1
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
2
|
Zhou Y, Liu K, Tang W, Zhang Y, Sun Y, Wu Y, Shi Y, Yao Z, Li Y, Bai R, Liang R, Sun P, Chang X, Wang S, Zhu Y, Han X. β-Cell miRNA-503-5p Induced by Hypomethylation and Inflammation Promotes Insulin Resistance and β-Cell Decompensation. Diabetes 2024; 73:57-74. [PMID: 37847900 DOI: 10.2337/db22-1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Chronic inflammation promotes pancreatic β-cell decompensation to insulin resistance because of local accumulation of supraphysiologic interleukin 1β (IL-1β) levels. However, the underlying molecular mechanisms remain elusive. We show that miR-503-5p is exclusively upregulated in islets from humans with type 2 diabetes and diabetic rodents because of its promoter hypomethylation and increased local IL-1β levels. β-Cell-specific miR-503 transgenic mice display mild or severe diabetes in a time- and expression-dependent manner. By contrast, deletion of the miR-503 cluster protects mice from high-fat diet-induced insulin resistance and glucose intolerance. Mechanistically, miR-503-5p represses c-Jun N-terminal kinase-interacting protein 2 (JIP2) translation to activate mitogen-activated protein kinase signaling cascades, thus inhibiting glucose-stimulated insulin secretion (GSIS) and compensatory β-cell proliferation. In addition, β-cell miR-503-5p is packaged in nanovesicles to dampen insulin signaling transduction in liver and adipose tissues by targeting insulin receptors. Notably, specifically blocking the miR-503 cluster in β-cells effectively remits aging-associated diabetes through recovery of GSIS capacity and insulin sensitivity. Our findings demonstrate that β-cell miR-503-5p is required for the development of insulin resistance and β-cell decompensation, providing a potential therapeutic target against diabetes. ARTICLE HIGHLIGHTS Promoter hypomethylation during natural aging permits miR-503-5p overexpression in islets under inflammation conditions, conserving from rodents to humans. Impaired β-cells release nanovesicular miR-503-5p to accumulate in liver and adipose tissue, leading to their insulin resistance via the miR-503-5p/insulin receptor/phosphorylated AKT axis. Accumulated miR-503-5p in β-cells impairs glucose-stimulated insulin secretion via the JIP2-coordinated mitogen-activated protein kinase signaling cascades. Specific blockage of β-cell miR-503-5p improves β-cell function and glucose tolerance in aging mice.
Collapse
Affiliation(s)
- Yuncai Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengjian Yao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongjie Bai
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Lu Y, Lin Q, Lin C, Chen J, Jiang X, He H. Down-regulation of miR-424 inhibited the metastasis of endometrial carcinoma via targeting PTEN/PI3K/AKT signaling pathway. J Cancer 2023; 14:2811-2819. [PMID: 37781075 PMCID: PMC10539556 DOI: 10.7150/jca.87021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023] Open
Abstract
Background: The incidence of endometrial carcinoma (EC) has been increasing annually, and treatment of advanced cases remains challenging. MicroRNA-424 (miR-424) was reported to affect several types of tumors, but its role in EC has not been studied. Methods: We generated transient knockdown models of miR-424 and PTEN in EC cells. We measured mRNA and protein expression using RT-PCR and western blotting. We evaluated cell proliferation, invasion, migration, and apoptosis using CCK8, Transwell, wound healing, and flow cytometry assays. We also investigated the effect of miR-424 and PTEN on tumor growth using a metastatic tumor model in nude mice. Results: The expression of miR-424 was significantly elevated in EC tissues and cell lines. MiR-424 inhibitor significantly restrained PTEN/PI3K/AKT signaling, while miR-424 mimic activated this pathway. Knockdown of PTEN significantly reversed the effects of miR-424 inhibitor on cell proliferation, invasion, migration, and apoptosis in EC cells. The significant inhibition of tumor growth and ki67 expression caused by miR-424 inhibitor were markedly promoted by sh-PTEN. Conclusions: Our findings suggest that miR-424 inhibitor could inhibit cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT) process, and tumor growth, while promoting apoptosis in EC. However, the effects of miR-424 inhibitor were markedly reversed by sh-PTEN. This study provides a potential novel therapeutic strategy for the prevention and treatment of EC by targeting miR-424.
Collapse
Affiliation(s)
- Yongwei Lu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital. Fuzhou 350014, China
| | - Qiaoyan Lin
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital. Fuzhou 350014, China
| | - Cuibo Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital. Fuzhou 350014, China
| | - Jian Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital. Fuzhou 350014, China
| | - Xinyan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital. Fuzhou 350014, China
| | - Haixin He
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital. Fuzhou 350014, China
| |
Collapse
|
4
|
Dong W, Weng JF, Zhu JB, Zheng YF, Liu LL, Dong C, Ruan Y, Fang X, Chen J, Liu WY, Peng XP, Chen XY. CREB-binding protein and HIF-1α/β-catenin to upregulate miR-322 and alleviate myocardial ischemia-reperfusion injury. FASEB J 2023; 37:e22996. [PMID: 37566526 DOI: 10.1096/fj.202200596rrrrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 08/13/2023]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/β-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/β-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, β-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/β-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/β-catenin further exacerbated the damage. HIF-1α/β-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/β-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/β-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/β-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/β-catenin/miR-322 signaling may be a potential approach to treat MIRI.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jun-Fei Weng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jian-Bing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yao-Fu Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Lei-Lei Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Chen Dong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yang Ruan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xu Fang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wen-Yu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiao-Ping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan-Ying Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Jing Y, Gan M, Xie Z, Ma J, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Zhu L, Shen L. Characteristics of microRNAs in Skeletal Muscle of Intrauterine Growth-Restricted Pigs. Genes (Basel) 2023; 14:1372. [PMID: 37510277 PMCID: PMC10379088 DOI: 10.3390/genes14071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
microRNAs are a class of small RNAs that have been extensively studied, which are involved in many biological processes and disease occurrence. The incidence of intrauterine growth restriction is higher in mammals, especially multiparous mammals. In this study, we found that the weight of the longissimus dorsi of intrauterine growth-restricted pigs was significantly lower than that of normal pigs. Then, intrauterine growth-restricted pig longissimus dorsi were used to characterize miRNA expression profiles by RNA sequencing. A total of 333 miRNAs were identified, of which 26 were differentially expressed. Functional enrichment analysis showed that these differentially expressed miRNAs regulate the expression of their target genes (such as PIK3R1, CCND2, AKT3, and MAP3K7), and these target genes play an important role in the proliferation and differentiation of skeletal muscle through signaling pathways such as the PI3K-Akt, MAPK, and FoxO signaling pathways. Furthermore, miRNA-451 was significantly upregulated in IUGR pig skeletal muscle. Overexpression of miR-451 in C2C12 cells significantly promoted the expression of Mb, Myod, Myog, Myh1, and Myh7, suggesting that miR-451 may be involved in the regulation of the myoblastic differentiation of C2C12 cells. Our results reveal the role of miRNA-451 in regulating myogenic differentiation of skeletal muscle in pigs with intrauterine growth restriction.
Collapse
Affiliation(s)
- Yunhong Jing
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Munkhzul C, Lee JM, Kim B, Nguyen TTM, Ginting RP, Jeong D, Kim YK, Lee MW, Lee M. H19X-encoded microRNAs induced by IL-4 in adipocyte precursors regulate proliferation to facilitate differentiation. Biol Direct 2023; 18:32. [PMID: 37322541 PMCID: PMC10273709 DOI: 10.1186/s13062-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Adipose tissue, an organ critical for systemic energy homeostasis, is influenced by type 2 immunity in its development and function. The type 2 cytokine interleukin (IL)-4 induces the proliferation of bipotential adipocyte precursors (APs) in white fat tissue and primes these cells for differentiation into beige adipocytes, which are specialized for thermogenesis. However, the underlying mechanisms have not yet been comprehensively examined. Here, we identified six microRNA (miRNA) genes upregulated upon IL-4 stimulation in APs, miR-322, miR-503, miR-351, miR-542, miR-450a, and miR-450b; these are encoded in the H19X locus of the genome. Their expression is positively regulated by the transcription factor Klf4, whose expression also increases upon IL-4 stimulation. These miRNAs shared a large set of target genes, of which 381 genes were downregulated in mRNA expression upon IL-4 stimulation and enriched in Wnt signaling pathways. Two genes with downregulated expression, Ccnd1 and Fzd6, were repressed by H19X-encoded miRNAs. Additionally, the Wnt signaling activator LiCl downregulated the expression of this group of miRNAs in APs, indicating that Wnt signaling-related genes and these miRNAs form a double-negative feedback regulatory loop. This miRNA/Wnt feedback regulation modulated the elevated proliferation of APs induced by IL-4 stimulation and contributed to priming them for beige adipocyte differentiation. Moreover, the aberrant expression of these miRNAs attenuates the differentiation of APs into beige adipocytes. Collectively, our results suggest that H19X-encoded miRNAs facilitate the transition of APs from proliferation to differentiation in the IL-4-mediated regulation.
Collapse
Affiliation(s)
- Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Boseon Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Thi Thanh My Nguyen
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Rehna Paula Ginting
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Dahee Jeong
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea.
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Korea.
| |
Collapse
|
7
|
miR-503 targets MafK to inhibit subcutaneous preadipocyte adipogenesis causing a decrease of backfat thickness in Guanzhong Black pigs. Meat Sci 2023; 198:109116. [PMID: 36657261 DOI: 10.1016/j.meatsci.2023.109116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Reducing backfat thickness (BFT), determined by subcutaneous fat deposition, is vital in Chinese developed pig breeds. The level of miR-503 in the backfat of Guanzhong Black pigs was found to be lower than that in Large White pigs, implying that miR-503 may be related to BFT. However, the effect and mechanism of miR-503 on adipogenic differentiation in subcutaneous preadipocytes remain unknown. Compared with Large White pigs, the BFT and body fat content of Guanzhong Black pigs were greater, but the level of miR-503 was lower in subcutaneous adipose tissue (SAT) at 180 days of age. Furthermore, miR-503 promoted preadipocyte proliferation by increasing the proportion of S-phase and EdU-positive cells. However, miR-503 inhibited preadipocyte differentiation by downregulating adipogenic gene expression. Mechanistically, miR-503 directly targeted musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in both proliferating and differentiating preadipocytes to repress adipogenesis. Our findings provide a novel miRNA biomarker for reducing pig BFT levels to improve carcass quality.
Collapse
|
8
|
Liu K, Peng X, Luo L. miR-322 promotes the differentiation of embryonic stem cells into cardiomyocytes. Funct Integr Genomics 2023; 23:87. [PMID: 36932296 DOI: 10.1007/s10142-023-01008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Previous studies have shown that miR-322 regulates the functions of various stem cells. However, the role and mechanism of embryonic stem cell (ESCs) differentiation into cardiomyocytes remains unknown. Celf1 plays a vital role in stem cell differentiation and may be a potential target of miR-322 in ESCs' differentiation. We studied the function of miR-322An using mESCs transfected with lentivirus-mediated miR-322. RT-PCR results indicated that miR-322 increased NKX-2.5, MLC2V, and α-MHC mRNA expression, signifying that miR-322 might promote the differentiation of ESCs toward cardiomyocytes in vitro. The western blotting and immunofluorescence results confirmed this conclusion. In addition, the knockdown of miR-322 expression inhibited ESCs' differentiation toward cardiomyocytes in cultured ESCs in vitro. Western blotting results showed that miR-322 suppressed celf1 protein expression. Furthermore, Western blotting, RT-PCR, and immunofluorescence results showed that celf1 may inhibit ESCs' differentiation toward cardiomyocytes in vitro. Overall, the results indicate that miR-322 might promote ESCs' differentiation toward cardiomyocytes by regulating celf1 expression.
Collapse
Affiliation(s)
- Kai Liu
- Department of Cardiovascular, Ganzhou People's Hospital, Jiangxi, China.
- , Ganzhou, 341000, Jiangxi, China.
| | - Xiaoping Peng
- Department of Cardiovascular, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Luo
- Department of Cardiovascular, Ganzhou People's Hospital, Jiangxi, China
| |
Collapse
|
9
|
Zheng Z, Wu L, Li Z, Tang R, Li H, Huang Y, Wang T, Xu S, Cheng H, Ye Z, Xiao D, Lin X, Wu G, Jaspers RT, Pathak JL. Mir155 regulates osteogenesis and bone mass phenotype via targeting S1pr1 gene. eLife 2023; 12:77742. [PMID: 36598122 PMCID: PMC9839347 DOI: 10.7554/elife.77742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-155 (miR155) is overexpressed in various inflammatory diseases and cancer, in which bone resorption and osteolysis are frequently observed. However, the role of miR155 on osteogenesis and bone mass phenotype is still unknown. Here, we report a low bone mass phenotype in the long bone of Mir155-Tg mice compared with wild-type mice. In contrast, Mir155-KO mice showed a high bone mass phenotype and protective effect against inflammation-induced bone loss. Mir155-KO mice showed robust bone regeneration in the ectopic and orthotopic model, but Mir155-Tg mice showed compromised bone regeneration compared with the wild-type mice. Similarly, the osteogenic differentiation potential of bone marrow stromal stem cells (BMSCs) from Mir155-KO mice was robust and Mir155-Tg was compromised compared with that of wild-type mice. Moreover, Mir155 knockdown in BMSCs from wild-type mice showed higher osteogenic differentiation potential, supporting the results from Mir155-KO mice. TargetScan analysis predicted sphingosine 1-phosphate receptor-1 (S1pr1) as a target gene of Mir155, which was further confirmed by luciferase assay and Mir155 knockdown. S1pr1 overexpression in BMSCs robustly promoted osteogenic differentiation without affecting cell viability and proliferation. Furthermore, osteoclastogenic differentiation of Mir155-Tg bone marrow-derived macrophages was inhibited compared with that of wild-type mice. Thus, Mir155 showed a catabolic effect on osteogenesis and bone mass phenotype via interaction with the S1pr1 gene, suggesting inhibition of Mir155 as a potential strategy for bone regeneration and bone defect healing.
Collapse
Affiliation(s)
- Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhicong Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Ruoshu Tang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Hongtao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yinyin Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Tianqi Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit AmsterdamAmsterdamNetherlands,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Richard T Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
10
|
Bu N, Gao Y, Zhao Y, Xia H, Shi X, Deng Y, Wang S, Li Y, Lv J, Liu Q, Wang S. LncRNA H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by neodymium oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114173. [PMID: 36326553 DOI: 10.1016/j.ecoenv.2022.114173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The occupational and environmental health safety of rare earths has attracted considerable attention. In China, the rare earth neodymium oxide (Nd2O3) is extensively refined and utilized. However, the mechanisms of Nd2O3-induced lung injury are elusive. In the present study, we found that exposure of mice to Nd2O3 caused an inflammatory reaction and fibrosis in lung tissues, which was in relation to the Nd2O3-induced higher levels of the lncRNA H19 (H19), tumor necrosis factor receptor 1 (TNFRSF1A), p-p65, and p-IKKβ and lower levels of miR-29a-3p. Further, in mouse monocyte macrophage leukemia cells (RAW264.7), Nd2O3 induced an inflammatory reaction, increases of H19 and TNFRSF1A levels, decreases of miR-29a-3p levels, and activation of the nuclear factor (NF)-κB signaling pathway. Further, we established that miR-29a-3p regulates TNFRSF1A expression. Up-regulation of miR-29a-3p and down-regulation of H19 blocked the Nd2O3-induced secretion of TNF-α, MIP-1α, and IL-6; the increases of TNFRSF1A levels; and activation of the NF-κB signaling pathway in RAW264.7 cells. Further, in Nd2O3-treated RAW26.4 cells, H19 inhibited the expression of miR-29a-3p, which targets TNFRSF1A, and activated the NF-κB signaling pathway to enhance the expression of TNF-α, MIP-1α, and IL-6. Moreover, for mice, up-regulation of miR-29a-3p reversed lung tissue inflammation, pulmonary fibrosis, and activation of the NF-κB signaling pathway induced by Nd2O3. In sum, the present investigation shows that H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by Nd2O3, which is a mechanism for the Nd2O3-induced lung inflammatory response and pulmonary fibrosis. This information is useful for development of a biomarker of Nd2O3-induced lung injury.
Collapse
Affiliation(s)
- Ning Bu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xuemin Shi
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yang Deng
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Shurui Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yibo Li
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Jialing Lv
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China.
| |
Collapse
|
11
|
Adzigbli L, Sokolov EP, Wimmers K, Sokolova IM, Ponsuksili S. Effects of hypoxia and reoxygenation on mitochondrial functions and transcriptional profiles of isolated brain and muscle porcine cells. Sci Rep 2022; 12:19881. [PMID: 36400902 PMCID: PMC9674649 DOI: 10.1038/s41598-022-24386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Oxygen fluctuations might occur in mammalian tissues under physiological (e.g. at high altitudes) or pathological (e.g. ischemia-reperfusion) conditions. Mitochondria are the key target and potential amplifiers of hypoxia-reoxygenation (H-R) stress. Understanding the mitochondrial responses to H-R stress is important for identifying adaptive mechanisms and potential therapeutic solutions for pathologies associated with oxygen fluctuations. We explored metabolic response to H-R stress in two tissue types (muscle and brain) with different degrees of hypoxia tolerance in a domestic pig Sus scrofa focusing on the cellular responses independent of the systemic regulatory mechanisms. Isolated cells from the skeletal muscle (masseter) and brain (thalamus) were exposed to acute short-term (15 min) hypoxia followed by reoxygenation. The mitochondrial oxygen consumption, reactive oxygen species (ROS) production rates and transcriptional profiles of hypoxia-responsive mRNA and miRNA were determined. Mitochondria of the porcine brain cells showed a decrease in the resting respiration and ATP synthesis capacity whereas the mitochondria from the muscle cells showed robust respiration and less susceptibility to H-R stress. ROS production was not affected by the short-term H-R stress in the brain or muscle cells. Transcriptionally, prolyl hydroxylase domain protein EGLN3 was upregulated during hypoxia and suppressed during reoxygenation in porcine muscle cells. The decline in EGLN3 mRNA during reoxygenation was accompanied by an upregulation of hypoxia-inducible factor subunit α (HIF1A) transcripts in the muscle cells. However, in the brain cells, HIF1A mRNA levels were suppressed during reoxygenation. Other functionally important transcripts and miRNAs involved in antioxidant response, apoptosis, inflammation, and substrate oxidation were also differentially expressed between the muscle and brain cells. Suppression of miRNA levels during acute intermittent hypoxia was stronger in the brain cells affecting ~ 55% of all studied miRNA transcripts than in the muscle cells (~ 25% of miRNA) signifying transcriptional derepression of the respective mRNA targets. Our study provides insights into the potential molecular and physiological mechanisms contributing to different hypoxia sensitivity of the studied tissues and can serve as a starting point to better understand the biological processes associated with hypoxia stress, e.g. during ischemia and reperfusion.
Collapse
Affiliation(s)
- Linda Adzigbli
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.
| |
Collapse
|
12
|
Najafi F, Kelaye SK, Kazemi B, Foruzandeh Z, Allahverdizadeh F, Vakili S, Rad KK, Derakhshani M, Solali S, Alivand MR. The role of miRNA-424 and miR-631 in various cancers: Focusing on drug resistance and sensitivity. Pathol Res Pract 2022; 239:154130. [DOI: 10.1016/j.prp.2022.154130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
13
|
Ma H, Li M, Jia Z, Chen X, Bu N. MicroRNA-455-3p promotes osteoblast differentiation via targeting HDAC2. Injury 2022; 53:3636-3641. [PMID: 36070969 DOI: 10.1016/j.injury.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Fragility fracture commonly occurs in the elderly, the basis of fracture healing is osteoblast regeneration. The study measured the expression changes of microRNA-455-3p during fracture healing in patients with fragility fractures, and explored its influence on osteoblast differentiation. METHODS 108 postmenopausal women with osteoporosis were recruited, in which 58 cases with fragility fracture. qRT-PCR was used for the measurement of miR-455-3p levels. MC3T3-E1 cells were induced differentiation by BMP-2. ELISA was performed for the measurement of alkaline phosphates (ALP), runt-related transcription factor-2 (RUNX2), osteocalcin (OCN), and Collagen I. Luciferase reporter gene assay was done for the target gene analysis. RESULTS Serum miR-455-3p was significantly decreased in both osteoporosis and fragility fracture patients compared with the control group, which was most deficient in patients with fragility fracture. With the extension of treatment time, the level of miR-455-3p in serum increased gradually and reached the highest level at 4 weeks of treatment. Levels of miR-455-3p continued to increase on the 7th and 14th days after induction of cell differentiation. MiR-455-3p overexpression promoted cell proliferation, and increased the levels of osteoblast differentiation markers, including ALP, OCN, Collagen I, and RUNX2. MiR-455-3p in MC3T3-E1 cells was directly bound to HDAC2 and negatively regulated. Both MC3T3-E1 differentiation and the fracture healing of patients were accompanied by progressively reduced HDAC2. CONCLUSIONS MiR-455-3p promotes osteogenic differentiation which may be associated with fracture healing, HDAC2 acts as a target of miR-455-3p in the underlying mechanism.
Collapse
Affiliation(s)
- Huili Ma
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Mintao Li
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Zhuting Jia
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
| | - Xi Chen
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Naitong Bu
- Department of Emergency Surgical Trauma Center, BinZhou Medical University Hospital, 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| |
Collapse
|
14
|
Jang J, Song G, Pettit SM, Li Q, Song X, Cai CL, Kaushal S, Li D. Epicardial HDAC3 Promotes Myocardial Growth Through a Novel MicroRNA Pathway. Circ Res 2022; 131:151-164. [PMID: 35722872 PMCID: PMC9308743 DOI: 10.1161/circresaha.122.320785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Establishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells instruct myocardial growth by secreting essential factors including FGF (fibroblast growth factor) 9 and IGF (insulin-like growth factor) 2. However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation. The current study is to investigate whether and how HDAC (histone deacetylase) 3 in the developing epicardium regulates myocardial growth. METHODS Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of HDAC3 in the developing epicardium. RESULTS We deleted Hdac3 in the developing murine epicardium, and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of epicardium-derived cells. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly downregulated in Hdac3 KO mouse epicardial cells. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO mouse epicardial cells and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO mouse epicardial cells. CONCLUSIONS Our findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322 or miR-503, providing novel insights in elucidating the etiology of congenital heart defects and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Guang Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarah M. Pettit
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qinshan Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiaosu Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Chen-leng Cai
- Department of Pediatrics, Herman Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46201
| | - Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deqiang Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
15
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
16
|
Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Fragasso A, Schmitt A, Nieß AM, Munz B. miRNAs as markers for the development of individualized training regimens: A pilot study. Physiol Rep 2022; 10:e15217. [PMID: 35274816 PMCID: PMC8915711 DOI: 10.14814/phy2.15217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Small, non‐coding RNAs (microRNAs) have been shown to regulate gene expression in response to exercise in various tissues and organs, thus possibly coordinating their adaptive response. Thus, it is likely that differential microRNA expression might be one of the factors that are responsible for different training responses of different individuals. Consequently, determining microRNA patterns might be a promising approach toward the development of individualized training strategies. However, little is known on (1) microRNA patterns and their regulation by different exercise regimens and (2) possible correlations between these patterns and individual training adaptation. Here, we present microarray data on skeletal muscle microRNA patterns in six young, female subjects before and after six weeks of either moderate‐intensity continuous or high‐intensity interval training on a bicycle ergometer. Our data show that n = 36 different microRNA species were regulated more than twofold in this cohort (n = 28 upregulated and n = 8 downregulated). In addition, we correlated baseline microRNA patterns with individual changes in VO2max and identified some specific microRNAs that might be promising candidates for further testing and evaluation in the future, which might eventually lead to the establishment of microRNA marker panels that will allow individual recommendations for specific exercise regimens.
Collapse
Affiliation(s)
- Manuel Widmann
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Felipe Mattioni Maturana
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christof Burgstahler
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gunnar Erz
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Philipp Schellhorn
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Angelika Schmitt
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas M Nieß
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Barbara Munz
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany.,Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Wen X, Han W, Liu C. Long non-coding RNA TTTY15 silencing inhibits gastric cancer progression by sponging microRNA-98-5p to down-regulate cyclin D2 expression. Bioengineered 2022; 13:7380-7391. [PMID: 35266852 PMCID: PMC9208520 DOI: 10.1080/21655979.2022.2047398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Gastric cancer is the most common malignant tumor in the digestive system. However, the detection rate of early gastric cancer is low, resulting in delayed prognosis and poor outcomes. The identification of effective therapeutic targets for gastric cancer is, therefore, of profound significance. Recently, various lncRNAs have been shown to be biomarkers for different cancers. This study investigated the role of long non-coding RNA (lncRNA) TTTY15 in gastric cancer. The expression level of TTTY15, miR-98-5p, and cyclin D2 (CCND2) were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot assay using tumor and non-tumor tissues collected from 30 patients with gastric cancer, gastric cancer cell lines (AGS, SNU-5, and NCI-N87), and the normal gastric epithelial cell line GES-1. The interaction between TTTY15 and miR-98-5p and between miR-98-5p and CCND2 were predicted by bioinformatics and then further verified by dual-luciferase and RNA pull-down analyses. Cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay, and apoptosis was measured using flow cytometry and caspase-3 assay. The results indicate that TTTY15 and CCND2 expression increased and miR-98-5p expression decreased in gastric cancer tumor tissues and cell lines. TTTY15 knockdown inhibited gastric cancer cell proliferation but promoted apoptosis by sponging miR-98-5p, which acted as a tumor suppressor gene by reducing the expression of its target gene CCND2 in gastric cancer. In conclusion, lncRNA TTTY15 is a potential oncogene involved in gastric cancer and may be a novel therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xigang Wen
- Department of Gastrointestinal Surgery, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Wenling Han
- Department of Hospital Infection Office, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Chao Liu
- Department of Gastrointestinal Surgery, The Third People's Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
18
|
Chen F, Li G, Wu C, Wang L, Ko CN, Ma DL, Leung CH. Interference Reduction Biosensing Strategy for Highly Sensitive microRNA Detection. Anal Chem 2022; 94:4513-4521. [PMID: 35234447 DOI: 10.1021/acs.analchem.2c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs are potential biomarkers for human cancers and other diseases due to their roles as post-transcriptional regulators for gene expression. However, the detection of miRNAs by conventional methods such as RT-qPCR, in situ hybridization, northern blot-based platforms, and next-generation sequencing is complicated by short length, low abundance, high sequence homology, and susceptibility to degradation of miRNAs. In this study, we developed a nicking endonuclease-mediated interference reduction rolling circle amplification (NEM-IR-RCA) strategy for the ultrasensitive and highly specific detection of miRNA-21. This method exploits the advantages of the optical properties of long-lived iridium(III) probes, in conjunction with time-resolved emission spectroscopy (TRES) and exponential rolling circle amplification (E-RCA). Under the NEM-IR-RCA-based signal enhancement processes, the limit of detection of miRNA-21 was down to 0.0095 fM with a linear range from 0.05 to 100 fM, which is comparable with the conventional RT-qPCR. Unlike RT-qPCR, the strategy was performed at a lower and constant temperature without heating/cooling cycles and reverse transcription. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specificity. Moreover, the potential application of this method was demonstrated in cancer cells and mouse serum samples, showing good agreement with RT-qPCR results. Apart from miRNA-21 detection, this platform could be also adapted for detecting other miRNAs, such as let-7a and miRNA-22, indicating its excellent potential for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
19
|
Dai Q, Sun J, Dai T, Xu Q, Ding Y. miR-29c-5p knockdown reduces inflammation and blood–brain barrier disruption by upregulating LRP6. Open Med (Wars) 2022; 17:353-364. [PMID: 35799601 PMCID: PMC8864056 DOI: 10.1515/med-2022-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Blood–brain barrier participates in the pathological process of ischemic stroke. MicroRNA-29c-5p was highly expressed in clinical samples from patients with ischemic stroke. In this study, oxygen-glucose deprivation (OGD) treatment of astrocytes enhanced the permeability of brain microvascular endothelial cells (BMECs), and the miR-29c-5p expression was elevated in clinical samples from patients with ischemic stroke. For the function of miR-29c-5p in ischemic stroke, the miR-29c-5p knockdown decreased the permeability and the tight junction protein (TJP) destruction of BMECs and ameliorated the inflammation induced by OGD-treated astrocytes. Mechanistically, miR-29c-5p interacted with lipoprotein receptor-related protein 6 (LRP6) and negatively regulated the LRP6 expression in astrocytes. Moreover, the rescue assays indicated that the interference with miR-29c-5p ameliorated the TJP destruction of BMECs and inflammation caused by OGD-treated astrocytes by increasing the LRP6 expression. Together, miR-29c-5p knockdown decreased the high permeability and the TJP destruction of BMECs and ameliorated the inflammation induced by OGD-treated astrocytes by elevating LRP6 expression.
Collapse
Affiliation(s)
- Qijun Dai
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine , Haian , 226600 , China
| | - Jian Sun
- Department of Endocrinology, Jingjiang Hospital of Traditional Chinese Medicine , Jingjiang , 214500 , China
| | - Tianyi Dai
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Class 1802 , Nanjing , 210023 , China
| | - Qin Xu
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine , Haian , 226600 , China
| | - Yueqin Ding
- Department of Nursing, Haian Hospital of Traditional Chinese Medicine , Haian , 226600 , China
| |
Collapse
|
20
|
MiR-652-5p elevated glycolysis level by targeting TIGAR in T-cell acute lymphoblastic leukemia. Cell Death Dis 2022; 13:148. [PMID: 35165280 PMCID: PMC8844069 DOI: 10.1038/s41419-022-04600-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
The effect of glycolysis remains largely elusive in acute T lymphoblastic leukemia (T-ALL). Increasing evidence has indicated that the dysregulation of miRNAs is involved in glycolysis, by targeting the genes coding glycolysis rate-limiting enzymes. In our previous studies, we found that overexpression of the ARRB1-derived miR-223 sponge repressed T-ALL progress and reduced the expression of miR-652-5p. However, little is known about miR-652-5p on T-ALL. Here, we showed that impaired miR-652-5p expression inhibited growth, promoted apoptosis of T-ALL cells in vitro and prolonged overall survival (OS) in vivo. Based on the GO enrichment of miR-652-5p target genes, we uncovered that impaired miR-652-5p decreased glycolysis, including reduced the lactate, pyruvate, ATP level and the total extracellular acidification rate (ECAR), elevated oxygen consumption rate (OCR) in T-ALL cell lines. Mechanically, miR-652-5p targeted the 3ʹUTR of Tigar mRNA and inhibited its expression. Furthermore, the alteration of glycosis level was attributed to Tigar overexpression, consistent with the effect of impaired miR-652-5p. Additionally, Tigar suppressed the expression of PFKFB3, a glycolysis rate-limiting enzyme, in vivo and in vitro. Taken together, our results demonstrate that impaired miR-652-5p/Tigar axis could repress glycolysis, thus to slow growth of T-ALL cells, which support miR-652-5p as a novel potential drug target for T-ALL therapeutics.
Collapse
|
21
|
Rodríguez‐Barrueco R, Latorre J, Devis‐Jáuregui L, Lluch A, Bonifaci N, Llobet FJ, Olivan M, Coll‐Iglesias L, Gassner K, Davis ML, Moreno‐Navarrete JM, Castells‐Nobau A, Plata‐Peña L, Dalmau‐Pastor M, Höring M, Liebisch G, Olkkonen VM, Arnoriaga‐Rodríguez M, Ricart W, Fernández‐Real JM, Silva JM, Ortega FJ, Llobet‐Navas D. A microRNA Cluster Controls Fat Cell Differentiation and Adipose Tissue Expansion By Regulating SNCG. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104759. [PMID: 34898027 PMCID: PMC8811811 DOI: 10.1002/advs.202104759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 05/08/2023]
Abstract
The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets γ-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism of fat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Barrueco
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
| | - Jessica Latorre
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Laura Devis‐Jáuregui
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Aina Lluch
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
| | - Nuria Bonifaci
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| | - Francisco J. Llobet
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Mireia Olivan
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
| | - Laura Coll‐Iglesias
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Katja Gassner
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| | - Meredith L. Davis
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Department of PathologyDuke University School of MedicineDurhamNC27710USA
| | - José M. Moreno‐Navarrete
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Anna Castells‐Nobau
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
| | - Laura Plata‐Peña
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
| | - Miki Dalmau‐Pastor
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L'Hospitalet de Llobregat08907Spain
- MIFAS by GRECMIP (Minimally Invasive Foot and Ankle Society)Merignac33700France
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory MedicineRegensburg University HospitalRegensburg93053Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory MedicineRegensburg University HospitalRegensburg93053Germany
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research (Biomedicum 2U)and Department of AnatomyFaculty of MedicineUniversity of HelsinkiHelsinki00290Finland
| | - Maria Arnoriaga‐Rodríguez
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Wifredo Ricart
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - José M. Fernández‐Real
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - José M. Silva
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Francisco J. Ortega
- Department of DiabetesEndocrinology, and Nutrition (UDEN)Institut d'Investigació Biomèdica de Girona (IDIBGI)Salt17190Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - David Llobet‐Navas
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet de Llobregat08908Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III, (ISCIII)Madrid28029Spain
| |
Collapse
|
22
|
Xu Y, Xin R, Sun H, Long D, Li Z, Liao H, Xue T, Zhang Z, Kang Y, Mao G. Long Non-coding RNAs LOC100126784 and POM121L9P Derived From Bone Marrow Mesenchymal Stem Cells Enhance Osteogenic Differentiation via the miR-503-5p/SORBS1 Axis. Front Cell Dev Biol 2021; 9:723759. [PMID: 34746123 PMCID: PMC8570085 DOI: 10.3389/fcell.2021.723759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play pivotal roles in mesenchymal stem cell differentiation. However, the mechanisms by which non-coding RNA (ncRNA) networks regulate osteogenic differentiation remain unclear. Therefore, our aim was to identify RNA-associated gene and transcript expression profiles during osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Using transcriptome sequencing for differentially expressed ncRNAs and mRNAs between days 0 and 21 of osteogenic differentiation of BMSCs, we found that the microRNA (miRNA) miR-503-5p was significantly downregulated. However, the putative miR-503-5p target, sorbin and SH3 domain containing 1 (SORBS1), was significantly upregulated in osteogenesis. Moreover, through lncRNA-miRNA-mRNA interaction analyses and loss- and gain-of-function experiments, we discovered that the lncRNAs LOC100126784 and POM121L9P were abundant in the cytoplasm and enhanced BMSC osteogenesis by promoting SORBS1 expression. In contrast, miR-503-5p reversed this effect. Ago2 RNA-binding protein immunoprecipitation and dual-luciferase reporter assays further validated the direct binding of miR-503-5p to LOC100126784 and POM121L9P. Furthermore, SORBS1 knockdown suppressed early osteogenic differentiation in BMSCs, and co-transfection with SORBS1 small interfering RNAs counteracted the BMSCs’ osteogenic capacity promoted by LOC100126784- and POM121L9P-overexpressing lentivirus plasmids. Thus, the present study demonstrated that the lncRNAs LOC100126784 and POM121L9P facilitate the osteogenic differentiation of BMSCs via the miR-503-5p/SORBS1 axis, providing potential therapeutic targets for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- Yiyang Xu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China.,Department of Orthopedics, Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Ruobing Xin
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University Guiyang, Guizhou, China
| | - Dianbo Long
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Zhiwen Li
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Hongyi Liao
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Ting Xue
- Fujian Provincial Hospital South Branch, Center of Health Management, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Yan Kang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Guping Mao
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| |
Collapse
|
23
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
24
|
Li H, Qi J, Wei J, Xu B, Min S, Wang L, Si Y, Qiu H. Long non-coding RNA ANRIL mitigates neonatal hypoxic-ischemic brain damage via targeting the miR-378b/ATG3 axis. Am J Transl Res 2021; 13:11585-11596. [PMID: 34786084 PMCID: PMC8581876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Hypoxic-ischemic brain injury (HIBD) is the most common form of brain injury in newborns and is a major burden on society. However, the molecular mechanism of HIBD remains unclear. Long non-coding RNA (lncRNA) has been demonstrated to be a key regulator in brain development and numerous neurological diseases. The present study identified the role and underlying mechanism of lncRNA antisense non-coding RNA in the INK4 locus (ANRIL) in HIBD. The data indicated that ANRIL expression was significantly increased in hypoxia-stressed primary neurons and PC12 cells. Silencing ANRIL aggravated oxygen-glucose deprivation-induced cell injury. Mechanistically, microRNA (miR)-378b was predicted and confirmed as a direct target of ANRIL. A miR-378b inhibitor counteracted the effect of ANRIL on hypoxia-induced cell injury. Furthermore, ANRIL positively regulated autophagy related 3 (ATG3) expression and promoted autophagy through competitively binding to miR-378b. Overall, the present findings suggest that ANRIL exerts its protective effects via binding to miR-378b and upregulating ATG3 expression, suggesting the potential of ANRIL as a protective target for HIBD.
Collapse
Affiliation(s)
- Huiling Li
- Key Laboratory of Microecology-immune Regulatory Network and Related Disease, School of Basic Medicine, Jiamusi UniversityJiamusi 154007, Heilongjiang, China
| | - Jiafeng Qi
- Harbin Children’s HospitalHarbin 150010, Heilongjiang, China
| | - Jiannan Wei
- Department of Neurology, Jiamusi Central HospitalJiamusi 154002, Heilongjiang, China
| | - Beilei Xu
- School of Pharmacy, Harbin University of CommerceHarbin, Heilongjiang 150076, China
| | - Shuangwu Min
- Harbin Children’s HospitalHarbin 150010, Heilongjiang, China
| | - Liyang Wang
- Harbin Children’s HospitalHarbin 150010, Heilongjiang, China
| | - Yuan Si
- Harbin Children’s HospitalHarbin 150010, Heilongjiang, China
| | - Hongbin Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi UniversityJiamusi 154000, Heilongjiang, China
| |
Collapse
|
25
|
MicroRNA Regulates Early-Life Stress–Induced Depressive Behavior via Serotonin Signaling in a Sex-Dependent Manner in the Prefrontal Cortex of Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:180-189. [PMID: 36325302 PMCID: PMC9616342 DOI: 10.1016/j.bpsgos.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background The underlying neurobiology of early-life stress (ELS)-induced major depressive disorder is not clearly understood. Methods In this study, we used maternal separation (MS) as a rodent model of ELS and tested whether microRNAs (miRNAs) target serotonin genes to regulate ELS-induced depression-like behavior and whether this effect is sex dependent. We also examined whether environmental enrichment prevents susceptibility to depression- and anxiety-like behavior following MS and whether enrichment effects are mediated through serotonin genes and their corresponding miRNAs. Results MS decreased sucrose preference, which was reversed by enrichment. Males also exhibited greater changes in forced swim climbing and escape latency tests only following enrichment. Slc6a4 and Htr1a were upregulated in the frontal cortex following MS. In male MS rats, enrichment slightly reversed Htr1a expression to levels similar to control rats. miR-200a-3p and miR-322-5p, which target SLC6A4, were decreased by MS, but not significantly. An HTR1A-targeting miRNA, miR-320-5p, was also downregulated by MS and showed slight reversal by enrichment in male animals. miR-320-5p targeting of Htr1a was validated in vitro using SHSY neuroblastoma cell lines. Conclusions Altogether, this study implicates miRNA interaction with the serotonin pathway in ELS-induced susceptibility to depression-related reward deficits. Furthermore, because of its recovery by enrichment in males, miR-320 may represent a viable sex-specific target for reward-related deficits in major depressive disorder.
Collapse
|
26
|
Corrales WA, Silva JP, Parra CS, Olave FA, Aguayo FI, Román-Albasini L, Aliaga E, Venegas-Zamora L, Avalos AM, Rojas PS, Maracaja-Coutinho V, Oakley RH, Cidlowski JA, Fiedler JL. Sex-Dependent Changes of miRNA Levels in the Hippocampus of Adrenalectomized Rats Following Acute Corticosterone Administration. ACS Chem Neurosci 2021; 12:2981-3001. [PMID: 34339164 DOI: 10.1021/acschemneuro.0c00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We explored sex-biased effects of the primary stress glucocorticoid hormone corticosterone on the miRNA expression profile in the rat hippocampus. Adult adrenalectomized (ADX) female and male rats received a single corticosterone (10 mg/kg) or vehicle injection, and after 6 h, hippocampi were collected for miRNA, mRNA, and Western blot analyses. miRNA profiling microarrays showed a basal sex-biased miRNA profile in ADX rat hippocampi. Additionally, acute corticosterone administration triggered a sex-biased differential expression of miRNAs derived from genes located in several chromosomes and clusters on the X and 6 chromosomes. Putative promoter analysis unveiled that most corticosterone-responsive miRNA genes contained motifs for either direct or indirect glucocorticoid actions in both sexes. The evaluation of transcription factors indicated that almost 50% of miRNA genes sensitive to corticosterone in both sexes was under glucocorticoid receptor regulation. Transcription factor-miRNA regulatory network analyses identified several transcription factors that regulate, activate, or repress miRNA expression. Validated target mRNA analysis of corticosterone-responsive miRNAs showed a more complex miRNA-mRNA interaction network in males compared to females. Enrichment analysis revealed that several hippocampal-relevant pathways were affected in both sexes, such as neurogenesis and neurotrophin signaling. The evaluation of selected miRNA targets from these pathways displayed a strong sex difference in the hippocampus of ADX-vehicle rats. Corticosterone treatment did not change the levels of the miRNA targets and their corresponding tested proteins. Our data indicate that corticosterone exerts a sex-biased effect on hippocampal miRNA expression, which may engage in sculpting the basal sex differences observed at higher levels of hippocampal functioning.
Collapse
Affiliation(s)
- Wladimir A. Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Juan P. Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Claudio S. Parra
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Felipe A. Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Felipe I. Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Esteban Aliaga
- Department of Kinesiology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca 3460000, Chile
| | - Leslye Venegas-Zamora
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Ana M. Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Paulina S. Rojas
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370149, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| | - Robert H. Oakley
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, United States
| | - John A. Cidlowski
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, United States
| | - Jenny L. Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, Santiago 8380492, Chile
| |
Collapse
|
27
|
Yonet-Tanyeri N, Ahlmark BZ, Little SR. Advances in Multiplexed Paper-Based Analytical Devices for Cancer Diagnosis: A Review of Technological Developments. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001138. [PMID: 34447879 PMCID: PMC8384263 DOI: 10.1002/admt.202001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 05/14/2023]
Abstract
Cancer is one of the leading causes of death worldwide producing estimated cost of $161.2 billion in the US in 2017 only. Early detection of cancer would not only reduce cancer mortality rates but also dramatically reduce healthcare costs given that the 17 million new cancer cases in 2018 are estimated to grow 27.5 million new cases by 2040. Analytical devices based upon paper substrates could provide effective, rapid, and extremely low cost alternatives for early cancer detection compared to existing testing methods. However, low concentrations of biomarkers in body fluids as well as the possible association of any given biomarker with multiple diseases remain as one of the greatest challenges to widespread adoption of these paper-based devices. However, recent advances have opened the possibility of detecting multiple biomarkers within the same device, which could be predictive of a patient's condition with unprecedented cost-effectiveness. Accordingly, this review highlights the recent advancements in paper-based analytical devices with a multiplexing focus. The primary areas of interest include lateral flow assay and microfluidic paper-based assay formats, signal amplification approaches to enhance the sensitivity for a specific cancer type, along with current challenges and future outlook for the detection of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Z Ahlmark
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
28
|
Lu HY, Wang GY, Zhao JW, Jiang HT. Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J Clin Lab Anal 2021; 35:e23881. [PMID: 34240756 PMCID: PMC8373329 DOI: 10.1002/jcla.23881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background Acute kidney injury (AKI) was characterized by loss of renal function, associated with chronic kidney disease, end‐stage renal disease, and length of hospital stay. Long non‐coding RNAs (lncRNAs) participated in AKI development and progression. Here, we aimed to investigate the roles and mechanisms of lncRNA MALAT1 in AKI. Methods AKI serum samples were obtained from 129 AKI patients. ROC analysis was conducted to confirm the diagnostic value of MALAT1 in differentiating AKI from healthy volunteers. After hypoxic treatment on HK‐2 cells, the expressions of inflammatory cytokines, MALAT1, miR‐204, APOL1, p65, and p‐p65, were measured by RT‐qPCR and Western blot assays. The targeted relationship between miR‐204 and MALAT1 or miR‐204 and APOL1 was determined by luciferase reporter assay and RNA pull‐down analysis. After transfection, CCK‐8, flow cytometry, and TUNEL staining assays were performed to evaluate the effects of MALAT1 and miR‐204 on AKI progression. Results From the results, lncRNA MALAT1 was strongly elevated in serum samples from AKI patients, with the high sensitivity and specificity concerning differentiating AKI patients from healthy controls. In vitro, we established the AKI cell model after hypoxic treatment. After experiencing hypoxia, we found significantly increased MALAT1, IL‐1β, IL‐6, and TNF‐α expressions along with decreased miR‐204 level. Moreover, the targeted relationship between MALAT1 and miR‐204 was confirmed. Silencing of MALAT1 could reverse hypoxia‐triggered promotion of HK‐2 cell apoptosis. Meanwhile, the increase of IL‐1β, IL‐6, and TNF‐α after hypoxia treatment could be repressed by MALAT1 knockdown as well. After co‐transfection with MALAT1 silencing and miR‐204 inhibition, we found that miR‐204 could counteract the effects of MALAT1 on HK‐2 cell progression and inflammation after under hypoxic conditions. Finally, NF‐κB signaling was inactivated while APOL1 expression was increased in HK‐2 cells after hypoxia treatment, and lncRNA MALAT1 inhibition reactivated NF‐κB signaling while suppressed APOL1 expression by sponging miR‐204. Conclusions Collectively, these results illustrated that knockdown of lncRNA MALAT1 could ameliorate AKI progression and inflammation by targeting miR‐204 through APOL1/NF‐κB signaling.
Collapse
Affiliation(s)
- Hai-Yuan Lu
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Guo-Yi Wang
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jin-Wen Zhao
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hai-Tao Jiang
- Department of Orthopedics, Huai'an First People's Hospital, Huai'an, China
| |
Collapse
|
29
|
Dysregulated Expression of Arterial MicroRNAs and Their Target Gene Networks in Temporal Arteries of Treatment-Naïve Patients with Giant Cell Arteritis. Int J Mol Sci 2021; 22:ijms22126520. [PMID: 34204585 PMCID: PMC8234166 DOI: 10.3390/ijms22126520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, we explored expression of microRNA (miR), miR-target genes and matrix remodelling molecules in temporal artery biopsies (TABs) from treatment-naïve patients with giant cell arteritis (GCA, n = 41) and integrated these analyses with clinical, laboratory, ultrasound and histological manifestations of GCA. NonGCA patients (n = 4) served as controls. GCA TABs exhibited deregulated expression of several miRs (miR-21-5p, -145-5p, -146a-5p, -146b-5p, -155-5p, 424-3p, -424-5p, -503-5p), putative miR-target genes (YAP1, PELI1, FGF2, VEGFA, KLF4) and matrix remodelling factors (MMP2, MMP9, TIMP1, TIPM2) with key roles in Toll-like receptor signaling, mechanotransduction and extracellular matrix biology. MiR-424-3p, -503-5p, KLF4, PELI1 and YAP1 were identified as new deregulated molecular factors in GCA TABs. Quantities of miR-146a-5p, YAP1, PELI1, FGF2, TIMP2 and MMP9 were particularly high in histologically positive GCA TABs with occluded temporal artery lumen. MiR-424-5p expression in TABs and the presence of facial or carotid arteritis on ultrasound were associated with vision disturbances in GCA patients. Correlative analysis of miR-mRNA quantities demonstrated a highly interrelated expression network of deregulated miRs and mRNAs in temporal arteries and identified KLF4 as a candidate target gene of deregulated miR-21-5p, -146a-5p and -155-5p network in GCA TABs. Meanwhile, arterial miR and mRNA expression did not correlate with constitutive symptoms and signs of GCA, elevated markers of systemic inflammation nor sonographic characteristics of GCA. Our study provides new insights into GCA pathophysiology and uncovers new candidate biomarkers of vision impairment in GCA.
Collapse
|
30
|
Ye Z, He Q, Wang Q, Lin Y, Cen K, Chen X. LINC00922 promotes the proliferation, migration, invasion and EMT process of liver cancer cells by regulating miR-424-5p/ARK5. Mol Cell Biochem 2021; 476:3757-3769. [PMID: 34097192 DOI: 10.1007/s11010-021-04196-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
AMPK-related protein kinase 5 (ARK5) promotes the deterioration of hepatocellular carcinoma (HCC). From the perspective of lncRNA-miRNA-mRNA, this study explored in-depth the intervention mechanism of ARK5. The binding relationship between miR-424-5p and two genes (LINC00922 and ARK5) were analyzed by Bioinformatics and dual-luciferase experiments. After clinical sample collection, the expressions of miR-424-5p, LINC00922 and ARK5 in HCC tissues were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between LINC00922, miR-424-5p, and ARK5 in HCC tissues was analyzed by Pearson correlation. The influences of miR-424-5p, LINC00922 and ARK5 on the basic functions (viability, migration and invasion) of cancer cells were detected by cell counting kit-8, wound healing, and Transwell experiments, and their regulatory effects on related genes, as well as their relationship, were tested by qRT-PCR and Western blot. MiR-424-5p was low expressed, whereas LINC00922 and ARK5 were high expressed in HCC tissues. MiR-424-5p was negatively associated with LINC00922 and ARK5 that was positively associated with LINC00922. Interestingly, LINC00922 partially shared an identical binding site of miR-424-5p with ARK5. LINC00922 its overexpression partially offset the inhibitory effect of miR-424-5p on cancer cell functions. ARK5 silencing repressed the malignant phenotype of cancer cells and inhibited the expressions of epithelial-to-mesenchymal transition (EMT)-related molecules (Vimentin, Snail and N-Cadherin). However, these effects were partially neutralized by miR-424-5p inhibitors. LINC00922 increases the cell viability, migration, invasion and EMT process of HCC cells by regulating the miR-424-5p/ARK5 axis, and thus may serve as a potential target for targeted therapy.
Collapse
Affiliation(s)
- Zhiyu Ye
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China.
| | - Qikuan He
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Qiaona Wang
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Yunshou Lin
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Kenan Cen
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Xiaogang Chen
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| |
Collapse
|
31
|
Lu H, Wang H, Sun P, Wang J, Li S, Xu T. MiR-522-3p inhibits proliferation and activation by regulating the expression of SLC31A1 in T cells. Cytotechnology 2021; 73:483-496. [PMID: 34149179 PMCID: PMC8167029 DOI: 10.1007/s10616-021-00472-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.
Collapse
Affiliation(s)
- Hengxiao Lu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Hao Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Peidao Sun
- Department of Thoracic Surgery, Changle People’s Hospital, Weifang, China
| | - Jiang Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Jinan, China
| | - Tongzhen Xu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| |
Collapse
|
32
|
Promoter polymorphisms in the lncRNA-MIAT gene associated with acute myocardial infarction in Chinese Han population: a case-control study. Biosci Rep 2021; 40:222103. [PMID: 32090249 PMCID: PMC7040461 DOI: 10.1042/bsr20191203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Coronary atherosclerotic disease (CAD) is one of the greatest causes of death and disability around the world, and has emerged as a major public health problem. Acute myocardial infarction (AMI) is the most serious type of CAD. Myocardial infarction (MI) association transcript (MIAT) has demonstrated that it plays an important role in AMI. PURPOSE To investigate the association between MIAT promoter polymorphisms and AMI in Chinese Han population. METHODS A total of 212 AMI patients and 218 healthy controls were recruited. The long non-coding RNA (lncRNA)-MIAT promoter polymorphisms (single nucleotide polymorphisms (SNPs)) were obtained using polymerase chain reaction (PCR) and sequencing techniques. Chi-square test was used to analyze the allele and genotype frequencies of each SNP in two groups. Logistic regression analysis was used to analyze the association of each SNP with AMI. Linkage disequilibrium (LD) and haplotype analysis were performed using SHEsis software. A JASPAR database search predicts transcription factors transition of linked polymorphism in MIAT promoter. RESULTS Ten SNPs were found, including rs56371714, rs55892869, rs151057042, rs2157598, rs150465374, rs5761664, rs8142890, rs5752375, rs9608515 and rs1055293700, whereas rs1055293700 was found only in the control group. Single and logistic regression analysis showed that there was a significant correlation between rs5752375 and rs9608515 polymorphisms and AMI, while other sites had no relationship with AMI. These MI association polymorphisms may change the binding sites with transcription factor. CONCLUSIONS The polymorphisms of lncRNA-MIAT promoter rs5752375 and rs9608515 were significantly associated with AMI in Chinese Han population. This result would be of clinical importance for the early diagnosis of AMI.
Collapse
|
33
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
34
|
Yuan Y, Li X, Chu Y, Ye G, Yang L, Dong Z. Long Non-coding RNA H19 Augments Hypoxia/Reoxygenation-Induced Renal Tubular Epithelial Cell Apoptosis and Injury by the miR-130a/BCL2L11 Pathway. Front Physiol 2021; 12:632398. [PMID: 33716779 PMCID: PMC7952615 DOI: 10.3389/fphys.2021.632398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a severe kidney disease defined by partial or abrupt loss of renal function. Emerging evidence indicates that non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs), function as essential regulators in AKI development. Here we aimed to explore the underlying molecular mechanism of the lncRNA H19/miR-130a axis for the regulation of inflammation, proliferation, and apoptosis in kidney epithelial cells. Human renal proximal tubular cells (HK-2) were induced by hypoxia/reoxygenation to replicate the AKI model in vitro. After treatment, the effects of LncRNA H19 and miR-130a on proliferation and apoptosis of HK-2 cells were investigated by CCK-8 and flow cytometry. Meanwhile, the expressions of LncRNA H19, miR-130a, and inflammatory cytokines were detected by qRT-PCR, western blot, and ELISA assays. The results showed that downregulation of LncRNA H19 could promote cell proliferation, inhibit cell apoptosis, and suppress multiple inflammatory cytokine expressions in HK-2 cells by modulating the miR-130a/BCL2L11 pathway. Taken together, our findings indicated that LncRNA H19 and miR-130a might represent novel therapeutic targets and early diagnostic biomarkers for the treatment of AKI.
Collapse
Affiliation(s)
- Yuan Yuan
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | | | - Yudong Chu
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | - Gongjie Ye
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | - Lei Yang
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | - Zhouzhou Dong
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
35
|
Zhuang Y, Li T, Xiao H, Wu J, Su S, Dong X, Hu X, Hua Q, Liu J, Shang W, Ju J, Sun F, Pan Z, Lu Y, Zhang M. LncRNA-H19 Drives Cardiomyocyte Senescence by Targeting miR-19a/socs1/p53 Axis. Front Pharmacol 2021; 12:631835. [PMID: 33664669 PMCID: PMC7921730 DOI: 10.3389/fphar.2021.631835] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose: Cardiomyocyte senescence is associated with a progressive decline in cardiac physiological function and the risk of cardiovascular events. lncRNA H19 (H19), a well-known long noncoding RNA (lncRNA), is involved in the pathophysiological process of multiple cardiovascular disease such as heart failure, cardiac ischemia and fibrosis. However, the role of H19 in cardiomyocyte senescence remains to be further explored. Methods: Senescence-associated β-galactosidases (SA-β-gal) staining was used to detect cardiomyocyte senescence. Western blot, qRT-PCR and luciferase reporter assay were employed to evaluate the role of H19 in cardiomyocyte senescence and its underling molecular mechanism. Results: H19 level was significantly increased in high glucose-induced senescence cardiomyocytes and aged mouse hearts. Overexpression of H19 enhanced the number of SA-β-gal-positive cells, and the expression of senescence-related proteins p53 and p21, whereas H19 knockdown exerted the opposite effects. Mechanistically, H19 was demonstrated as a competing endogenous RNA (ceRNA) for microRNA-19a (miR-19a): H19 overexpression downregulated miR-19a level, while H19 knockdown upregulated miR-19a. The expression of SOSC1 was dramatically increased in senescence cardiomyocytes and aged mouse hearts. Further experiments identified SOCS1 as a downstream target of miR-19a. H19 upregulated SOCS1 expression and activated the p53/p21 pathway by targeting miR-19a, thus promoting the cardiomyocytes senescence. Conclusion: Our results show that H19 is a pro-senescence lncRNA in cardiomyocytes acting as a ceRNA to target the miR-19a/SOCS1/p53/p21 pathway. Our research reveals a molecular mechanism of cardiomyocyte senescence regulation and provides a novel target of the therapy for senescence-associated cardiac diseases.
Collapse
Affiliation(s)
- Yuting Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongwen Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaxu Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuang Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoxi Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Hua
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Junwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wendi Shang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Fei Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Dong W, Liu Q, Wang ZC, Du XX, Liu LL, Wang N, Weng JF, Peng XP. miR-322/miR-503 clusters regulate defective myoblast differentiation in myotonic dystrophy RNA-toxic by targeting Celf1. Toxicol Res (Camb) 2021; 10:29-39. [PMID: 33613970 DOI: 10.1093/toxres/tfaa096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy (DM) is a genetic disorder featured by muscular dystrophy. It is caused by CUG expansion in the myotonic dystrophy protein kinase gene that leads to aberrant signaling and impaired myocyte differentiation. Many studies have shown that microRNAs are involved in the differentiation process of myoblasts. The purpose of this study was to investigate how the miR-322/miR-503 cluster regulates intracellular signaling to affect cell differentiation. The cell model of DM1 was employed by expressing GFP-CUG200 or CUGBP Elav-like family member 1 (Celf1) in myoblasts. Immunostaining of MF-20 was performed to examine myocyte differentiation. qRT-PCR and western blot were used to determine the levels of Celf1, MyoD, MyoG, Mef2c, miR-322/miR-503, and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling. Dual luciferase assay was performed to validate the interaction between miR-322/miR-503 and Celf1. CUG expansion in myoblasts impaired the cell differentiation, increased the Celf1 level, but it decreased the miR-322/miR-503 levels. miR-322/miR-503 mimics restored the impaired differentiation caused by CUG expansion, while miR-322/miR-503 inhibitors further suppressed. miR-322/miR-503 directly targeted Celf1 and negatively regulated its expression. Knockdown of Celf1 promoted myocyte differentiation. Further, miR-322/miR-503 mimics rescued the impaired differentiation of myocytes caused by CUG expansion or Celf1 overexpression through suppressing of MEK/ERK signaling. miR-322/miR-503 cluster recover the defective myocyte differentiation caused by RNA-toxic via targeting Celf1. Restoring miR-322/miR-503 levels could be an avenue for DM1 therapy.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| | - Qian Liu
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| | - Zhi-Chao Wang
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| | - Xing-Xiang Du
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| | - Lei-Lei Liu
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| | - Nan Wang
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| | - Jun-Fei Weng
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| | - Xiao-Ping Peng
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province 330006, P. R. China
| |
Collapse
|
37
|
Xiao T, Zou Z, Xue J, Syed BM, Sun J, Dai X, Shi M, Li J, Wei S, Tang H, Zhang A, Liu Q. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115810. [PMID: 33162208 DOI: 10.1016/j.envpol.2020.115810] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a potent toxicant, and long-term exposure to inorganic arsenic causes lung damage. M2 macrophages play an important role in the pathogenesis of pulmonary fibrosis. However, the potential connections between arsenic and M2 macrophages in the development of pulmonary fibrosis are elusive. C57BL/6 mice were fed with drinking water containing 0, 10 and 20 ppm arsenite for 12 months. We have found that, in lung tissues of mice, arsenite, a biologically active form of arsenic, elevated H19, c-Myc, and Arg1; decreased let-7a; and caused pulmonary fibrosis. For THP-1 macrophages (THP-M) and bone-marrow-derived macrophages (BMDMs), 8 μM arsenite increased H19, c-Myc, and Arg1; decreased let-7a; and induced M2 polarization of macrophages, which caused secretion of the fibrogenic cytokine, TGF-β1. Down-regulation of H19 or up-regulation of let-7a reversed the arsenite-induced M2 polarization of macrophages. Arsenite-treated THP-M and BMDMs co-cultured with MRC-5 cells or primary lung fibroblasts (PLFs) elevated levels of p-SMAD2/3, SMAD4, α-SMA, and collagen I in lung fibroblasts and resulted in the activation of lung fibroblasts. Knockout of H19 or up-regulation of let-7a in macrophages reversed the effects. The results indicated that H19 functioned as an miRNA sponge for let-7a, which was involved in arsenite-induced M2 polarization of macrophages and induced the myofibroblast differentiation phenotype by regulation of c-Myc. In the sera of arseniasis patients, levels of hydroxyproline and H19 were higher, and levels of let-7a were lower than levels in the controls. These observations elucidate a possible mechanism for arsenic exposure-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
The microRNA-424/503 cluster: A master regulator of tumorigenesis and tumor progression with paradoxical roles in cancer. Cancer Lett 2020; 494:58-72. [PMID: 32846190 DOI: 10.1016/j.canlet.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a crucial role in post-transcriptional gene regulation and act as indispensable mediators in several critical biological processes, including tumorigenesis, tissue homeostasis, and regeneration. MiR-424 and miR-503 are intragenic miRNAs that are clustered on human chromosome Xq26.3. Previous studies have reported that both miRNAs are dysregulated and play crucial but paradoxical roles in tumor initiation and progression, involving different target genes and molecular pathways. Moreover, these two miRNAs are concomitantly expressed in several cancer cells, indicating a coordinating function as a cluster. In this review, the roles and regulatory mechanisms of miR-424, miR-503, and miR-424/503 cluster are summarized in different types of cancers.
Collapse
|
39
|
Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/PI3K/AKT/mTOR signaling pathway. Life Sci 2020; 259:118239. [PMID: 32784058 DOI: 10.1016/j.lfs.2020.118239] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
AIMS MicroRNAs (miRs) are key modulators of cellular processes such as proliferation, apoptosis, as well as anti-cancer immune responses. Here, we evaluated the role of miR-424-5p in breast cancer (BC) and investigated its effects on T cell-related immune response. MAIN METHODS BC tissues and cell lines were prepared and the expression of miR-424-5p and PD-L1, as well as the underlying molecular pathways, were assessed via qRT-PCR and western blotting. The MTT assay and flow cytometry were used to assess the effect of miR-424-5p on proliferation, apoptosis, autophagy, and cell cycle progression. The co-culture of T cells with MDA-MB-231 was performed for evaluating the role of miR-424-5p in rescuing T cell exhaustion. KEY FINDINGS The results indicated the down-regulation of miR-424-5p and up-regulation of PD-L1 expression in BC tissue specimens. MiR-424-5p transfection into PD-L1 overexpressing MDA-MB-231 cells decreased the expression of PD-L1. Also, miR-424-5p could reduce MDA-MB-231 cell viability through modulating apoptosis and autophagy pathways. Furthermore, miR-424-5p transfection leads to decreased colony formation and increased cell number at the G2/M phase. Western blot analysis illustrated that miR-424-5p could exert its anti-proliferative effect via modulating PTEN/PI3K/AKT/mTOR pathway. Moreover, it was demonstrated that suppression of PD-L1 by miR-424-5p could participate in regulating the expression of effector cytokines in T cells. SIGNIFICANCE MiR-424-5p could be considered as a potential tumor-suppressor miR in regulating BC cellular growth, apoptosis, and T cell-related immune response through targeting PD-L1, and its downstream mediators. Therefore, we recognized miR-424-5p as a promising candidate for miR restoration therapy in BC patients.
Collapse
|
40
|
Huang X, Li S, Liu X, Huang S, Li S, Zhuo M. Analysis of conserved miRNAs in cynomolgus macaque genome using small RNA sequencing and homology searching. PeerJ 2020; 8:e9347. [PMID: 32728489 PMCID: PMC7357559 DOI: 10.7717/peerj.9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators that fine-tune diverse cellular activities. Cynomolgus macaques (Macaca fascicularis) are used extensively in biomedical and pharmaceutical research; however, substantially fewer miRNAs have been identified in this species than in humans. Consequently, we investigated conserved miRNA profiles in cynomolgus macaques by homology searching and small RNA sequencing. In total, 1,455 high-confidence miRNA gene loci were identified, 408 of which were also confirmed by RNA sequencing, including 73 new miRNA loci reported in cynomolgus macaques for the first time. Comparing miRNA expression with age, we found a positive correlation between sequence conservation and expression levels during miRNA evolution. Additionally, we found that the miRNA gene locations in cynomolgus macaque genome were very flexible. Most were embedded in intergenic spaces or introns and clustered together. Several miRNAs were found in certain gene locations, including 64 exon-resident miRNAs, six splice-site-overlapping miRNAs (SO-miRNAs), and two pairs of distinct mirror miRNAs. We also identified 78 miRNA clusters, 68 of which were conserved in the human genome, including 10 large miRNA clusters predicted to regulate diverse developmental and cellular processes in cynomolgus macaque. Thus, this study not only expands the number of identified miRNAs in cynomolgus macaques but also provides clues for future research on the differences in miRNA repertoire between macaques and humans.
Collapse
Affiliation(s)
- Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shijia Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoming Liu
- Guangzhou Tulip Information Technologies Ltd., Guangzhou, Guangdong, China
| | - Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Turco C, Donzelli S, Fontemaggi G. miR-15/107 microRNA Gene Group: Characteristics and Functional Implications in Cancer. Front Cell Dev Biol 2020; 8:427. [PMID: 32626702 PMCID: PMC7311568 DOI: 10.3389/fcell.2020.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The miR-15/107 group of microRNAs (miRNAs) encloses 10 annotated human members and is defined based on the presence of the sequence AGCAGC near the mature miRNAs’ 5′ end. Members of the miR-15/107 group expressed in humans are highly evolutionarily conserved, and seven of these miRNAs are widespread in vertebrate species. Contrary to the majority of miRNAs, which recognize complementary sequences on the 3′UTR region, some members of the miR-15/107 group are peculiarly characterized by the ability to target the coding sequence (CDS) of their target mRNAs, inhibiting translation without strongly affecting their mRNA levels. There is compelling evidence that different members of the miR-15/107 group regulate overlapping lists of mRNA targets but also show target specificity. The ubiquitously expressed miR-15/107 gene group controls several human cellular pathways, such as proliferation, angiogenesis, and lipid metabolism, and might be altered in various diseases, such as neurodegenerative diseases and cancer. Intriguingly, despite sharing the same seed sequence, different members of this family of miRNAs may behave as oncomiRs or as tumor suppressor miRNAs in the context of cancer cells. This review discusses the regulation and functional contribution of the miR-15/107 group to the control of gene expression. Moreover, we particularly focus on the contribution of specific miR-15/107 group members as tumor suppressors in breast cancer, reviewing literature reporting their ability to function as major controllers of a variety of cell pathways and to act as powerful biomarkers in this disease.
Collapse
Affiliation(s)
- Chiara Turco
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
42
|
Liu TW, Liu F, Kang J. Let-7b-5p is involved in the response of endoplasmic reticulum stress in acute pulmonary embolism through upregulating the expression of stress-associated endoplasmic reticulum protein 1. IUBMB Life 2020; 72:1725-1736. [PMID: 32534478 DOI: 10.1002/iub.2306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
The endogenous non-coding microRNA (miRNA) let-7b-5p is highly expressed in the blood of patients with acute pulmonary embolism (PE). However, the mechanism underlying the involvement of let-7b-5p in acute PE remains unclear. To address this, we investigated the role of let-7b-5p in acute PE in both in vitro and in vivo experimental models. The results showed that let-7b-5p upregulated the expression of stress-associated endoplasmic reticulum protein 1 (SERP1) at the post-transcriptional level. SERP1 activation leads to modulation of its chaperone protein SEC61B in the response of endoplasmic reticulum (ER) stress. Furthermore, our data show that the unfolded protein response was triggered and activation of unfolded proteins GRP78, PERK, RNF121, and CHOP occurred through the PERK-CHOP pathway, resulting in an inflammatory response and apoptosis of lung epithelial cells. These characteristics were promoted by the in vitro expression of a let-7b-5p mimic; conversely, transfection with a let-7b-5p inhibitor decreased the response of ER stress in acute PE. The results from this study thus provide evidence that let-7b-5p promotes protein processing during ER stress response by upregulating SERP1 expression, ultimately resulting in an inflammatory response and apoptosis of lung cells, cumulatively playing a critical role in the pathogenesis of acute PE.
Collapse
Affiliation(s)
- Ting-Wei Liu
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Liu
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Liu S, Xin W, Tang X, Qiu J, Zhang Y, Hua K. LncRNA H19 Overexpression in Endometriosis and its Utility as a Novel Biomarker for Predicting Recurrence. Reprod Sci 2020; 27:1687-1697. [DOI: 10.1007/s43032-019-00129-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
|
44
|
van de Worp WRPH, Schols AMWJ, Dingemans AMC, Op den Kamp CMH, Degens JHRJ, Kelders MCJM, Coort S, Woodruff HC, Kratassiouk G, Harel-Bellan A, Theys J, van Helvoort A, Langen RCJ. Identification of microRNAs in skeletal muscle associated with lung cancer cachexia. J Cachexia Sarcopenia Muscle 2020; 11:452-463. [PMID: 31828982 PMCID: PMC7113505 DOI: 10.1002/jcsm.12512] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/08/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cachexia, highly prevalent in patients with non-small cell lung cancer (NSCLC), impairs quality of life and is associated with reduced tolerance and responsiveness to cancer therapy and decreased survival. MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in post-transcriptional gene regulation. Changes in intramuscular levels of miRNAs have been implicated in muscle wasting conditions. Here, we aimed to identify miRNAs that are differentially expressed in skeletal muscle of cachectic lung cancer patients to increase our understanding of cachexia and to allow us to probe their potential as therapeutic targets. METHODS A total of 754 unique miRNAs were profiled and analysed in vastus lateralis muscle biopsies of newly diagnosed treatment-naïve NSCLC patients with cachexia (n = 8) and age-matched and sex-matched healthy controls (n = 8). miRNA expression analysis was performed using a TaqMan MicroRNA Array. In silico network analysis was performed on all significant differentially expressed miRNAs. Differential expression of the top-ranked miRNAs was confirmed using reverse transcription-quantitative real-time PCR in an extended group (n = 48) consisting of NSCLC patients with (n = 15) and without cachexia (n = 11) and healthy controls (n = 22). Finally, these miRNAs were subjected to univariate and multivariate Cox proportional hazard analysis using overall survival and treatment-induced toxicity data obtained during the follow-up of this group of patients. RESULTS We identified 28 significant differentially expressed miRNAs, of which five miRNAs were up-regulated and 23 were down-regulated. In silico miRNA-target prediction analysis showed 158 functional gene targets, and pathway analysis identified 22 pathways related to the degenerative or regenerative processes of muscle tissue. Subsequently, the expression of six top-ranked miRNAs was measured in muscle biopsies of the entire patient group. Five miRNAs were detectable with reverse transcription-quantitative real-time PCR analysis, and their altered expression (expressed as fold change, FC) was confirmed in muscle of cachectic NSCLC patients compared with healthy control subjects: miR-424-5p (FC = 4.5), miR-424-3p (FC = 12), miR-450a-5p (FC = 8.6), miR-144-5p (FC = 0.59), and miR-451a (FC = 0.57). In non-cachectic NSCLC patients, only miR-424-3p was significantly increased (FC = 5.6) compared with control. Although the statistical support was not sufficient to imply these miRNAs as individual predictors of overall survival or treatment-induced toxicity, when combined in multivariate analysis, miR-450-5p and miR-451a resulted in a significant stratification between short-term and long-term survival. CONCLUSIONS We identified differentially expressed miRNAs putatively involved in lung cancer cachexia. These findings call for further studies to investigate the causality of these miRNAs in muscle atrophy and the mechanisms underlying their differential expression in lung cancer cachexia.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Anne-Marie C Dingemans
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Céline M H Op den Kamp
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Juliette H R J Degens
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marco C J M Kelders
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Susan Coort
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Henry C Woodruff
- Department of Precision Medicine, GROW, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gueorqui Kratassiouk
- Plateforme ARN interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, University of Paris-Saclay, Paris, France
| | - Annick Harel-Bellan
- Laboratory of Epigenetics and Cancer, Institut de Hautes Études Scientifiques, University of Paris-Saclay, Paris, France
| | - Jan Theys
- Department of Precision Medicine, GROW, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands.,Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
45
|
Geng H, Song Q, Cheng Y, Li H, Yang R, Liu S, Hao L. MicroRNA 322 Aggravates Dexamethasone-Induced Muscle Atrophy by Targeting IGF1R and INSR. Int J Mol Sci 2020; 21:E1111. [PMID: 32046161 PMCID: PMC7043225 DOI: 10.3390/ijms21031111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
Dexamethasone (Dex) has been widely used as a potent anti-inflammatory, antishock, and immunosuppressive agent. However, high dose or long-term use of Dex is accompanied by side effects including skeletal muscle atrophy, whose underlying mechanisms remain incompletely understood. A number of microRNAs (miRNAs) have been shown to play key roles in skeletal muscle atrophy. Previous studies showed significantly increased miR-322 expression in Dex-treated C2C12 myotubes. In our study, the glucocorticoid receptor (GR) was required for Dex to increase miR-322 expression in C2C12 myotubes. miR-322 mimic or miR-322 inhibitor was used for regulating the expression of miR-322. Insulin-like growth factor 1 receptor (IGF1R) and insulin receptor (INSR) were identified as target genes of miR-322 using luciferase reporter assays and played key roles in Dex-induced muscle atrophy. miR-322 overexpression promoted atrophy in Dex-treated C2C12 myotubes and the gastrocnemius muscles of mice. Conversely, miR-322 inhibition showed the opposite effects. These data suggested that miR-322 contributes to Dex-induced muscle atrophy via targeting of IGF1R and INSR. Furthermore, miR-322 might be a potential target to counter Dex-induced muscle atrophy. miR-322 inhibition might also represent a therapeutic approach for Dex-induced muscle atrophy.
Collapse
Affiliation(s)
- Hongwei Geng
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Qinglong Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China;
- Beijing Key Laboratory of Bio-Feed Additives, Beijing 100193, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Haoyang Li
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Rui Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
- Five-Star Animal Health Pharmaceutical Factory of Jilin Province, Changchun 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China; (H.G.); (Y.C.); (H.L.); (S.L.)
| |
Collapse
|
46
|
Lu K, Lin J, Jiang J. Osthole inhibited cell proliferation and induced cell apoptosis through decreasing CPEB2 expression via up-regulating miR-424 in endometrial carcinoma. J Recept Signal Transduct Res 2020; 40:89-96. [PMID: 31971049 DOI: 10.1080/10799893.2019.1710846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Endometrial carcinoma (EC) was the fourth female malignancies in developed countries. Given that the prognosis of EC is extremely poor, it is vital to investigate its pathogenesis and effective therapeutic targets. However, the mechanism of osthole in EC remains unknown.Materials and methods: Firstly, the different doses of osthole (0, 50, 100, and 200 μM) were used to treat the Ishikawa and KLE cells. The cell proliferation, apoptosis, and cell cycle were measured by cell counting kit-8 (CCK-8), Annexin V-FITC/PI, and cell cycle assays. The apoptosis-related protein levels were examined by western blot. The miR-424 levels in Ishikawa and KLE cells were assessed by quantitative RT-PCR (qRT-PCR). Also, the binding of miR-424 and cytoplasmic polyadenylation element binding protein 2 (CEPB2) was detected by the luciferase reporter assay.Results: In this study, the increasing dose of osthole inhibited proliferation and induced apoptosis of Ishikawa and KLE cells. Moreover, the increasing dose of osthole up-regulated miR-424 and down-regulated the expression of CPEB2. CPEB2 was proved to be the target gene of miR-424. Interestingly, the over-expression of CPEB2 could reverse the changes of osthole-induced proliferation and apoptosis of Ishikawa and KLE cells.Conclusions: In summary, we provided first evidences that osthole inhibited proliferation and induced apoptosis through up-regulating miR-424 to inhibit expression of CPEB2 in EC. Our findings indicated that osthole might act as a novel and potential therapeutic agent for the treatment of EC.
Collapse
Affiliation(s)
- Kena Lu
- Department of Gynecology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Zhuang Autonomous Region, Nanning City, China
| | - Jiajing Lin
- Department of Gynecology, Liuzhou Worker's Hospital, Guangxi Zhuang Autonomous Region, Liuzhou City, China
| | - Jun Jiang
- Department of Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| |
Collapse
|
47
|
Ding Y, Bi L, Wang J. MiR-1180 promotes cardiomyocyte cell cycle re-entry after injury through the NKIRAS2-NFκB pathway. Biochem Cell Biol 2020; 98:449-457. [PMID: 31955591 DOI: 10.1139/bcb-2019-0364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is associated with a considerable number of symptoms and significantly impaired health for humans, including reduced quality of life and physical functioning. Previous studies have indicated that miRNAs have important roles in regulating the development of HF. MiR-1180 is involved in the proliferation, migration, invasiveness, and chemoresistance of cancer cells; however, the underlying mechanisms and role of miR-1180 in the functioning of cardiomyocytes remains unclear. In this study, we found that miR-1180 promotes cell activity and cell cycle processes by driving energy generation through NKIRAS2, which declines over time during development. The expression of miR-1180 is down-regulated in cells subjected to hypoxia-reoxygenation, and use of an miR-1180 mimic significantly reduced myocardial injury and cell apoptosis. In addition, miR-1180 regulates the NFκB pathway through NKIRAS2 in cardiomyocytes. These findings suggest that miR-1180 maybe a novel therapeutic target for use in getting cardiomyocytes to re-enter the cell cycle as well as for cardiac repair following myocardial injury.
Collapse
Affiliation(s)
- Yuhui Ding
- Department of Emergency, Qingdao Haici Medical Group, Qingdao, China 266034
| | - Liyuan Bi
- Department of Emergency, Qingdao Haici Medical Group, Qingdao, China 266034
| | - Jun Wang
- Department of Emergency, Qingdao Haici Medical Group, Qingdao, China 266034.,Department of Emergency, Qingdao Haici Medical Group, Qingdao, China 266034
| |
Collapse
|