1
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Satarug S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2023; 13:83. [PMID: 38201287 PMCID: PMC10778334 DOI: 10.3390/cells13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Sharma AK, Finney L, Vogt S, Vatamaniuk OK, Kim S. Cadmium alters whole animal ionome and promotes the re-distribution of iron in intestinal cells of Caenorhabditis elegans. Front Physiol 2023; 14:1258540. [PMID: 37822680 PMCID: PMC10562743 DOI: 10.3389/fphys.2023.1258540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
The chronic exposure of humans to the toxic metal cadmium (Cd), either occupational or from food and air, causes various diseases, including neurodegenerative conditions, dysfunction of vital organs, and cancer. While the toxicology of Cd and its effect on the homeostasis of biologically relevant elements is increasingly recognized, the spatial distribution of Cd and other elements in Cd toxicity-caused diseases is still poorly understood. Here, we use Caenorhabditis elegans as a non-mammalian multicellular model system to determine the distribution of Cd at the tissue and cellular resolution and its effect on the internal levels and the distribution of biologically relevant elements. Using inductively coupled plasma-mass spectrophotometry (ICP-MS), we show that exposure of worms to Cd not only led to its internal accumulation but also significantly altered the C. elegans ionome. Specifically, Cd treatment was associated with increased levels of toxic elements such as arsenic (As) and rubidium (Rb) and a decreased accumulation of essential elements such as zinc (Zn), copper (Cu), manganese (Mn), calcium (Ca), cobalt (Co) and, depending on the Cd-concentration used in the assay, iron (Fe). We regarded these changes as an ionomic signature of Cd toxicity in C. elegans. We also show that supplementing nematode growth medium with Zn but not Cu, rescues Cd toxicity and that mutant worms lacking Zn transporters CDF-1 or SUR-7, or both are more sensitive to Cd toxicity. Finally, using synchrotron X-Ray fluorescence Microscopy (XRF), we showed that Cd significantly alters the spatial distribution of mineral elements. The effect of Cd on the distribution of Fe was particularly striking: while Fe was evenly distributed in intestinal cells of worms grown without Cd, in the presence of Cd, Fe, and Cd co-localized in punctum-like structures in the intestinal cells. Together, this study advances our understanding of the effect of Cd on the accumulation and distribution of biologically relevant elements. Considering that C. elegans possesses the principal tissues and cell types as humans, our data may have important implications for future therapeutic developments aiming to alleviate Cd-related pathologies in humans.
Collapse
Affiliation(s)
- Anuj Kumar Sharma
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Lydia Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Olena K. Vatamaniuk
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sungjin Kim
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Zheng JL, Zhu QL, Hogstrand C. Zinc pre-exposure improves Zn resistance by demethylation of metallothionein 2 and transcription regulation of zinc-regulatory genes in zebrafish ZF4 cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106605. [PMID: 37352751 DOI: 10.1016/j.aquatox.2023.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
Mild zinc (Zn) pre-exposure can promote Zn resistance of organism, but the underlying molecular mechanisms are largely unknown. Two experiments were performed using zebrafish ZF4 cells, including short-term and long-term Zn pre-exposure experiments. In the short-term test, the cells were pre-exposed to 100 µM Zn for 24 h, transferred into fresh medium with 4.4 µM Zn for 24 h, and then re-exposed to 250 µM Zn. In the long-term test, the cells were pre-exposed to 100 µM Zn intermittently for 10 passages (3 days per passage), transferred into fresh medium with 4.4 µM Zn for 5 passages, and then re-exposed to 250 µM Zn. Both pretreatments resulted in higher resistance to 250 µM Zn. Exposure to 250 µM Zn caused a more than 2-fold increase in Zn content without Zn pretreatment but did not affect Zn content in the Zn pretreated cells. The Zn pretreated cells had low methylation levels of the metal-response element (MRE) at locus -87 in the promoter of mt2 (metallothionein 2). The up-regulated mRNA expression of Zn-regulatory genes (mtf-1, mt2, slc30a1a, slc30a4, slc30a5, slc30a6 and slc30a7) in the long-term Zn pretreated cells and mt2, slc30a4, slc30a6 and slc30a7 in the short-term Zn pretreated cells were observed. Exposure to 250 µM Zn in combination with the Zn pretreatments up-regulated mRNA expression of these genes and reduced methylation levels of the MRE compared with 250 µM Zn alone and the control. Taken together, the data suggested that demethylation of MRE in the promoter of mt2 and transcriptional induction of mt2 and Zn exporter genes offered Zn resistance in fish ZF4 cells. The traditional toxicological evaluation based on continuous exposure may overestimate the risk of fluctuating concentrations of Zn in the environment.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Qing-Ling Zhu
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Christer Hogstrand
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK.
| |
Collapse
|
5
|
Krall R, Gale JR, Ross MM, Tzounopoulos T, Aizenman E. Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A. Neurosci Lett 2022; 790:136896. [PMID: 36202195 PMCID: PMC10153101 DOI: 10.1016/j.neulet.2022.136896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022]
Abstract
Zinc, loaded into glutamate-containing presynaptic vesicles and released into the synapse in an activity-dependent manner, modulates neurotransmission through its actions on postsynaptic targets, prominently via high-affinity inhibition of GluN2A-containing NMDA receptors. Recently, we identified a postsynaptic transport mechanism that regulates endogenous zinc inhibition of NMDARs. In this new model of zinc regulation, the postsynaptic transporter ZnT1 mediates zinc inhibition of NMDARs by binding to GluN2A. Through this interaction, ZnT1, a transporter that moves zinc from the cytoplasm to the extracellular domain, generates a zinc microdomain that modulates NMDAR-mediated neurotransmission. As ZnT1 expression is transcriptionally driven by the metal-responsive transcription factor 1 (MTF-1), we found that intracellular zinc strongly drives MTF-1 in cortical neurons in vitro and increases the number of GluN2A-ZnT1 interactions, thereby enhancing tonic zinc inhibition of NMDAR-mediated currents. Importantly, this effect is absent when the interaction between GluN2A and ZnT1 is disrupted by a cell-permeable peptide. These results suggest that zinc-regulated gene expression can dynamically regulate NMDAR-mediated synaptic processes.
Collapse
Affiliation(s)
- Rebecca Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Hearing Research Center, University of Pittsburgh, PA, USA
| | - Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline M Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, University of Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Hearing Research Center, University of Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response. STRESSES 2022. [DOI: 10.3390/stresses2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is an environmental toxicant of public health significance worldwide. Diet is the main Cd exposure source in the non-occupationally exposed and non-smoking populations. Metal transporters for iron (Fe), zinc (Zn), calcium (Ca), and manganese (Mn) are involved in the assimilation and distribution of Cd to cells throughout the body. Due to an extremely slow elimination rate, most Cd is retained by cells, where it exerts toxicity through its interaction with sulfur-containing ligands, notably the thiol (-SH) functional group of cysteine, glutathione, and many Zn-dependent enzymes and transcription factors. The simultaneous induction of heme oxygenase-1 and the metal-binding protein metallothionein by Cd adversely affected the cellular redox state and caused the dysregulation of Fe, Zn, and copper. Experimental data indicate that Cd causes mitochondrial dysfunction via disrupting the metal homeostasis of this organelle. The present review focuses on the adverse metabolic outcomes of chronic exposure to low-dose Cd. Current epidemiologic data indicate that chronic exposure to Cd raises the risk of type 2 diabetes by several mechanisms, such as increased oxidative stress, inflammation, adipose tissue dysfunction, increased insulin resistance, and dysregulated cellular intermediary metabolism. The cellular stress response mechanisms involving the catabolism of heme, mediated by heme oxygenase-1 and -2 (HO-1 and HO-2), may mitigate the cytotoxicity of Cd. The products of their physiologic heme degradation, bilirubin and carbon monoxide, have antioxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
|
7
|
Zinc in Cognitive Impairment and Aging. Biomolecules 2022; 12:biom12071000. [PMID: 35883555 PMCID: PMC9312494 DOI: 10.3390/biom12071000] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Zinc, an essential micronutrient for life, was first discovered in 1869 and later found to be indispensable for the normal development of plants and for the normal growth of rats and birds. Zinc plays an important role in many physiological and pathological processes in normal mammalian brain development, especially in the development of the central nervous system. Zinc deficiency can lead to neurodegenerative diseases, mental abnormalities, sleep disorders, tumors, vascular diseases, and other pathological conditions, which can cause cognitive impairment and premature aging. This study aimed to review the important effects of zinc and zinc-associated proteins in cognitive impairment and aging, to reveal its molecular mechanism, and to highlight potential interventions for zinc-associated aging and cognitive impairments.
Collapse
|
8
|
Wong WPS, Wang JC, Meyers MS, Wang NJ, Sponenburg RA, Allen NB, Edwards JR, El Muayed M. A novel chronic in vivo oral cadmium exposure-washout mouse model for studying cadmium toxicity and complex diabetogenic effects. Toxicol Appl Pharmacol 2022; 447:116057. [PMID: 35550884 PMCID: PMC9854171 DOI: 10.1016/j.taap.2022.116057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023]
Abstract
Type II diabetes mellitus (T2DM) is characterized by insulin resistance, β-cell dysfunction and hyperglycemia. In addition to well known risk factors such as lifestyle and genetic risk score, accumulation of environmental toxicants in organs relevant to glucose metabolism is increasingly recognized as additional risk factors for T2DM. Here, we describe the development of an in vivo oral cadmium (Cd) exposure model. It was shown that oral Cd exposure in drinking water followed by washout and high fat diet (HFD) in C57BL/6N mice results in islet Cd bioaccumulation comparable to that found in native human islets while mitigating the anorexic effects of Cd to achieve the same weight gain required to induce insulin resistance as in Cd naïve control mice. Inter individual variation in plasma glucose and insulin levels as well as islet Cd bioaccumulation was observed in both female and male mice. Regression analysis showed an inverse correlation between islet Cd level and plasma insulin following a glucose challenge in males but not in females. This finding highlights the need to account for inter individual target tissue Cd concentrations when interpreting results from in vivo Cd exposure models. No effect of Cd on insulin secretion was observed in islets ex vivo, highlighting differences between in vivo and ex vivo cadmium exposure models. In summary, our oral in vivo Cd exposure-washout with HFD model resulted in islet Cd bioaccumulation that is relevant in the context of environmental cadmium exposure in humans. Here, we showed that islet Cd bioaccumulation is associated with complex cadmium-mediated changes in glucose clearance and β-cell function. The model described here will serve as a useful tool to further examine the relationship between Cd exposure, islet Cd bioaccumulation, dysglycemia and their underlying mechanisms.
Collapse
Affiliation(s)
- Winifred P S Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Janice C Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew S Meyers
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nathan J Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rebecca A Sponenburg
- Quantitative Bio-element Imaging Centre, Chemistry of Life Processes, Northwestern University, Evanston, IL 60208, USA
| | - Norrina B Allen
- Institute for Public Health and Medicine, Center for Epidemiology and Population Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua R Edwards
- College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Zhou W, Young JL, Men H, Zhang H, Yu H, Lin Q, Xu H, Xu J, Tan Y, Zheng Y, Cai L. Sex differences in the effects of whole-life, low-dose cadmium exposure on postweaning high-fat diet-induced cardiac pathogeneses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152176. [PMID: 34875320 DOI: 10.1016/j.scitotenv.2021.152176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
We previously showed the development of cardiac remodeling (hypertrophy or fibrosis) in mice with either post-weaning high-fat diet (HFD, 60% kcal fat) feeding or exposure to chronic low-dose cadmium. Here, we determined whether whole-life exposure to environmentally relevant, low-dose cadmium affects the susceptibility of offspring to post-weaning HFD-induced cardiac pathologies and function. Besides, we also determined whether these effects are sex-dependent. Male and female mice were exposed to cadmium-containing (0, 0.5, or 5 parts per million [ppm]) drinking water before breeding; the pregnant mice and dams with offspring continually drank the same cadmium-containing water. After weaning, the offspring were continued on the same regime as their parents and fed either a HFD or normal fat diet for 24 weeks. Cardiac function was examined with echocardiography. Cardiac tissues were used for the histopathological and biochemical (gene and protein expression by real-time PCR and Western blotting) assays. Results showed a dose-dependent cadmium accumulation in the hearts of male and female mice along with decreased cardiac zinc and copper levels only in female offspring. Exposure to 5 ppm, but not 0.5 ppm, cadmium significantly enhanced HFD cardiac effects only in female mice, shown by worsened cardiac systolic and diastolic dysfunction (ejection fraction, mitral E-to-annular e' ratio), increased fibrosis (collagen, fibronectin, collagen1A1), hypertrophy (cardiomyocyte size, atrial natriuretic peptide, β-myosin heavy chain), and inflammation (intercellular adhesion molecule-1, tumor necrosis factor-α, plasminogen activator inhibitor type 1), compared to the HFD group. These synergistic effects were associated with activation of the p38 mitogen-activated protein kinases (MAPK) signaling pathway and increased oxidative stress, shown by 3-nitrotyrosine and malondialdehyde, along with decreased metallothionein expression. These results suggest that whole-life 5 ppm cadmium exposure significantly increases the susceptibility of female offspring to HFD-induced cardiac remodeling and dysfunction. The underlying mechanism and potential intervention will be further explored in the future.
Collapse
Affiliation(s)
- Wenqian Zhou
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Jamie L Young
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA..
| | - Hongbo Men
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haina Zhang
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haitao Yu
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Lin
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China.
| | - Jianxiang Xu
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - Yi Tan
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| |
Collapse
|
10
|
ZnT1 is a neuronal Zn 2+/Ca 2+ exchanger. Cell Calcium 2021; 101:102505. [PMID: 34871934 DOI: 10.1016/j.ceca.2021.102505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Zinc transporter 1 (ZnT1; SLC30A1) is present in the neuronal plasma membrane, critically modulating NMDA receptor function and Zn2+ neurotoxicity. The mechanism mediating Zn2+ transport by ZnT1, however, has remained elusive. Here, we investigated ZnT1-dependent Zn2+ transport by measuring intracellular changes of this ion using the fluorescent indicator FluoZin-3. In primary mouse cortical neurons, which express ZnT1, transient addition of extracellular Zn2+ triggered a rise in cytosolic Zn2+, followed by its removal. Knockdown of ZnT1 by adeno associated viral (AAV)-short hairpin RNA (shZnT1) markedly increased rates of Zn2+ rise, and decreased rates of its removal, suggesting that ZnT1 is a primary route for Zn2+ efflux in neurons. Although Zn2+ transport by other members of the SLC30A family is dependent on pH gradients across cellular membranes, altered H+ gradients were not coupled to ZnT1-dependent transport. Removal of cytoplasmic Zn2+, against a large inward gradient during the initial loading phase, suggests that Zn2+ efflux requires a large driving force. We therefore asked if Ca2+ gradients across the membrane can facilitate Zn2+ efflux. Elimination of extracellular Ca2+ abolished Zn2+ efflux, while increased extracellular Ca2+ levels enhanced Zn2+ efflux. Intracellular Ca2+ rises, measured in GCaMP6 expressing neurons, closely paralleled cytoplasmic Zn2+ removal. Taken together, these results strongly suggest that ZnT1 functions as a Zn2+/Ca2+ exchanger, thereby regulating the transport of two ions of fundamental importance in neuronal signaling.
Collapse
|
11
|
Abdo AI, Tran HB, Hodge S, Beltrame JF, Zalewski PD. Zinc Homeostasis Alters Zinc Transporter Protein Expression in Vascular Endothelial and Smooth Muscle Cells. Biol Trace Elem Res 2021; 199:2158-2171. [PMID: 32776265 DOI: 10.1007/s12011-020-02328-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Zinc is an important essential micronutrient with anti-oxidative and anti-inflammatory properties in humans. The role of zinc in signalling has been characterized in the nervous, endocrine, gastrointestinal, renal and reproductive systems. Relatively little is known regarding its role in the vascular system, but the role of zinc homeostasis in augmenting vascular health and vasorelaxation is emerging. Zinc transport proteins are integral to the protective function of zinc, but knowledge of their expression in vascular endothelial and smooth muscle cells is lacking. METHODOLOGY Human coronary artery endothelial cells and pulmonary artery smooth muscle cells were assessed for gene expression (RT-PCR) of SLC39A (ZIP), SLC30A (ZnT) and metallothionein (MT) families of Zn transporters and storage proteins. Protein expression (fluorescence confocal microscopy) was then analysed for the proteins of interest that changed mRNA expression: ZIP2, ZIP12, ZnT1, ZnT2 and MT1/2. RESULTS Endothelial and smooth muscle cell mRNA expression of ZnT1, ZnT2 and MT1 was significantly downregulated by low and high Zn conditions, while ZIP2 and ZIP12 expression was induced by Zn depletion with the Zn chelator, TPEN. Changes in gene expression were consistent with protein expression levels for ZIP2, ZIP12 and MT1, where ZIP2 was localized to intracellular bodies and ZIP12 to lamellipodia. CONCLUSION Vascular endothelial and smooth muscle cells actively regulate specific Zn transport and metallothionein gene and protein expressions to achieve Zn homeostasis.
Collapse
Affiliation(s)
- Adrian I Abdo
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA, 5011, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia.
| | - Hai Bac Tran
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Sandra Hodge
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - John F Beltrame
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA, 5011, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Peter D Zalewski
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA, 5011, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
12
|
Abstract
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example.
Collapse
|
13
|
Satarug S, Garrett SH, Somji S, Sens MA, Sens DA. Zinc, Zinc Transporters, and Cadmium Cytotoxicity in a Cell Culture Model of Human Urothelium. TOXICS 2021; 9:toxics9050094. [PMID: 33923173 PMCID: PMC8145463 DOI: 10.3390/toxics9050094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 01/27/2023]
Abstract
We explored the potential role of zinc (Zn) and zinc transporters in protection against cytotoxicity of cadmium (Cd) in a cell culture model of human urothelium, named UROtsa. We used real-time qRT-PCR to quantify transcript levels of 19 Zn transporters of the Zrt-/Irt-like protein (ZIP) and ZnT gene families that were expressed in UROtsa cells and were altered by Cd exposure. Cd as low as 0.1 µM induced expression of ZnT1, known to mediate efflux of Zn and Cd. Loss of cell viability by 57% was seen 24 h after exposure to 2.5 µM Cd. Exposure to 2.5 µM Cd together with 10–50 µM Zn prevented loss of cell viability by 66%. Pretreatment of the UROtsa cells with an inhibitor of glutathione biosynthesis (buthionine sulfoximine) diminished ZnT1 induction by Cd with a resultant increase in sensitivity to Cd cytotoxicity. Conversely, pretreatment of UROtsa cells with an inhibitor of DNA methylation, 5-aza-2’-deoxycytidine (aza-dC) did not change the extent of ZnT1 induction by Cd. The induced expression of ZnT1 that remained impervious in cells treated with aza-dC coincided with resistance to Cd cytotoxicity. Therefore, expression of ZnT1 efflux transporter and Cd toxicity in UROtsa cells could be modulated, in part, by DNA methylation and glutathione biosynthesis. Induced expression of ZnT1 may be a viable mechanistic approach to mitigating cytotoxicity of Cd.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Centre for Health Service Research, University of Queensland Translational Research Institute, Woolloongabba, Brisbane 4102, Australia
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
- Correspondence:
| | - Scott H. Garrett
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Seema Somji
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Mary Ann Sens
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| | - Donald A. Sens
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; (S.H.G.); (S.S.); (M.A.S.); (D.A.S.)
| |
Collapse
|
14
|
Aberrant Expression of ZIP and ZnT Zinc Transporters in UROtsa Cells Transformed to Malignant Cells by Cadmium. STRESSES 2021. [DOI: 10.3390/stresses1020007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintenance of zinc homeostasis is pivotal to the regulation of cell growth, differentiation, apoptosis, and defense mechanisms. In mammalian cells, control of cellular zinc homeostasis is through zinc uptake, zinc secretion, and zinc compartmentalization, mediated by metal transporters of the Zrt-/Irt-like protein (ZIP) family and the Cation Diffusion Facilitators (CDF) or ZnT family. We quantified transcript levels of ZIP and ZnT zinc transporters expressed by non-tumorigenic UROtsa cells and compared with those expressed by UROtsa clones that were experimentally transformed to cancer cells by prolonged exposure to cadmium (Cd). Although expression of the ZIP8 gene in parent UROtsa cells was lower than ZIP14 (0.1 vs. 83 transcripts per 1000 β-actin transcripts), an increased expression of ZIP8 concurrent with a reduction in expression of one or two zinc influx transporters, namely ZIP1, ZIP2, and ZIP3, were seen in six out of seven transformed UROtsa clones. Aberrant expression of the Golgi zinc transporters ZIP7, ZnT5, ZnT6, and ZnT7 were also observed. One transformed clone showed distinctively increased expression of ZIP6, ZIP10, ZIP14, and ZnT1, with a diminished ZIP8 expression. These data suggest intracellular zinc dysregulation and aberrant zinc homeostasis both in the cytosol and in the Golgi in the transformed UROtsa clones. These results provide evidence for zinc dysregulation in transformed UROtsa cells that may contribute in part to their malignancy and/or muscle invasiveness.
Collapse
|
15
|
Yu HT, Zhen J, Leng JY, Cai L, Ji HL, Keller BB. Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin 2021; 42:340-346. [PMID: 32284539 PMCID: PMC8027184 DOI: 10.1038/s41401-020-0396-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cadmium (Cd) is an important environmental pollutant and long-term Cd exposure is closely related to autoimmune diseases, cancer, cardiovascular diseases (CVD), and hepatic dysfunction. Zinc (Zn) is an essential metal that plays key roles in protein structure, catalysis, and regulation of their function. Numerous studies have shown that Zn can reduce Cd toxicity; however, the underlying mechanisms have not been extensively explored. Preclinical studies have revealed direct competition for sarcolemmal uptake between these two metals. Multiple sarcolemmal transporters participate in Cd uptake, including Zn transporters, calcium channels, and DMT1 (divalent metal transporter 1). Zn also induces several protective mechanisms, including MT (metallothionein) induction and favorable redox homeostasis. This review summarizes current knowledge related to the role of Zn and metal transporters in reducing Cd toxicity and discusses potential future directions of related research.
Collapse
Affiliation(s)
- Hai-Tao Yu
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Juan Zhen
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Ji-Yan Leng
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Hong-Lei Ji
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bradley B Keller
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY, 40202, USA.
| |
Collapse
|
16
|
Pancreatic Islets Accumulate Cadmium in a Rodent Model of Cadmium-Induced Hyperglycemia. Int J Mol Sci 2020; 22:ijms22010360. [PMID: 33396420 PMCID: PMC7796358 DOI: 10.3390/ijms22010360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) is an anthropogenic as well as a naturally occurring toxicant associated with prediabetes and T2DM in humans and experimental models of Cd exposure. However, relatively few studies have examined the mechanism(s) of Cd-induced hyperglycemia. The purpose of this study was to examine the role of pancreatic islets in Cd-induced hyperglycemia. Male Sprague–Dawley rats were given daily subcutaneous doses of Cd at 0.6 mg/kg over 12 weeks. There was a resulting time-dependent increase in fasting blood glucose and altered insulin release in vitro. Islets isolated from control (saline-treated) and Cd-treated animals were incubated in low (0.5 mg/mL) or high (3 mg/mL) glucose conditions. Islets from 12 week Cd-treated animals had significantly less glucose-stimulated insulin release compared to islets from saline-treated control animals. The actual Cd content of isolated islets was 5 fold higher than the whole pancreas (endocrine + exocrine) and roughly 70% of that present in the renal cortex. Interestingly, islets isolated from Cd-treated animals and incubated in high glucose conditions contained significantly less Cd and zinc than those incubated in low glucose. These results show that within whole pancreatic tissue, Cd selectively accumulates in pancreatic islets and causes altered islet function that likely contributes to dysglycemia.
Collapse
|
17
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
18
|
Lawson R, Maret W, Hogstrand C. Prolonged stimulation of insulin release from MIN6 cells causes zinc depletion and loss of β-cell markers. J Trace Elem Med Biol 2018; 49:51-59. [PMID: 29895372 DOI: 10.1016/j.jtemb.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022]
Abstract
Zinc is integral for the normal function of pancreatic β-cells in glycaemic control. Large amounts of zinc are secreted from β-cells following insulin exocytosis and regulated replenishment is required, which is thought to be mediated by the ZIP family of zinc importer proteins. Within Type 2 Diabetic patients, β-cells are stressed through prolonged stimulation by hyperglycaemia and this is thought to be a major factor contributing to loss of β-cell identity and mass. However, the consequences for the β-cell zinc status remain largely unexplored. We used inductively coupled plasma mass spectrometry (ICP-MS) to show that 24 h treatment of MIN6 cells with potassium chloride, mimicking hyperglycaemic stimulation, reduces the total cellular zinc content 2.8-fold, and qPCR to show an increase in mRNA expression for metallothioneins (Mt1 and Mt2) following 4 and 24 h of stimulation, suggestive of an early rise in cytosolic zinc. To determine which ZIP paralogues may be responsible for zinc replenishment, we used immunocytochemistry, Western blot and qPCR to demonstrate initial ZIP1 protein upregulation proceeded by downregulation of mRNA coding for ZIP1, ZIP6, ZIP7 and ZIP14. To assign a biological significance to the decreased total cellular zinc content, we assessed expression of key β-cell markers to show downregulation of mRNA for MafA, Mnx-1, Nkx2.2 and Pax6. Our data suggest hyperglycaemia-induced zinc depletion may contribute to loss of β-cell markers and promote β-cell dedifferentiation through disrupting expression of key transcription factors.
Collapse
Affiliation(s)
- Rebecca Lawson
- King's College London, Faculty of Life Sciences and Medicine, School of Life Course Sciences, Metal Metabolism Group, 150 Stamford St., London SE1 9NH, UK.
| | - Wolfgang Maret
- King's College London, Faculty of Life Sciences and Medicine, School of Life Course Sciences, Metal Metabolism Group, 150 Stamford St., London SE1 9NH, UK.
| | - Christer Hogstrand
- King's College London, Faculty of Life Sciences and Medicine, School of Life Course Sciences, Metal Metabolism Group, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
19
|
Shusterman E, Beharier O, Levy S, Zarivach R, Etzion Y, Campbell CR, Lee IH, Dinudom A, Cook DI, Peretz A, Katz A, Gitler D, Moran A. Zinc transport and the inhibition of the L-type calcium channel are two separable functions of ZnT-1. Metallomics 2017; 9:228-238. [PMID: 28091657 DOI: 10.1039/c6mt00296j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traditionally, proteins are considered to perform a single role, be it as an enzyme, a channel, a transporter or as a structural scaffold. However, recent studies have described moonlighting proteins that perform distinct and independent functions; for example, TRPM7 is both an ion channel and a kinase. ZnT-1 is a member of the Carrier Diffusion Facilitator family that is expressed throughout the phylogenetic tree from bacteria to humans. Since its cloning in 1995, ZnT-1 is considered a major extruder of Zn2+ based on its capability to protect cells against zinc toxicity. Recently, we reported that ZnT-1 inhibits the L-type calcium channel (LTCC), a major Zn2+ and Ca2+ entry pathway. Here we show that ZnT-1 is a dual-function protein by demonstrating that its abilities to exchange Zn2+/H+ and to inhibit the LTCC are independent of each other and are mediated by different parts of the protein. Specifically, mutations in the membrane-spanning helices that render ZnT-1 unable to transport zinc do not prevent it from inhibiting the LTCC. Moreover, a fragment consisting of the intracellular ZnT-1 C-terminal, which lacks all ion-transfer segments, inhibits the LTCC as efficiently as wild-type ZnT-1. Our data therefore indicates that ZnT-1 performs two structurally independent functions related to zinc homeostasis.
Collapse
Affiliation(s)
- Eden Shusterman
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Ofer Beharier
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Shiri Levy
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Raz Zarivach
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Craig R Campbell
- Discipline of Physiology, The Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Il-Ha Lee
- Discipline of Physiology, The Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anuwat Dinudom
- Discipline of Physiology, The Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - David I Cook
- Discipline of Physiology, The Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Asher Peretz
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos Katz
- Department of Cardiology, Barzilai University Medical Center, Ashkelon, Israel and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arie Moran
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. and Discipline of Physiology, The Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
20
|
Wong WP, Allen NB, Meyers MS, Link EO, Zhang X, MacRenaris KW, El Muayed M. Exploring the Association Between Demographics, SLC30A8 Genotype, and Human Islet Content of Zinc, Cadmium, Copper, Iron, Manganese and Nickel. Sci Rep 2017; 7:473. [PMID: 28352089 PMCID: PMC5428289 DOI: 10.1038/s41598-017-00394-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/23/2017] [Indexed: 12/30/2022] Open
Abstract
A widely prevalent single nucleotide polymorphism, rs13266634 in the SLC30A8 gene encoding the zinc transporter ZnT8, is associated with an increased risk for T2DM. ZnT8 is mostly expressed in pancreatic insulin-producing islets of Langerhans. The effect of this variant on the divalent metal profile in human islets is unknown. Additionally, essential and non-essential divalent metal content of human islets under normal environmental exposure conditions has not been described. We therefore examined the correlation of zinc and other divalent metals in human islets with rs13266634 genotype and demographic characteristics. We found that the diabetes risk genotype C/C at rs13266634 is associated with higher islet Zn concentration (C/C genotype: 16792 ± 1607, n = 22, C/T genotype: 11221 ± 1245, n = 18 T/T genotype: 11543 ± 6054, n = 3, all values expressed as mean nmol/g protein ± standard error of the mean, p = 0.040 by ANOVA). A positive correlation between islet cadmium content and both age (p = 0.048, R2 = 0.09) and female gender (women: 36.88 ± 4.11 vs men: 21.22 ± 3.65 nmol/g protein, p = 0.007) was observed. Our results suggest that the T2DM risk allele C is associated with higher islet zinc levels and support prior evidence of cadmium's higher bioavailability in women and its long tissue half-life.
Collapse
Affiliation(s)
- Winifred P Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew S Meyers
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emma O Link
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaomin Zhang
- Division of Transplant Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Keith W MacRenaris
- The Chemistry of Life Processes Institute and Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
21
|
Nemmiche S, Guiraud P. Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression. Toxicol In Vitro 2016; 37:169-177. [PMID: 27647474 DOI: 10.1016/j.tiv.2016.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 02/02/2023]
Abstract
Cadmium (Cd), a potent toxic heavy metal, is a widespread environmental contaminant. Its cellular traffic via pathways dedicated to transition metals contributes to the toxicity mechanisms. Zinc (Zn) homeostasis is complex, involving both zinc importers (Zip) and zinc exporters (ZnT). Cellular signal transduction pathways are influenced by Zn and redox status of the cell. The aim of the present study is to examine if the accumulation of Cd in the human lymphocyte B cell line BJAB and its capacity to promote oxidative stress and adverse effects could result from changes in the mRNA expression pattern of Zn transporters and metallothioneins. Cells were exposed to 5, 10, 20 and 40μM of CdCl2 equivalent to 0.91, 1.83, 3.66 and 7.33μg/ml respectively, for 24h. Cd significantly reduced the viability of BJAB cells and induced a dose-dependent increase in DNA damage. Cd also induced the formation of 8-hydroxy-2'-deoxyguanosine adducts and augmented MTF1 expression in BJAB cells. We observed interesting responses in relative gene expression to Cd exposure among the seven transporters we analyzed. Cd exposure increased the expression of DMT1 and caused an up-regulation of ZnT1. However, the T calcium channel alpha1G subunit could not be detected. A change in expression of ZnTs and Zips in response to Cd exposure emphasizes the involvement of Zn transporters in Cd cellular metabolism and induced oxidative stress.
Collapse
Affiliation(s)
- Saïd Nemmiche
- LSTPA Laboratory, Department of Biology, Faculty of SNV, University of Mostaganem, Mostaganem 27000, Algeria.
| | - Pascale Guiraud
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
22
|
Moulis JM, Bourguignon J, Catty P. Cadmium. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cadmium is not an essential element for life. It is geologically marginal but anthropogenic activities have contributed significantly to its dispersion in the environment and to cadmium exposure of living species. The natural speciation of the divalent cation Cd2+ is dominated by its high propensity to bind to sulfur ligands, but Cd2+ may also occupy sites providing imidazole and carboxylate ligands. It binds to cell walls by passive adsorption (bio-sorption) and it may interact with surface receptors. Cellular uptake can occur by ion mimicry through a variety of transporters of essential divalent cations, but not always. Once inside cells, Cd2+ preferentially binds to thiol-rich molecules. It can accumulate in intracellular vesicles. It may also be transported over long distances within multicellular organisms and be trapped in locations devoid of efficient excretion systems. These locations include the renal cortex of animals and the leaves of hyper-accumulating plants. No specific regulatory mechanism monitors Cd2+ cellular concentrations. Thiol recruitment by cadmium is a major interference mechanism with many signalling pathways that rely on thiolate-disulfide equilibria and other redox-related processes. Cadmium thus compromises the antioxidant intracellular response that relies heavily on molecules with reactive thiolates. These biochemical features dominate cadmium toxicity, which is complex because of the diversity of the biological targets and the consequent pleiotropic effects. This chapter compares the cadmium-handling systems known throughout phylogeny and highlights the basic principles underlying the impact of cadmium in biology.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| | - Jacques Bourguignon
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Physiologie Cellulaire et Végétale F-38054 Grenoble France
- CNRS UMR5168 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5168 F-38041 Grenoble France
- INRA USC1359 F-38054 Grenoble France
| | - Patrice Catty
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| |
Collapse
|
23
|
Sindreu C, Bayés Á, Altafaj X, Pérez-Clausell J. Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses. Mol Brain 2014; 7:16. [PMID: 24602382 PMCID: PMC3975337 DOI: 10.1186/1756-6606-7-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/28/2014] [Indexed: 11/16/2022] Open
Abstract
Background Zinc concentrates at excitatory synapses, both at the postsynaptic density and in a subset of glutamatergic boutons. Zinc can modulate synaptic plasticity, memory formation and nociception by regulating transmitter receptors and signal transduction pathways. Also, intracellular zinc accumulation is a hallmark of degenerating neurons in several neurological disorders. To date, no single zinc extrusion mechanism has been directly localized to synapses. Based on the presence of a canonical PDZ I motif in the Zinc Transporter-1 protein (ZnT1), we hypothesized that ZnT1 may be targeted to synaptic compartments for local control of cytosolic zinc. Using our previously developed protocol for the co-localization of reactive zinc and synaptic proteins, we further asked if ZnT1 expression correlates with presynaptic zinc content in individual synapses. Findings Here we demonstrate that ZnT1 is a plasma membrane protein that is enriched in dendritic spines and in biochemically isolated synaptic membranes. Hippocampal CA1 synapses labelled by postembedding immunogold showed over a 5-fold increase in ZnT1 concentration at synaptic junctions compared with extrasynaptic membranes. Subsynaptic analysis revealed a peak ZnT1 density on the postsynaptic side of the synapse, < 10 nm away from the postsynaptic membrane. ZnT1 was found in the vast majority of excitatory synapses regardless of the presence of vesicular zinc in presynaptic boutons. Conclusions Our study has identified ZnT1 as a novel postsynaptic density protein, and it may help elucidate the role of zinc homeostasis in synaptic function and disease.
Collapse
Affiliation(s)
- Carlos Sindreu
- Department of Pharmacology, University of Barcelona, Barcelona 08036, Spain.
| | | | | | | |
Collapse
|
24
|
The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med 2013; 34:548-60. [PMID: 23506888 DOI: 10.1016/j.mam.2012.05.008] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/09/2012] [Indexed: 11/22/2022]
Abstract
Two families of zinc (Zn(2 +)) transporters are involved in zinc homeostasis in the body, SLC30 (ZnT, zinc transporter) and SLC39 (ZIP, Zinc(Zn(2+))-Iron(Fe(2+)) Permease). The two zinc transporter family members function in opposite directions to maintain cellular zinc homeostasis. ZnT proteins contribute to the cytoplasmic zinc balance by exporting zinc out to the extracellular space or by sequestrating cytoplasmic zinc into intracellular compartments when cellular zinc levels are elevated. In contrast, ZIP proteins function to increase cytoplasmic zinc concentrations when cellular zinc is depleted. Since the cloning of the first zinc transporter (ZnT1) in 1995, there have been many advances in zinc transporter research including discovery of new members of zinc transporters, identification of gene expression patterns and regulations, recognition of protein distribution patterns in tissues and cells, and understanding of their physiological and pathological roles in humans and animal models. Ten members of the ZnT family have been identified so far. Here we give a review of these advances and discuss the pathological implications and future preventive or therapeutic applications of ZnTs.
Collapse
|
25
|
Satarug S, Moore MR. Emerging roles of cadmium and heme oxygenase in type-2 diabetes and cancer susceptibility. TOHOKU J EXP MED 2012; 228:267-88. [PMID: 23117262 DOI: 10.1620/tjem.228.267] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many decades after an outbreak of severe cadmium poisoning, known as Itai-itai disease, cadmium continues to pose a significant threat to human health worldwide. This review provides an update on the effects of this environmental toxicant cadmium, observed in numerous populations despite modest exposure levels. In addition, it describes the current knowledge on the link between heme catabolism and glycolysis. It examines novel functions of heme oxygenase-2 (HO-2) that protect against type 2-diabetes and obesity, which have emerged from diabetic/obese phenotypes of the HO-2 knockout mouse model. Increased cancer susceptibility in type-2 diabetes has been noted in several large cohorts. This is a cause for concern, given the high prevalence of type-2 diabetes worldwide. A lifetime exposure to cadmium is associated with pre-diabetes, diabetes, and overall cancer mortality with sex-related differences in specific types of cancer. Liver and kidney are target organs for the toxic effects of cadmium. These two organs are central to the maintenance of blood glucose levels. Further, inhibition of gluconeogenesis is a known effect of heme, while cadmium has the propensity to alter heme catabolism. This raises the possibility that cadmium may mimic certain HO-2 deficiency conditions, resulting in diabetic symptoms. Intriguingly, evidence has emerged from a recent study to suggest the potential interaction and co-regulation of HO-2 with the key regulator of glycolysis: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4). HO-2 could thus be critical to a metabolic switch to cancer-prone cells because the enzyme PFKFB and glycolysis are metabolic requirements for cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Center for Kidney Disease Research, University of Queensland School of Medicine, Brisbane, Australia.
| | | |
Collapse
|
26
|
El Muayed M, Raja MR, Zhang X, MacRenaris KW, Bhatt S, Chen X, Urbanek M, O'Halloran TV, Lowe WL. Accumulation of cadmium in insulin-producing β cells. Islets 2012; 4:405-16. [PMID: 23466887 PMCID: PMC3605169 DOI: 10.4161/isl.23101] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Evidence suggests that chronic low level cadmium exposure impairs the function of insulin-producing β cells and may be associated with type-2 diabetes mellitus. Herein, we describe the cadmium content in primary human islets and define the uptake kinetics and effects of environmentally relevant cadmium concentrations in cultured β cells. The average cadmium content in islets from 10 non-diabetic human subjects was 29 ± 7 nmol/g protein (range 7 to 72 nmol/g protein). Exposure of the β-cell line MIN6 to CdCl 2 concentrations between 0.1 and 1.0 µmol/L resulted in a dose- and time-dependent uptake of cadmium over 72 h. This uptake resulted in an induction of metallthionein expression, likely enhancing cellular cadmium accumulation. Furthermore, cadmium accumulation resulted in an inhibition of glucose stimulated insulin secretion in MIN6 cells and primary mouse islets. Our results indicate that this impairment in β-cell function is not due to an increase in cell death or due to an increase in oxidative stress. We conclude that mouse β cells accumulate cadmium in a dose- and time-dependent manner over a prolonged time course at environmentally relevant concentrations. This uptake leads to a functional impairment of β-cell function without significant alterations in cell viability, expression of genes important for β-cell function or increase in oxidative stress.
Collapse
Affiliation(s)
- Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sankavaram K, Freake HC. The effects of transformation and ZnT-1 silencing on zinc homeostasis in cultured cells. J Nutr Biochem 2012; 23:629-34. [DOI: 10.1016/j.jnutbio.2011.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/21/2010] [Accepted: 03/03/2011] [Indexed: 01/08/2023]
|
28
|
Palty R, Sekler I. The mitochondrial Na(+)/Ca(2+) exchanger. Cell Calcium 2012; 52:9-15. [PMID: 22430014 DOI: 10.1016/j.ceca.2012.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 01/20/2023]
Abstract
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.
Collapse
Affiliation(s)
- Raz Palty
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
29
|
Lyubartseva G, Lovell MA. A potential role for zinc alterations in the pathogenesis of Alzheimer's disease. Biofactors 2012; 38:98-106. [PMID: 22447723 PMCID: PMC3635097 DOI: 10.1002/biof.199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/23/2011] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD), one of the major causes of disability and mortality in Western societies, is a progressive age-related neurodegenerative disorder. Increasing evidence suggests that the etiology of AD may involve disruptions of zinc (Zn) homeostasis. This review discusses current evidence supporting a potential role of Zn and zinc transporters (ZnTs) in processing of the amyloid beta protein precursor (APP) and amyloid beta (Aβ) peptide generation and aggregation.
Collapse
Affiliation(s)
- Ganna Lyubartseva
- Department of Chemistry and Physics, Southern Arkansas University, Magnolia, AR 71753, USA.
| | | |
Collapse
|
30
|
Sindreu C, Storm DR. Modulation of neuronal signal transduction and memory formation by synaptic zinc. Front Behav Neurosci 2011; 5:68. [PMID: 22084630 PMCID: PMC3211062 DOI: 10.3389/fnbeh.2011.00068] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/03/2011] [Indexed: 12/31/2022] Open
Abstract
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.
Collapse
Affiliation(s)
- Carlos Sindreu
- Department of Pharmacology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
31
|
Aras MA, Aizenman E. Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal 2011; 15:2249-63. [PMID: 20849376 PMCID: PMC3166180 DOI: 10.1089/ars.2010.3607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Zn(2+) has emerged as a major regulator of neuronal physiology, as well as an important signaling agent in neural injury. The intracellular concentration of this metal is tightly regulated through the actions of Zn(2+) transporters and the thiol-rich metal binding protein metallothionein, closely linking the redox status of the cell to cellular availability of Zn(2+). Accordingly, oxidative and nitrosative stress during ischemic injury leads to an accumulation of neuronal free Zn(2+) and the activation of several downstream cell death processes. While this Zn(2+) rise is an established signaling event in neuronal cell death, recent evidence suggests that a transient, sublethal accumulation of free Zn(2+) can also play a critical role in neuroprotective pathways activated during ischemic preconditioning. Thus, redox-sensitive proteins, like metallothioneins, may play a critical role in determining neuronal cell fate by regulating the localization and concentration of intracellular free Zn(2+).
Collapse
Affiliation(s)
- Mandar A Aras
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace St., Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
32
|
Cadmium-induced ovarian pathophysiology is mediated by change in gene expression pattern of zinc transporters in zebrafish (Danio rerio). Chem Biol Interact 2011; 193:172-9. [PMID: 21756885 DOI: 10.1016/j.cbi.2011.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 12/12/2022]
Abstract
This study explored the potential for expression pattern of genes encoding zinc (Zn) transporters to be involved in the cadmium (Cd)-induced reproductive toxicity in female of zebrafish. For this purpose, oocytes maturity and ovarian histology as well as Cd, Zn and metallothioneins (MTs) accumulation and expression of genes encoding Zrt-,Irt-related protein 10 (ZIP10), Zn transporter 1 (ZnT1) and zebrafish metallothionein (zMT) were examined in ovaries of adult zebrafish exposed to 0.4 mg/L Cd in water and supplemented with Zn (5 mgkg(-1)) in their diet for 21 days. Cd-exposure decreased the expression of ZnT1 and caused up-regulation of ZIP10 and zMT gene expression. These changes were accompanied by increased Cd and MTs accumulation, decreased Zn contents as well as by histopathological damages in ovarian tissues. The co-exposure of fish to Cd and Zn abolished ZnT1 down-regulation and rendered a persistently increased ZIP10 mRNA level. This treatment also decreased Cd and MTs accumulation, reversed Cd-induced Zn depletion and partially restored Cd-induced histological changes in ovarian tissues. These results imply that the downregulation of ZnT1 as well as the overexpression of ZIP10, in responses to the ovarian Zn depletion induced by Cd, play a major role in Cd accumulation and consequently in its toxicity. The protective effect of dietary Zn supplementation against Cd-induced toxicity is mediated, at least in part, by the increase of Zn availability and subsequently the induction of ZnT1 gene expression.
Collapse
|
33
|
Braga MM, Dick T, Oliveira DL, Guerra AS, Leite MC, Ardais AP, Souza DO, Rocha JB. Cd modifies hepatic Zn deposition and modulates δ-ALA-D activity and MT levels by distinct mechanisms. J Appl Toxicol 2011; 32:20-5. [DOI: 10.1002/jat.1648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/22/2010] [Accepted: 11/23/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Marcos Martins Braga
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Tuiskon Dick
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Diogo Losch Oliveira
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Adriele Scopel Guerra
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Ana Paula Ardais
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - João B.T. Rocha
- Departamento de Química; Universidade Federal de Santa Maria; Santa Maria; RS; Brazil
| |
Collapse
|
34
|
Abstract
The present study was aimed to evaluate zinc toxicity to aminergic system in different areas of the brain of male albino rat, Rattus norvegicus. Zinc toxicity, evaluated as per Probit method was found to be 500 mg/kg body weight. For acute-dose studies, rats were given a single lethal dose of zinc chloride for one day only and for chronic-dose studies, the rats were administered with sub-lethal doses (1/10th of lethal dose) of zinc chloride every day for 90 days continuously. Various constituents of the aminergic system viz. dopamine, norepinephrine, and epinephrine and the catabolizing enzyme, monoamine oxidase (MAO) were determined in different regions of rat brain such as olfactory lobe, hippocampus, cerebellum, and pons-medulla on selected time intervals/days under acute and chronic treatment with zinc. The results revealed that while the levels of all aminergic neurotransmitters were elevated differentially in the above mentioned areas of brain, MAO activity registered nonsignificant inhibition in all brain regions under zinc toxicity. All these changes in the aminergic system were subsequently manifested in the behavior of rat exhibiting the symptoms of mild tremors, reduced locomotor activity and emotions, restlessness followed by lacrymation, salivation, etc. From these observations, it was obvious that zinc treatment caused severe perturbations in the functions of the nervous system. Restoration of the aminergic system along with behavior to the near normal levels under chronic treatment indicates the onset of detoxification mechanisms or development of tolerance to zinc toxicity in the animal which was not probably so efficient under acute treatment.
Collapse
Affiliation(s)
- M Vijaya Kumar
- Department of Zoology, Sri Venkateswara University, Tirupati - 517502, Andhra Pradesh, India
| | | | | |
Collapse
|
35
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
36
|
Ni H, Jiang YW, Xiao ZJ, Tao LY, Jin MF, Wu XR. Dynamic pattern of gene expression of ZnT-1, ZnT-3 and PRG-1 in rat brain following flurothyl-induced recurrent neonatal seizures. Toxicol Lett 2010; 194:86-93. [DOI: 10.1016/j.toxlet.2010.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 02/03/2023]
|
37
|
Karol N, Brodski C, Bibi Y, Kaisman T, Forberg M, Hershfinkel M, Sekler I, Silverman WF. Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 2010; 224:567-74. [DOI: 10.1002/jcp.22168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Urani C, Melchioretto P, Gribaldo L. Regulation of metallothioneins and ZnT-1 transporter expression in human hepatoma cells HepG2 exposed to zinc and cadmium. Toxicol In Vitro 2009; 24:370-4. [PMID: 19900532 DOI: 10.1016/j.tiv.2009.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/29/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Essential and non-essential metals can affect vital cellular processes, when over-accumulated within the cells. For this reason, cells have evolved multiple protein sensors, transporters, and other type of proteins to regulate and control free metal homeostasis. Among these, metallothioneins (MT) and ZnT-1 transporter play a key role in the regulation of free Zn concentrations. Herewith, MT expression in Zn (170microM) and Cd (0.1 and 10microM) exposed HepG2 cells is analyzed and compared. In addition, the modulation and localization of the membrane transporter ZnT-1 has been investigated. MT-I and MT-II were up-regulated in response to both Zn and Cd exposure and, as expected, Cd represented the most potent inducer. Namely, 0.1microM Cd was able to up-regulate MT-I, and -II in a way comparable to 170microM Zn. This is in agreement with MT general function of metal-chelating protein, acting with higher tolerance to essential metals than to non-essential ones. ZnT-1 protein, a plasma membrane specific Zn transporter, was up-regulated as well by both Zn and Cd, although in the same way. Immunofluorescence technique provided evidence that high levels of ZnT-1 measured by biochemical techniques, are related to an increased localization of the transporter at the plasma membrane.
Collapse
Affiliation(s)
- C Urani
- Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | | | | |
Collapse
|
39
|
Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 2009; 10:780-91. [PMID: 19826435 DOI: 10.1038/nrn2734] [Citation(s) in RCA: 542] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past few years have witnessed dramatic progress on all frontiers of zinc neurobiology. The recent development of powerful tools, including zinc-sensitive fluorescent probes, selective chelators and genetically modified animal models, has brought a deeper understanding of the roles of this cation as a crucial intra- and intercellular signalling ion of the CNS, and hence of the neurophysiological importance of zinc-dependent pathways and the injurious effects of zinc dyshomeostasis. The development of some innovative therapeutic strategies is aimed at controlling and preventing the damaging effects of this cation in neurological conditions such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University G. dAnnunzio, Chieti, 66013, Italy.
| | | | | | | |
Collapse
|
40
|
Levy S, Beharier O, Etzion Y, Mor M, Buzaglo L, Shaltiel L, Gheber LA, Kahn J, Muslin AJ, Katz A, Gitler D, Moran A. Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 2009; 284:32434-43. [PMID: 19767393 DOI: 10.1074/jbc.m109.058842] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The L-type calcium channel (LTCC) has a variety of physiological roles that are critical for the proper function of many cell types and organs. Recently, a member of the zinc-regulating family of proteins, ZnT-1, was recognized as an endogenous inhibitor of the LTCC, but its mechanism of action has not been elucidated. In the present study, using two-electrode voltage clamp recordings in Xenopus oocytes, we demonstrate that ZnT-1-mediated inhibition of the LTCC critically depends on the presence of the LTCC regulatory beta-subunit. Moreover, the ZnT-1-induced inhibition of the LTCC current is also abolished by excess levels of the beta-subunit. An interaction between ZnT-1 and the beta-subunit, as demonstrated by co-immunoprecipitation and by fluorescence resonance energy transfer, is consistent with this result. Using surface biotinylation and total internal reflection fluorescence microscopy in HEK293 cells, we show a ZnT-1-dependent decrease in the surface expression of the pore-forming alpha(1)-subunit of the LTCC. Similarly, a decrease in the surface expression of the alpha(1)-subunit is observed following up-regulation of the expression of endogenous ZnT-1 in rapidly paced cultured cardiomyocytes. We conclude that ZnT-1-mediated inhibition of the LTCC is mediated through a functional interaction of ZnT-1 with the LTCC beta-subunit and that it involves a decrease in the trafficking of the LTCC alpha(1)-subunit to the surface membrane.
Collapse
Affiliation(s)
- Shiri Levy
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wallenborn JG, Schladweiler MJ, Richards JH, Kodavanti UP. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals. Toxicol Appl Pharmacol 2009; 241:71-80. [PMID: 19679144 DOI: 10.1016/j.taap.2009.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 12/17/2022]
Abstract
Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 micromol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, gamma-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.
Collapse
Affiliation(s)
- J Grace Wallenborn
- Department of Environmental Sciences and Engineering, UNC School of Public Health, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
42
|
Barkalifa R, Hershfinkel M, Friedman JE, Kozak A, Sekler I. The lipophilic zinc chelator DP-b99 prevents zinc induced neuronal death. Eur J Pharmacol 2009; 618:15-21. [PMID: 19622352 DOI: 10.1016/j.ejphar.2009.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Zinc plays a key pathophysiological role in major neurological disorders as well as diabetes, while being essential for the activity of numerous zinc binding proteins. A major challenge in chelation based therapy must take into consideration these apparently conflicting effects of zinc. One approach is to limit the activity of the chelator to regions and levels of zinc pathology, making normal zinc-dependent processes invisible to the chelator. Combining fluorescent zinc imaging with cytotoxicity assays we studied the zinc chelation efficacy and neuroprotective effect of the lipophilic divalent transition metal chelator DP-b99 (1,2-Bis(2-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid-N-N'-di[2-(octyloxy)ethyl ester],-N,N'-disodium salt). The affinity of DP-b99 to Zn(2+) and Ca(2+) ions is moderate in water and enhanced significantly in the lipid milieu. Application of DP-b99 to MIN6 beta-cells that were preloaded with zinc was followed by a decrease in fluorescence of the intracellular Zn(2+) sensitive dye, ZnAF-2DA, to resting levels. Preloading of MIN6 cells with DP-b99 was also effective in attenuating subsequent cellular zinc rise. Concentration-dependence analysis of zinc accumulation indicated that DP-b99 acts as a zinc chelator with moderate affinity. DP-b99 preapplication attenuated both Zn(2+) and Ca(2+) rise in neuronal cultures and also Zn(2+) rise in brain slices. Finally, DP-b99 attenuated Zn(2+)-induced neuronal death. Our results indicate that DP-b99 is effective in attenuating Zn(2+) and Ca(2+) surges and protecting neurons against a toxic Zn(2+)-rise. This may underlie the efficacy of DP-b99 in stroke treatment.
Collapse
Affiliation(s)
- Ronit Barkalifa
- Morphology, and the Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
43
|
Kaisman-Elbaz T, Sekler I, Fishman D, Karol N, Forberg M, Kahn N, Hershfinkel M, Silverman WF. Cell death induced by zinc and cadmium is mediated by clusterin in cultured mouse seminiferous tubules. J Cell Physiol 2009; 220:222-9. [DOI: 10.1002/jcp.21754] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Dong J, Robertson JD, Markesbery WR, Lovell MA. Serum zinc in the progression of Alzheimer's disease. J Alzheimers Dis 2009; 15:443-50. [PMID: 18997297 DOI: 10.3233/jad-2008-15310] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies show significantly decreased levels of zinc transporter 1 (ZnT-1) in the brain of subjects with mild cognitive impairment (MCI) but significantly increased ZnT-1 in late stage AD (LAD). However, the reason for the apparent dichotomy is unclear. Based on in vivo studies that show animals provided a zinc (Zn) deficient diet demonstrate decreased brain ZnT-1, we used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify serum Zn levels from 18 living mild to moderate AD patients (9 men, 9 women), 19 MCI patients (9 men, 10 women) and 16 age-matched normal control (NC) subjects (9 men, 7 women). Zinc levels for all subjects were not significantly different among any of the three subject groups. However, there was a statistically significant decrease of serum Zn (11.7 +/- 0.5 microM) in men with MCI compared to women with MCI (13.7 +/- 0.6 microM) and NC men (13.9 +/- 0.6 microM). Serum Zn levels in probable AD patients were comparable to those in NC subjects. Overall, these data suggest a significant decrease of serum Zn in men with MCI, may explain the loss of ZnT-1 observed in previous studies and suggest there may be more pronounced sex differences in MCI than were previously recognized.
Collapse
Affiliation(s)
- Jiang Dong
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
45
|
Lovell MA. A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer's disease. J Alzheimers Dis 2009; 16:471-83. [PMID: 19276540 PMCID: PMC2881701 DOI: 10.3233/jad-2009-0992] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although multiple studies have suggested a role for alterations of zinc (Zn) and zinc transport (ZnT) proteins in the pathogenesis of Alzheimer's disease, the exact role of this essential trace element in the progression of the disease remains unclear. The following review discusses the normal role of Zn and ZnT proteins in brain and the potential effects of their alteration in the pathogenesis of Alzheimer's disease, particularly in the processing of the amyloid-beta protein precursor and amyloid-beta peptide generation and aggregation.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
46
|
Silencing of ZnT1 reduces Zn2+ efflux in cultured cortical neurons. Neurosci Lett 2009; 450:206-10. [DOI: 10.1016/j.neulet.2008.11.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 11/20/2022]
|
47
|
Kambe T, Weaver BP, Andrews GK. The genetics of essential metal homeostasis during development. Genesis 2008; 46:214-28. [PMID: 18395838 DOI: 10.1002/dvg.20382] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The essential metals copper, zinc, and iron play key roles in embryonic, fetal, and postnatal development in higher eukaryotes. Recent advances in our understanding of the molecules involved in the intricate control of the homeostasis of these metals and the availability of natural mutations and targeted mutations in many of the genes involved have allowed for elucidation of the diverse roles of these metals during development. Evidence suggests that the ability of the embryo to control the homeostasis of these metals becomes essential at the blastocyst stage and during early morphogenesis. However, these metals play unique roles throughout development and exert pleiotropic, metal-specific, and often cell-specific effects on morphogenesis, growth, and differentiation. Herein, we briefly review the major players known to be involved in the homeostasis of each of these essential metals and their known roles in development.
Collapse
Affiliation(s)
- Taiho Kambe
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|
48
|
ETZION YORAM, GANIEL AMIR, BEHARIER OFER, SHALEV ARYEH, NOVACK VICTOR, VOLVICH LIOBOV, ABRAHAMOV DAN, MATSA MENACHEM, SAHAR GIDEON, MORAN ARIE, KATZ AMOS. Correlation Between Atrial ZnT-1 Expression and Atrial Fibrillation in Humans: A Pilot Study. J Cardiovasc Electrophysiol 2008; 19:157-64. [DOI: 10.1111/j.1540-8167.2007.01008.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res 2008; 1199:10-9. [PMID: 18272141 DOI: 10.1016/j.brainres.2008.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/13/2007] [Accepted: 01/01/2008] [Indexed: 11/22/2022]
Abstract
Impaired zinc homeostasis is implicated in many cases of brain injury and pathogenesis. While several routes of zinc influx have been identified in neurons under depolarizing conditions, zinc uptake mechanisms during resting conditions are unknown. We have previously detected Zip6 at the plasma membrane of rat neurons, suggesting a role for Zip6 in neuronal zinc uptake. Zinc uptake under resting and depolarizing membrane potentials was measured in SH-SY5Y neuroblastoma cells using 65Zn. Zinc uptake was higher under depolarizing conditions, compared with resting conditions, and could be reduced by high extracellular calcium, gadolinium, or nimodipine, which suggests that L-type calcium channels are significant routes of zinc uptake under depolarizing membrane potential. In contrast, zinc uptake under resting conditions was not affected by calcium or calcium channel antagonists. Zip6 was localized to the plasma membrane in SH-SY5Y cells, and siRNA-mediated down-regulation of Zip6 expression reduced zinc uptake during resting, but not depolarizing conditions. Zinc treatment (100 microM Zn) reduced zinc uptake under resting, but not depolarizing conditions, which was associated with lower plasma membrane-associated and total Zip6 protein abundance. These results demonstrate that Zip6 functions as a zinc import protein in neuroblastoma cells, that zinc influx during resting and depolarizing conditions occurs via distinctly different processes in these cells, and suggest that neuronal zinc uptake may be down-regulated by excess zinc levels, but only under resting conditions.
Collapse
|
50
|
Min KS, Ueda H, Tanaka K. Involvement of intestinal calcium transporter 1 and metallothionein in cadmium accumulation in the liver and kidney of mice fed a low-calcium diet. Toxicol Lett 2007; 176:85-92. [PMID: 18054826 DOI: 10.1016/j.toxlet.2007.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 02/03/2023]
Abstract
Essential metals can affect the metabolism of nonessential metals. Calcium (Ca) is an essential mineral that is commonly lacking in the diet. When we fed 5-week-old male mice for 4 weeks on a purified diet containing 0.005% Ca (CaDF mice), the Ca concentration in the plasma, liver and kidneys did not decreased. Cd accumulation increased in the liver and kidneys of CaDF mice given 1mg/kg Cd orally each day for 5 days, but not in those given intraperitoneal injections of Cd or Cd-metallothionein (Cd-MT). The zinc (Zn) concentration increased significantly in the intestinal cytosol and plasma during the time the mice were fed the low-Ca diet, and expression of both MT-1 and ZnT-1 sharply increased with a similar time course. Intestinal mRNA expression of CaT1, a Ca transporter, was more than 10 times higher in CaDF mice than in controls, although expression of other transporters, including DMT1, decreased in CaDF mice. These results suggest that CaT1 may stimulate the intestinal absorption of Cd and Zn, and some Cd may be distributed to the kidneys along with MT induced by Zn.
Collapse
Affiliation(s)
- Kyong-Son Min
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka 584-8540, Japan.
| | | | | |
Collapse
|