1
|
Ariyeloye S, Kämmerer S, Klapproth E, Wielockx B, El-Armouche A. Intertwined regulators: hypoxia pathway proteins, microRNAs, and phosphodiesterases in the control of steroidogenesis. Pflugers Arch 2024; 476:1383-1398. [PMID: 38355819 PMCID: PMC11310285 DOI: 10.1007/s00424-024-02921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Oxygen sensing is of paramount importance for maintaining cellular and systemic homeostasis. In response to diminished oxygen levels, the hypoxia-inducible factors (HIFs) orchestrate various biological processes. These pivotal transcription factors have been identified as key regulators of several biological events. Notably, extensive research from our group and others has demonstrated that HIF1α exerts an inverse regulatory effect on steroidogenesis, leading to the suppression of crucial steroidogenic enzyme expression and a subsequent decrease in steroid levels. These steroid hormones occupy pivotal roles in governing a myriad of physiological processes. Substantial or prolonged fluctuations in steroid levels carry detrimental consequences across multiple organ systems and underlie various pathological conditions, including metabolic and immune disorders. MicroRNAs serve as potent mediators of multifaceted gene regulatory mechanisms, acting as influential epigenetic regulators that modulate a broad spectrum of gene expressions. Concomitantly, phosphodiesterases (PDEs) play a crucial role in governing signal transduction. PDEs meticulously manage intracellular levels of both cAMP and cGMP, along with their respective signaling pathways and downstream targets. Intriguingly, an intricate interplay seems to exist between hypoxia signaling, microRNAs, and PDEs in the regulation of steroidogenesis. This review highlights recent advances in our understanding of the role of microRNAs during hypoxia-driven processes, including steroidogenesis, as well as the possibilities that exist in the application of HIF prolyl hydroxylase (PHD) inhibitors for the modulation of steroidogenesis.
Collapse
Affiliation(s)
- Stephen Ariyeloye
- Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Erik Klapproth
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany.
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Cascant-Vilaplana MM, Piñeiro-Ramos JD, Soláz-García Á, Lara-Cantón I, Izquierdo I, Llorens R, Marin P, Torres-Martínez E, Molitor C, Mohareb F, Boronat N, Quintás G, Kuligowski J, Vento M. Searching molecular biomarkers correlating with BSID-III at 24 months in infants with neonatal hypoxic-ischemic encephalopathy. Eur J Pediatr 2024:10.1007/s00431-024-05652-x. [PMID: 38916739 DOI: 10.1007/s00431-024-05652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024]
Abstract
An early prediction of outcomes of neonatal hypoxic-ischemic encephalopathy (NE) is of key importance in reducing neonatal mortality and morbidity. The objectives were (i) to analyze the characteristics of miRNA expression and metabolic patterns of neonates with NE and (ii) to assess their predictive performance for neurodevelopmental outcomes. Plasma samples from moderate/severe NE patients (N = 92) of the HYPOTOP study were collected before, during, and after therapeutic hypothermia (TH) and compared to a control group (healthy term infants). The expression of miRNAs and concentrations of metabolites (hypoxia-related and energy, steroid, and tryptophan metabolisms) were analyzed. Neurodevelopmental outcomes were evaluated at 24 months postnatal age using Bayley Scales of Infant Development, ed. III, BSID-III. Differences in miRNA and metabolic profiles were found between NE vs. control infants, abnormal (i.e., mildly and moderately abnormal and severe) vs. normal, and severe vs. non-severe (i.e., normal and mildly and moderately abnormal) BSID-III. 4-Androstene-3,17-dione, testosterone, betaine, xanthine, and lactate were suitable for BSID-III outcome prediction (receiver operating characteristic areas under the curve (AUCs) ≥ 0.6), as well as 68 miRNAs (AUCs of 0.5-0.9). Significant partial correlations of xanthine and betaine levels and the expression of several miRNAs with BSID-III sub-scales were found. Conclusion: We have identified metabolites/miRNAs that might be useful to support the prediction of middle-term neurodevelopmental outcomes of NE. What is known and what is new: • The early prediction of outcomes of neonatal hypoxic-ischemic encephalopathy (NE) is of key importance in reducing neonatal mortality and morbidity. • Alterations of the metabolome and miRNAs had been observed in NE. • We performed miRNA sequencing and quantified selected metabolites (i.e., lactate, pyruvate, ketone bodies, Krebs cycle intermediates, tryptophan pathway, hypoxia-related metabolites, and steroids) by GC- and LC-MS. • Specific miRNAs and metabolites that allow prediction of middle-term neurodevelopmental outcomes of newborns with NE undergoing hypothermia treatment were identified.
Collapse
Affiliation(s)
| | | | - Álvaro Soláz-García
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Isabel Izquierdo
- Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
| | - Roberto Llorens
- Division of Radiology and Imaging, University & Polytechnic Hospital La Fe, Valencia, Spain
| | - Purificación Marin
- Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford, UK
| | - Fady Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford, UK
| | - Nuria Boronat
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0001), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0001), Instituto de Salud Carlos III, Madrid, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0001), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Baranova K, Nalivaeva N, Rybnikova E. Neuroadaptive Biochemical Mechanisms of Remote Ischemic Conditioning. Int J Mol Sci 2023; 24:17032. [PMID: 38069355 PMCID: PMC10707673 DOI: 10.3390/ijms242317032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined. Based on the close interplay between the effects of ischemia, especially those mediated by interaction of hypoxia-inducible factors (HIFs) and steroid hormones, the involvement of the hypothalamic-pituitary-adrenocortical system in remote ischemic conditioning is also discussed.
Collapse
Affiliation(s)
| | | | - Elena Rybnikova
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (K.B.); (N.N.)
| |
Collapse
|
4
|
Zhang Y, Zhang J, Sun J, Ouyang Y, Shi D, Lu F. Hypoxia enhances steroidogenic competence of buffalo (Bubalus bubalis) granulosa cells. Theriogenology 2023; 210:214-220. [PMID: 37527623 DOI: 10.1016/j.theriogenology.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo GCs remain unclear. In this study, the impacts of hypoxic conditions (5% oxygen) on estrogen synthesis in buffalo GCs were examined. The results showed that hypoxia improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in buffalo GCs. Hypoxic conditions promoted the sensitivity of buffalo GCs to FSH. Furthermore, inhibition of cAMP/PKA signaling pathway (H89, a cAMP/PKA signaling pathway inhibitor) reduced both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in hypoxia-cultured buffalo GCs. Besides, inhibition of cAMP/PKA signaling pathway lowered the responsiveness of buffalo GCs to FSH under hypoxic conditions. The present study indicated that hypoxia enhanced the steroidogenic competence of buffalo GCs principal by affecting cAMP/PKA signaling pathway and subsequent sensitivity of GCs to FSH.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Deshun Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
5
|
Sui A, Yao C, Chen Y, Li Y, Yu S, Qu J, Wei H, Tang J, Chen G. Polystyrene nanoplastics inhibit StAR expression by activating HIF-1α via ERK1/2 MAPK and AKT pathways in TM3 Leydig cells and testicular tissues of mice. Food Chem Toxicol 2023; 173:113634. [PMID: 36709824 DOI: 10.1016/j.fct.2023.113634] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are widely found in water, food and air, and have been found in human blood, lung and feces. Several studies in vivo have shown that MPs and NPs decrease testosterone level. However, the molecular mechanism of MPs and NPs leading to testosterone reduction remains unclear. In the present study, mice were treated with 50 μg/kg·day polystyrene (PS)-NPs by tail vein injection once daily for two consecutive days, the mRNA and protein levels of steroidogenic acute regulatory protein (StAR) decreased significantly in testis. TM3 Leydig cells were treated with non-toxic doses of PS-NPs, hypoxia-inducible factor-1α (HIF-1α) mRNA translation was induced by PS-NPs through mTOR/4E-BP1 pathway, which was activated by the ERK1/2 MAPK and AKT pathways. Simultaneously, increased HIF-1α protein inhibited StAR transcription. Additionally, reactive oxygen species production induced by PS-NPs played a central role in the activation of ERK1/2 MAPK/mTOR and AKT/mTOR signaling pathways. These results suggest that PS-NPs down-regulate StAR expression by increasing HIF-1α, which is induced by activation of mTOR/4E-BP1 through the ERK1/2 MAPK and AKT signaling pathways. Our findings provide new insight into the potential molecular mechanism by which PS-NPs impair testosterone synthesis and male reproductive function.
Collapse
Affiliation(s)
- Aiyi Sui
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima, 770-8504, Japan
| | - Yanhong Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
6
|
Chu M, Gao H, Esparza P, Pajulas A, Wang J, Kharwadkar R, Gao H, Kaplan MH, Tepper RS. Chronic developmental hypoxia alters rat lung immune cell transcriptomes during allergic airway inflammation. Physiol Rep 2023; 11:e15600. [PMID: 36750205 PMCID: PMC9904961 DOI: 10.14814/phy2.15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023] Open
Abstract
Populations that are born and raised at high altitude develop under conditions of chronic developmental hypoxia (CDH), which results in pulmonary adaptations of increased lung volume and diffusion capacity to increase gas exchange. It is not clear how CDH may alter allergic inflammation in the lung. In this study, we sought to characterize the impact of CDH on immune cell populations in the rat lung during a murine model of asthma. Rats were bred and raised in either hypoxic (15% oxygen, CDH) or normobaric room air (20% oxygen). At 3-weeks of age, animals were sensitized to ovalbumin (OVA) or physiologic saline (phosphate-buffered saline [PBS]) as a control, followed by three consecutive days of intra-nasal OVA or PBS at 6-weeks of age. We then assessed airway reactivity and allergic-associated cytokine levels. This was followed by single-cell transcriptomic profiling of lung cell populations. In scRNA-seq analysis, we assessed differentially expressed genes, differentially enriched functional pathways, immune cell exhaustion/activation markers, and immune cell secretory products. Our results show that while OVA heightened airway reactivity, CDH suppressed airway reactivity in OVA-challenged and control animals. Through scRNA-seq analysis, we further demonstrate that CDH alters the transcriptional landscape in the lung and alters transcriptional programs in immune cells. These data define CDH-dependent changes in the lung that impact airway reactivity.
Collapse
Affiliation(s)
- Michelle Chu
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Huanling Gao
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Patricia Esparza
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Abigail Pajulas
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Jocelyn Wang
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Rakshin Kharwadkar
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Hongyu Gao
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | - Mark H. Kaplan
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Robert S. Tepper
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
7
|
Ibarrola J, Lu Q, Zennaro MC, Jaffe IZ. Mechanism by Which Inflammation and Oxidative Stress Induce Mineralocorticoid Receptor Gene Expression in Aging Vascular Smooth Muscle Cells. Hypertension 2023; 80:111-124. [PMID: 36337050 PMCID: PMC9742321 DOI: 10.1161/hypertensionaha.122.19213] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Vascular MR (mineralocorticoid receptor) expression increases with age driving aging-associated vascular stiffness and hypertension. MR has two isoforms (1α and 1β) with distinct 5'-untranslated and promoter sequences (P1 and P2), but the gene regulatory mechanisms remain unknown. We investigated mechanisms driving MR gene transcriptional regulation in aging human smooth muscle cells (SMC). METHODS MR was quantified in aortic tissue and primary human aortic SMC (HASMC) comparing adult and aged donors and adult HASMC treated with H2O2, to induce aging. Predicted transcription factor (TF) binding sites in the MR gene were validated using chromatin immunoprecipitations and reporter assays. The impact of TF inhibitors on MR isoforms and fibrosis target gene expression was examined. RESULTS Expression of both MR mRNA isoforms increased with donor age or H2O2 treatment in HASMCs. HIF1α (hypoxia-inducible factor) and the inflammatory TF NFκB (nuclear factor kappa B) both increased with age in HASMCs and are predicted to bind MR promoters. H2O2 induced HIF1α and NFκB expression and DNA binding of HIF1α to the MR P1 promoter and of NFκB to both MR promoters in HASMCs. HIF1α inhibition decreased MR-1α isoform expression while NFκB inhibition decreased both MR isoforms. HIF1α, NFκB, and MR inhibition decreased the expression of a SMC-MR target gene implicated in vascular fibrosis. In human aortic tissues, expression of HIF1α and NFκB each positively correlated with donor age and MR expression (P<0.0001). CONCLUSIONS These data implicate the inflammatory TF, NFκB, and oxidative stress-induced TF, HIF1α, in regulating SMC MR transcription in aging HASMCs, which drives aging-related vascular stiffness and cardiovascular disease.
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | | | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
8
|
Karimi S, Jalili C, Mansouri K, Bahremand F, Gholami MR. Effect of melatonin on steroidogenesis-related enzymes expression and testosterone synthesis following CoCl 2-induced hypoxia in TM3 Leydig cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1041-1046. [PMID: 37605723 PMCID: PMC10440132 DOI: 10.22038/ijbms.2023.69570.15152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 08/23/2023]
Abstract
Objectives This study examined the effects of melatonin treatment on steroidogenesis dysfunction and testosterone impairment, following CoCl2-induced hypoxia in TM3 Leydig cells. Materials and Methods The TM3 cells were divided into four groups. The first group received no treatment. The MLT group was treated with a concentration of 1 mM melatonin. In the CoCl2 group, 0.2 mM CoCl2 was added to the medium to induce Hif1α overexpression. The MLT+CoCl2 group received 0.2 mM CoCl2 and 1 mM melatonin. After 24 hr treatment, the cells and supernatants were collected and used for further determination. The MTT assay was performed to estimate the decrease in cell viability throughout the CoCl2 and melatonin treatment. The mRNA and the protein levels were evaluated using Real-time PCR and Western blot analysis. The ELISA assay kit was used to detect the testosterone content. Results CoCl2 treatment caused Hif1α overexpression in TM3 Leydig cells. Moreover, CoCl2 treatment of these cells led to considerable downregulation of Star, Hsd3b1, and Gata4 well as Mtnr1a and Mtnr1b mRNA/protein expression coupled with testosterone content repression in the cell culture medium. Melatonin administration in cells treated with CoCl2, decreased Hif1α mRNA/protein expression, but had no significant effect on Star, Hsd3b1, Gata4, Mtnr1a mRNA/protein expression, and the testosterone level in the cell culture medium. Melatonin caused recovery of decrease in the Mtnr1b gene and protein expression. Conclusion There was no significant effect on steroidogenesis-related genes, proteins, and testosterone synthesis in the absence of gonadotropin treatment plus melatonin following CoCl2-induced hypoxia in TM3 Leydig cells.
Collapse
Affiliation(s)
- Shokooh Karimi
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahremand
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Gholami
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Das R, Ghosh Chowdhury M, Raundal S, Jadhav J, Kumar N, Patel S, Shard A. Objective assessment of adrenocortical carcinoma driver genes and their correlation with tumor pyruvate kinase M2. Gene 2022; 822:146354. [PMID: 35189247 DOI: 10.1016/j.gene.2022.146354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Glandular cancers have a significant share of the total cancer patients all over the world. In the case of adrenocortical carcinomas (ACCs), although the benign form is more frequent and common, the malignant form provides a very less percentage of patients with five or more than five years of survival rate. There are gene alterations that are involved as a crucial factor behind the occurrence of ACCs. Out of these, the most prominent genetic alterations (PRKAR-1A, CTNNB1, ZNRF3, TP53, CCNE1 and TERF2 genes) are linked with a glycolytic enzyme pyruvate kinase M2 (PKM2), which converts phosphoenolpyruvate (PEP) to pyruvate in the glycolytic pathway. The involvementof PKM2 renders a cumulative effect through different pathways that may result in the onset of ACCs. Thus, this review aims to establish a link between ACCs, alterations of specific genes and PKM2.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sonal Raundal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Jyotika Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Navin Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India.
| |
Collapse
|
11
|
Supriya R, Gao Y, Gu Y, Baker JS. Role of Exercise Intensity on Th1/Th2 Immune Modulations During the COVID-19 Pandemic. Front Immunol 2021; 12:761382. [PMID: 35003073 PMCID: PMC8727446 DOI: 10.3389/fimmu.2021.761382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has led to several pioneering scientific discoveries resulting in no effective solutions with the exception of vaccination. Moderate exercise is a significant non-pharmacological strategy, to reduce the infection-related burden of COVID-19, especially in patients who are obese, elderly, and with additional comorbidities. The imbalance of T helper type 1 (Th1) or T helper type 2 (Th2) cells has been well documented among populations who have suffered as a result of the COVID-19 pandemic, and who are at maximum risk of infection and mortality. Moderate and low intensity exercise can benefit persons at risk from the disease and survivors by favorable modulation in Th1/Th2 ratios. Moreover, in COVID-19 patients, mild to moderate intensity aerobic exercise also increases immune system function but high intensity aerobic exercise may have adverse effects on immune responses. In addition, sustained hypoxia in COVID-19 patients has been reported to cause organ failure and cell death. Hypoxic conditions have also been highlighted to be triggered in COVID-19-susceptible individuals and COVID-19 survivors. This suggests that hypoxia inducible factor (HIF 1α) might be an important focus for researchers investigating effective strategies to minimize the effects of the pandemic. Intermittent hypoxic preconditioning (IHP) is a method of exposing subjects to short bouts of moderate hypoxia interspersed with brief periods of normal oxygen concentrations (recovery). This methodology inhibits the production of pro-inflammatory factors, activates HIF-1α to activate target genes, and subsequently leads to a higher production of red blood cells and hemoglobin. This increases angiogenesis and increases oxygen transport capacity. These factors can help alleviate virus induced cardiopulmonary hemodynamic disorders and endothelial dysfunction. Therefore, during the COVID-19 pandemic we propose that populations should engage in low to moderate exercise individually designed, prescribed and specific, that utilizes IHP including pranayama (yoga), swimming and high-altitude hiking exercise. This would be beneficial in affecting HIF-1α to combat the disease and its severity. Therefore, the promotion of certain exercises should be considered by all sections of the population. However, exercise recommendations and prescription for COVID-19 patients should be structured to match individual levels of capability and adaptability.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Rashmi Supriya,
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Zhejiang, China
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
12
|
Zhang J, Yang X, Chen M, Yan X, Gao L, Xu Y, Lu J, Li Z, Lu C, Deng Y, Li H, Shi D, Lu F. Hypoxia promotes steroidogenic competence of buffalo (Bubalus bubalis) theca cells. Theriogenology 2021; 180:113-120. [PMID: 34971972 DOI: 10.1016/j.theriogenology.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Theca cells (TCs) play an important role in follicular development and atresia. TCs synthesize androgens that act as substrate for granulosa cells aromatization to estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo TCs remain unclear. In the present study, the impacts of hypoxic conditions (5% oxygen) on androgen synthesis in buffalo TCs were examined. The results showed that hypoxia improved both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3β-HSD) and the secretion levels of testosterone in buffalo TCs. Hypoxic conditions promoted the sensitivity of buffalo TCs to LH. Furthermore, inhibition of PI3K/AKT signaling pathway reduced both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3β-HSD) and the secretion levels of testosterone in hypoxia-cultured buffalo TCs. Besides, inhibition of PI3K/AKT signaling pathway lowered the sensitivity of buffalo TCs to LH under hypoxic conditions. This study indicated that hypoxia enhanced the steroidogenic competence of buffalo TCs main through activating PI3K/AKT signaling pathway and subsequently facilitating the responsiveness of TCs to LH. This study provides a basis for further exploration of ovarian endocrine mechanism for steroidogenesis.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiaofen Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Mengjia Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xi Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lv Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ye Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaka Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhengda Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Canqiang Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
13
|
Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic. Cells 2021; 10:cells10123441. [PMID: 34943949 PMCID: PMC8699886 DOI: 10.3390/cells10123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.
Collapse
|
14
|
Watts D, Bechmann N, Meneses A, Poutakidou IK, Kaden D, Conrad C, Krüger A, Stein J, El-Armouche A, Chavakis T, Eisenhofer G, Peitzsch M, Wielockx B. HIF2α regulates the synthesis and release of epinephrine in the adrenal medulla. J Mol Med (Berl) 2021; 99:1655-1666. [PMID: 34480587 PMCID: PMC8542008 DOI: 10.1007/s00109-021-02121-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
The adrenal gland and its hormones regulate numerous fundamental biological processes; however, the impact of hypoxia signaling on adrenal function remains poorly understood. Here, we reveal that deficiency of HIF (hypoxia inducible factors) prolyl hydroxylase domain protein-2 (PHD2) in the adrenal medulla of mice results in HIF2α-mediated reduction in phenylethanolamine N-methyltransferase (PNMT) expression, and consequent reduction in epinephrine synthesis. Simultaneous loss of PHD2 in renal erythropoietin (EPO)-producing cells (REPCs) stimulated HIF2α-driven EPO overproduction, excessive RBC formation (erythrocytosis), and systemic hypoglycemia, which is necessary and sufficient to enhance exocytosis of epinephrine from the adrenal medulla. Based on these results, we propose that the PHD2-HIF2α axis in the adrenal medulla regulates the synthesis of epinephrine, whereas in REPCs, it indirectly induces the release of this hormone. Our findings are also highly relevant to the testing of small molecule PHD inhibitors in phase III clinical trials for patients with renal anemia. KEY MESSAGES: HIF2α and not HIF1α modulates PNMT during epinephrine synthesis in chromaffin cells. The PHD2-HIF2α-EPO axis induces erythrocytosis and hypoglycemia. Reduced systemic glucose facilitates exocytosis of epinephrine from adrenal gland.
Collapse
Affiliation(s)
- Deepika Watts
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.,Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Ana Meneses
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ioanna K Poutakidou
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Denise Kaden
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Catleen Conrad
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Anja Krüger
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Johanna Stein
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.,Department of Medicine III, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
15
|
Vanderhaeghen T, Beyaert R, Libert C. Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Front Immunol 2021; 12:684085. [PMID: 34149725 PMCID: PMC8211996 DOI: 10.3389/fimmu.2021.684085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid-induced (GC) and hypoxia-induced transcriptional responses play an important role in tissue homeostasis and in the regulation of cellular responses to stress and inflammation. Evidence exists that there is an important crosstalk between both GC and hypoxia effects. Hypoxia is a pathophysiological condition to which cells respond quickly in order to prevent metabolic shutdown and death. The hypoxia inducible factors (HIFs) are the master regulators of oxygen homeostasis and are responsible for the ability of cells to cope with low oxygen levels. Maladaptive responses of HIFs contribute to a variety of pathological conditions including acute mountain sickness (AMS), inflammation and neonatal hypoxia-induced brain injury. Synthetic GCs which are analogous to the naturally occurring steroid hormones (cortisol in humans, corticosterone in rodents), have been used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, ischemic injury). In this review, we investigate the crosstalk between the glucocorticoid receptor (GR), and HIFs. We discuss possible mechanisms by which GR and HIF influence one another, in vitro and in vivo, and the therapeutic effects of GCs on HIF-mediated diseases.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|