1
|
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol 2024; 12:1359295. [PMID: 38510177 PMCID: PMC10950953 DOI: 10.3389/fcell.2024.1359295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The jawbone, a unique structure in the human body, undergoes faster remodeling than other bones due to the presence of stem cells and its distinct immune microenvironment. Long-term exposure of jawbones to an oral environment rich in microbes results in a complex immune balance, as shown by the higher proportion of activated macrophage in the jaw. Stem cells derived from the jawbone have a higher propensity to differentiate into osteoblasts than those derived from other bones. The unique immune microenvironment of the jaw also promotes osteogenic differentiation of jaw stem cells. Here, we summarize the various types of stem cells and immune cells involved in jawbone reconstruction. We describe the mechanism relationship between immune cells and stem cells, including through the production of inflammatory bodies, secretion of cytokines, activation of signaling pathways, etc. In addition, we also comb out cellular interaction of immune cells and stem cells within the jaw under jaw development, homeostasis maintenance and pathological conditions. This review aims to eclucidate the uniqueness of jawbone in the context of stem cell within immune microenvironment, hopefully advancing clinical regeneration of the jawbone.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Bekić M, Radanović M, Đokić J, Tomić S, Eraković M, Radojević D, Duka M, Marković D, Marković M, Ismaili B, Bokonjić D, Čolić M. Mesenchymal Stromal Cells from Healthy and Inflamed Human Gingiva Respond Differently to Porphyromonas gingivalis. Int J Mol Sci 2022; 23:ijms23073510. [PMID: 35408871 PMCID: PMC8998418 DOI: 10.3390/ijms23073510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
Gingiva-Derived Mesenchymal Stromal Cells (GMSCs) have been shown to play an important role in periodontitis. However, how P. gingivalis, one of the key etiological agents of the disease, affects healthy (H)- and periodontitis (P)-GMSCs is unknown. To address this problem, we established 10 H-GMSC and 12 P-GMSC lines. No significant differences in morphology, differentiation into chondroblasts and adipocytes, expression of characteristic MSCS markers, including pericyte antigens NG2 and PDGFR, were observed between H- and P-GMSC lines. However, proliferation, cell size and osteogenic potential were higher in P-GMSCs, in contrast to their lower ability to suppress mononuclear cell proliferation. P. gingivalis up-regulated the mRNA expression of IL-6, IL-8, MCP-1, GRO-α, RANTES, TLR-2, HIF-1α, OPG, MMP-3, SDF-1, HGF and IP-10 in P-GMSCs, whereas only IL-6, MCP-1 and GRO-α were up-regulated in H-GMSCs. The expression of MCP-1, RANTES, IP-10 and HGF was significantly higher in P-GMSCs compared to H-GMSCs, but IDO1 was lower. No significant changes in the expression of TLR-3, TLR-4, TGF-β, LAP, IGFBP4 and TIMP-1 were observed in both types of GMSCs. In conclusion, our results suggest that P-GMSCs retain their pro-inflammatory properties in culture, exhibit lower immunosuppressive potential than their healthy counterparts, and impaired regeneration-associated gene induction in culture. All these functions are potentiated significantly by P. gingivalis treatment.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Marina Radanović
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Mile Eraković
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Miloš Duka
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Dejan Marković
- Faculty of Dental Medicine, University of Belgrade, 11118 Belgrade, Serbia;
| | - Milan Marković
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Bashkim Ismaili
- Faculty of Dental Medicine, International Balkan University, 1000 Skopje, North Macedonia;
| | - Dejan Bokonjić
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
| | - Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
- Correspondence: ; Tel.: +381-11-2619525
| |
Collapse
|
3
|
Chen JM, Huang QY, Zhao YX, Chen WH, Lin S, Shi QY. The Latest Developments in Immunomodulation of Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions, Both Allogeneic and Autologous. Front Immunol 2021; 12:785717. [PMID: 34868069 PMCID: PMC8634714 DOI: 10.3389/fimmu.2021.785717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrosis disease caused by repeated operations of the uterus and is a common cause of female infertility. In recent years, treatment using mesenchymal stem cells (MSCs) has been proposed by many researchers and is now widely used in clinics because of the low immunogenicity of MSCs. It is believed that allogeneic MSCs can be used to treat IUA because MSCs express only low levels of MHC class I molecules and no MHC class II or co-stimulatory molecules. However, many scholars still believe that the use of allogeneic MSCs to treat IUA may lead to immune rejection. Compared with allogeneic MSCs, autologous MSCs are safer, more ethical, and can better adapt to the body. Here, we review recently published articles on the immunomodulation of allogeneic and autologous MSCs in IUA therapy, with the aim of proving that the use of autologous MSCs can reduce the possibility of immune rejection in the treatment of IUAs.
Collapse
Affiliation(s)
- Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Neuroinflammation in Primary Cultures of the Rat Spinal Dorsal Horn Is Attenuated in the Presence of Adipose Tissue-Derived Medicinal Signalling Cells (AdMSCs) in a Co-cultivation Model. Mol Neurobiol 2021; 59:475-494. [PMID: 34716556 PMCID: PMC8786781 DOI: 10.1007/s12035-021-02601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022]
Abstract
Neuroinflammation within the superficial dorsal horn (SDH) of the spinal cord induces inflammatory pain with symptoms of hyperalgesia and allodynia. Glial activation and production of inflammatory mediators (e.g. cytokines) is associated with modulation of nociceptive signalling. In this context, medicinal signalling cells, e.g. obtained from adipose tissue (AdMSCs), gained attention due to their capacity to modulate the inflammatory response in several diseases, e.g. spinal cord injury. We applied the recently established mixed neuroglial primary cell culture of the rat SDH to investigate effects of AdMSCs on the inflammatory response of SDH cells. Following establishment of a co-cultivation system, we performed specific bioassays for tumour necrosis factor alpha (TNFα) and interleukin (IL)-6, RT-qPCR and immunocytochemistry to detect changes in cytokine production and glial activation upon inflammatory stimulation with lipopolysaccharide (LPS). LPS-induced expression and release of pro-inflammatory cytokines (TNFα, IL-6) by SDH cells was significantly attenuated in the presence of AdMSCs. Further evidence for anti-inflammatory capacities of AdMSCs derived from a blunted LPS-induced TNFα/IL-10 expression ratio and suppressed nuclear translocation of the inflammatory transcription factor nuclear factor kappa B (NFκB) in SDH microglial cells. Expression of IL-10, transforming growth factor beta (TGF-β) and TNFα-stimulated gene-6 (TSG-6) was detected in AdMSCs, which are putative candidates for anti-inflammatory capacities of these cells. We present a novel co-cultivation system of AdMSCs with neuroglial primary cultures of the SDH to investigate immunomodulatory effects of AdMSCs at a cellular level.
Collapse
|
5
|
Bone Marrow Mesenchymal Stromal Cells on Silk Fibroin Scaffolds to Attenuate Polymicrobial Sepsis Induced by Cecal Ligation and Puncture. Polymers (Basel) 2021; 13:polym13091433. [PMID: 33946773 PMCID: PMC8125697 DOI: 10.3390/polym13091433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Suitable scaffolds with appropriate mechanical and biological properties can improve mesenchymal stromal cell (MSC) therapy. Because silk fibroins (SFs) are biocompatible materials, they were electrospun and applied as scaffolds for MSC therapy. Consequently, interferon (IFN)-primed human bone marrow MSCs on SF nanofibers were administered into a polymicrobial sepsis murine model. The IL-6 level gradually decreased from 40 ng/mL at 6 h after sepsis to 35 ng/mL at 24 h after sepsis. The IL-6 level was significantly low as 5 ng/mL in primed MSCs on SF nanofibers, and 15 ng/mL in primed MSCs on the control surface. In contrast to the acute response, inflammation-related factors, including HO-1 and COX-2 in chronic liver tissue, were effectively inhibited by MSCs on both SF nanofibers and the control surface at the 5-day mark after sepsis. An in vitro study indicated that the anti-inflammatory function of MSCs on SF nanofibers was mediated through enhanced COX-2-PGE2 production, as indomethacin completely abrogated PGE2 production and decreased the survival rate of septic mice. Thus, SF nanofiber scaffolds potentiated the anti-inflammatory and immunomodulatory functions of MSCs, and were beneficial as a culture platform for the cell therapy of inflammatory disorders.
Collapse
|
6
|
Hamdan H, Hashmi SK, Lazarus H, Gale RP, Qu W, El Fakih R. Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome? Blood Rev 2021; 46:100742. [PMID: 32854985 PMCID: PMC7425550 DOI: 10.1016/j.blre.2020.100742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
Mesenchymal stromal cells (MSC) have immune regulatory and tissue regenerative properties. MSCs are being studied as a therapy option for many inflammatory and immune disorders and are approved to treat acute graft-versus-host disease (GvHD). The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic and associated coronavirus infectious disease-19 (COVID-19) has claimed many lives. Innovative therapies are needed. Preliminary data using MSCs in the setting of acute respiratory distress syndrome (ARDS) in COVID-19 are emerging. We review mechanisms of action of MSCs in inflammatory and immune conditions and discuss a potential role in persons with COVID-19.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA,Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hillard Lazarus
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, USA,Center of Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Riad El Fakih
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia,Corresponding author at: Oncology Centre, KFSHRC, Section of Adult Hematology/HSCT, PO Box 3354, Riyadh 11471, Saudi Arabia
| |
Collapse
|
7
|
Gholizadeh-Ghaleh Aziz S, Alipour S, Ranjbarvan P, Azari A, Babaei G, Golchin A. Critical roles of TLRs on the polarization of mesenchymal stem cells for cell therapy of viral infections: a notice for COVID-19 treatment. ACTA ACUST UNITED AC 2021; 30:119-128. [PMID: 33551714 PMCID: PMC7846495 DOI: 10.1007/s00580-021-03209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs), as one of the leading cell-based therapy, have provided a strong link between clinical investigation and basic research. MSCs have been successfully employed in treating graft versus host disease (GvHD), autoimmune disease, and several other diseases, particularly with high immune activity. Recently, MSCs have attracted attention to treating untreatable viral infections such as severe coronavirus disease 2019 (COVID-19). Given that the Toll-like receptors (TLRs) are directly able to detect internal and external hazard signals, and their stimulation has an intense effect on the ability to grow, differentiate, migrate, and maintain MSCs, it seems stimulation of these receptors can have a direct impact on the interaction of MSCs and immune cells, altering the ability to modify immune system responses. Hence, this mini-review focused on TLRs’ critical roles in the polarization of MSCs for developing MSC-based therapy in viral infections. Consequently, according to the literature review, a polarization process, mediated by TLRs concerning anti-inflammatory and proinflammatory phenotype, may be considered for MSC-therapy against viral infections.
Collapse
Affiliation(s)
- Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Alipour
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Arezo Azari
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Sanders J, Schneider EM. How severe RNA virus infections such as SARS-CoV-2 disrupt tissue and organ barriers—Reconstitution by mesenchymal stem cell-derived exosomes. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021. [PMCID: PMC8225928 DOI: 10.1016/b978-0-12-818561-2.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The host tissue barriers arrange numerous lines of resistance to influx and cell-to-cell spread of pathogenic viruses. However, the highly virulent pathogens are equipped with diverse molecular mechanisms that can subvert the host countermeasures and/or exaggerate the host cell responses to toxic levels leading to severe illnesses. In his review, we discuss the immune-mediated pathogenesis of COVID-19 disease induced by the SARS-Cov-2 coronavirus. SARS-Cov-2 primarily infects type II alveolar epithelial cells. These cells are highly abundant with the ACE2 receptor protein, which occurs to be counterpart of the viral Spike protein and thus facilitates internalization of the virus. Following infection onset, the rapid clinical deterioration occurs about in a week suggesting that the respiratory failure in COVID-19 could result from a unique pattern of immune impairment characterized by severe Cytokine Release Syndrome (known as cytokine storm) leading to macrophage activation syndrome. In addition, the SARS-Cov-2 infection can induce a profound depletion of CD4 lymphocytes, CD19 lymphocytes, and natural killer cells, i.e., all major guardians cell components of the host immune barrier. However, while the numbers of that cells decline in the sequelae of the disease, the presence of persistent hyper-inflammation driving progressive tissue injury, suggests that the deteriorating impact of the systemic reactive responses can be more significant than the virus-induced cytopathic effects on the immunocompetent cells. In this respect, the authors discuss the emerging evidence of beneficial effects of administration of exosomes derived from mesenchymal stem cells—another sentinel-type cells—in management of the hyper-inflammatory response to SARS-CoV-2. Moreover, they also discuss the exosomes-originated mechanisms, which sustain regeneration of the damaged pulmonary lining cells and the vascular endothelial cells in various organs, including the brain.
Collapse
|
9
|
Umbilical Cord-Derived CD362 + Mesenchymal Stromal Cells Attenuate Polymicrobial Sepsis Induced by Caecal Ligation and Puncture. Int J Mol Sci 2020; 21:ijms21218270. [PMID: 33158246 PMCID: PMC7672591 DOI: 10.3390/ijms21218270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have a multimodal, immunomodulatory mechanism of action and are now in clinical trials for single organ and systemic sepsis. However, a number of practicalities around source, homogeneity and therapeutic window remain to be determined. Here, we utilised conditioned medium from CD362+-sorted umbilical cord-human MSCs (UC-hMSCs) for a series of in vitro anti-inflammatory assays and the cryopreserved MSCs themselves in a severe (Series 1) or moderate (Series 2+3) caecal ligation and puncture (CLP) rodent model. Surviving animals were assessed at 48 h post injury induction. MSCs improved human lung, colonic and kidney epithelial cell survival following cytokine activation. In severe systemic sepsis, MSCs administered at 30 min enhanced survival (Series 1), and reduced organ bacterial load. In moderate systemic sepsis (Series 2), MSCs were ineffective when delivered immediately or 24 h later. Of importance, MSCs delivered 4 h post induction of moderate sepsis (Series 3) were effective, improving serum lactate, enhancing bacterial clearance from tissues, reducing pro-inflammatory cytokine concentrations and increasing antimicrobial peptides in serum. While demonstrating benefit and immunomodulation in systemic sepsis, therapeutic efficacy may be limited to a specific point of disease onset, and repeat dosing, MSC enhancement or other contingencies may be necessary.
Collapse
|
10
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
11
|
Bone Marrow Cells Transplant in Septic Mice Modulates Systemic Inflammatory Response via Cell-Cell Contact. Shock 2020; 51:381-388. [PMID: 29621118 DOI: 10.1097/shk.0000000000001151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis is a dynamic disease, displaying an inflammatory profile that varies over time and for each organ. Controlling the inflammatory response based in targeting a single molecule has been proved useless. We hypothesized that treatment with bone marrow-derived mononuclear cells (BMDMCs) may be more efficient to modulate the systemic inflammatory response to infection. Adult male Balb/c mice were subjected to cecal ligation and puncture (CLP) or endotoxemia model of experimental sepsis. BMDMCs were separated under Ficoll gradient and injected intravenously 1 h after the procedures. Cytokines concentration was quantified in plasma, lungs, heart, and gut. Spleens, lymph nodes, and thymus were used for lymphocytes isolation and cell death assessment. All measurements were performed 2 h after BMDMCs injection. RAW264.7 macrophages and BMDMCs were cocultivated in vitro to investigate the mechanisms involved. Our data showed that an early single intravenous injection of BMDMCs in animals submitted to the murine model of endotoxemia led to the improvement of survival rate; BMDMCs persistency in lung, liver, and spleen after 24 h; decreased necrosis and apoptosis of mononuclear cells; lower TNF-α, but increased IL-10 concentration in plasma; and tissue-specific cytokine profile. In vitro experiments demonstrated that IL-6, IL-10, and nitric oxide production depends on direct contact of BMDMCs to macrophages and that TNF-α production is negatively regulated by PGE2. BMDMCs are efficient in protecting animals from endotoxemia and sepsis, reducing systemic inflammation as well as specifically modulating tissue inflammation, producing the necessary immune regulation to re-equilibrate the inflammatory response.
Collapse
|
12
|
Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: a promising way in therapies of graft-versus-host disease. Cancer Cell Int 2020; 20:114. [PMID: 32280306 PMCID: PMC7137413 DOI: 10.1186/s12935-020-01193-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
It is well acknowledged that allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for numerous malignant blood diseases, which has also been applied to autoimmune diseases for more than a decade. Whereas graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT) as a common serious complication, seriously affecting the efficacy of transplantation. Mesenchymal stem cells (MSCs) derived from a wealth of sources can easily isolate and expand with low immunogenicity. MSCs also have paracrine and immune regulatory functions, leading to a broad application prospect in treatment and tissue engineering. This review focuses on immunoregulatory function of MSCs, factors affecting mesenchymal stem cells to exert immunosuppressive effects, clinical application of MSCs in GVHD and researches on MSC-derived extracellular vesicles (EVs). The latest research progress on MSC in related fields is reviewed as well. The relevant literature from PubMed databases is reviewed in this article.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Nan Jin
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Fei Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| |
Collapse
|
13
|
Horie S, Masterson C, Brady J, Loftus P, Horan E, O'Flynn L, Elliman S, Barry F, O'Brien T, Laffey JG, O'Toole D. Umbilical cord-derived CD362 + mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Res Ther 2020; 11:116. [PMID: 32169108 PMCID: PMC7071745 DOI: 10.1186/s13287-020-01624-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 01/31/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) demonstrate considerable promise for acute respiratory distress syndrome (ARDS) and sepsis. However, standard approaches to MSC isolation generate highly heterogeneous cell populations, while bone marrow (BM) constitutes a limited and difficult to access MSC source. Furthermore, a range of cell manufacturing considerations and clinical setting practicalities remain to be explored. Methods Adult male rats were subject to E. coli-induced pneumonia and administered CD362+ umbilical cord (UC)-hMSCs using a variety of cell production and clinical relevance considerations. In series 1, animals were instilled with E. coli and randomized to receive heterogeneous BM or UC-hMSCs or CD362+ UC-hMSCs. Subsequent series examined the impact of concomitant antibiotic therapy, MSC therapeutic cryopreservation (cryopreserved vs fresh CD362+ UC-hMSCs), impact of cell passage on efficacy (passages 3 vs 5 vs 7 vs 10), and delay of administration of cell therapy (0 h vs 6 h post-injury vs 6 h + 12 h) following E. coli installation. Results CD362+ UC-hMSCs were as effective as heterogonous MSCs in reducing E. coli-induced acute lung injury, improving oxygenation, decreasing bacterial load, reducing histologic injury, and ameliorating inflammatory marker levels. Cryopreserved CD362+ UC-hMSCs recapitulated this efficacy, attenuating E. coli-induced injury, but therapeutic relevance did not extend beyond passage 3 for all indices. CD362+ UC-hMSCs maintained efficacy in the presence of antibiotic therapy and rescued the animal from E. coli injury when delivered at 6 h + 12 h, following E. coli instillation. Conclusions These translational studies demonstrated the efficacy of CD362+ UC-hMSCs, where they decreased the severity of E. coli-induced pneumonia, maintained efficacy following cryopreservation, were more effective at early passage, were effective in the presence of antibiotic therapy, and could continue to provide benefit at later time points following E. coli injury.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Claire Masterson
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Jack Brady
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Paul Loftus
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Emma Horan
- Orbsen Therapeutics Ltd., Galway, Ireland
| | | | | | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.,Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.,Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland. .,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| |
Collapse
|
14
|
Horie S, Gaynard S, Murphy M, Barry F, Scully M, O'Toole D, Laffey JG. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Med Exp 2020; 8:8. [PMID: 32025852 PMCID: PMC7002627 DOI: 10.1186/s40635-020-0295-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) represent a promising therapeutic strategy for ventilator-induced lung injury (VILI) and acute respiratory distress syndrome. Translational challenges include restoring hMSC efficacy following cryopreservation, developing effective xenogeneic-free (XF) hMSCs and establishing true therapeutic potential at a clinically relevant time point of administration. We wished to determine whether cytokine pre-activation of cryopreserved, bone marrow-derived XF-hMSCs would enhance their capacity to facilitate injury resolution following VILI and elucidate mechanisms of action. METHODS Initially, in vitro studies examined the potential for the secretome from cytokine pre-activated XF-hMSCs to attenuate pulmonary epithelial injury induced by cyclic mechanical stretch. Later, anaesthetised rats underwent VILI and, 6 h following injury, were randomized to receive 1 × 107 XF-hMSC/kg that were (i) naive fresh, (ii) naive cryopreserved, (iii) cytokine pre-activated fresh or (iv) cytokine pre-activated cryopreserved, while control animals received (v) vehicle. The extent of injury resolution was measured at 24 h after injury. Finally, the role of keratinocyte growth factor (KGF) in mediating the effect of pre-activated XF-hMSCs was determined in a pulmonary epithelial wound repair model. RESULTS Pre-activation enhanced the capacity of the XF-hMSC secretome to decrease stretch-induced pulmonary epithelial inflammation and injury. Both pre-activated fresh and cryopreserved XF-hMSCs enhanced resolution of injury following VILI, restoring oxygenation, improving lung compliance, reducing lung leak and improving resolution of lung structural injury. Finally, the secretome of pre-activated XF-hMSCs enhanced epithelial wound repair, in part via a KGF-dependent mechanism. CONCLUSIONS Cytokine pre-activation enhanced the capacity of cryopreserved, XF-hMSCs to promote injury resolution following VILI, potentially via a KGF-dependent mechanism.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Sean Gaynard
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Michael Scully
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
- Department of Anaesthesia, Galway University Hospitals, Saolta University Health Group, Galway, Ireland.
| |
Collapse
|
15
|
Liu Q, Chen MX, Sun L, Wallis CU, Zhou JS, Ao LJ, Li Q, Sham PC. Rational use of mesenchymal stem cells in the treatment of autism spectrum disorders. World J Stem Cells 2019; 11:55-72. [PMID: 30842805 PMCID: PMC6397804 DOI: 10.4252/wjsc.v11.i2.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Autism and autism spectrum disorders (ASD) refer to a range of conditions characterized by impaired social and communication skills and repetitive behaviors caused by different combinations of genetic and environmental influences. Although the pathophysiology underlying ASD is still unclear, recent evidence suggests that immune dysregulation and neuroinflammation play a role in the etiology of ASD. In particular, there is direct evidence supporting a role for maternal immune activation during prenatal life in neurodevelopmental conditions. Currently, the available options of behavioral therapies and pharmacological and supportive nutritional treatments in ASD are only symptomatic. Given the disturbing rise in the incidence of ASD, and the fact that there is no effective pharmacological therapy for ASD, there is an urgent need for new therapeutic options. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that make them relevant to several diseases associated with inflammation and tissue damage. The paracrine regenerative mechanisms of MSCs are also suggested to be therapeutically beneficial for ASD. Thus the underlying pathology in ASD, including immune system dysregulation and inflammation, represent potential targets for MSC therapy. This review will focus on immune dysfunction in the pathogenesis of ASD and will further discuss the therapeutic potential for MSCs in mediating ASD-related immunological disorders.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Chloe U Wallis
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Jian-Song Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Qi Li
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, Center for Genomic Sciences, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Syndecan-2-positive, Bone Marrow-derived Human Mesenchymal Stromal Cells Attenuate Bacterial-induced Acute Lung Injury and Enhance Resolution of Ventilator-induced Lung Injury in Rats. Anesthesiology 2019; 129:502-516. [PMID: 29979191 DOI: 10.1097/aln.0000000000002327] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Human mesenchymal stromal cells demonstrate promise for acute respiratory distress syndrome, but current studies use highly heterogenous cell populations. We hypothesized that a syndecan 2 (CD362)-expressing human mesenchymal stromal cell subpopulation would attenuate Escherichia coli-induced lung injury and enhance resolution after ventilator-induced lung injury. METHODS In vitro studies determined whether CD362 human mesenchymal stromal cells could modulate pulmonary epithelial inflammation, wound healing, and macrophage phagocytosis. Two in vivo rodent studies determined whether CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced lung injury (n = 10/group) and enhanced resolution of ventilation-induced injury (n = 10/group). RESULTS CD362 human mesenchymal stromal cells attenuated cytokine-induced epithelial nuclear factor kappa B activation, increased epithelial wound closure, and increased macrophage phagocytosis in vitro. CD362 human mesenchymal stromal cells attenuated Escherichia coli-induced injury in rodents, improving arterial oxygenation (mean ± SD, 83 ± 9 vs. 60 ± 8 mmHg, P < 0.05), improving lung compliance (mean ± SD: 0.66 ± 0.08 vs. 0.53 ± 0.09 ml · cm H2O, P < 0.05), reducing bacterial load (median [interquartile range], 1,895 [100-3,300] vs. 8,195 [4,260-8,690] colony-forming units, P < 0.05), and decreasing structural injury compared with vehicle. CD362 human mesenchymal stromal cells were more effective than CD362 human mesenchymal stromal cells and comparable to heterogenous human mesenchymal stromal cells. CD362 human mesenchymal stromal cells enhanced resolution after ventilator-induced lung injury in rodents, restoring arterial oxygenation (mean ± SD: 113 ± 11 vs. 89 ± 11 mmHg, P < 0.05) and lung static compliance (mean ± SD: 0.74 ± 0.07 vs. 0.45 ± 0.07 ml · cm H2O, P < 0.05), resolving lung inflammation, and restoring histologic structure compared with vehicle. CD362 human mesenchymal stromal cells efficacy was at least comparable to heterogenous human mesenchymal stromal cells. CONCLUSIONS A CD362 human mesenchymal stromal cell population decreased Escherichia coli-induced pneumonia severity and enhanced recovery after ventilator-induced lung injury.
Collapse
|
18
|
Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine 2018; 32:31-42. [PMID: 29807832 PMCID: PMC6020748 DOI: 10.1016/j.ebiom.2018.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) based therapy is a promising approach to treat inflammatory disorders. However, therapeutic effect is not always achieved. Thus the mechanism involved in inflammation requires further elucidation. To explore the mechanisms by which MSCs respond to inflammatory stimuli, we investigated whether MSCs employed inflammasomes to participate in inflammation. Using in vitro and in vivo models, we found that canonical NLRP3 and non-canonical caspase-11 inflammasomes were activated in bone-associated MSCs (BA-MSCs) to promote the inflammatory response. The NLRP3 inflammasome was activated to mainly elicit IL-1β/18 release, whereas the caspase-11 inflammasome managed pyroptosis. Furthermore, we sought a small molecule component (66PR) to inhibit the activation of inflammasomes in BA-MSCs, which consequently improved their survival and therapeutic potential in inflammation bowel diseases. These current findings indicated that MSCs themselves could directly promote the inflammatory response by an inflammasome-dependent pathway. Our observations suggested that inhibition of the proinflammatory property may improve MSCs utilization in inflammatory disorders. NLRP3 and caspase-11 inflammasomes were activated in bone associated MSCs after stimulation. NLRP3 inflammasome mainly secreted IL-1β/18, whereas caspase-11 inflammasome managed pyroptosis in bone associated MSCs. Inhibition of inflammasomes in bone associated MSCs benefits their utilization for inflammatory diseases therapy.
Abnormal inflammations cause currently high incidence of diseases worldwide, such as sepsis, allergic reactions, and even cancer. But the therapy of inflammatory diseases is far from satisfaction heretofore. MSCs are great interest to treat inflammatory disorders. However, many studies found their therapeutic effects were not always achieved. Further studies on the molecular mechanisms by which MSCs respond to the inflammatory microenvironment will undoubtedly promote applications in clinic. Here, we observed that MSCs promoted the inflammatory response by an inflammasome-dependent pathway. Regulation of this pathway improved MSCs to counter against inflammatory disorders.
Collapse
|
19
|
Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Arboleda-Toro D, González Á. Bone marrow–derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response. Med Mycol 2017; 56:884-895. [DOI: 10.1093/mmy/myx128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julián Camilo Arango
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
- Microbiology School, Universidad de Antioquia, Medellin Colombia
| | - Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| | | | - Ángel González
- Microbiology School, Universidad de Antioquia, Medellin Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
20
|
Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Salazar-Peláez LM, Rojas M, González Á. Impaired anti-fibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis 2017; 11:e0006006. [PMID: 29040281 PMCID: PMC5659794 DOI: 10.1371/journal.pntd.0006006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) have been consider as a promising therapy in fibrotic diseases. Experimental models suggest that BMMSCs may be used as an alternative therapy to treat chemical- or physical-induced pulmonary fibrosis. We investigated the anti-fibrotic potential of BMMSCs in an experimental model of lung fibrosis by infection with Paracoccidioides brasiliensis. BMMSCs were isolated and purified from BALB/c mice using standardized methods. BALB/c male mice were inoculated by intranasal infection of 1.5x106P. brasiliensis yeasts. Then, 1x106 BMMSCs were administered intra venous at 8th week post-infection (p.i.). An additional group of mice was treated with itraconazole (ITC) two weeks before BMMSCs administration. Animals were sacrificed at 12th week p.i. Histopathological examination, fibrocytes counts, soluble collagen and fibrosis-related genes expression in lungs were evaluated. Additionally, human fibroblasts were treated with homogenized lung supernatants (HLS) to determine induction of collagen expression. Histological analysis showed an increase of granulomatous inflammatory areas in BMMSCs-treated mice. A significant increase of fibrocytes count, soluble collagen and collagen-3α1, TGF-β3, MMP-8 and MMP-15 genes expression were also observed in those mice. Interestingly, when combined therapy BMMSCs/ITC was used there is a decrease of TIMP-1 and MMP-13 gene expression in infected mice. Finally, human fibroblasts stimulated with HLS from infected and BMMSCs-transplanted mice showed a higher expression of collagen I. In conclusion, our findings indicate that late infusion of BMMSCs into mice infected with P. brasiliensis does not have any anti-fibrotic effect; possibly because their interaction with the fungus promotes collagen expression and tissue remodeling. This is the first study that evaluates the effect of BMMSCs therapy for lung fibrosis induced by the fungal pathogen Paracoccidioides brasiliensis, the causative agent of paracoccidioidomycosis, one of the most important systemic endemic mycosis diagnosed in South America and Central America. Our findings showed an impaired anti-fibrotic effect of BMMSCs transplantation. This effect could be triggered by either the chronic inflammatory microenvironment induced by P. brasiliensis or by a direct interaction between BMMSCs and the fungus, resulting in an exacerbation of the pulmonary fibrosis. In fact, the pro-fibrotic effect exerted by BMMSCs was toned-down by the usage of the antifungal ITC.
Collapse
Affiliation(s)
- Julián Camilo Arango
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, Unites States of America
| | | | - Mauricio Rojas
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Ángel González
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
21
|
Sangiorgi B, De Freitas HT, Schiavinato JLDS, Leão V, Haddad R, Orellana MD, Faça VM, Ferreira GA, Covas DT, Zago MA, Panepucci RA. DSP30 enhances the immunosuppressive properties of mesenchymal stromal cells and protects their suppressive potential from lipopolysaccharide effects: A potential role of adenosine. Cytotherapy 2017; 18:846-59. [PMID: 27260206 DOI: 10.1016/j.jcyt.2016.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 01/09/2023]
Abstract
Multipotent mesenchymal stromal cells (MSC) are imbued with an immunosuppressive phenotype that extends to several immune system cells. In this study, we evaluated how distinct Toll-like receptor (TLR) agonists impact immunosuppressive properties of bone marrow (BM)-MSC and explored the potential mechanisms involved. We show that TLR4 stimulation by lipopolysaccharide (LPS) restricted the ability of MSC to suppress the proliferation of T lymphocytes, increasing the gene expression of interleukin (IL)-1β and IL-6. In contrast, stimulation of TLR9 by DSP30 induced proliferation and the suppressive potential of BM-MSC, coinciding with reducing tumor necrosis factor (TNF)-α expression, increased expression of transforming growth factor (TGF)-β1, increased percentages of BM-MSC double positive for the ectonucleotidases CD39+CD73+ and adenosine levels. Importantly, following simultaneous stimulation with LPS and DSP30, BM-MSC's ability to suppress T lymphocyte proliferation was comparable with that of non-stimulated BM-MSC levels. Moreover, stimulation of BM-MSC with LPS reduced significantly the gene expression levels, on co-cultured T lymphocyte, of IL-10 and interferon (IFN)γ, a cytokine with potential to enhance the immunosuppression mediated by MSC and ameliorate the clinical outcome of patients with graft-versus-host disease (GVHD). Altogether, our findings reiterate the harmful effects of LPS on MSC immunosuppression, besides indicating that DSP30 could provide a protective effect against LPS circulating in the blood of GVHD patients who receive BM-MSC infusions, ensuring a more predictable immunosuppressive effect. The novel effects and potential mechanisms following the stimulation of BM-MSC by DSP30 might impact their clinical use, by allowing the derivation of optimal "licensing" protocols for obtaining therapeutically efficient MSC.
Collapse
Affiliation(s)
- Bruno Sangiorgi
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil; Centro de Terapia Celular, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | | | - Josiane Lilian Dos Santos Schiavinato
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil; Centro de Terapia Celular, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | - Vitor Leão
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil; Centro de Terapia Celular, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Haddad
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | | | - Vitor Marcel Faça
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | | | - Dimas Tadeu Covas
- Centro de Terapia Celular, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | - Marco Antônio Zago
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil; Centro de Terapia Celular, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Alexandre Panepucci
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil; Centro de Terapia Celular, Fundação Hemocentro de Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Mao F, Tu Q, Wang L, Chu F, Li X, Li HS, Xu W. Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget 2017; 8:38008-38021. [PMID: 28402942 PMCID: PMC5514968 DOI: 10.18632/oncotarget.16682] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are non-hematopoietic stem cells that facilitate tissue regeneration through mechanisms involving self-renewal and differentiation, supporting angiogenesis and tissue cell survival, and limiting inflammation. MSCs were originally identified and expanded in long-term cultures of cells from bone marrow and other organs; and their native identity was recently confined into pericytes and adventitial cells in vascularized tissue. The multipotency, as well as the trophic and immunosuppressive effects, of MSCs have prompted the rapid development of clinical applications for many diseases involving tissue inflammation and immune disorders, including inflammatory bowel disease. Although standard criteria have been established to define MSCs, their therapeutic efficacy has varied significantly among studies due to their natural heterogenicity. Thus, understanding the biological and immunological features of MSCs is critical to standardize and optimize MSCs-based therapy. In this review, we highlight the cellular and molecular mechanisms involved in MSCs-mediated tissue repair and immunosuppression. We also provide an update on the current development of MSCs-based clinical trials, with a detailed discussion of MSC-based cell therapy in inflammatory bowel disease.
Collapse
Affiliation(s)
- Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Qiang Tu
- Jiangning Hospital of Nanjing, Nanjing, Jiangsu, P.R. China
| | - Li Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Fuliang Chu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xia Li
- Department of Gastroenterology, Binzhou Medical University Yantai Affiliated Hospital, Yantai, Shandong, P.R. China
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
23
|
Mesenchymal stem cells moderate immune response of type 1 diabetes. Cell Tissue Res 2016; 368:239-248. [DOI: 10.1007/s00441-016-2499-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
|
24
|
Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today 2016; 22:186-193. [PMID: 27554801 DOI: 10.1016/j.drudis.2016.08.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Macrophages are a heterogeneous population of phagocytic cells present in all tissues. Recently, several drugs that target the epigenetic machinery have emerged as attractive molecules for treating infection and inflammation by modulating macrophages. Treatment of lipopolysaccharide (LPS)-challenged macrophages with epigenetic modifiers leads to phenotype switching. This could provide stimulatory/destructive (M1) or suppressive/protective (M2) therapeutic strategies, which are crucial in the cytokine milieu in which the macrophages reside. In this review, we provide an overview of macrophage functional diversity during various diseases, including infection, as well as the current status in the development and clinical utility of epigenetic modifiers.
Collapse
Affiliation(s)
- Urmi Patel
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuy Cao
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
25
|
Time-Series Expression of Toll-Like Receptor 4 Signaling in Septic Mice Treated with Mesenchymal Stem Cells. Shock 2016; 45:634-40. [DOI: 10.1097/shk.0000000000000546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells. Mediators Inflamm 2016; 2016:2631439. [PMID: 27057093 PMCID: PMC4746395 DOI: 10.1155/2016/2631439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 01/03/2023] Open
Abstract
Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS) in human umbilical cord endothelial cells (HUVECs) and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR) 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.
Collapse
|
27
|
Thangavel J, Samanta S, Rajasingh S, Barani B, Xuan YT, Dawn B, Rajasingh J. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. J Cell Sci 2015; 128:3094-105. [PMID: 26116574 DOI: 10.1242/jcs.170258] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/16/2015] [Indexed: 12/27/2022] Open
Abstract
Acute lung injury (ALI) during sepsis is characterized by bilateral alveolar infiltrates, lung edema and respiratory failure. Here, we examined the efficacy the DNA methyl transferase (DNMT) inhibitor 5-Aza 2-deoxycytidine (Aza), the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), as well as the combination therapy of Aza and TSA (Aza+TSA) provides in the protection of ALI. In LPS-induced mouse ALI, post-treatment with a single dose of Aza+TSA showed substantial attenuation of adverse lung histopathological changes and inflammation. Importantly, these protective effects were due to substantial macrophage phenotypic changes observed in LPS-stimulated macrophages treated with Aza+TSA as compared with untreated LPS-induced macrophages or LPS-stimulated macrophages treated with either drug alone. Further, we observed significantly lower levels of pro-inflammatory molecules and higher levels of anti-inflammatory molecules in LPS-induced macrophages treated with Aza+TSA than in LPS-induced macrophages treated with either drug alone. The protection was ascribed to dual effects by an inhibition of MAPK-HuR-TNF and activation of STAT3-Bcl2 pathways. Combinatorial treatment with Aza+TSA reduces inflammation and promotes an anti-inflammatory M2 macrophage phenotype in ALI, and has a therapeutic potential for patients with sepsis.
Collapse
Affiliation(s)
- Jayakumar Thangavel
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Saheli Samanta
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sheeja Rajasingh
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bahar Barani
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yu-Ting Xuan
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Buddhadeb Dawn
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johnson Rajasingh
- Cardiovascular Research Institute, Division of Cardiovascular Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
28
|
Chatzivasileiou K, Kriebel K, Steinhoff G, Kreikemeyer B, Lang H. Do oral bacteria alter the regenerative potential of stem cells? A concise review. J Cell Mol Med 2015; 19:2067-74. [PMID: 26058313 PMCID: PMC4568911 DOI: 10.1111/jcmm.12613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/15/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely recognized as critical players in tissue regeneration. New insights into stem cell biology provide evidence that MSCs may also contribute to host defence and inflammation. In case of tissue injury or inflammatory diseases, e.g. periodontitis, stem cells are mobilized towards the site of damage, thus coming in close proximity to bacteria and bacterial components. Specifically, in the oral cavity, complex ecosystems of commensal bacteria live in a mutually beneficial state with the host. However, the formation of polymicrobial biofilm communities with pathogenic properties may trigger an inadequate host inflammatory-immune response, leading to the disruption of tissue homoeostasis and development of disease. Because of their unique characteristics, MSCs are suggested as crucial regulators of tissue regeneration even under such harsh environmental conditions. The heterogeneous effects of bacteria on MSCs across studies imply the complexity underlying the interactions between stem cells and bacteria. Hence, a better understanding of stem cell behaviour at sites of inflammation appears to be a key strategy in developing new approaches for in situ tissue regeneration. Here, we review the literature on the effects of oral bacteria on cell proliferation, differentiation capacity and immunomodulation of dental-derived MSCs.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Katja Kriebel
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| |
Collapse
|
29
|
Devaney J, Horie S, Masterson C, Elliman S, Barry F, O'Brien T, Curley GF, O'Toole D, Laffey JG. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 2015; 70:625-35. [PMID: 25986435 DOI: 10.1136/thoraxjnl-2015-206813] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) demonstrate considerable promise in preclinical acute respiratory distress syndrome models. We wished to determine the efficacy and mechanisms of action of human MSCs (hMSCs) in the setting of acute lung injury induced by prolonged Escherichia coli pneumonia in the rat. METHODS Adult male Sprague Dawley rats underwent intratracheal instillation of E. coli bacteria in all experiments. In Series 1, animals were randomised to intravenous administration of: (1) vehicle (phosphate buffered saline (PBS), 300 μL); (2) 1×10(7) fibroblasts/kg; (3) 1×10(7) hMSCs/kg or (4) 2×10(7) hMSCs/kg. Series 2 determined the lowest effective hMSC dose. Series 3 compared the efficacy of intratracheal versus intravenous hMSC administration, while Series 4 examined the efficacy of cryopreserved hMSC. Series 5 examined the efficacy of the hMSC secretome. Parallel in vitro experiments further assessed the potential for hMSCs to secrete LL-37 and modulate macrophage phagocytosis. RESULTS hMSC therapy reduced the severity of rodent E. coli pneumonia, improving survival, decreasing lung injury, reducing lung bacterial load and suppressing inflammation. Doses as low as 5×10(6) hMSCs/kg were effective. Intratracheal hMSC therapy was as effective as intravenous hMSC. Cryopreserved hMSCs were also effective, while the hMSC secretome was less effective in this model. hMSC therapy enhanced macrophage phagocytic capacity and increased lung and systemic concentrations of the antimicrobial peptide LL37. CONCLUSIONS hMSC therapy decreased E. coli induced pneumonia injury and reduced lung bacterial burden, potentially via enhanced macrophage phagocytosis and increased alveolar LL-37 concentrations.
Collapse
Affiliation(s)
- James Devaney
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Shahd Horie
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Claire Masterson
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Steve Elliman
- Orbsen Therapeutics Ltd, National University of Ireland, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Gerard F Curley
- Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel O'Toole
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Abstract
In addition to their stem/progenitor properties, mesenchymal stromal cells (MSCs) possess broad immunoregulatory properties that are being investigated for potential clinical application in treating immune-based disorders. An informed view of the scope of this clinical potential will require a clear understanding of the dynamic interplay between MSCs and the innate and adaptive immune systems. In this Review, we outline current insights into the ways in which MSCs sense and control inflammation, highlighting the central role of macrophage polarization. We also draw attention to functional differences seen between vivo and in vitro contexts and between species. Finally, we discuss progress toward clinical application of MSCs, focusing on GvHD as a case study.
Collapse
Affiliation(s)
- Maria Ester Bernardo
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy
| | | |
Collapse
|
31
|
Gotts JE, Matthay MA. Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome. Clin Chest Med 2014; 35:797-809. [PMID: 25453426 PMCID: PMC4254691 DOI: 10.1016/j.ccm.2014.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regenerative medicine has entered a rapid phase of discovery, and much has been learned in recent years about the lung's response to injury. This article first summarizes the cellular and molecular mechanisms that damage the alveolar-capillary barrier, producing acute respiratory distress syndrome (ARDS). The latest understanding of endogenous repair processes is discussed, highlighting the diversity of lung epithelial progenitor cell populations and their regulation in health and disease. Finally, the past, present, and future of exogenous cell-based therapies for ARDS is reviewed.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| |
Collapse
|
32
|
Thangavel J, Malik AB, Elias HK, Rajasingh S, Simpson AD, Sundivakkam PK, Vogel SM, Xuan YT, Dawn B, Rajasingh J. Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2237-49. [PMID: 24929240 PMCID: PMC4116699 DOI: 10.1016/j.ajpath.2014.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/21/2014] [Accepted: 05/13/2014] [Indexed: 01/11/2023]
Abstract
Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI.
Collapse
Affiliation(s)
- Jayakumar Thangavel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Harold K Elias
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew D Simpson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Stephen M Vogel
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Yu-Ting Xuan
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas; Department of Biochemistry and Molecular Biology, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
33
|
Gotts JE, Abbott J, Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am J Physiol Lung Cell Mol Physiol 2014; 307:L395-406. [PMID: 25038188 DOI: 10.1152/ajplung.00110.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral pneumonia is a major cause of acute respiratory distress syndrome (ARDS). Anti-inflammatory therapies for viral-induced lung injury show promise in preclinical models. Mesenchymal stem/stromal cells (MSCs) are multipotent, self-renewing cells that secrete anti-inflammatory cytokines and epithelial and endothelial growth factors. We inoculated mice intranasally with influenza A (murine-adapted Puerto Rico/8/34) or PBS, and the mice were killed at multiple time points after infection for measures of lung injury and viral load. We report that influenza induces marked, long-lasting dysfunction of the alveolar-capillary barrier peaking at 1 wk but lasting longer than 3 wk postinfection. Weight loss, commonly employed as a criterion for euthanasia (and hence "survival"), was found to be poorly predictive of the severity of lung injury at its peak; rather, persistent weight loss 11 days postinfection identified mice with impaired injury resolution. Murine and human bone marrow-derived MSCs (obtained from the National Institutes of Health repository) were then administered intravenously during the rapid phase of injury progression. Murine MSCs (mMSCs) given two times 24 h apart failed to improve weight loss, lung water, bronchoalveolar lavage inflammation, or histology. However, mMSCs prevented influenza-induced thrombocytosis and caused a modest reduction in lung viral load at day 7. Human MSCs administered intravenously showed a similar lack of efficacy. The results demonstrate that the influenza murine model bears important similarities to the slow resolution of ARDS in patients. Despite their potent therapeutic effects in many models of acute inflammation and lung injury, MSCs do not improve influenza-mediated lung injury in mice.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
34
|
Gao P, Zhou Y, Xian L, Li C, Xu T, Plunkett B, Huang SK, Wan M, Cao X. Functional effects of TGF-β1 on mesenchymal stem cell mobilization in cockroach allergen-induced asthma. THE JOURNAL OF IMMUNOLOGY 2014; 192:4560-4570. [PMID: 24711618 DOI: 10.4049/jimmunol.1303461] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) have been suggested to participate in immune regulation and airway repair/remodeling. TGF-β1 is critical in the recruitment of stem/progenitor cells for tissue repair, remodeling, and cell differentiation. In this study, we sought to investigate the role of TGF-β1 in MSC migration in allergic asthma. We examined nestin expression (a marker for MSCs) and TGF-β1 signaling activation in airways in cockroach allergen extract (CRE)-induced mouse models. Compared with control mice, there were increased nestin(+) cells in airways and higher levels of active TGF-β1 in serum and p-Smad2/3 expression in lungs of CRE-treated mice. Increased activation of TGF-β1 signaling was also found in CRE-treated MSCs. We then assessed MSC migration induced by conditioned medium from CRE-challenged human epithelium in air/liquid interface culture in Transwell assays. MSC migration was stimulated by epithelial-conditioned medium, but was significantly inhibited by either TGF-β1-neutralizing Ab or TβR1 inhibitor. Intriguingly, increased migration of MSCs from blood and bone marrow to the airway was also observed after systemic injection of GFP(+) MSCs and from bone marrow of Nes-GFP mice following CRE challenge. Furthermore, TGF-β1-neutralizing Ab inhibited the CRE-induced MSC recruitment, but promoted airway inflammation. Finally, we investigated the role of MSCs in modulating CRE-induced T cell response and found that MSCs significantly inhibited CRE-induced inflammatory cytokine secretion (IL-4, IL-13, IL-17, and IFN-γ) by CD4(+) T cells. These results suggest that TGF-β1 may be a key promigratory factor in recruiting MSCs to the airways in mouse models of asthma.
Collapse
Affiliation(s)
- Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Zhou
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lingling Xian
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Changjun Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ting Xu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beverly Plunkett
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shau-Ku Huang
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National Health Research Institutes, Taiwan
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Maiti A, Jiranek WA. Inhibition of Methicillin-resistant Staphylococcus aureus-induced cytokines mRNA production in human bone marrow derived mesenchymal stem cells by 1,25-dihydroxyvitamin D3. BMC Cell Biol 2014; 15:11. [PMID: 24661536 PMCID: PMC3987888 DOI: 10.1186/1471-2121-15-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/18/2014] [Indexed: 11/26/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is the predominant cause of bone infection. Toll like receptors (TLRs) are an important segments of host response to infection and are expressed by a variety of cells including human mesenchymal stem cells (hMSCs). The active form of Vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has potent immunoregulatory properties, but the mechanism remains poorly understood. The genomic action of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), hormone-regulated transcription factor. VDR interacts with co-activators and co-repressors are associated with chromatin histone modifications and transcriptional regulation. The aim of our study is to explore MRSA-induced TLRs-mediated pro-inflammatory cytokines expression in hMSCs. Further, we hypothesized that 1,25(OH)2D3 inhibits MRSA-induced cytokines synthesis in hMSCs via inhibition of NF-кB transcription factor. Finally, we explored the regulatory role of 1,25(OH)2D3 in MRSA-mediated global epigenetic histone H3 mark, such as, trimethylated histone H3 lysine 9 (H3K9me3), which is linked to gene silencing. Results Quantitative PCR data revealed that MRSA-infection predominantly induced expression of TLRs 1, 2, 6, NR4A2, and inflammatory cytokines IL-8, IL-6, TNFα in hMSCs. MRSA-mediated TLR ligands reduced osteoblast differentiation and increased hMSCs proliferation, indicating the disrupted multipotency function of hMSCs. Pretreatment of 1,25(OH)2D3 followed by MRSA co-culture inhibited nuclear translocation of NF-кB-p65, reduced expression of NR4A2 and pro-inflammatory cytokines IL-8, IL-6, and TNFα in hMSCs. Further, NF-κB-p65, VDR, and NR4A2 were present in the same nuclear protein complex, indicating that VDR is an active part of the nuclear protein complexes for transcriptional regulation. Finally, 1,25(OH)2D3 activated VDR, restores the global level of H3K9me3, to repress MRSA-stimulated inflammatory cytokine IL-8 expression. Pretreatment of 5-dAZA, DNA methylatransferases (Dnmts) inhibitor, dramatically re-expresses 1,25(OH)2D3-MRSA-mediated silenced IL-8 gene. Conclusions This data indicates that TLR 1, 2, and 6 can be used as markers for localized S. aureus bone infection. 1,25(OH)2D3-VDR may exhibits its anti-inflammatory properties in MRSA-stimulated infection by inhibiting nuclear translocation of NF-kB-p65 and transcripts of IL-8, IL-6, TNFα, and NR4A2 in hMSCs. Finally, 1,25(OH)2D3-activated VDR, acting as an epigenetic regulator, inhibits synthesis of cytokines in MRSA-stimulated infection by restoring the global level of H3K9me3, a histone H3 mark for gene silencing.
Collapse
Affiliation(s)
- Aparna Maiti
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratory, 1112 East Clay Street, Richmond, USA.
| | | |
Collapse
|
36
|
Zhu YG, Hao Q, Monsel A, Feng XM, Lee JW. Adult stem cells for acute lung injury: remaining questions and concerns. Respirology 2014; 18:744-56. [PMID: 23578018 DOI: 10.1111/resp.12093] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome remains a major cause of morbidity and mortality in hospitalized patients. The pathophysiology of ALI involves complex interactions between the inciting event, such as pneumonia, sepsis or aspiration, and the host immune response resulting in lung protein permeability, impaired resolution of pulmonary oedema, an intense inflammatory response in the injured alveolus and hypoxemia. In multiple preclinical studies, adult stem cells have been shown to be therapeutic due to both the ability to mitigate injury and inflammation through paracrine mechanisms and perhaps to regenerate tissue by virtue of their multi-potency. These characteristics have stimulated intensive research efforts to explore the possibility of using stem or progenitor cells for the treatment of lung injury. A variety of stem or progenitor cells have been isolated, characterized and tested experimentally in preclinical animal models of ALI. However, questions remain concerning the optimal dose, route and the adult stem or progenitor cell to use. Here, the current mechanisms underlying the therapeutic effect of stem cells in ALI as well as the questions that will arise as clinical trials for ALI are planned are reviewed.
Collapse
Affiliation(s)
- Ying-Gang Zhu
- Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
37
|
Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J Biol Chem 2013; 289:2457-68. [PMID: 24307174 DOI: 10.1074/jbc.m113.521161] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pericytes and mesenchymal stem cells (MSCs) are ontogenically related, and in fact, no significant phenotypic differences could be observed by flow cytometry. Transcriptome analysis of human pericytes and MSCs revealed that 43 genes were up-regulated more than 10-fold in pericytes compared with MSCs. Identification of Toll-like receptor 4 (TLR4) as one of the most abundant RNA species in pericytes with respect to MSCs and confirmation of TLR4 expression on the cell surface led us to obtain a comprehensive overview of the expression program of lipopolysaccharide (LPS)-stimulated pericytes. Transcriptional profiling of LPS-treated cells revealed that 22 genes were up-regulated more than 5-fold. Of them, 10 genes encoded chemokines and cytokines (CXCL10, CCL20, IL8, CXCL1, IL6, CCL2, IL1B, CXCL2, IL1A, and CXCL6), and three genes encoded adhesion molecules (ICAM1, VCAM1, and SELE). LPS induced nuclear translocation of the transcription factor NF-κB in stimulated pericytes. Moreover, inhibition of NF-κB activation by SC-514 blocked LPS-induced up-regulation of a subset of chemokine genes, confirming the key role of NF-κB in LPS signaling in pericytes. At the protein level, we assessed the secretion of the proinflammatory cytokines and chemokines IL-6, IL-8, CXCL1, CXCL2, CXCL3, and CCL2 not only after LPS treatment but also in HMGB1-stimulated pericytes. Up-regulation of the adhesion molecules ICAM-1 and VCAM-1 resulted in an increased adhesion of peripheral blood leukocytes to an LPS-treated pericyte monolayer. The role of pericytes in the inflammatory context has been scarcely addressed; according to these results, pericytes should be considered as active players in the inflammatory cascade with potential physiopathological implications.
Collapse
Affiliation(s)
- Irene Guijarro-Muñoz
- From the Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D'Amico G, Fagioli F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Pessina A, Torre ML, Italian Mesenchymal Stem Cell Group. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 2013; 19:2459-73. [PMID: 23278600 PMCID: PMC3788322 DOI: 10.2174/1381612811319130015] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects.
Collapse
Affiliation(s)
- Laura de Girolamo
- Laboratorio di Biotecnologie applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
40
|
Paracrine activity of stem cells in therapy for acute lung injury and adult respiratory distress syndrome. J Trauma Acute Care Surg 2013; 74:1351-6. [PMID: 23609289 DOI: 10.1097/ta.0b013e318283d942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 2013; 187:751-60. [PMID: 23292883 DOI: 10.1164/rccm.201206-0990oc] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Mesenchymal stem cells secrete paracrine factors that can regulate lung permeability and decrease inflammation, making it a potentially attractive therapy for acute lung injury. However, concerns exist whether mesenchymal stem cells' immunomodulatory properties may have detrimental effects if targeted toward infectious causes of lung injury. OBJECTIVES Therefore, we tested the effect of mesenchymal stem cells on lung fluid balance, acute inflammation, and bacterial clearance. METHODS We developed an Escherichia coli pneumonia model in our ex vivo perfused human lung to test the therapeutic effects of mesenchymal stem cells on bacterial-induced acute lung injury. MEASUREMENTS AND MAIN RESULTS Clinical-grade human mesenchymal stem cells restored alveolar fluid clearance to a normal level, decreased inflammation, and were associated with increased bacterial killing and reduced bacteremia, in part through increased alveolar macrophage phagocytosis and secretion of antimicrobial factors. Keratinocyte growth factor, a soluble factor secreted by mesenchymal stem cells, duplicated most of the antimicrobial effects. In subsequent in vitro studies, we discovered that human monocytes expressed the keratinocyte growth factor receptor, and that keratinocyte growth factor decreased apoptosis of human monocytes through AKT phosphorylation, an effect that increased bacterial clearance. Inhibition of keratinocyte growth factor by a neutralizing antibody reduced the antimicrobial effects of mesenchymal stem cells in the ex vivo perfused human lung and monocytes grown in vitro injured with E. coli bacteria. CONCLUSIONS In E. coli-injured human lungs, mesenchymal stem cells restored alveolar fluid clearance, reduced inflammation, and exerted antimicrobial activity, in part through keratinocyte growth factor secretion.
Collapse
Affiliation(s)
- Jae W Lee
- Department of Anesthesiology, University of California-San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
42
|
Paracrine activity of stem cells in therapy for acute lung injury and adult respiratory distress syndrome. J Trauma Acute Care Surg 2013. [DOI: 10.1097/01586154-201305000-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Gorbunov NV, Garrison BR, McDaniel DP, Zhai M, Liao PJ, Nurmemet D, Kiang JG. Adaptive redox response of mesenchymal stromal cells to stimulation with lipopolysaccharide inflammagen: mechanisms of remodeling of tissue barriers in sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:186795. [PMID: 23710283 PMCID: PMC3654342 DOI: 10.1155/2013/186795] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/07/2023]
Abstract
Acute bacterial inflammation is accompanied by excessive release of bacterial toxins and production of reactive oxygen and nitrogen species (ROS and RNS), which ultimately results in redox stress. These factors can induce damage to components of tissue barriers, including damage to ubiquitous mesenchymal stromal cells (MSCs), and thus can exacerbate the septic multiple organ dysfunctions. The mechanisms employed by MSCs in order to survive these stress conditions are still poorly understood and require clarification. In this report, we demonstrated that in vitro treatment of MSCs with lipopolysaccharide (LPS) induced inflammatory responses, which included, but not limited to, upregulation of iNOS and release of RNS and ROS. These events triggered in MSCs a cascade of responses driving adaptive remodeling and resistance to a "self-inflicted" oxidative stress. Thus, while MSCs displayed high levels of constitutively present adaptogens, for example, HSP70 and mitochondrial Sirt3, treatment with LPS induced a number of adaptive responses that included induction and nuclear translocation of redox response elements such as NFkB, TRX1, Ref1, Nrf2, FoxO3a, HO1, and activation of autophagy and mitochondrial remodeling. We propose that the above prosurvival pathways activated in MSCs in vitro could be a part of adaptive responses employed by stromal cells under septic conditions.
Collapse
Affiliation(s)
- Nikolai V. Gorbunov
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-1402, USA
| | - Bradley R. Garrison
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-1402, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-1402, USA
| | - Pei-Jyun Liao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-1402, USA
| | - Dilber Nurmemet
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-1402, USA
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-1402, USA
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
44
|
Scott NM, Ng RL, Strickland DH, Bisley JL, Bazely SA, Gorman S, Norval M, Hart PH. Toward Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:535-47. [DOI: 10.1016/j.ajpath.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/06/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022]
|
45
|
Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 2012; 3:182. [PMID: 22783256 PMCID: PMC3387651 DOI: 10.3389/fimmu.2012.00182] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection, or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by Toll-like receptors (TLRs), toward either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. TLRs have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g., Crohn’s disease, rheumatoid arthritis) through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals) produced upon injury. Interest in understanding the effects of TLR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter TLR ligands at sites of injury, and it has been proven that the activation of TLRs in MSCs can modulate their function and therapeutic effect.
Collapse
Affiliation(s)
- Olga Delarosa
- Research and Development Department, TiGenix SA, Parque Tecnológico de Madrid Madrid, Spain
| | | | | |
Collapse
|
46
|
Nemeth K, Wilson T, Rada B, Parmelee A, Mayer B, Buzas E, Falus A, Key S, Masszi T, Karpati S, Mezey E. Characterization and function of histamine receptors in human bone marrow stromal cells. Stem Cells 2012; 30:222-31. [PMID: 22045589 DOI: 10.1002/stem.771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are several clinical trials worldwide using bone marrow stromal cells (BMSCs) as a cellular therapy to modulate immune responses in patients suffering from various inflammatory conditions. A deeper understanding of the molecular mechanisms involved in this modulatory effect could help us design better, more effective protocols to treat immune mediated diseases. In this study, we demonstrated that human BMSCs express H1, H2, and H4 histamine receptors and they respond to histamine stimulation with an increased interleukin 6 (IL-6) production both in vitro and in vivo. Using different receptor antagonists, we pinpointed the importance of the H1 histamine receptor, while Western blot analysis and application of various mitogen-activated protein kinase inhibitors highlighted the role of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase kinases in the observed effect. When BMSCs were pretreated with either histamine or degranulated human mast cells, they exhibited an enhanced IL-6-dependent antiapoptotic effect on neutrophil granulocytes. Based on these observations, it is likely that introduction of BMSCs into a histamine-rich environment (such as any allergic setting) or pretreatment of these cells with synthetic histamine could have a significant modulatory effect on the therapeutic potential of BMSCs.
Collapse
Affiliation(s)
- Krisztian Nemeth
- National Institutes of Dental and Craniofacial Research, Craniofacial and Skeletal Diseases Branch, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Q, Iida R, Shimazu T, Kincade PW. Replenishing B lymphocytes in health and disease. Curr Opin Immunol 2012; 24:196-203. [PMID: 22236696 DOI: 10.1016/j.coi.2011.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/12/2011] [Accepted: 12/20/2011] [Indexed: 01/04/2023]
Abstract
The path from hematopoietic stem cells (HSCs) to functional B lymphocytes has long been appreciated as a basic model of differentiation, but much clinically relevant information has also been obtained. It is now possible to conduct single cell studies with increasingly high resolution, revealing that individual stem and progenitor cells differ from each other with respect to differentiation potential and fates. B lymphopoiesis is now seen as a gradual and unsynchronized process where progenitors eventually become B lineage restricted. Major milestones have been identified, but a precise sequence need not be followed and oscillation between states is possible. It is not yet clear if this versatility has survival value, but information is accumulating about infections and age-related changes.
Collapse
Affiliation(s)
- Qingzhao Zhang
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
48
|
Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood 2012; 119:1801-9. [PMID: 22228625 DOI: 10.1182/blood-2011-10-384354] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multipotent, bone marrow-derived stromal cells (BMSCs, also known as mesenchymal stem cells [MSCs]), are culture-expanded, nonhematopoietic cells with immunomodulatory effects currently being investigated as novel cellular therapy to prevent and to treat clinical disease associated with aberrant immune response. Emerging preclinical studies suggest that BMSCs may protect against infectious challenge either by direct effects on the pathogen or through indirect effects on the host. BMSCs may reduce pathogen burden by inhibiting growth through soluble factors or by enhancing immune cell antimicrobial function. In the host, BMSCs may attenuate pro-inflammatory cytokine and chemokine induction, reduce pro-inflammatory cell migration into sites of injury and infection, and induce immunoregulatory soluble and cellular factors to preserve organ function. These preclinical studies provide provocative hints into the direction MSC therapeutics may take in the future. Notably, BMSCs appear to function as a critical fulcrum, providing balance by promoting pathogen clearance during the initial inflammatory response while suppressing inflammation to preserve host integrity and facilitate tissue repair. Such exquisite balance in BMSC function appears intrinsically linked to Toll-like receptor signaling and immune crosstalk.
Collapse
|
49
|
Abdi J, Engels F, Garssen J, Redegeld F. The role of Toll-like receptor mediated signalling in the pathogenesis of multiple myeloma. Crit Rev Oncol Hematol 2011; 80:225-40. [DOI: 10.1016/j.critrevonc.2010.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 10/05/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022] Open
|
50
|
Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 2011; 29:913-9. [PMID: 21506195 DOI: 10.1002/stem.643] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Morbidity and mortality have declined only modestly in patients with clinical acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), despite extensive research into the pathophysiology. Current treatment remains primarily supportive with lung-protective ventilation and a fluid conservative strategy. Pharmacologic therapies that reduce the severity of lung injury in preclinical models have not yet been translated to effective clinical treatment options. Consequently, further research in translational therapies is needed. Cell-based therapy with mesenchymal stem cells (MSCs) is one attractive new therapeutic approach. MSCs have the capacity to secrete multiple paracrine factors that can regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. This review will focus on recent studies, which support the potential therapeutic use of MSCs in ALI/ARDS, with an emphasis on the role of paracrine soluble factors.
Collapse
Affiliation(s)
- Jae W Lee
- Department of Anesthesiology, University of California San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|