1
|
Steffan B, Grossmann T, Gerstenberger C, Gugatschka M, Hortobagyi D, Kirsch A, Grill M. Functional Characteristics of the Crosstalk Between Vocal Fold Fibroblasts and Macrophages-The Role of Vibration in Vocal Fold Inflammation. J Voice 2025:S0892-1997(24)00478-8. [PMID: 39799073 DOI: 10.1016/j.jvoice.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVES This in vitro study investigated the interaction between human vocal fold fibroblasts (hVFF) and macrophages under the influence of cigarette smoke extract (CSE) and vibration as potential regulators of vocal fold (VF) inflammation. STUDY DESIGN Experimental in vitro pilot study. METHODS Immortalized hVFF were cultured in flexible-bottomed cell culture plates, treated with CSE, and subjected to static or dynamic conditions in a phonomimetic bioreactor. For coculture, unstimulated or lipopolysaccharide/IFNγ-stimulated THP-1 (human leukemia monocytic cell line) macrophages were added in inserts for a final 24 hours of vibration period. We measured messenger ribonucleic acid (mRNA) (quantitative polymerase chain reaction [qPCR]) and protein levels (Western Blot, ELISA, and LUMINEX®) of hVFF and analyzed the results using two- and three-way ANOVA with post hoc tests. RESULTS Under inflammatory stimulation, we observed a reduction of collagen (COL) type 1A1, 1A2, and 3A1, and increased gene expression of COL4A1, matrix metallopeptidase 2, and vascular endothelial growth factor A in hVFF. Additionally, the pro-inflammatory markers cyclooxygenase (COX) 1 and 2, interleukin (IL) 1β, IL-6, and IL-8 were upregulated. CSE increased COX1 and COX2 levels, whereas vibration reduced CSE-induced increases of COL4A1 and COX2 in pro-inflammatory stimulated hVFF. CONCLUSION This study indicates that vibration may mitigate CSE-induced inflammatory damage in the hVFF, thereby offering new insights into the cellular crosstalk that underlies the pathophysiology of VF inflammation in smoking-related voice disorders.
Collapse
Affiliation(s)
- Barbara Steffan
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - Tanja Grossmann
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria.
| | - Claus Gerstenberger
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - Markus Gugatschka
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - David Hortobagyi
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - Andrijana Kirsch
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Magdalena Grill
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Liu D, Zhang Y, Guo L, Fang R, Guo J, Li P, Qian T, Li W, Zhao L, Luo X, Zhang S, Shao J, Sun S. Single-cell atlas of healthy vocal folds and cellular function in the endothelial-to-mesenchymal transition. Cell Prolif 2024; 57:e13723. [PMID: 39245637 PMCID: PMC11628749 DOI: 10.1111/cpr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
The vocal fold is an architecturally complex organ comprising a heterogeneous mixture of various layers of individual epithelial and mesenchymal cell lineages. Here we performed single-cell RNA sequencing profiling of 5836 cells from the vocal folds of adult Sprague-Dawley rats. Combined with immunostaining, we generated a spatial and transcriptional map of the vocal fold cells and characterized the subpopulations of epithelial cells, mesenchymal cells, endothelial cells, and immune cells. We also identified a novel epithelial-to-mesenchymal transition-associated epithelial cell subset that was mainly found in the basal epithelial layers. We further confirmed that this subset acts as intermediate cells with similar genetic features to epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Finally, we present the complex intracellular communication network involved homeostasis using CellChat analysis. These studies define the cellular and molecular framework of the biology and pathology of the VF mucosa and reveal the functional importance of developmental pathways in pathological states in cancer.
Collapse
Affiliation(s)
- Danling Liu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science CenterShenzhen UniversityShenzhenChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Rui Fang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Peifang Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Wen Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Xiaoning Luo
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Siyi Zhang
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Jun Shao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| |
Collapse
|
3
|
González-García M, Carrillo-Franco L, Morales-Luque C, Ponce-Velasco M, Gago B, Dawid-Milner MS, López-González MV. Uncovering the neural control of laryngeal activity and subglottic pressure in anaesthetized rats: insights from mesencephalic regions. Pflugers Arch 2024; 476:1235-1247. [PMID: 38856775 PMCID: PMC11271367 DOI: 10.1007/s00424-024-02976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.
Collapse
Affiliation(s)
- M González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain.
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain.
- IBIMA Plataforma BIONAND, Málaga, Spain.
| | - L Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - C Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - M Ponce-Velasco
- IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Cell Biology, University of Málaga, Málaga, Spain
| | - B Gago
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - M S Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - M V López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain.
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain.
- IBIMA Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
4
|
Dong L, Kang S, Chen X, Song X. Crossed idiopathic hemihypertrophy diagnosed incidentally in an adolescent with voice disorders: A case report. Heliyon 2024; 10:e33915. [PMID: 39071623 PMCID: PMC11277390 DOI: 10.1016/j.heliyon.2024.e33915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Background Hemihypertrophy (HH) is a rare congenital malformation usually recognized at birth. It is often diagnosed due to impaired aesthetics and mobility caused by asymmetry of the face, body, or limbs. Some patients are diagnosed due to the presence of tumors and mental abnormalities. Case presentation A 14-year-old boy with hoarseness since infancy and progressively increasing with age. Laryngoscopy and CT of the larynx suggested bilateral asymmetry of the laryngeal structures, and voice analysis suggested severe voice disorders. The boy had no history of trauma or other medical conditions, but had physical asymmetry since birth, which coincided with the laryngeal asymmetry. After a detailed examination and evaluation, we considered that his voice disorders were unexpectedly caused by crossed idiopathic HH. Since the boy in his growth spurts is not a candidate for surgery, we implemented individualized voice correction therapy. After practicing, the boy's voice disorders were significantly relieved. Conclusion Congenital HH can cause asymmetrical development of the larynx, which leads to voice disorders. Voice correction therapy is an effective treatment for patients unsuitable for surgery.
Collapse
Affiliation(s)
| | | | - Xiumei Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
| |
Collapse
|
5
|
Parslow VR, Elmore SA, Cochran RZ, Bolon B, Mahler B, Sabio D, Lubeck BA. Histology Atlas of the Developing Mouse Respiratory System From Prenatal Day 9.0 Through Postnatal Day 30. Toxicol Pathol 2024; 52:153-227. [PMID: 39096105 DOI: 10.1177/01926233241252114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Respiratory diseases are one of the leading causes of death and disability around the world. Mice are commonly used as models of human respiratory disease. Phenotypic analysis of mice with spontaneous, congenital, inherited, or treatment-related respiratory tract abnormalities requires investigators to discriminate normal anatomic features of the respiratory system from those that have been altered by disease. Many publications describe individual aspects of normal respiratory tract development, primarily focusing on morphogenesis of the trachea and lung. However, a single reference providing detailed low- and high-magnification, high-resolution images of routine hematoxylin and eosin (H&E)-stained sections depicting all major structures of the entire developing murine respiratory system does not exist. The purpose of this atlas is to correct this deficiency by establishing one concise reference of high-resolution color photomicrographs from whole-slide scans of H&E-stained tissue sections. The atlas has detailed descriptions and well-annotated images of the developing mouse upper and lower respiratory tracts emphasizing embryonic days (E) 9.0 to 18.5 and major early postnatal events. The selected images illustrate the main structures and events at key developmental stages and thus should help investigators both confirm the chronological age of mouse embryos and distinguish normal morphology as well as structural (cellular and organ) abnormalities.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Robert Z Cochran
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Beth A Lubeck
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Lesch R, Fitch WT. The domestication of the larynx: The neural crest connection. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:342-349. [PMID: 38591232 PMCID: PMC7616162 DOI: 10.1002/jez.b.23251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
Wolves howl and dogs bark, both are able to produce variants of either vocalization, but we see a distinct difference in usage between wild and domesticate. Other domesticates also show distinct changes to their vocal output: domestic cats retain meows, a distinctly subadult trait in wildcats. Such differences in acoustic output are well-known, but the causal mechanisms remain little-studied. Potential links between domestication and vocal output are intriguing for multiple reasons, and offer a unique opportunity to explore a prominent hypothesis in domestication research: the neural crest/domestication syndrome hypothesis. This hypothesis suggests that in the early stages of domestication, selection for tame individuals decreased neural crest cell (NCCs) proliferation and migration, which led to a downregulation of the sympathetic arousal system, and hence reduced fear and reactive aggression. NCCs are a transitory stem cell population crucial during embryonic development that tie to diverse tissue types and organ systems. One of these neural-crest derived systems is the larynx, the main vocal source in mammals. We argue that this connection between NCCs and the larynx provides a powerful test of the predictions of the neural crest/domestication syndrome hypothesis, discriminating its predictions from those of other current hypotheses concerning domestication.
Collapse
Affiliation(s)
- Raffaela Lesch
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - W Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Coyne M, Dellafaille J, Riede T. Postnatal changes in thyroid cartilage shape and cartilage matrix composition are not synchronized in Mus musculus. J Anat 2024; 244:739-748. [PMID: 38303104 PMCID: PMC11021632 DOI: 10.1111/joa.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
The study was conducted to quantify laryngeal cartilage matrix composition and to investigate its relationship with cartilage shape in a mouse model. A sample of 30 mice (CD-1 mouse, Mus musculus) from five age groups (postnatal Days 2, 21, 90, 365, and 720) were used. Three-dimensional mouse laryngeal thyroid cartilage reconstructions were generated from contrast-enhanced micro-computed tomography (CT) image stacks. Cartilage matrix composition was estimated as Hounsfield units (HU). HU were determined by overlaying 3D reconstructions as masks on micro-CT image stacks and then measuring the attenuation. Cartilage shape was quantified with landmarks placed on the surface of the thyroid cartilage. Shape differences between the five age groups were analyzed using geometric morphometrics and multiparametric analysis of landmarks. The relationship between HU and shape was investigated with correlational analyses. Among five age groups, HU became higher in older animals. The shape of the thyroid cartilage changes with age throughout the entire life of a mouse. The changes in shape were not synchronized with changes in cartilage matrix composition. The thyroid cartilage of young and old M. musculus larynx showed a homogenous mineralization pattern. High-resolution contrast-enhanced micro-CT imaging makes the mouse larynx accessible for analysis of genetic and environmental factors affecting shape and matrix composition.
Collapse
Affiliation(s)
- Megan Coyne
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA
| | | | - Tobias Riede
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA
- College of Graduate Studies, Department of Physiology, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
8
|
Cullins MJ, Connor NP. Differential impact of unilateral stroke on the bihemispheric motor cortex representation of the jaw and tongue muscles in young and aged rats. Front Neurol 2024; 15:1332916. [PMID: 38572491 PMCID: PMC10987714 DOI: 10.3389/fneur.2024.1332916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Dysphagia commonly occurs after stroke, yet the mechanisms of post-stroke corticobulbar plasticity are not well understood. While cortical activity associated with swallowing actions is bihemispheric, prior research has suggested that plasticity of the intact cortex may drive recovery of swallowing after unilateral stroke. Age may be an important factor as it is an independent predictor of dysphagia after stroke and neuroplasticity may be reduced with age. Based on previous clinical studies, we hypothesized that cranial muscle activating volumes may be expanded in the intact hemisphere and would contribute to swallowing function. We also hypothesized that older age would be associated with limited map expansion and reduced function. As such, our goal was to determine the impact of stroke and age on corticobulbar plasticity by examining the jaw and tongue muscle activating volumes within the bilateral sensorimotor cortices. Methods Using the middle cerebral artery occlusion rat stroke model, intracortical microstimulation (ICMS) was used to map regions of sensorimotor cortex that activate tongue and jaw muscles in both hemispheres. Young adult (7 months) and aged (30 months) male F344 × BN rats underwent a stroke or sham-control surgery, followed by ICMS mapping 8 weeks later. Videofluoroscopy was used to assess oral-motor functions. Results Increased activating volume of the sensorimotor cortex within the intact hemisphere was found only for jaw muscles, whereas significant stroke-related differences in tongue activating cortical volume were limited to the infarcted hemisphere. These stroke-related differences were correlated with infarct size, such that larger infarcts were associated with increased jaw representation in the intact hemisphere and decreased tongue representation in the infarcted hemisphere. We found that both age and stroke were independently associated with swallowing differences, weight loss, and increased corticomotor thresholds. Laterality of tongue and jaw representations in the sham-control group revealed variability between individuals and between muscles within individuals. Conclusion Our findings suggest the role of the intact and infarcted hemispheres in the recovery of oral motor function may differ between the tongue and jaw muscles, which may have important implications for rehabilitation, especially hemisphere-specific neuromodulatory approaches. This study addressed the natural course of recovery after stroke; future work should expand to focus on rehabilitation.
Collapse
Affiliation(s)
- Miranda J. Cullins
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P. Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Longtine C, Eliason CM, Mishkind D, Lee C, Chiappone M, Goller F, Love J, Kingsley EP, Clarke JA, Tabin CJ. Homology and the evolution of vocal folds in the novel avian voice box. Curr Biol 2024; 34:461-472.e7. [PMID: 38183987 DOI: 10.1016/j.cub.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
The origin of novel traits, those that are not direct modifications of a pre-existing ancestral structure, remains a fundamental problem in evolutionary biology. For example, little is known about the evolutionary and developmental origins of the novel avian vocal organ, the syrinx. Located at the tracheobronchial junction, the syrinx is responsible for avian vocalization, but it is unclear whether avian vocal folds are homologous to the laryngeal vocal folds in other tetrapods or convergently evolved. Here, we identify a core developmental program involved in avian vocal fold formation and infer the morphology of the syrinx of the ancestor of modern birds. We find that this ancestral syrinx had paired sound sources induced by a conserved developmental pathway and show that shifts in these signals correlate with syringeal diversification. We show that, despite being derived from different developmental tissues, vocal folds in the syrinx and larynx have similar tissue composition and are established through a strikingly similar developmental program, indicating that co-option of an ancestral developmental program facilitated the origin of vocal folds in the avian syrinx.
Collapse
Affiliation(s)
- Charlie Longtine
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Chad M Eliason
- The Jackson School of Geosciences and Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Darcy Mishkind
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Chiappone
- The Jackson School of Geosciences and Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Franz Goller
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Department of Zoophysiology, University of Münster, 48149 Münster, Germany
| | - Jay Love
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Evan P Kingsley
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Julia A Clarke
- The Jackson School of Geosciences and Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Nautiyal S, Kumar Agarwal V, Bist SS, Kumar L, Luthra M. Assessment of Preoperative Predictors for Difficult Laryngeal Exposure in Endolaryngeal Surgery. Indian J Otolaryngol Head Neck Surg 2024; 76:490-494. [PMID: 38440588 PMCID: PMC10908999 DOI: 10.1007/s12070-023-04190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 03/06/2024] Open
Abstract
Introduction The proper visualisation of the larynx is required for the diagnostic assessment and therapeutic intervention. The most significant challenges for surgeon is to visualise the anterior commissure of the glottis region. The aim of this study is to record the preoperative laryngoscore in patients posted for endolaryngeal surgery and to assess preoperative predictors for intraoperative difficult laryngeal exposure by correlating with preoperative laryngoscore. Design Prospective, Cross-sectional, Observational study. Setting Department of Otorhinolaryngology in a tertiary care teaching facility. Subjects 150 patients were included with an endolaryngeal disease who were planned for surgery with age > 18yrs. Methodology In 150 subjects preoperative laryngoscore was calculated, which comprised 11 parameters including thyromental distance, mandibular prognathism, macroglossia, micrognathia, trismus, inter incisor gap, degree of neck flexion-extension, history of prior open-neck surgery or radiotherapy, upper jaw dental status, modified Mallampati score and body mass index in order to produce a total score out of a possible maximum score of 17. According to the anterior commissure visualisation all patients were categorised into five classes, ranging from class 0 to class IV during surgery. The laryngoscore parameters were assessed and compared statistically with five classes of intraoperative anterior commissure visualisation. Result Out of 150 patients 70 (46.6%) were having 3-4 laryngoscore, followed by 45 (30%) patients with 5-6 laryngoscore. Total 123 (82%) patient had class 0,1 and 2 intraoperative anterior commissure visualisation while 27 (18%) had class 3 and 4 visualisation. If laryngoscore was either less or equal to 5, 90% of the patients had excellent laryngeal exposure whereas only 10% of the patients had challenging laryngeal exposure. At univariate analysis, thyromental distance, degree of neck flexion/extension, and modified Mallampati classification were found statistically significant for difficulty of anterior commissure visualisation independently. Conclusion A sound, easy and valid preoperative laryngoscore may be significantly helpful in identifying intraoperative difficult laryngeal exposure. This may prevent inadequacy of surgery, abandon of surgery, intra operative complication, and medico-legal cases for laryngologist.
Collapse
Affiliation(s)
- Saurabh Nautiyal
- Department of ENT, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, 248016 Dehradun, Uttarakhand India
| | - Vinish Kumar Agarwal
- Department of ENT, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, 248016 Dehradun, Uttarakhand India
| | - S S Bist
- Department of ENT, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, 248016 Dehradun, Uttarakhand India
| | - Lovneesh Kumar
- Department of ENT, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, 248016 Dehradun, Uttarakhand India
| | - Mahima Luthra
- Department of ENT, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, 248016 Dehradun, Uttarakhand India
| |
Collapse
|
11
|
Kovacs PL, Deutch ZB, Castillo D. Velo-epiglottic Adhesion: An Unusual Finding in a Mallampati Zero Airway. Anesthesiology 2023; 139:664. [PMID: 37552086 DOI: 10.1097/aln.0000000000004643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Affiliation(s)
- Peter L Kovacs
- Department of Anesthesiology, University of Florida College of Medicine, Jacksonville, Florida
| | - Zachary B Deutch
- Department of Anesthesiology, University of Florida College of Medicine, Jacksonville, Florida
| | - Daniel Castillo
- Department of Anesthesiology, University of Florida College of Medicine, Jacksonville, Florida
| |
Collapse
|
12
|
Bush D, Juliano C, Bowler S, Tiozzo C. Development and Disorders of the Airway in Bronchopulmonary Dysplasia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1127. [PMID: 37508624 PMCID: PMC10378517 DOI: 10.3390/children10071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a disorder characterized by arrested lung development, is a frequent cause of morbidity and mortality in premature infants. Parenchymal lung changes in BPD are relatively well-characterized and highly studied; however, there has been less emphasis placed on the role that airways disease plays in the pathophysiology of BPD. In preterm infants born between 22 and 32 weeks gestation, the conducting airways are fully formed but still immature and therefore susceptible to injury and further disruption of development. The arrest of maturation results in more compliant airways that are more susceptible to deformation and damage. Consequently, neonates with BPD are prone to developing airway pathology, particularly for patients who require intubation and positive-pressure ventilation. Airway pathology, which can be divided into large and small airways disease, results in increased respiratory morbidity in neonates with chronic lung disease of prematurity.
Collapse
Affiliation(s)
- Douglas Bush
- Division of Pediatric Pulmonology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Courtney Juliano
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Selina Bowler
- Department of Pediatrics, New York University Langone-Long Island, Mineola, NY 11501, USA
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
13
|
Puig-Herreros C, Sanz JL, Rosell-Clari V, Barona L, Melo M. What Are the Contemporary Trends on Euphonic Voice Research? A Scientometric Analysis. Healthcare (Basel) 2022; 10:2137. [PMID: 36360478 PMCID: PMC9690488 DOI: 10.3390/healthcare10112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: The study of the human euphonic voice is a subject that has been researched in recent years from different perspectives. Therefore, it is pertinent to assess the current state of the science. The aim of analyzing the characteristics of normal voice-related publications over the last 11 years is to identify research trends, the numerical and temporal evolution of the publications, their type, and the most-used descriptors. (2) Methods: Bibliometric data from 2011 to 2021 were obtained through several databases. Subsequently, a science mapping analysis was made via VOSviewer software. (3) Results: A total of 901 publications were obtained. The analysis of the scientific production on the field of study regarding the euphonic voice shows a slight increase over the last 11 years, with an average of 82 publications per year. Co-authorship analysis revealed a 6215 authors contributing to the field with a 901 articles (headed by Jiang, J.J. with 18 articles). Keyword co-occurrence analysis highlighted the lack of temporal advancement and variety in the terminology used in the field of voice research. (4) Conclusions: This scientometric study sheds light to the need to broaden in this field of study and the establishment of solid research groups to contribute to its advancement.
Collapse
Affiliation(s)
- Clara Puig-Herreros
- Department of Basic Psychology, Speech Therapy University Clinic, Universitat de València, 46010 València, Spain
| | - José Luis Sanz
- Department of Stomatology, Dental University Clinic, Universitat de València, 46010 València, Spain
| | - Vicent Rosell-Clari
- Department of Basic Psychology, Speech Therapy University Clinic, Universitat de València, 46010 València, Spain
| | - Luz Barona
- Department of Otolaryngology, Barona Clinic, Casa de la Salud Hospital, 46021 València, Spain
| | - María Melo
- Department of Stomatology, Dental University Clinic, Universitat de València, 46010 València, Spain
| |
Collapse
|
14
|
Wendt KD, Brown J, Lungova V, Mohad V, Kendziorski C, Thibeault SL. Transcriptome Dynamics in the Developing Larynx, Trachea, and Esophagus. Front Cell Dev Biol 2022; 10:942622. [PMID: 35938172 PMCID: PMC9353518 DOI: 10.3389/fcell.2022.942622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
The larynx, trachea, and esophagus share origin and proximity during embryonic development. Clinical and experimental evidence support the existence of neurophysiological, structural, and functional interdependencies before birth. This investigation provides the first comprehensive transcriptional profile of all three organs during embryonic organogenesis, where differential gene expression gradually assembles the identity and complexity of these proximal organs from a shared origin in the anterior foregut. By applying bulk RNA sequencing and gene network analysis of differentially expressed genes (DEGs) within and across developing embryonic mouse larynx, esophagus, and trachea, we identified co-expressed modules of genes enriched for key biological processes. Organ-specific temporal patterns of gene activity corresponding to gene modules within and across shared tissues during embryonic development (E10.5-E18.5) are described, and the laryngeal transcriptome during vocal fold development and maturation from birth to adulthood is characterized in the context of laryngeal organogenesis. The findings of this study provide new insights into interrelated gene sets governing the organogenesis of this tripartite organ system within the aerodigestive tract. They are relevant to multiple families of disorders defined by cardiocraniofacial syndromes.
Collapse
Affiliation(s)
- Kristy D. Wendt
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jared Brown
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Vlasta Lungova
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
| | - Vidisha Mohad
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
| | - Christina Kendziorski
- Department of Biostatistics and Medical Information, University of Wisconsin-Madison, Madison, WI, United States
| | - Susan L. Thibeault
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Susan L. Thibeault,
| |
Collapse
|
15
|
King RE, Ward-Shaw ET, Hu R, Lambert PF, Thibeault SL. Expanded Basal Compartment and Disrupted Barrier in Vocal Fold Epithelium Infected with Mouse Papillomavirus MmuPV1. Viruses 2022; 14:v14051059. [PMID: 35632798 PMCID: PMC9146965 DOI: 10.3390/v14051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Laryngeal infection with low-risk human papillomaviruses can cause recurrent respiratory papillomatosis (RRP), a disease with severe effects on vocal fold epithelium resulting in impaired voice function and communication. RRP research has been stymied by limited preclinical models. We recently reported a murine model of laryngeal MmuPV1 infection and disease in immunodeficient mice. In the current study, we compare quantitative and qualitative measures of epithelial proliferation, apoptosis, differentiation, and barrier between mice with MmuPV1-induced disease of the larynx and surrounding tissues and equal numbers of uninfected controls. Findings supported our hypothesis that laryngeal MmuPV1 infection recapitulates many features of RRP. Like RRP, MmuPV1 increased proliferation in infected vocal fold epithelium, expanded the basal compartment of cells, decreased differentiated cells, and altered cell–cell junctions and basement membrane. Effects of MmuPV1 on apoptosis were equivocal, as with RRP. Barrier markers resembled human neoplastic disease in severe MmuPV1-induced disease. We conclude that MmuPV1 infection of the mouse larynx provides a useful, if imperfect, preclinical model for RRP that will facilitate further study and treatment development for this intractable and devastating disease.
Collapse
Affiliation(s)
- Renee E. King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ella T. Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
| | - Susan L. Thibeault
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
16
|
Schlegel P, Berry DA, Chhetri DK. Analysis of vibratory mode changes in symmetric and asymmetric activation of the canine larynx. PLoS One 2022; 17:e0266910. [PMID: 35421159 PMCID: PMC9009716 DOI: 10.1371/journal.pone.0266910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Investigations of neuromuscular control of voice production have primarily focused on the roles of muscle activation levels, posture, and stiffness at phonation onset. However, little work has been done investigating the stability of the phonation process in regards to spontaneous changes in vibratory mode of vocal fold oscillation as a function of neuromuscular activation. We evaluated 320 phonatory conditions representing combinations of superior and recurrent laryngeal nerve (SLN and RLN) activations in an in vivo canine model of phonation. At each combination of neuromuscular input, airflow was increased linearly to reach phonation onset and beyond from 300 to 1400 mL/s. High-speed video and acoustic data were recorded during phonation, and spectrograms and glottal-area-based parameters were calculated. Vibratory mode changes were detected based on sudden increases or drops of local fundamental frequency. Mode changes occurred only when SLNs were concurrently stimulated and were more frequent for higher, less asymmetric RLN stimulation. A slight increase in amplitude and cycle length perturbation usually preceded the changes in the vibratory mode. However, no inherent differences between signals with mode changes and signals without were found.
Collapse
Affiliation(s)
- Patrick Schlegel
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
- * E-mail:
| | - David A. Berry
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
| | - Dinesh K. Chhetri
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
| |
Collapse
|
17
|
In Vitro Evaluation of Biomaterials for Vocal Fold Injection: A Systematic Review. Polymers (Basel) 2021; 13:polym13162619. [PMID: 34451158 PMCID: PMC8400183 DOI: 10.3390/polym13162619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Vocal fold injection is a preferred treatment in glottic insufficiency because it is relatively quick and cost-saving. However, researchers have yet to discover the ideal biomaterial with properties suitable for human vocal fold application. The current systematic review employing PRISMA guidelines summarizes and discusses the available evidence related to outcome measures used to characterize novel biomaterials in the development phase. The literature search of related articles published within January 2010 to March 2021 was conducted using Scopus, Web of Science (WoS), Google Scholar and PubMed databases. The search identified 6240 potentially relevant records, which were screened and appraised to include 15 relevant articles based on the inclusion and exclusion criteria. The current study highlights that the characterization methods were inconsistent throughout the different studies. While rheologic outcome measures (viscosity, elasticity and shear) were most widely utilized, there appear to be no target or reference values. Outcome measures such as cellular response and biodegradation should be prioritized as they could mitigate the clinical drawbacks of currently available biomaterials. The review suggests future studies to prioritize characterization of the viscoelasticity (to improve voice outcomes), inflammatory response (to reduce side effects) and biodegradation (to improve longevity) profiles of newly developed biomaterials.
Collapse
|
18
|
Ridgway C, Bouhabel S, Martignetti L, Kishimoto Y, Li-Jessen NYK. Pediatric Vocal Fold Paresis and Paralysis: A Narrative Review. JAMA Otolaryngol Head Neck Surg 2021; 147:745-752. [PMID: 34110365 DOI: 10.1001/jamaoto.2021.1050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Vocal fold paralysis (VFP) results from the disruption of neural motor outputs to laryngeal muscles. Children with VFP manifest various degrees of difficulties in phonation, breathing, and swallowing. Although the etiologic characteristics and symptoms of VFP are well established in adults, corresponding clinical profiles are notably different in children. Clinical management of VFP is particularly challenging in children because their larynges are still actively developing and the recovery of disrupted laryngeal nerves is often unpredictable. This review discusses the neurologic conditions and diagnostic and treatment considerations in pediatric VFP. Observations Injury to the peripheral laryngeal nerves and certain central nervous system diseases, such as Arnold-Chiari malformation type II, can result in VFP in infants and children. The incidence of unilateral vs bilateral VFP is variable across pediatric studies. Most reported VFP cases are associated with injury of the recurrent laryngeal nerve. Laryngeal electromyography requires needle insertion that must be performed under anesthesia with special care in the pediatric setting. Neither normative values nor standardized procedures of laryngeal electromyography are currently established for the pediatric population. Laryngeal reinnervation, endoscopic arytenoid abduction lateropexy, and laryngeal pacing are plausible treatment options for pediatric VFP. Despite these new advances in the field, no corresponding efficacy data are available for clinicians to discern which type of patients would be the best candidates for these procedures. Conclusions and Relevance The neuroanatomy and neurophysiology of VFP remain more elusive for the pediatric population than for adults. Basic and clinical research is warranted to fully comprehend the complexity of this laryngeal movement disorder and to better inform and standardize clinical practice.
Collapse
Affiliation(s)
- Chelsea Ridgway
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada
| | - Sarah Bouhabel
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada
| | - Lisa Martignetti
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nicole Y K Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada.,Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
19
|
Inactivation of Lats1 and Lats2 highlights the role of hippo pathway effector YAP in larynx and vocal fold epithelium morphogenesis. Dev Biol 2021; 473:33-49. [PMID: 33515576 DOI: 10.1016/j.ydbio.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
Proliferation and differentiation of vocal fold epithelial cells during embryonic development is poorly understood. We examined the role of Hippo signaling, a vital pathway known for regulating organ size, in murine laryngeal development. Conditional inactivation of the Hippo kinase genes Lats1 and Lats2, specifically in vocal fold epithelial cells, resulted in severe morphogenetic defects. Deletion of Lats1 and Lats2 caused abnormalities in epithelial differentiation, epithelial lamina separation, cellular adhesion, basement membrane organization with secondary failed cartilage, and laryngeal muscle development. Further, Lats1 and Lats2 inactivation led to failure in differentiation of p63+ basal progenitors. Our results reveal novel roles of Hippo-Lats-YAP signaling in proper regulation of VF epithelial fate and larynx morphogenesis.
Collapse
|
20
|
Sorgini A, Kim HAJ, Zeng PYF, Shaikh MH, Mundi N, Ghasemi F, Di Gravio E, Khan H, MacNeil D, Khan MI, Mendez A, Yoo J, Fung K, Lang P, Palma DA, Mymryk JS, Barrett JW, Patel KB, Boutros PC, Nichols AC. Analysis of the TCGA Dataset Reveals that Subsites of Laryngeal Squamous Cell Carcinoma are Molecularly Distinct. Cancers (Basel) 2020; 13:cancers13010105. [PMID: 33396315 PMCID: PMC7794818 DOI: 10.3390/cancers13010105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Squamous cell carcinomas from different parts of the larynx have distinct presentations and prognoses, but the molecular basis for this discrepancy has yet to be characterized. We aimed to determine whether different types of mutations at the DNA, mRNA, and protein levels exist to explain the differential prognoses observed. We found that cancers of the supraglottis had higher overall and smoking-associated genome mutations. Further, supraglottic cancers had a significantly poorer prognosis when other clinical variables and mutational status were controlled for. Different protein pathways were enriched in each subsite: muscle-related in the glottis and neural in the supraglottis. Specific cancer-related proteins were also differentially abundant between the supraglottis and glottis. Our findings may partially explain therapeutic response differences, but further study is required for validation. Abstract Laryngeal squamous cell carcinoma (LSCC) from different subsites have distinct presentations and prognosis. In this study, we carried out a multiomic comparison of LSCC subsites. The Cancer Genome Atlas (TCGA) LSCC cohort was analyzed in the R statistical environment for differences between supraglottic and glottic cancers in single nucleotide variations (SNVs), copy number alterations (CNAs), mRNA abundance, protein abundance, pathway overrepresentation, tumor microenvironment (TME), hypoxia status, and patient outcome. Supraglottic cancers had significantly higher overall and smoking-associated SNV mutational load. Pathway analysis revealed upregulation of muscle related pathways in glottic cancer and neural pathways in supraglottic cancer. Proteins involved in cancer relevant signaling pathways including PI3K/Akt/mTOR, the cell cycle, and PDL1 were differentially abundant between subsites. Glottic and supraglottic tumors have different molecular profiles, which may partially account for differences in presentation and response to therapy.
Collapse
Affiliation(s)
- Alana Sorgini
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Hugh Andrew Jinwook Kim
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Peter Y. F. Zeng
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Mushfiq Hassan Shaikh
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Neil Mundi
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Farhad Ghasemi
- Department of General Surgery, University of Western Ontario, London, ON N6A 5C5, Canada;
| | - Eric Di Gravio
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Halema Khan
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Danielle MacNeil
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Mohammed Imran Khan
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Adrian Mendez
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - John Yoo
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Kevin Fung
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Pencilla Lang
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - David A. Palma
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Joe S. Mymryk
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Microbiology & Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John W. Barrett
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Krupal B. Patel
- Department of Otolaryngology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA;
- Department of Urology, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, USA
| | - Anthony C. Nichols
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Correspondence: ; Tel.: +519-685-8804
| |
Collapse
|