary microvascular endothelial cell (EC) and MSC medium obtained from MSCs with or without mechanical stretch. We found that Wright-Giemsa staining revealed that MSC morphology changed significantly and cell plasma shrank separately after mechanical stretch. Cell proliferation of the MS-MSC groups was much lower than the untreated MSC group; expression of cell surface markers did not change significantly. Compared to the medium from untreated MSCs, inflammatory factors elevated statistically in the medium from MS-MSCs. Moreover, the paracellular permeability of endothelial cells treated with LPS was restored with a medium from MS-MSCs, while LPS-induced EC apoptosis decreased. In addition, protective effects on the remodeling of intercellular junctions were observed when compared to LPS-treated endothelial cells. These data demonstrated that the MS-MSC groups had potential therapeutic effects on the LPS-treated ECs; these results might be useful in the treatment of ARDS.
Collapse
|
21
|
Zeevaert K, Elsafi Mabrouk MH, Wagner W, Goetzke R. Cell Mechanics in Embryoid Bodies. Cells 2020; 9:E2270. [PMID: 33050550 PMCID: PMC7599659 DOI: 10.3390/cells9102270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Embryoid bodies (EBs) resemble self-organizing aggregates of pluripotent stem cells that recapitulate some aspects of early embryogenesis. Within few days, the cells undergo a transition from rather homogeneous epithelial-like pluripotent stem cell colonies into a three-dimensional organization of various cell types with multifaceted cell-cell interactions and lumen formation-a process associated with repetitive epithelial-mesenchymal transitions. In the last few years, culture methods have further evolved to better control EB size, growth, cellular composition, and organization-e.g., by the addition of morphogens or different extracellular matrix molecules. There is a growing perception that the mechanical properties, cell mechanics, and cell signaling during EB development are also influenced by physical cues to better guide lineage specification; substrate elasticity and topography are relevant, as well as shear stress and mechanical strain. Epithelial structures outside and inside EBs support the integrity of the cell aggregates and counteract mechanical stress. Furthermore, hydrogels can be used to better control the organization and lineage-specific differentiation of EBs. In this review, we summarize how EB formation is accompanied by a variety of biomechanical parameters that need to be considered for the directed and reproducible self-organization of early cell fate decisions.
Collapse
Affiliation(s)
- Kira Zeevaert
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| |
Collapse
|
22
|
|
23
|
The Effects of Splinting on the Initial Stability and Displacement Pattern of Periodontio-Integrated Dental Implants: A Finite Element Investigation. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00544-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Xia M, Chen Y, He Y, Li H, Li W. Activation of the RhoA-YAP-β-catenin signaling axis promotes the expansion of inner ear progenitor cells in 3D culture. Stem Cells 2020; 38:860-874. [PMID: 32159914 PMCID: PMC7383802 DOI: 10.1002/stem.3175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022]
Abstract
Cellular mechanotransduction plays an essential role in the development and differentiation of many cell types, but if and how mechanical cues from the extracellular matrix (ECM) influence the fate determination of inner ear progenitor cells (IEPCs) remains largely unknown. In the current study, we compared the biological behavior of IEPCs in Matrigel-based suspension and encapsulated culture systems, and we found that the mechanical cues from the ECM promote the survival and expansion of IEPCs. Furthermore, we found that the mechanical cues from the ECM induced the accumulation of Ras homolog family member A (RhoA) and caused the polymerization of actin cytoskeleton in IEPCs. These changes in turn resulted in increased Yes-associated protein (YAP) nuclear localization and enhanced expansion of IEPCs, at least partially through upregulating the canonical Wnt signaling pathway. We therefore provide the first demonstration that the RhoA-YAP-β-catenin signaling axis senses and transduces mechanical cues from the ECM and plays crucial roles in promoting the expansion of IEPCs.
Collapse
Affiliation(s)
- Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, People's Republic of China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
26
|
Mousawi F, Peng H, Li J, Ponnambalam S, Roger S, Zhao H, Yang X, Jiang LH. Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells 2020; 38:410-421. [PMID: 31746084 PMCID: PMC7064961 DOI: 10.1002/stem.3114] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/02/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
In this study, we examined the Ca2+‐permeable Piezo1 channel, a newly identified mechanosensing ion channel, in human dental pulp‐derived mesenchymal stem cells (MSCs) and hypothesized that activation of the Piezo1 channel regulates MSC migration via inducing ATP release and activation of the P2 receptor purinergic signaling. The Piezo1 mRNA and protein were readily detected in hDP‐MSCs from multiple donors and, consistently, brief exposure to Yoda1, the Piezo1 channel‐specific activator, elevated intracellular Ca2+ concentration. Yoda1‐induced Ca2+ response was inhibited by ruthenium red or GsMTx4, two Piezo1 channel inhibitors, and also by Piezo1‐specific siRNA. Brief exposure to Yoda1 also induced ATP release. Persistent exposure to Yoda1 stimulated MSC migration, which was suppressed by Piezo1‐specific siRNA, and also prevented by apyrase, an ATP scavenger, or PPADS, a P2 generic antagonist. Furthermore, stimulation of MSC migration induced by Yoda1 as well as ATP was suppressed by PF431396, a PYK2 kinase inhibitor, or U0126, an inhibitor of the mitogen‐activated protein kinase MEK/ERK signaling pathway. Collectively, these results suggest that activation of the Piezo1 channel stimulates MSC migration via inducing ATP release and subsequent activation of the P2 receptor purinergic signaling and downstream PYK2 and MEK/ERK signaling pathways, thus revealing novel insights into the molecular and signaling mechanisms regulating MSC migration. Such findings provide useful information for evolving a full understanding of MSC migration and homing and developing strategies to improve MSC‐based translational applications.
Collapse
Affiliation(s)
- Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Hongsen Peng
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Jing Li
- Lingnan Medical Research Centre, School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Sreenivasan Ponnambalam
- School of Molecular and Cell Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Xuebin Yang
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
27
|
Chimene D, Kaunas R, Gaharwar AK. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902026. [PMID: 31599073 DOI: 10.1002/adma.201902026] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Bioprinting is an emerging approach for fabricating cell-laden 3D scaffolds via robotic deposition of cells and biomaterials into custom shapes and patterns to replicate complex tissue architectures. Bioprinting uses hydrogel solutions called bioinks as both cell carriers and structural components, requiring bioinks to be highly printable while providing a robust and cell-friendly microenvironment. Unfortunately, conventional hydrogel bioinks have not been able to meet these requirements and are mechanically weak due to their heterogeneously crosslinked networks and lack of energy dissipation mechanisms. Advanced bioink designs using various methods of dissipating mechanical energy are aimed at developing next-generation cellularized 3D scaffolds to mimic anatomical size, tissue architecture, and tissue-specific functions. These next-generation bioinks need to have high print fidelity and should provide a biocompatible microenvironment along with improved mechanical properties. To design these advanced bioink formulations, it is important to understand the structure-property-function relationships of hydrogel networks. By specifically leveraging biophysical and biochemical characteristics of hydrogel networks, high performance bioinks can be designed to control and direct cell functions. In this review article, current and emerging approaches in hydrogel design and bioink reinforcement techniques are critically evaluated. This bottom-up perspective provides a materials-centric approach to bioink design for 3D bioprinting.
Collapse
Affiliation(s)
- David Chimene
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Roland Kaunas
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
28
|
Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, Jiang LH. Adenosine Triphosphate Release and P2 Receptor Signaling in Piezo1 Channel-Dependent Mechanoregulation. Front Pharmacol 2019; 10:1304. [PMID: 31780935 PMCID: PMC6853025 DOI: 10.3389/fphar.2019.01304] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Organs and tissues and their constituent cells are physiologically submitted to diverse types of mechanical forces or stress, one common sequence of which is release of intracellular ATP into extracellular space. Extracellular ATP is a well-established autocrine or paracrine signaling molecule that regulates multiple cell functions and mediates cell-to-cell communications via activating the purinergic P2 receptors, more specifically, ligand-gated ion channel P2X receptors and some of the G-protein-coupled P2Y receptors. The molecular mechanisms that sense mechanical and transduce forces to trigger ATP release are poorly understood. The Piezo1, a newly identified mechanosensing ion channel, shows widespread expression and confers mechanosensitivity in many different types of cells. In this mini-review, we briefly introduce the Piezo1 channel and discuss the evidence that supports its important role in the mechanoregulation of diverse cell functions and, more specifically, critical engagement of ATP release and subsequent P2 receptor activation in Piezo1 channel-dependent mechanoregulation. Such ATP release-mediated coupling of the Piezo1 channel and P2 receptors may serve a signaling mechanism that is more common than we currently understand in transducing mechanical information to regulation of the attendant cell functions in various organs and tissues.
Collapse
Affiliation(s)
- Linyu Wei
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dongliang Li
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Sébastien Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| | - Jing Li
- Lingnan Medical Research Centre, School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuebin Yang
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
29
|
Kusuyama J, Seong C, Makarewicz NS, Ohnishi T, Shima K, Semba I, Bandow K, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) maintains osteogenic potency by the increased expression and stability of Nanog through spleen tyrosine kinase (Syk) activation. Cell Signal 2019; 62:109345. [PMID: 31228531 DOI: 10.1016/j.cellsig.2019.109345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are a powerful tool for cell-based, clinical therapies like bone regeneration. Therapeutic use of cell transplantation requires many cells, however, the expansion process needed to produce large quantities of cells reduces the differentiation potential of MSCs. Here, we examined the protective effects of low intensity pulsed ultrasound (LIPUS) on the maintenance of osteogenic potency. Primary osteoblastic cells were serially passaged between 2 and 12 times with daily LIPUS treatment. We found that LIPUS stimulation maintains osteogenic differentiation capacity in serially passaged cells, as characterized by improved matrix mineralization and Osteocalcin mRNA expression. Decreased expression of Nanog, Sox2, and Msx2, and increased expression of Pparg2 from serial passaging was recovered in LIPUS-stimulated cells. We found that LIPUS stimulation not only increased but also sustained expression of Nanog in primary osteoblasts and ST2 cells, a mouse mesenchymal stromal cell line. Nanog overexpression in serially passaged cells mimicked the recuperative effects of LIPUS on osteogenic potency, highlighting the important role of Nanog in LIPUS stimulation. Additionally, we found that spleen tyrosine kinase (Syk) is an important signaling molecule to induce Nanog expression in LIPUS-stimulated cells. Syk activation was regulated by both Rho-associated kinase 1 (ROCK1) and extracellular ATP in a paracrine manner. Interestingly, the LIPUS-induced increase in Nanog mRNA expression was regulated by ATP-P2X4-Syk Y323 activation, while the improvement of Nanog protein stability was controlled by the ROCK1-Syk Y525/526 pathway. Taken together, these results indicate that LIPUS stimulation recovers and maintains the osteogenic potency of serially passaged cells through a Syk-Nanog axis.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| | - Changhwan Seong
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakato 350-0283, Saitama, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
30
|
Huang J, Chen Y, Tang C, Fei Y, Wu H, Ruan D, Paul ME, Chen X, Yin Z, Heng BC, Chen W, Shen W. The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell Mol Life Sci 2019; 76:505-521. [PMID: 30390116 PMCID: PMC11105278 DOI: 10.1007/s00018-018-2945-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
It is well known that biomaterial topography can exert a profound influence on various cellular functions such as migration, polarization, and adhesion. With the development and refinement of manufacturing technology, much research has recently been focused on substrate topography-induced cell differentiation, particularly in the field of tissue engineering. Even without biological and chemical stimuli, the differentiation of stem cells can also be initiated by various biomaterials with different topographic features. However, the underlying mechanisms of this biological phenomenon remain elusive. During the past few decades, many researchers have demonstrated that cells can sense the topography of materials through the assembly and polymerization of membrane proteins. Following the activation of RHO, TGF-b or FAK signaling pathways, cells can be induced into various differentiation states. But these signaling pathways often coincide with canonical mechanical transduction pathways, and no firm conclusion has been reached among researchers in this field on topography-specific signaling pathways. On the other hand, some substrate topographies are reported to have the ability to inhibit differentiation and maintain the 'stemness' of stem cells. In this review, we will summarize the role of topography in musculoskeletal system regeneration and explore possible topography-related signaling pathways involved in cell differentiation.
Collapse
Affiliation(s)
- Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Maswikiti Ewetse Paul
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Xiao Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China.
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China.
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China.
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China.
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|