1
|
Whitcomb LA, Cao X, Thomas D, Wiese C, Pessin AS, Zhang R, Wu JC, Weil MM, Chicco AJ. Mitochondrial reactive oxygen species impact human fibroblast responses to protracted γ-ray exposures. Int J Radiat Biol 2024; 100:890-902. [PMID: 38631047 PMCID: PMC11471570 DOI: 10.1080/09553002.2024.2338518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.
Collapse
Affiliation(s)
- Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alissa S. Pessin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Zhang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Xu C, Shang Z, Najafi M. Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms. Curr Drug Targets 2022; 23:1505-1525. [PMID: 36082868 DOI: 10.2174/1389450123666220907144131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.
Collapse
Affiliation(s)
- Chaofeng Xu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Zhongtu Shang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Lai X, Najafi M. Redox Interactions in Chemo/Radiation Therapy-induced Lung Toxicity; Mechanisms and Therapy Perspectives. Curr Drug Targets 2022; 23:1261-1276. [PMID: 35792117 DOI: 10.2174/1389450123666220705123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
Lung toxicity is a key limiting factor for cancer therapy, especially lung, breast, and esophageal malignancies. Radiotherapy for chest and breast malignancies can cause lung injury. However, systemic cancer therapy with chemotherapy may also induce lung pneumonitis and fibrosis. Radiotherapy produces reactive oxygen species (ROS) directly via interacting with water molecules within cells. However, radiation and other therapy modalities may induce the endogenous generation of ROS and nitric oxide (NO) by immune cells and some nonimmune cells such as fibroblasts and endothelial cells. There are several ROS generating enzymes within lung tissue. NADPH Oxidase enzymes, cyclooxygenase-2 (COX-2), dual oxidases (DUOX1 and DUOX2), and the cellular respiratory system in the mitochondria are the main sources of ROS production following exposure of the lung to anticancer agents. Furthermore, inducible nitric oxide synthase (iNOS) has a key role in the generation of NO following radiotherapy or chemotherapy. Continuous generation of ROS and NO by endothelial cells, fibroblasts, macrophages, and lymphocytes causes apoptosis, necrosis, and senescence, which lead to the release of inflammatory and pro-fibrosis cytokines. This review discusses the cellular and molecular mechanisms of redox-induced lung injury following cancer therapy and proposes some targets and perspectives to alleviate lung toxicity.
Collapse
Affiliation(s)
- Xixi Lai
- The Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
5
|
Karampitsakos T, Papaioannou O, Katsaras M, Sampsonas F, Tzouvelekis A. Interstitial Lung Diseases and the Impact of Gender. Clin Chest Med 2021; 42:531-541. [PMID: 34353457 DOI: 10.1016/j.ccm.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interstitial lung diseases encompass an amalgamated group of heterogeneous lung disorders, characterized by variable clinical and radiologic patterns. Despite an increase in our knowledge, pathogenesis of interstitial lung diseases remains largely unknown. Experimental evidence on the role of sex hormones in lung development and epidemiologic associations of gender differences with interstitial lung diseases prevalence fueled studies investigating the role of gender and sex hormones in the pathogenesis and treatment of pulmonary fibrosis. This review summarizes experimental and clinical data for the impact of gender and sex hormones on interstitial lung diseases and highlights future perspectives in the field.
Collapse
Affiliation(s)
| | | | - Matthaios Katsaras
- Department of Respiratory Medicine, University Hospital of Patras, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Greece
| | | |
Collapse
|
6
|
Chiou JT, Shi YJ, Lee YC, Wang LJ, Chen YJ, Chang LS. Carboxyl group-modified α-lactalbumin induces TNF-α-mediated apoptosis in leukemia and breast cancer cells through the NOX4/p38 MAPK/PP2A axis. Int J Biol Macromol 2021; 187:513-527. [PMID: 34310992 DOI: 10.1016/j.ijbiomac.2021.07.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
To clarify the mechanism of semicarbazide-modified α-lactalbumin (SEM-LA)-mediated cytotoxicity, we investigated its effect on human U937 leukemia cells and MCF-7 breast cancer cells in the current study. SEM-LA induced apoptosis in U937 cells, which showed increased NOX4 expression, procaspase-8 degradation, and t-Bid production. FADD depletion inhibited SEM-LA-elicited caspase-8 activation, t-Bid production, and cell death, indicating that SEM-LA activated death receptor-mediated apoptosis in U937 cells. SEM-LA stimulated Ca2+-mediated Akt activation, which in turn increased Sp1- and p300-mediated NOX4 transcription. The upregulation of NOX4 expression promoted ROS-mediated p38 MAPK phosphorylation, leading to protein phosphatase 2A (PP2A)-regulated tristetraprolin (TTP) degradation. Remarkably, TTP downregulation increased the stability of TNF-α mRNA, resulting in the upregulation of TNF-α protein expression. Abolishment of Ca2+-NOX4-ROS axis-mediated p38 MAPK activation attenuated SEM-LA-induced TNF-α upregulation and protected U937 cells from SEM-LA-mediated cytotoxicity. The restoration of TTP expression alleviated the effect of TNF-α upregulation and cell death induced by SEM-LA. Altogether, the data in this study demonstrate that SEM-LA activates TNF-α-mediated apoptosis in U937 cells through the NOX4/p38 MAPK/PP2A axis. We think that a similar pathway can also explain the death of MCF-7 human breast cancer cells after SEM-LA treatment.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
7
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. Resveratrol as an Adjuvant for Normal Tissues Protection and Tumor Sensitization. Curr Cancer Drug Targets 2021; 20:130-145. [PMID: 31738153 DOI: 10.2174/1568009619666191019143539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
8
|
PM014 attenuates radiation-induced pulmonary fibrosis via regulating NF-kB and TGF-b1/NOX4 pathways. Sci Rep 2020; 10:16112. [PMID: 32999298 PMCID: PMC7527517 DOI: 10.1038/s41598-020-72629-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy is the mainstay in the treatment of lung cancer, and lung fibrosis is a radiotherapy-related major side effect that can seriously reduce patient’s quality of life. Nevertheless, effective strategies for protecting against radiation therapy-induced fibrosis have not been developed. Hence, we investigated the radioprotective effects and the underlying mechanism of the standardized herbal extract PM014 on radiation-induced lung fibrosis. Ablative radiation dose of 75 Gy was focally delivered to the left lung of mice. We evaluated the effects of PM014 on radiation-induced lung fibrosis in vivo and in an in vitro model. Lung volume and functional changes were evaluated using the micro-CT and flexiVent system. Fibrosis-related molecules were evaluated by immunohistochemistry, western blot, and real-time PCR. A orthotopic lung tumour mouse model was established using LLC1 cells. Irradiated mice treated with PM014 showed a significant improvement in collagen deposition, normal lung volume, and functional lung parameters, and these therapeutic effects were better than those of amifostine. PM104 attenuated radiation-induced increases in NF-κB activity and inhibited radiation-induced p65 translocation, ROS production, DNA damage, and epithelial-mesenchymal transition. PM104 effectively alleviated fibrosis in an irradiated orthotopic mouse lung tumour model while not attenuating the efficacy of the radiation therapy by reduction of the tumour. Standardized herbal extract PM014 may be a potential therapeutic agent that is able to increase the efficacy of radiotherapy by alleviating radiation-induced lung fibrosis.
Collapse
|
9
|
Jin H, Yoo Y, Kim Y, Kim Y, Cho J, Lee YS. Radiation-Induced Lung Fibrosis: Preclinical Animal Models and Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12061561. [PMID: 32545674 PMCID: PMC7352529 DOI: 10.3390/cancers12061561] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/27/2023] Open
Abstract
Radiation-induced lung injury (RILI), including acute radiation pneumonitis and chronic radiation-induced lung fibrosis, is the most common side effect of radiation therapy. RILI is a complicated process that causes the accumulation, proliferation, and differentiation of fibroblasts and, finally, results in excessive extracellular matrix deposition. Currently, there are no approved treatment options for patients with radiation-induced pulmonary fibrosis (RIPF) partly due to the absence of effective targets. Current research advances include the development of small animal models reflecting modern radiotherapy, an understanding of the molecular basis of RIPF, and the identification of candidate drugs for prevention and treatment. Insights provided by this research have resulted in increased interest in disease progression and prognosis, the development of novel anti-fibrotic agents, and a more targeted approach to the treatment of RIPF.
Collapse
Affiliation(s)
- Hee Jin
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Youngjo Yoo
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Younghwa Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Yeijin Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul 03722, Korea
- Correspondence: (J.C.); (Y.-S.L.); Tel.: +82-2-2228-8113 (J.C.); +82-2-3277-3022 (Y.-S.L.); Fax: +82-2-3277-3051 (Y.-S.L.)
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
- Correspondence: (J.C.); (Y.-S.L.); Tel.: +82-2-2228-8113 (J.C.); +82-2-3277-3022 (Y.-S.L.); Fax: +82-2-3277-3051 (Y.-S.L.)
| |
Collapse
|
10
|
Wu L, Liu Y, Zhao Y, Li M, Guo L. Targeting DUSP7 signaling alleviates hepatic steatosis, inflammation and oxidative stress in high fat diet (HFD)-fed mice via suppression of TAK1. Free Radic Biol Med 2020; 153:140-158. [PMID: 32311490 DOI: 10.1016/j.freeradbiomed.2020.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
The non-alcoholic fatty liver disease (NAFLD), as a critical liver disease, is still lack of effective treatments because the molecular mechanism revealing the NAFLD pathogenesis remains unclear. Dual specific phosphatase 6 (DUSP7) shows effects on inflammatory response and is a negative feedback mechanism of the mitogen-activated protein kinase (MAPK) superfamily, which are critical factors in regulating NAFLD progression. However, the effects of DUSP7 on hepatic steatosis are still not fully understood. Here, we found that DUSP7 functioned as a negative regulator of NAFLD and in various metabolic disorders. DUSP7 expression was markedly reduced in liver samples from patients with simple hepatic steatosis or non-alcoholic steatohepatitis (NASH), as well as in liver tissues from high fat diet (HFD)-challenged mice or genetically obese (ob/ob) mice. DUSP7 knockout markedly accelerated insulin resistance, glucose intolerance, liver dysfunction, fibrosis and hepatic steatosis in HFD-fed mice. In addition, inflammatory response was significantly exacerbated in HFD-challenged mice with DUSP7 deletion, which was associated with the elevated activation of nuclear factor-κB (NF-κB) and MAPKs signaling pathways. Moreover, oxidative stress was detected in liver of HFD-induced mice, and this phenomenon was aggravated in mice with DUSP7 knockout. Importantly, we demonstrated that DUSP7 physically interacted with transforming growth factor β (TGF-β)-activated kinase (TAK1). DUSP7 deletion considerably promoted the activation of TAK1 in mice after HFD feeding, contributing to the lipid deposition, inflammatory response and reactive oxygen species (ROS) production. Taken together, DUSP7 might function as a protective factor against NAFLD development and metabolic disorder through alleviating dyslipidemia, inflammation and oxidative stress by directly interacting with TAK1 in hepatocytes, which was involved in the suppression of fibrosis. Thus, we may provide an effective strategy for the treatment of hepatic steatosis via targeting DUSP7.
Collapse
Affiliation(s)
- Liping Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yongcun Liu
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| | - Yuan Zhao
- Department of Gerontology, Shaanxi Provincial People's Hospita, Xi'an, 710068, China
| | - Meng Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ling Guo
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| |
Collapse
|
11
|
Cepas V, Collino M, Mayo JC, Sainz RM. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9020142. [PMID: 32041293 PMCID: PMC7070562 DOI: 10.3390/antiox9020142] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Diets are currently characterized by elevated sugar intake, mainly due to the increased consumption of processed sweetened foods and drinks during the last 40 years. Diet is the main source of advanced glycation endproducts (AGEs). These are toxic compounds formed during the Maillard reaction, which takes place both in vivo, in tissues and fluids under physiological conditions, favored by sugar intake, and ex vivo during food preparation such as baking, cooking, frying or storage. Protein glycation occurs slowly and continuously through life, driving AGE accumulation in tissues during aging. For this reason, AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, kidney injury, and age-related and neurodegenerative diseases. AGEs are associated with an increase in oxidative stress since they mediate the production of reactive oxygen species (ROS), increasing the intracellular levels of hydrogen peroxide (H2O2), superoxide (O2−), and nitric oxide (NO). The interaction of AGEs with the receptor for AGEs (RAGE) enhances oxidative stress through ROS production by NADPH oxidases inside the mitochondria. This affects mitochondrial function and ultimately influences cell metabolism under various pathological conditions. This short review will summarize all evidence that relates AGEs and ROS production, their relationship with diet-related diseases, as well as the latest research about the use of natural compounds with antioxidant properties to prevent the harmful effects of AGEs on health.
Collapse
Affiliation(s)
- Vanesa Cepas
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
| | - Massimo Collino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy;
| | - Juan C. Mayo
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| | - Rosa M. Sainz
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| |
Collapse
|
12
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Amini P, Tooli LF, Shabeeb D. Melatonin Modulates Regulation of NOX2 and NOX4 Following Irradiation in the Lung. ACTA ACUST UNITED AC 2019; 14:224-231. [DOI: 10.2174/1574884714666190502151733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Background:
Exposure to ionizing radiation may lead to chronic upregulation of inflammatory
mediators and pro-oxidant enzymes, which give rise to continuous production of reactive
oxygen species (ROS). NADPH oxidases are among the most important ROS producing enzymes.
Their upregulation is associated with DNA damage and genomic instability. In the present
study, we sought to determine the expressions of NADPH oxidases; NOX2 and NOX4, in rat’s lung
following whole body or pelvis irradiation. In addition, we evaluated the protective effect of melatonin
on the expressions of NOX2 and NOX4, as well as oxidative DNA injury.
Materials and Methods:
35 male rats were divided into 7 groups, G1: control; G2: melatonin (100 mg/kg) treatment;
G3: whole body irradiation (2 Gy); G4: melatonin plus whole body irradiation; G5: local
irradiation to pelvis area; G6: melatonin treatment plus 2 Gy gamma rays to pelvis area; G7: scatter
group. All the rats were sacrificed after 24 h. afterwards, the expressions of TGFβR1, Smad2, NF-
κB, NOX2 and NOX4 were detected using real-time PCR. Also, the level of 8-OHdG was detected
by ELISA, and NOX2 and NOX4 protein levels were detected by western blot.
Results:
Whole body irradiation led to the upregulation of all genes, while local pelvis irradiation
caused upregulation of TGFβR1, NF-κB, NOX2 and NOX4, as well as protein levels of NOX2 and
NOX4. Treatment with melatonin reduced the expressions of these genes and also alleviated oxidative
injury in both targeted and non-targeted lung tissues. Results also showed no significant reduction
for NOX2 and NOX4 in bystander tissues following melatonin treatment.
Conclusion:
It is possible that upregulation of NOX2 and NOX4 is involved in radiation-induced
targeted and non-targeted lung injury. Melatonin may reduce oxidative stress following upregulation
of these enzymes in directly irradiated lung tissues but not for bystander.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Farhadi Tooli
- Department of Microbiology, School of Biology, College of Sciences, Tehran University, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| |
Collapse
|
13
|
Elliot S, Periera-Simon S, Xia X, Catanuto P, Rubio G, Shahzeidi S, El Salem F, Shapiro J, Briegel K, Korach KS, Glassberg MK. MicroRNA let-7 Downregulates Ligand-Independent Estrogen Receptor-mediated Male-Predominant Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:1246-1257. [PMID: 31291549 PMCID: PMC6857483 DOI: 10.1164/rccm.201903-0508oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/10/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: The relevance of hormones in idiopathic pulmonary fibrosis (IPF), a predominantly male lung disease, is unknown.Objectives: To determine whether the ER (estrogen receptor) facilitates the development of pulmonary fibrosis and is mediated in part through microRNA regulation of ERα and ERα-activated profibrotic pathways.Methods: ER expression in male lung tissue and myofibroblasts from control subjects (n = 6) and patients with IPF (n = 6), aging bleomycin (BLM)-treated mice (n = 7), and BLM-treated AF2ERKI mice (n = 7) was determined. MicroRNAs that regulate ER and fibrotic pathways were assessed. Transfections with a reporter plasmid containing the 3' untranslated region of the gene encoding ERα (ESR1) with and without miRNA let-7 mimics or inhibitors or an estrogen response element-driven reporter construct (ERE) construct were conducted.Measurements and Main Results: ERα expression increased in IPF lung tissue, myofibroblasts, or BLM mice. In vitro treatment with let-7 mimic transfections in human myofibroblasts reduced ERα expression and associated fibrotic pathways. AF2ERKI mice developed BLM-induced lung fibrosis, suggesting a role for growth factors in stimulating ER and fibrosis. IGF-1 (insulin-like growth factor 1) expression was increased and induced a fourfold increase of an ERE construct.Conclusions: Our data show 1) a critical role for ER and let-7 in lung fibrosis, and 2) that IGF may stimulate ER in an E2-independent manner. These results underscore the role of sex steroid hormones and their receptors in diseases that demonstrate a sex prevalence, such as IPF.
Collapse
Affiliation(s)
| | | | - Xiaomei Xia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | | | | | - Shahriar Shahzeidi
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Fadi El Salem
- Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Josh Shapiro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | | | - Kenneth S. Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Marilyn K. Glassberg
- Department of Surgery
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| |
Collapse
|
14
|
Yang WH, Ding CKC, Sun T, Rupprecht G, Lin CC, Hsu D, Chi JT. The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Rep 2019; 28:2501-2508.e4. [PMID: 31484063 PMCID: PMC10440760 DOI: 10.1016/j.celrep.2019.07.107] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances, the poor outcomes in renal cell carcinoma (RCC) suggest novel therapeutics are needed. Ferroptosis is a form of regulated cell death, which may have therapeutic potential toward RCC; however, much remains unknown about the determinants of ferroptosis susceptibility. We found that ferroptosis susceptibility is highly influenced by cell density and confluency. Because cell density regulates the Hippo-YAP/TAZ pathway, we investigated the roles of the Hippo pathway effectors in ferroptosis. TAZ is abundantly expressed in RCC and undergoes density-dependent nuclear or cytosolic translocation. TAZ removal confers ferroptosis resistance, whereas overexpression of TAZS89A sensitizes cells to ferroptosis. Furthermore, TAZ regulates the expression of Epithelial Membrane Protein 1 (EMP1), which, in turn, induces the expression of nicotinamide adenine dinucleotide phosphate (NADPH) Oxidase 4 (NOX4), a renal-enriched reactive oxygen species (ROS)-generating enzyme essential for ferroptosis. These findings reveal that cell density-regulated ferroptosis is mediated by TAZ through the regulation of EMP1-NOX4, suggesting its therapeutic potential for RCC and other TAZ-activated tumors.
Collapse
Affiliation(s)
- Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tianai Sun
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gabrielle Rupprecht
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Hsu
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Yang Q, Zhang P, Liu T, Zhang X, Pan X, Cen Y, Liu Y, Zhang H, Chen X. Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 pathway. Biomed Pharmacother 2019; 115:108955. [PMID: 31075733 DOI: 10.1016/j.biopha.2019.108955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
|
16
|
Mortezaee K, Goradel NH, Amini P, Shabeeb D, Musa AE, Najafi M, Farhood B. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy. Curr Mol Pharmacol 2019; 12:50-60. [DOI: 10.2174/1874467211666181010154709] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
Abstract
Background:Radiotherapy is a treatment modality for cancer. For better therapeutic efficiency, it could be used in combination with surgery, chemotherapy or immunotherapy. In addition to its beneficial therapeutic effects, exposure to radiation leads to several toxic effects on normal tissues. Also, it may induce some changes in genomic expression of tumor cells, thereby increasing the resistance of tumor cells. These changes lead to the appearance of some acute reactions in irradiated organs, increased risk of carcinogenesis, and reduction in the therapeutic effect of radiotherapy.Discussion:So far, several studies have proposed different targets such as cyclooxygenase-2 (COX-2), some toll-like receptors (TLRs), mitogen-activated protein kinases (MAPKs) etc., for the amelioration of radiation toxicity and enhancing tumor response. NADPH oxidase includes five NOX and two dual oxidases (DUOX1 and DUOX2) subfamilies that through the production of superoxide and hydrogen peroxide, play key roles in oxidative stress and several signaling pathways involved in early and late effects of ionizing radiation. Chronic ROS production by NOX enzymes can induce genomic instability, thereby increasing the risk of carcinogenesis. Also, these enzymes are able to induce cell death, especially through apoptosis and senescence that may affect tissue function. ROS-derived NADPH oxidase causes apoptosis in some organs such as intestine and tongue, which mediate inflammation. Furthermore, continuous ROS production stimulates fibrosis via stimulation of fibroblast differentiation and collagen deposition. Evidence has shown that in contrast to normal tissues, the NOX system induces tumor resistance to radiotherapy through some mechanisms such as induction of hypoxia, stimulation of proliferation, and activation of macrophages. However, there are some contradictory results. Inhibition of NADPH oxidase in experimental studies has shown promising results for both normal tissue protection and tumor sensitization to ionizing radiation.Conclusion:In this article, we aimed to review the role of different subfamilies of NADPH oxidase in radiation-induced early and late normal tissue toxicities in different organs.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, faculty of paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Lierova A, Jelicova M, Nemcova M, Proksova M, Pejchal J, Zarybnicka L, Sinkorova Z. Cytokines and radiation-induced pulmonary injuries. JOURNAL OF RADIATION RESEARCH 2018; 59:709-753. [PMID: 30169853 PMCID: PMC6251431 DOI: 10.1093/jrr/rry067] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/11/2018] [Indexed: 05/20/2023]
Abstract
Radiation therapy is one of the most common treatment strategies for thorax malignancies. One of the considerable limitations of this therapy is its toxicity to normal tissue. The lung is the major dose-limiting organ for radiotherapy. That is because ionizing radiation produces reactive oxygen species that induce lesions, and not only is tumor tissue damaged, but overwhelming inflammatory lung damage can occur in the alveolar epithelium and capillary endothelium. This damage may result in radiation-induced pneumonitis and/or fibrosis. While describing the lung response to irradiation generally, the main focus of this review is on cytokines and their roles and functions within the individual stages. We discuss the relationship between radiation and cytokines and their direct and indirect effects on the formation and development of radiation injuries. Although this topic has been intensively studied and discussed for years, we still do not completely understand the roles of cytokines. Experimental data on cytokine involvement are fragmented across a large number of experimental studies; hence, the need for this review of the current knowledge. Cytokines are considered not only as molecular factors involved in the signaling network in pathological processes, but also for their diagnostic potential. A concentrated effort has been made to identify the significant immune system proteins showing positive correlation between serum levels and tissue damages. Elucidating the correlations between the extent and nature of radiation-induced pulmonary injuries and the levels of one or more key cytokines that initiate and control those damages may improve the efficacy of radiotherapy in cancer treatment and ultimately the well-being of patients.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marketa Nemcova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Magdalena Proksova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lenka Zarybnicka
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Corresponding author. Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic. Tel.: +420 973 253 219.
| |
Collapse
|
18
|
Min A, Lee YA, Kim KA, Shin MH. BLT1-mediated O-GlcNAcylation is required for NOX2-dependent migration, exocytotic degranulation and IL-8 release of human mast cell induced by Trichomonas vaginalis-secreted LTB 4. Microbes Infect 2018; 20:376-384. [PMID: 29859938 DOI: 10.1016/j.micinf.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Trichomonas vaginalis is a sexually-transmitted protozoan parasite that causes vaginitis and cervicitis. Although mast cell activation is important for provoking tissue inflammation during infection with parasites, information regarding the signaling mechanisms in mast cell activation and T. vaginalis infection is limited. O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of serine and threonine residues that functions as a critical regulator of intracellular signaling, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). We investigated if O-GlcNAcylation was associated with mast cell activation induced by T. vaginalis-derived secretory products (TvSP). Modified TvSP collected from live trichomonads treated with the 5-lipooxygenase inhibitor AA861 inhibited migration of mast cells. This result suggested that mast cell migration was caused by stimulation of T. vaginalis-secreted leukotrienes. Using the BLT1 antagonist U75302 or BLT1 siRNA, we found that migration of mast cells was evoked via LTB4 receptor (BLT1). Furthermore, TvSP induced protein O-GlcNAcylation and OGT expression in HMC-1 cells, which was prevented by transfection with BLT1 siRNA. TvSP-induced migration, ROS generation, CD63 expression and IL-8 release were significantly suppressed by pretreatment with OGT inhibitor ST045849 or OGT siRNA. These results suggested that BLT1-mediated OGlcNAcylation was important for mast cell activation during trichomoniasis.
Collapse
Affiliation(s)
- Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
19
|
Kosmacek EA, Chatterjee A, Tong Q, Lin C, Oberley-Deegan RE. MnTnBuOE-2-PyP protects normal colorectal fibroblasts from radiation damage and simultaneously enhances radio/chemotherapeutic killing of colorectal cancer cells. Oncotarget 2018; 7:34532-45. [PMID: 27119354 PMCID: PMC5085174 DOI: 10.18632/oncotarget.8923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 12/28/2022] Open
Abstract
Manganese porphyrins have been shown to be potent radioprotectors in a variety of cancer models. However, the mechanism as to how these porphyrins protect normal tissues from radiation damage still remains largely unknown. In the current study, we determine the effects of the manganese porphyrin, MnTnBuOE-2-PyP, on primary colorectal fibroblasts exposed to irradiation. We found that 2 Gy of radiation enhances the fibroblasts' ability to contract a collagen matrix, increases cell size and promotes cellular senesence. Treating fibroblasts with MnTnBuOE-2-PyP significantly inhibited radiation-induced collagen contraction, preserved cell morphology and also inhibited cellular senescence. We further showed that MnTnBuOE-2-PyP enhanced the overall viability of the fibroblasts following exposure to radiation but did not protect colorectal cancer cell viability. Specifically, MnTnBuOE-2-PyP in combination with irradiation, caused a significant decrease in tumor clonogenicity. Since locally advanced rectal cancers are treated with chemoradiation therapy followed by surgery and non-metastatic anal cancers are treated with chemoradiation therapy, we also investigated the effects of MnTnBuOE-2-PyP in combination with radiation, 5-fluorouracil with and without Mitomycin C. We found that MnTnBuOE-2-PyP in combination with Mitomycin C or 5-fluorouracil further enhances those compounds' ability to suppress tumor cell growth. When MnTnBuOE-2-PyP was combined with the two chemotherapeutics and radiation, we observed the greatest reduction in tumor cell growth. Therefore, these studies indicate that MnTnBuOE-2-PyP could be used as a potent radioprotector for normal tissue, while at the same time enhancing radiation and chemotherapy treatment for rectal and anal cancers.
Collapse
Affiliation(s)
- Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Qiang Tong
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
20
|
Hernández-Saavedra D, Sanders L, Perez MJ, Kosmider B, Smith LP, Mitchell JD, Yoshida T, Tuder RM. RTP801 Amplifies Nicotinamide Adenine Dinucleotide Phosphate Oxidase-4-Dependent Oxidative Stress Induced by Cigarette Smoke. Am J Respir Cell Mol Biol 2017; 56:62-73. [PMID: 27556956 DOI: 10.1165/rcmb.2016-0144oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tobacco smoke (TS) causes chronic obstructive pulmonary disease, including chronic bronchitis, emphysema, and asthma. Rtp801, an inhibitor of mechanistic target of rapamycin, is induced by oxidative stress triggered by TS. Its up-regulation drives lung susceptibility to TS injury by enhancing inflammation and alveolar destruction. We postulated that Rtp801 is not only increased by reactive oxygen species (ROS) in TS but also instrumental in creating a feedforward process leading to amplification of endogenous ROS generation. We used cigarette smoke extract (CSE) to model the effect of TS in wild-type (Wt) and knockout (KO-Rtp801) mouse lung fibroblasts (MLF). The production of superoxide anion in KO-Rtp801 MLF was lower than that in Rtp801 Wt cells after CSE treatment, and it was inhibited in Wt MLF by silencing nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4) expression with small interfering Nox4 RNA. We observed a cytoplasmic location of ROS formation by real-time redox changes using reduction-oxidation-sensitive green fluorescent protein profluorescent probes. Both the superoxide production and the increase in the cytoplasmic redox were inhibited by apocynin. Reduction in the activity of Sod and decreases in the expression of Sod2 and Gpx1 genes were associated with Rtp801 CSE induction. The ROS produced by Nox4 in conjunction with the decrease in cellular antioxidant enzymatic defenses may account for the observed cytoplasmic redox changes and cellular damage caused by TS.
Collapse
Affiliation(s)
- Daniel Hernández-Saavedra
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine.,2 Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, and
| | - Linda Sanders
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| | - Mario J Perez
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| | - Beata Kosmider
- 3 Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Lynelle P Smith
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| | - John D Mitchell
- 4 Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Toshinori Yoshida
- 5 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Rubin M Tuder
- 1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine
| |
Collapse
|
21
|
Judge JL, Lacy SH, Ku WY, Owens KM, Hernady E, Thatcher TH, Williams JP, Phipps RP, Sime PJ, Kottmann RM. The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis. Radiat Res 2017; 188:35-43. [PMID: 28463588 DOI: 10.1667/rr14620.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure of the lung to ionizing radiation that occurs in radiotherapy, as well as after accidental or intentional mass casualty incident can result in pulmonary fibrosis, which has few treatment options. Pulmonary fibrosis is characterized by an accumulation of extracellular matrix proteins that create scar tissue. Although the mechanisms leading to radiation-induced pulmonary fibrosis remain poorly understood, one frequent observation is the activation of the profibrotic cytokine transforming growth factor-beta (TGF-β). Our laboratory has shown that the metabolite lactate activates latent TGF-β by a reduction in extracellular pH. We recently demonstrated that lactate dehydrogenase-A (LDHA), the enzyme that produces lactate, is upregulated in patients with radiation-induced pulmonary fibrosis. Furthermore, genetic silencing of LDHA or pharmacologic inhibition using the LDHA inhibitor gossypol prevented radiation-induced extracellular matrix secretion in vitro through inhibition of TGF-β activation. In the current study, we hypothesized that LDHA inhibition in vivo prevents radiation-induced pulmonary fibrosis. To test this hypothesis, C57BL/6 mice received 5 Gy total-body irradiation plus 10 Gy thoracic irradiation from a 137Cs source to induce pulmonary fibrosis. Starting at 4 weeks postirradiation, mice were treated with 5 mg/kg of the LDHA inhibitor gossypol or vehicle daily until sacrifice at 26 weeks postirradiation. Exposure to radiation resulted in pulmonary fibrosis, characterized by an increase in collagen content, fibrosis area, extracellular matrix gene expression and TGF-β activation. Irradiated mice treated with gossypol had significantly reduced fibrosis outcomes, including reduced collagen content in the lungs, reduced expression of active TGF-β, LDHA and the transcription factor hypoxia-inducible factor-1 alpha (HIF-1α). These findings suggest that inhibition of LDHA protects against radiation-induced pulmonary fibrosis, and may be a novel therapeutic strategy for radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Judge
- a Department of Environmental Medicine, University of Rochester, Rochester, New York.,b Lung Biology and Disease Program, University of Rochester, Rochester, New York
| | - Shannon H Lacy
- a Department of Environmental Medicine, University of Rochester, Rochester, New York.,b Lung Biology and Disease Program, University of Rochester, Rochester, New York
| | - Wei-Yao Ku
- b Lung Biology and Disease Program, University of Rochester, Rochester, New York.,c Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| | - Kristina M Owens
- b Lung Biology and Disease Program, University of Rochester, Rochester, New York.,c Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| | - Eric Hernady
- a Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Thomas H Thatcher
- b Lung Biology and Disease Program, University of Rochester, Rochester, New York.,c Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| | - Jacqueline P Williams
- a Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Richard P Phipps
- a Department of Environmental Medicine, University of Rochester, Rochester, New York.,b Lung Biology and Disease Program, University of Rochester, Rochester, New York.,c Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| | - Patricia J Sime
- a Department of Environmental Medicine, University of Rochester, Rochester, New York.,b Lung Biology and Disease Program, University of Rochester, Rochester, New York.,c Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| | - R Matthew Kottmann
- b Lung Biology and Disease Program, University of Rochester, Rochester, New York.,c Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| |
Collapse
|
22
|
Grape seed proanthocyanidins prevent irradiation-induced differentiation of human lung fibroblasts by ameliorating mitochondrial dysfunction. Sci Rep 2017; 7:62. [PMID: 28246402 PMCID: PMC5427826 DOI: 10.1038/s41598-017-00108-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a long-term adverse effect of curative radiotherapy. The accumulation of myofibroblasts in fibroblastic foci is a pivotal feature of RILF. In the study, we found the inhibitory effect of grape seed proanthocyanidins (GSPs) on irradiation-induced differentiation of human fetal lung fibroblasts (HFL1). To explore the mechanism by which GSPs inhibit fibroblast differentiation, we measured the reactive oxygen species (ROS) levels, mitochondrial function, mitochondrial dynamics, glycolysis and the signaling molecules involved in fibroblast transdifferentiation. GSPs significantly reduced the production of cellular and mitochondrial ROS after radiation. The increases in mitochondrial respiration, proton leak, mitochondrial ATP production, lactate release and glucose consumption that occurred in response to irradiation were ameliorated by GSPs. Furthermore, GSPs increased the activity of complex I and improved the mitochondrial dynamics, which were disturbed by irradiation. In addition, the elevation of phosphorylation of p38MAPK and Akt, and Nox4 expression induced by irradiation were attenuated by GSPs. Blocking Nox4 attenuated irradiation-mediated fibroblast differentiation. Taken together, these results indicate that GSPs have the ability to inhibit irradiation-induced fibroblast-to-myofibroblast differentiation by ameliorating mitochondrial dynamics and mitochondrial complex I activity, regulating mitochondrial ROS production, ATP production, lactate release, glucose consumption and thereby inhibiting p38MAPK-Akt-Nox4 pathway.
Collapse
|
23
|
Pentoxifylline Regulates Plasminogen Activator Inhibitor-1 Expression and Protein Kinase A Phosphorylation in Radiation-Induced Lung Fibrosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1279280. [PMID: 28337441 PMCID: PMC5350299 DOI: 10.1155/2017/1279280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022]
Abstract
Purpose. Radiation-induced lung fibrosis (RILF) is a serious late complication of radiotherapy. In vitro studies have demonstrated that pentoxifylline (PTX) has suppressing effects in extracellular matrix production in fibroblasts, while the antifibrotic action of PTX alone using clinical dose is yet unexplored. Materials and Methods. We used micro-computed tomography (micro-CT) and histopathological analysis to evaluate the antifibrotic effects of PTX in a rat model of RILF. Results. Micro-CT findings showed that lung density, volume loss, and mediastinal shift are significantly increased at 16 weeks after irradiation. Simultaneously, histological analysis demonstrated thickening of alveolar walls, destruction of alveolar structures, and excessive collagen deposition in the irradiated lung. PTX treatment effectively attenuated the fibrotic changes based on both micro-CT and histopathological analyses. Western analysis also revealed increased levels of plasminogen activator inhibitor- (PAI-) 1 and fibronectin (FN) and PTX treatment reduced expression of PAI-1 and FN by restoring protein kinase A (PKA) phosphorylation but not TGF-β/Smad in both irradiated lung tissues and epithelial cells. Conclusions. Our results demonstrate the antifibrotic effect of PTX on radiation-induced lung fibrosis and its effect on modulation of PKA and PAI-1 expression as possible antifibrotic mechanisms.
Collapse
|
24
|
Liu B, Ren KD, Peng JJ, Li T, Luo XJ, Fan C, Yang JF, Peng J. Suppression of NADPH oxidase attenuates hypoxia-induced dysfunctions of endothelial progenitor cells. Biochem Biophys Res Commun 2017; 482:1080-1087. [PMID: 27913300 DOI: 10.1016/j.bbrc.2016.11.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) - derived reactive oxygen species (ROS) contribute to oxidative injury in hypoxia-induced pulmonary arterial hypertension. This study aims to evaluate the status of NOX in endothelial progenitor cells (EPCs) under hypoxic condition and to determine whether NOX inhibitors could attenuate hypoxia-induced dysfunctions of EPCs. EPCs were isolated from peripheral blood of SD rats and subjected to hypoxia (O2/N2/CO2, 1/94/5) for 24 h. The cells were collected for β-galactosidase or Hoechst staining, or for functional analysis (migration, adhesion and tube formation). The NOX expression, activity and H2O2 content in EPCs were measured. The results showed that hypoxia treatment promoted EPC senescence and apoptosis, accompanied by the deteriorated functions of EPCs (the reduced abilities in adhesion, migration and tube formation), as well as an increase in NOX2 and NOX4 expression, NOX activity and H2O2 production, these phenomena were attenuated by NOX inhibitors. Furthermore, administration of catalase could also improve the functions of hypoxia-treated EPCs. Based on these observations, we conclude that NOX-derived ROS contributes to the dysfunctions of EPCs under hypoxic condition. Thus, suppression of NOX may provide a novel strategy to improve endothelial functions in hypoxia-relevant diseases.
Collapse
Affiliation(s)
- Bin Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kai-Di Ren
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jing-Jie Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tao Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Jin-Fu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
25
|
Yan W, Xiaoli L, Guoliang A, Zhonghui Z, Di L, Ximeng L, Piye N, Li C, Lin T. SB203580 inhibits epithelial–mesenchymal transition and pulmonary fibrosis in a rat silicosis model. Toxicol Lett 2016; 259:28-34. [DOI: 10.1016/j.toxlet.2016.07.591] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
|
26
|
Zhang X, Hadley C, Jackson IL, Zhang Y, Zhang A, Spasojevic I, Haberle IB, Vujaskovic Z. Hypo-CpG methylation controls PTEN expression and cell apoptosis in irradiated lung. Free Radic Res 2016; 50:875-86. [PMID: 27367846 DOI: 10.1080/10715762.2016.1189078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The current study was designed to address our hypothesis that oxidative stress secondary to the ionizing event upregulates phosphatase and tensin homolog (PTEN) mRNA and protein in the lungs of C57BL/6J mice through oxidative DNA damage resulting in CpG hypomethylation in the PTEN promoter. METHODS Fibrosis-prone C57BL/6J mice were exposed to 0 or 15 Gy of 320 kVp X-rays to the whole thorax. Lung tissue was serially harvested at time points between one day and six months postirradiation. Tissue levels of PTEN mRNA, total protein, and phosphorylated PTEN, as well as CpG methylation of the PTEN promoter, expression of DNA methyltransferases 1 (Dnmt1) and 3a (Dnmt3a), NADPH oxidase 4 (Nox4) protein expression, and DNA damage levels were measured. The induction of DNA damage and global methylation changes were also examined in hydrogen peroxide (H2O2)-treated human umbilical vein endothelial cells (HUVECs) and human bronchial epithelial cells in vitro. RESULTS These experiments demonstrate that PTEN mRNA and protein, Nox4 protein, and DNA damage levels increase continuously from one day to six months following radiation exposure. Elevated PTEN transcription and translation are likely the result of the observed decrease in CpG methylation of the PTEN promoter region. This finding is not consistent with the observed increase in Dnmt1 and Dnmt3a protein expression, implicating an alternative mechanism as the driving force behind hypomethylation. In vitro results provide evidence that H2O2 can induce DNA damage and affect DNA methylation status. The Mn porphyrin-based superoxide dismutase (SOD) mimic MnTnHEx-2-PyP(5+ )exhibited partial rescue from radiation-induced hypomethylation. CONCLUSIONS Taken together, these data suggest that reactive oxygen species (ROS)-induced DNA damage results in hypomethylation of the PTEN promoter, upregulation of PTEN mRNA and protein, and a subsequent increase in apoptosis in irradiated lung tissue.
Collapse
Affiliation(s)
- Xiuwu Zhang
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , University of Maryland, School of Medicine , Baltimore , MD , USA
| | | | - Isabel L Jackson
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , University of Maryland, School of Medicine , Baltimore , MD , USA
| | - Yi Zhang
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , University of Maryland, School of Medicine , Baltimore , MD , USA
| | - Angel Zhang
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , University of Maryland, School of Medicine , Baltimore , MD , USA
| | - Ivan Spasojevic
- c Department of Radiation Oncology , Duke University Medical Center , Durham , NC , USA
| | - Ines Batinic Haberle
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , University of Maryland, School of Medicine , Baltimore , MD , USA
| | - Zeljko Vujaskovic
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , University of Maryland, School of Medicine , Baltimore , MD , USA ;,c Department of Radiation Oncology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
27
|
Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 805:46-57. [PMID: 27402482 DOI: 10.1016/j.mrgentox.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels. Inhibition of Nox4 activity by plumbagin blocks F-828-dependent ROS elevation. F-828 induces DNA breaks, as measured by the comet assay and γH2AX expression, and the activities of the transcription factors NF-kB and p53 increase. F-828 concentrations>25μM are cytotoxic; cell death occurs by necrosis. Expression levels of TGF-β, RHOA, RHOC, ROCK1, and SMAD2 increase following exposure to F-828. Our results raise the possibility that fullerene F-828 may induce pulmonary fibrosis in vivo.
Collapse
|
28
|
Li Q, Mao M, Qiu Y, Liu G, Sheng T, Yu X, Wang S, Zhu D. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension. PLoS One 2016; 11:e0149164. [PMID: 26871724 PMCID: PMC4752324 DOI: 10.1371/journal.pone.0149164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/28/2016] [Indexed: 01/01/2023] Open
Abstract
We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
- Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Min Mao
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
- Bio-pharmaceutical Key Laboratory of Harbin, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanli Qiu
- Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gaofeng Liu
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tingting Sheng
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Xiufeng Yu
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Shuang Wang
- Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Daling Zhu
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
- Bio-pharmaceutical Key Laboratory of Harbin, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|
29
|
Byrum SD, Burdine MS, Orr L, Moreland L, Mackintosh SG, Authier S, Pouliot M, Hauer-Jensen M, Tackett AJ. A Quantitative Proteomic Analysis of Urine from Gamma-Irradiated Non-Human Primates. ACTA ACUST UNITED AC 2015; 9. [PMID: 26962295 DOI: 10.4172/jpb.s10-005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular effects of total body gamma-irradiation exposure are of critical importance as large populations of people could be exposed either by terrorists, nuclear blast, or medical therapy. In this study, we aimed to identify changes in the urine proteome using a non-human primate model system, Rhesus macaque, in order to characterize effects of acute radiation syndrome following whole body irradiation (Co-60) at 6.7 Gy and 7.4 Gy with a twelve day observation period. The urine proteome is potentially a valuable and non-invasive diagnostic for radiation exposure. Using high-resolution mass spectrometry, we identified 2346 proteins in the urine proteome. We show proteins involved in disease, cell adhesion, and metabolic pathway were significantly changed upon exposure to differing levels and durations of radiation exposure. Cell damage increased at a faster rate at 7.4 Gy compared with 6.7 Gy exposures. We report sets of proteins that are putative biomarkers of time- and dose-dependent radiation exposure. The proteomic study presented here is a comprehensive analysis of the urine proteome following radiation exposure.
Collapse
Affiliation(s)
- Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Marie S Burdine
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Lisa Orr
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Linley Moreland
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | | | | | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
30
|
Hypoxia-Induced Epithelial-Mesenchymal Transition Is Involved in Bleomycin-Induced Lung Fibrosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:232791. [PMID: 26819949 PMCID: PMC4706863 DOI: 10.1155/2015/232791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis is a severe disease that contributes to the morbidity and mortality of a number of lung diseases. However, the molecular and cellular mechanisms leading to lung fibrosis are poorly understood. This study investigated the roles of epithelial-mesenchymal transition (EMT) and the associated molecular mechanisms in bleomycin-induced lung fibrosis. The bleomycin-induced fibrosis animal model was established by intratracheal injection of a single dose of bleomycin. Protein expression was measured by Western blot, immunohistochemistry, and immunofluorescence. Typical lesions of lung fibrosis were observed 1 week after bleomycin injection. A progressive increase in MMP-2, S100A4, α-SMA, HIF-1α, ZEB1, CD44, phospho-p44/42 (p-p44/42), and phospho-p38 MAPK (p-p38) protein levels as well as activation of EMT was observed in the lung tissues of bleomycin mice. Hypoxia increased HIF-1α and ZEB1 expression and activated EMT in H358 cells. Also, continuous incubation of cells under mild hypoxic conditions increased CD44, p-p44/42, and p-p38 protein levels in H358 cells, which correlated with the increase in S100A4 expression. In conclusion, bleomycin induces progressive lung fibrosis, which may be associated with activation of EMT. The fibrosis-induced hypoxia may further activate EMT in distal alveoli through a hypoxia-HIF-1α-ZEB1 pathway and promote the differentiation of lung epithelial cells into fibroblasts through phosphorylation of p38 MAPK and Erk1/2 proteins.
Collapse
|
31
|
Tashiro J, Elliot SJ, Gerth DJ, Xia X, Pereira-Simon S, Choi R, Catanuto P, Shahzeidi S, Toonkel RL, Shah RH, El Salem F, Glassberg MK. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis. Transl Res 2015; 166:554-67. [PMID: 26432923 PMCID: PMC4922649 DOI: 10.1016/j.trsl.2015.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, whereas remaining irreversible in aged mice suggests that impairment of pulmonary regeneration and repair is associated with aging. Because mesenchymal stem cells (MSCs) may promote repair after injury, we postulated that differences in MSCs from aged mice may underlie postinjury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4 months) and old (22 months) male mice were infused 1 day after intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and α(v)-integrin messenger RNA (mRNA) expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs BLM controls. Lung mRNA expression of tumor necrosis factor-alpha was also decreased in aged BLM mice receiving young-donor ASCs vs BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor (IGF) receptor, and protein kinase B (AKT) activation compared with old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation.
Collapse
Affiliation(s)
- Jun Tashiro
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Sharon J Elliot
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - David J Gerth
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Xiaomei Xia
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Simone Pereira-Simon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Rhea Choi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Paola Catanuto
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Shahriar Shahzeidi
- Division of Pediatric Pulmonology, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Rebecca L Toonkel
- Department of Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Fla
| | - Rahil H Shah
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Fadi El Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marilyn K Glassberg
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla; Division of Pediatric Pulmonology, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla.
| |
Collapse
|
32
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Raposeiras-Roubín S, González-Peteiro M, González-Juanatey JR, Álvarez E. Glycated human serum albumin induces NF-κB activation and endothelial nitric oxide synthase uncoupling in human umbilical vein endothelial cells. J Diabetes Complications 2015; 29:984-92. [PMID: 26297216 DOI: 10.1016/j.jdiacomp.2015.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
AIMS Non-enzymatic glycated proteins could mediate diabetes vascular complications, but the molecular mechanisms are unknown. Our objective was to find new targets involved in the glycated human serum albumin (gHSA)-enhanced extracellular reactive oxygen species (ROS) production in human endothelial cells. METHODS & RESULTS Some nuclear factors and phosphorylation cascades were analysed. gHSA activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which up-regulated NOX4 and P22PHOX and enhanced ROS production. Pharmacological inhibition of NF-κB reversed gHSA-enhanced NOX4 expression and decreased gHSA-induced ROS production in extra- and intracellular spaces. The inhibition of activator protein-1 (AP-1) induced a rise in NOX4 and P22PHOX subunit expression and a down-regulation of endothelial nitric oxide synthase (eNOS). AP-1 inhibition also enhanced extracellular ROS production in the presence of serum albumin, but not with gHSA. These results were explained by the eNOS uncoupling induced by gHSA, also demonstrated in this study. Phosphatidylinositol 3-kinase or mitogen-activated protein kinase kinase 1/2 did not show to be involved in gHSA-induced ROS production. CONCLUSIONS All together, the results suggested that gHSA-enhanced ROS production in endothelium is mediated by: 1) NF-κB activation and subsequence up-regulation of NADPH oxidase, 2) eNOS uncoupling. AP-1, although is not directly affected by gHSA, is another target for regulating NADPH oxidase and eNOS expression in endothelial cells.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Beatriz Paradela-Dobarro
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Sergio Raposeiras-Roubín
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Mercedes González-Peteiro
- Unidad de Medicina Materno-Fetal, Servicio de Obstetricia, Complejo Hospitalario Universitario de Santiago de Compostela, 15706 A Coruña, Spain
| | - José R González-Juanatey
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Ezequiel Álvarez
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain.
| |
Collapse
|
33
|
Qian J, Tian W, Jiang X, Tamosiuniene R, Sung YK, Shuffle EM, Tu AB, Valenzuela A, Jiang S, Zamanian RT, Fiorentino DF, Voelkel NF, Peters-Golden M, Stenmark KR, Chung L, Rabinovitch M, Nicolls MR. Leukotriene B4 Activates Pulmonary Artery Adventitial Fibroblasts in Pulmonary Hypertension. Hypertension 2015; 66:1227-1239. [PMID: 26558820 DOI: 10.1161/hypertensionaha.115.06370] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension. LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of this study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely composed of fibroblasts. Here, we demonstrate that LTB4 enhanced human pulmonary artery adventitial fibroblast proliferation, migration, and differentiation in a dose-dependent manner through its cognate G-protein-coupled receptor, BLT1. LTB4 activated human pulmonary artery adventitial fibroblast by upregulating p38 mitogen-activated protein kinase as well as Nox4-signaling pathways. In an autoimmune model of pulmonary hypertension, inhibition of these pathways blocked perivascular inflammation, decreased Nox4 expression, reduced reactive oxygen species production, reversed arteriolar adventitial fibroblast activation, and attenuated pulmonary hypertension development. This study uncovers a novel mechanism by which LTB4 further promotes pulmonary arterial hypertension pathogenesis, beyond its established effects on endothelial and smooth muscle cells, by activating adventitial fibroblasts.
Collapse
Affiliation(s)
- Jin Qian
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| | - Rasa Tamosiuniene
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| | - Yon K Sung
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| | - Eric M Shuffle
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| | - Allen B Tu
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| | | | - Shirley Jiang
- Stanford University, School of Medicine, Stanford, CA 94305
| | | | | | | | | | - Kurt R Stenmark
- University of Colorado Denver, School of Medicine, Aurora, CO 80045
| | - Lorinda Chung
- Stanford University, School of Medicine, Stanford, CA 94305
| | | | - Mark R Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA 94304.,Stanford University, School of Medicine, Stanford, CA 94305
| |
Collapse
|
34
|
Wieczfinska J, Sokolowska M, Pawliczak R. NOX Modifiers-Just a Step Away from Application in the Therapy of Airway Inflammation? Antioxid Redox Signal 2015; 23:428-45. [PMID: 24383678 PMCID: PMC4543397 DOI: 10.1089/ars.2013.5783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE NADPH oxidase (NOX) enzymes, which are widely expressed in different airway cell types, not only contribute to the maintenance of physiological processes in the airways but also participate in the pathogenesis of many acute and chronic diseases. Therefore, the understanding of NOX isoform regulation, expression, and the manner of their potent inhibition might lead to effective therapeutic approaches. RECENT ADVANCES The study of the role of NADPH oxidases family in airway physiology and pathophysiology should be considered as a work in progress. While key questions still remain unresolved, there is significant progress in terms of our understanding of NOX importance in airway diseases as well as a more efficient way of using NOX modifiers in human settings. CRITICAL ISSUES Agents that modify the activity of NADPH enzyme components would be considered useful tools in the treatment of various airway diseases. Nevertheless, profound knowledge of airway pathology, as well as the mechanisms of NOX regulation is needed to develop potent but safe NOX modifiers. FUTURE DIRECTIONS Many compounds seem to be promising candidates for development into useful therapeutic agents, but their clinical potential is yet to be demonstrated. Further analysis of basic mechanisms in human settings, high-throughput compound scanning, clinical trials with new and existing molecules, and the development of new drug delivery approaches are the main directions of future studies on NOX modifiers. In this article, we discuss the current knowledge with regard to NOX isoform expression and regulation in airway inflammatory diseases as well as the aptitudes and therapeutic potential of NOX modifiers.
Collapse
Affiliation(s)
- Joanna Wieczfinska
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| | - Milena Sokolowska
- 2 Critical Care Medicine Department, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Rafal Pawliczak
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
35
|
Wang YY, Zhang CY, Ma YQ, He ZX, Zhe H, Zhou SF. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice. Drug Des Devel Ther 2015; 9:3163-78. [PMID: 26124639 PMCID: PMC4482372 DOI: 10.2147/dddt.s80958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me), one of the synthetic triterpenoids, has been found to have potent anti-inflammatory and anticancer properties in vitro and in vivo. However, its usefulness in mitigating radiation-induced lung injury (RILI), including radiation-induced lung inflammation and fibrosis, has not been tested. The aim of this study was to explore the therapeutic effect of CDDO-Me on RILI in mice and the underlying mechanisms. Herein, we found that administration of CDDO-Me improved the histopathological score, reduced the number of inflammatory cells and concentrations of total protein in bronchoalveolar lavage fluid, suppressed secretion and expression of proinflammatory cytokines, including transforming growth factor-β and interleukin-6, elevated expression of the anti-inflammatory cytokine interleukin-10, and downregulated the mRNA level of profibrotic genes, including for fibronectin, α-smooth muscle actin, and collagen I. CDDO-Me attenuated radiation-induced lung inflammation. CDDO-Me also decreased the Masson's trichrome stain score, hydroxyproline content, and mRNA level of profibrotic genes, and blocked radiation-induced collagen accumulation and fibrosis. Collectively, these findings suggest that CDDO-Me ameliorates radiation-induced lung inflammation and fibrosis, and this synthetic triterpenoid is a promising novel therapeutic agent for RILI. Further mechanistic, efficacy, and safety studies are warranted to elucidate the role of CDDO-Me in the management of RILI.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Cui-Ying Zhang
- Graduate School, Ningxia Medical University, Guiyang, People’s Republic of China
| | - Ya-Qiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, FL, USA
| |
Collapse
|
36
|
Weyemi U, Redon CE, Aziz T, Choudhuri R, Maeda D, Parekh PR, Bonner MY, Arbiser JL, Bonner WM. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat Res 2015; 183:262-70. [PMID: 25706776 DOI: 10.1667/rr13799.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.
Collapse
Affiliation(s)
- Urbain Weyemi
- a Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim MH, Jung SY, Ahn J, Hwang SG, Woo HJ, An S, Nam SY, Lim DS, Song JY. Quantitative proteomic analysis of single or fractionated radiation-induced proteins in human breast cancer MDA-MB-231 cells. Cell Biosci 2015; 5:2. [PMID: 26056562 PMCID: PMC4459121 DOI: 10.1186/2045-3701-5-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiotherapy is widely used to treat cancer alone or in combination with surgery, chemotherapy, and immunotherapy. However, damage to normal tissues and radioresistance of tumor cells are major obstacles to successful radiotherapy. Furthermore, the immune network around tumors appears to be connected to tumor progression and recurrence. METHODS We investigated the cytosolic proteins produced by irradiated tumor cells by using a quantitative proteomic approach based on stable isotope labeling by amino acids in cell culture. MDA-MB-231 breast cancer cells were treated with a single or fractionated 10 Gray dose of (137)Cs γ-radiation, which was selected based on cell viability. RESULTS Radiation-induced proteins were differentially expressed based on the fractionated times of radiation and were involved in multiple biological functions, including energy metabolism and cytoskeleton organization. We identified 46 proteins increased by at least 1.3-fold, and high ranks were determined for cathepsin D, gelsolin, arginino-succinate synthase 1, peroxiredoxin 5, and C-type mannose receptor 2. CONCLUSION These results suggest that a number of tumor-derived factors upregulated by γ-radiation are promising targets for modulation of the immune response during radiation treatment.
Collapse
Affiliation(s)
- Mi-Hyoung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706 Korea ; Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Youn Jung
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706 Korea
| | - Jiyeon Ahn
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706 Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706 Korea
| | - Hee-Jong Woo
- Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sungkwan An
- Department of Microbiological Engineering, Kon-Kuk University, Seoul, Korea
| | - Seon Young Nam
- Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd, Seoul, Korea
| | - Dae-Seog Lim
- Department of Applied Bioscience, CHA University, Gyeonggi-do, Korea
| | - Jie-Young Song
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706 Korea
| |
Collapse
|
38
|
Meng Y, Li T, Zhou GS, Chen Y, Yu CH, Pang MX, Li W, Li Y, Zhang WY, Li X. The angiotensin-converting enzyme 2/angiotensin (1-7)/Mas axis protects against lung fibroblast migration and lung fibrosis by inhibiting the NOX4-derived ROS-mediated RhoA/Rho kinase pathway. Antioxid Redox Signal 2015; 22:241-58. [PMID: 25089563 PMCID: PMC4283064 DOI: 10.1089/ars.2013.5818] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) generated by NADPH oxidase-4 (NOX4) have been shown to initiate lung fibrosis. The migration of lung fibroblasts to the injured area is a crucial early step in lung fibrosis. The angiotensin-converting enzyme 2 (ACE2)/angiotensin (1-7) [Ang(1-7)]/Mas axis, which counteracts the ACE/angiotensin II (AngII)/angiotensin II type 1 receptor (AT1R) axis, has been shown to attenuate pulmonary fibrosis. Nevertheless, the exact molecular mechanism remains unclear. AIMS To investigate the different effects of the two axes of the renin-angiotensin system (RAS) on lung fibroblast migration and extracellular matrix accumulation by regulating the NOX4-derived ROS-mediated RhoA/Rho kinase (Rock) pathway. RESULTS In vitro, AngII significantly increased the NOX4 level and ROS production in lung fibroblasts, which stimulated cell migration and α-collagen I synthesis through the RhoA/Rock pathway. These effects were attenuated by N-acetylcysteine (NAC), diphenylene iodonium, and NOX4 RNA interference. Moreover, Ang(1-7) and lentivirus-mediated ACE2 (lentiACE2) suppressed AngII-induced migration and α-collagen I synthesis by inhibiting the NOX4-derived ROS-mediated RhoA/Rock pathway. However, Ang(1-7) alone exerted analogous effects on AngII. In vivo, constant infusion with Ang(1-7) or intratracheal instillation with lenti-ACE2 shifted the RAS balance toward the ACE2/Ang(1-7)/Mas axis, alleviated bleomycin-induced lung fibrosis, and inhibited the RhoA/Rock pathway by reducing NOX4-derived ROS. INNOVATION This study suggests that the ACE2/Ang(1-7)/Mas axis may be targeted by novel pharmacological antioxidant strategies to treat lung fibrosis induced by AngII-mediated ROS. CONCLUSION The ACE2/Ang(1-7)/Mas axis protects against lung fibroblast migration and lung fibrosis by inhibiting the NOX4-derived ROS-mediated RhoA/Rock pathway.
Collapse
Affiliation(s)
- Ying Meng
- 1 Department of Respiratory Diseases, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fujiki K, Inamura H, Matsuoka M. Phosphorylation of FOXO3a by PI3K/Akt pathway in HK-2 renal proximal tubular epithelial cells exposed to cadmium. Arch Toxicol 2013; 87:2119-27. [DOI: 10.1007/s00204-013-1077-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/06/2013] [Indexed: 12/28/2022]
|
40
|
Peng H, Li W, Seth DM, Nair AR, Francis J, Feng Y. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells. PLoS One 2013; 8:e58339. [PMID: 23516464 PMCID: PMC3597628 DOI: 10.1371/journal.pone.0058339] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/02/2013] [Indexed: 02/07/2023] Open
Abstract
The binding of renin or prorenin to the (pro)renin receptor (PRR) promotes angiotensin (Ang) II formation and mediates Ang II-independent signaling pathways. In the central nervous system (CNS), Ang II regulates blood pressure via inducing oxidative stress; however, the role of PRR-mediated Ang II-independent signaling pathways in oxidative stress in the CNS remains undefined. To address this question, Neuro-2A cells were infected with control virus or an adeno-associated virus encoding the human PRR. Human PRR over-expression alone increased ROS levels, NADPH oxidase activity, as well as NADPH oxidase (NOX) isoforms 2 and 4 mRNA expression levels and these effects were not blocked by losartan. Moreover, the increase in NOX 2 and NOX 4 mRNA levels, NADPH oxidase activity, and ROS levels induced by PRR over-expression was prevented by mitogen activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) inhibition, and phosphoinositide 3 kinase/Akt (IP3/Akt) inhibition, indicating that PRR regulates NOX activity and ROS formation in neuro-2A cells through Ang II-independent ERK1/2 and IP3/Akt activation. Interestingly, at a concentration of 2 nM or higher, prorenin promoted Ang II formation, and thus further increased the ROS levels in cultured Neuro-2A cells via PRR. In conclusion, human PRR over-expression induced ROS production through both angiotensin II-dependent and -independent mechanisms. We showed that PRR-mediated angiotensin II-independent ROS formation is associated with activation of the MAPK/ERK1/2 and PI3/Akt signaling pathways and up-regulation of mRNA level of NOX 2 and NOX4 isoforms in neuronal cells.
Collapse
Affiliation(s)
- Hua Peng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Wencheng Li
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Dale M. Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Anand R. Nair
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Yumei Feng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hsieh CH, Wu CP, Lee HT, Liang JA, Yu CY, Lin YJ. NADPH oxidase subunit 4 mediates cycling hypoxia-promoted radiation resistance in glioblastoma multiforme. Free Radic Biol Med 2012; 53:649-58. [PMID: 22713363 DOI: 10.1016/j.freeradbiomed.2012.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 11/22/2022]
Abstract
Cycling hypoxia is a well-recognized phenomenon within animal and human solid tumors. It mediates tumor progression and radiotherapy resistance through mechanisms that involve reactive oxygen species (ROS) production. However, details of the mechanism underlying cycling hypoxia-mediated radioresistance remain obscure. We have previously shown that in glioblastoma, NADPH oxidase subunit 4 (Nox4) is a critical mediator involved in cycling hypoxia-mediated ROS production and tumor progression. Here, we examined the impact of an in vivo tumor microenvironment on Nox4 expression pattern and its impact on radiosensitivity in GBM8401 and U251, two glioblastoma cell lines stably transfected with a dual hypoxia-inducible factor-1 (HIF-1) signaling reporter construct. Furthermore, in order to isolate hypoxic tumor cell subpopulations from human glioblastoma xenografts based on the physiological and molecular characteristics of tumor hypoxia, several techniques were utilized. In this study, the perfusion marker Hoechst 33342 staining and HIF-1 activation labeling were used together with immunofluorescence imaging and fluorescence-activated cell sorting (FACS). Our results revealed that Nox4 was predominantly highly expressed in the endogenous cycling hypoxic areas with HIF-1 activation and blood perfusion within the solid tumor microenvironment. Moreover, when compared to the normoxic or chronic hypoxic cells, the cycling hypoxic tumor cells derived from glioblastoma xenografts have much higher Nox4 expression, ROS levels, and radioresistance. Nox4 suppression in intracerebral glioblastoma-bearing mice suppressed tumor microenvironment-mediated radioresistance and enhanced the efficiency of radiotherapy. In summary, our findings indicated that cycling hypoxia-induced Nox4 plays an important role in tumor microenvironment-promoted radioresistance in glioblastoma; hence, targeting Nox4 may be an attractive therapeutic strategy for blocking cycling hypoxia-mediated radioresistance.
Collapse
Affiliation(s)
- Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
42
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
43
|
Kim EM, Kim J, Park JK, Hwang SG, Kim WJ, Lee WJ, Kang SW, Um HD. Bcl-w promotes cell invasion by blocking the invasion-suppressing action of Bax. Cell Signal 2012; 24:1163-72. [DOI: 10.1016/j.cellsig.2012.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Carnesecchi S, Pache JC, Barazzone-Argiroffo C. NOX enzymes: potential target for the treatment of acute lung injury. Cell Mol Life Sci 2012; 69:2373-85. [PMID: 22581364 PMCID: PMC7095984 DOI: 10.1007/s00018-012-1013-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), is characterized by acute inflammation, disruption of the alveolar-capillary barrier, and in the organizing stage by alveolar pneumocytes hyperplasia and extensive lung fibrosis. The cellular and molecular mechanisms leading to the development of ALI/ARDS are not completely understood, but there is evidence that reactive oxygen species (ROS) generated by inflammatory cells as well as epithelial and endothelial cells are responsible for inflammatory response, lung damage, and abnormal repair. Among all ROS-producing enzymes, the members of NADPH oxidases (NOXs), which are widely expressed in different lung cell types, have been shown to participate in cellular processes involved in the maintenance of lung integrity. It is not surprising that change in NOXs’ expression and function is involved in the development of ALI/ARDS. In this context, the use of NOX inhibitors could be a possible therapeutic perspective in the management of this syndrome. In this article, we summarize the current knowledge concerning some cellular aspects of NOXs localization and function in the lungs, consider their contribution in the development of ALI/ARDS and discuss the place of NOX inhibitors as potential therapeutical target.
Collapse
Affiliation(s)
- Stéphanie Carnesecchi
- Department of Pediatrics/Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland.
| | | | | |
Collapse
|
45
|
Han JE, Choi JW. Control of JNK for an activation of NADPH oxidase in LPS-stimulated BV2 microglia. Arch Pharm Res 2012; 35:709-15. [PMID: 22553064 DOI: 10.1007/s12272-012-0415-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 12/29/2022]
Abstract
NADPH oxidase is a main regulator for H(2)O(2) productivity in neuroinflammatory cells, including microglia, under various CNS diseases and its activity is controlled by mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). However, little is known about the link between NADPH oxidase-driven H(2)O(2) productivity and JNK in microglia. The purpose of this study is to uncover the link using lipopolysaccharide (LPS)-stimulated BV2 microglia. LPS-stimulated BV2 microglia produced H(2)O(2) that was decreased by NADPH oxidase inhibitors, including 4-(2-aminoethyl)benzenesulfonylfluoride and diphenyleneiodonium chloride. In addition, NADPH oxidase was activated in LPS-stimulated BV2 cells. These results suggest that NAPDH oxidase is a main factor for H(2)O(2) productivity in LPS-stimulated BV2 microglia. Based on a semi-quantitative PCR analysis, two of NADPH oxidase components, p47(phox) and gp91(phox), were involved in the activation of NADPH oxidase because transcriptional levels of both components were upregulated by LPS. Role of JNK in NADPH oxidase-regulated H(2)O(2) productivity was pursued using specific inhibitors, including SP600125 and JNK inhibitory peptide (JIP). Inhibition of the JNK pathways significantly reduced H(2)O(2) productivity, which was closely related to the attenuation of NADPH oxidase activation and the upregulation of components. We conclude that JNK pathways are involved in NADPH oxidase-mediated H(2)O(2) productivity in BV2 microglia.
Collapse
Affiliation(s)
- Jung Eun Han
- Department of Pharmacology, College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | | |
Collapse
|
46
|
Johnson D, Allman E, Nehrke K. Regulation of acid-base transporters by reactive oxygen species following mitochondrial fragmentation. Am J Physiol Cell Physiol 2012; 302:C1045-54. [PMID: 22237403 DOI: 10.1152/ajpcell.00411.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial morphology is determined by the balance between the opposing processes of fission and fusion, each of which is regulated by a distinct set of proteins. Abnormalities in mitochondrial dynamics have been associated with a variety of diseases, including neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dominant optic atrophy. Although the genetic determinants of fission and fusion are well recognized, less is known about the mechanism(s) whereby altered morphology contributes to the underlying pathophysiology of these disease states. Previous work from our laboratory identified a role for mitochondrial dynamics in intracellular pH homeostasis in both mammalian cell culture and in the genetic model organism Caenorhabditis elegans. Here we show that the acidification seen in mutant animals that have lost the ability to fuse their mitochondrial inner membrane occurs through a reactive oxygen species (ROS)-dependent mechanism and can be suppressed through the use of pharmacological antioxidants targeted specifically at the mitochondrial matrix. Physiological approaches examining the activity of endogenous mammalian acid-base transport proteins in rat liver Clone 9 cells support the idea that ROS signaling to sodium-proton exchangers contributes to acidification. Because maintaining pH homeostasis is essential for cell function and viability, the results of this work provide new insight into the pathophysiology associated with the loss of inner mitochondrial membrane fusion.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, NY 14642, USA
| | | | | |
Collapse
|
47
|
Rahman MM, Kundu JK, Shin JW, Na HK, Surh YJ. Docosahexaenoic acid inhibits UVB-induced activation of NF-κB and expression of COX-2 and NOX-4 in HR-1 hairless mouse skin by blocking MSK1 signaling. PLoS One 2011; 6:e28065. [PMID: 22140508 PMCID: PMC3225387 DOI: 10.1371/journal.pone.0028065] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/31/2011] [Indexed: 02/07/2023] Open
Abstract
Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Docosahexaenoic acid (DHA), a representative ω-3 polyunsaturated fatty acid, has been reported to possess anti-inflammatory and chemopreventive properties. In the present study, we investigated the molecular mechanisms underlying the inhibitory effects of DHA on UVB-induced inflammation in mouse skin. Our study revealed that topical application of DHA prior to UVB irradiation attenuated the expression of cyclooxygenase-2 (COX-2) and NAD(P)H:oxidase-4 (NOX-4) in hairless mouse skin. DHA pretreatment also attenuated UVB-induced DNA binding of nuclear factor-kappaB (NF-κB) through the inhibition of phosphorylation of IκB kinase-α/β, phosphorylation and degradation of IκBα and nuclear translocation of p50 and p65. In addition, UVB-induced phosphorylation of p65 at the serine 276 residue was significantly inhibited by topical application of DHA. Irradiation with UVB induced phosphorylation of mitogen and stress-activated kinase-1 (MSK1), extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase, and all these events were attenuated by pretreatment with DHA. Blocking ERK and p38 MAP kinase signaling by U0126 and SB203580, respectively, diminished MSK1 phosphorylation in UVB-irradiated mouse skin. Pretreatment with H-89, a pharmacological inhibitor of MSK1, abrogated UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 in mouse skin. In conclusion, topically applied DHA inhibits the UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 by blocking the phosphorylation of MSK1, a kinase downstream of ERK and p38 MAP kinase, in hairless mouse skin.
Collapse
Affiliation(s)
- Md. Mostafizur Rahman
- Tumor Microenvironment Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Joydeb Kumar Kundu
- Tumor Microenvironment Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jun-Wan Shin
- Tumor Microenvironment Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungsin Women's University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
48
|
Goldberg H, Whiteside C, Fantus IG. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. Am J Physiol Endocrinol Metab 2011; 301:E713-26. [PMID: 21712532 DOI: 10.1152/ajpendo.00108.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.
Collapse
Affiliation(s)
- Howard Goldberg
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
49
|
Sardina JL, López-Ruano G, Sánchez-Sánchez B, Llanillo M, Hernández-Hernández A. Reactive oxygen species: are they important for haematopoiesis? Crit Rev Oncol Hematol 2011; 81:257-74. [PMID: 21507675 DOI: 10.1016/j.critrevonc.2011.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 02/07/2023] Open
Abstract
The production of reactive oxygen species (ROS) has traditionally been related to deleterious effects for cells. However, it is now widely accepted that ROS can play an important role in regulating cellular signalling and gene expression. NADPH oxidase ROS production seems to be especially important in this regard. Some lines of evidence suggest that ROS may be important modulators of cell differentiation, including haematopoietic differentiation, in both physiologic and pathologic conditions. Here we shall review how ROS can regulate cell signalling and gene expression. We shall also focus on the importance of ROS for haematopoietic stem cell (HSC) biology and for haematopoietic differentiation. We shall review the involvement of ROS and NADPH oxidases in cancer, and in particular what is known about the relationship between ROS and haematological malignancies. Finally, we shall discuss the use of ROS as cancer therapeutic targets.
Collapse
Affiliation(s)
- José L Sardina
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|