1
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
2
|
Zhang R, Wang X, Xie Z, Cao T, Jiang S, Huang L. Lipoxin A4 methyl ester attenuated ketamine-induced neurotoxicity in SH-SY5Y cells via regulating leptin pathway. Toxicol In Vitro 2023; 89:105581. [PMID: 36907275 DOI: 10.1016/j.tiv.2023.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Ketamine, the widely used intravenous anesthetic, has been reported to cause neurotoxicity and disturbs normal neurogenesis. However, the efficacy of current treatment strategies targeting ketamine's neurotoxicity remains limited. Lipoxin A4 methyl ester (LXA4 ME) is relatively stable lipoxin analog, which serves an important role in protecting against early brain injury. The purpose of this study was to investigate the protective effect of LXA4 ME on ketamine-caused cytotoxicity in SH-SY5Y cells, as well as the underlying mechanisms. Cell viability, apoptosis and endoplasmic reticulum stress (ER stress) were detected by adopting experimental techniques including CCK-8 assay, flow cytometry, western blotting and transmission electron microscope. Furthermore, examining the expression of leptin and its receptor (LepRb), we also measured the levels of activation of the leptin signaling pathway. Our results showed that LXA4 ME intervention promoted the cell viability, inhibited cell apoptosis, and reduced the expression of ER stress related protein and morphological changes induced by ketamine. In addition, inhibition of leptin signaling pathway caused by ketamine could be reversed by LXA4 ME. However, as the specific inhibitor of leptin pathway, leptin antagonist triple mutant human recombinant (leptin tA) attenuated the cytoprotective effect of LXA4 ME against ketamine-induced neurotoxicity. In conclusion, our findings demonstrated LXA4 ME could exert a neuroprotective effect on ketamine-induced neuronal injury via activation of the leptin signaling pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China; Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People's Hospital), No. 1166, Dongfanghong West Road, Decheng District, Dezhou City, Shandong Province, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China; Hebei Medical University, No.48, Donggang Road, Shijiazhuang, Hebei, China
| | - Ziyu Xie
- Hebei Medical University, No.48, Donggang Road, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China
| | - Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Feedback Interaction Between Apelin and Endoplasmic Reticulum Stress in the Rat Myocardium. J Cardiovasc Pharmacol 2023; 81:21-34. [PMID: 36084017 DOI: 10.1097/fjc.0000000000001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/01/2022] [Indexed: 01/26/2023]
Abstract
ABSTRACT Apelin is an endogenous active peptide, playing a crucial role in regulating cardiovascular homeostasis. This study aimed to investigate the interaction between apelin and endoplasmic reticulum stress (ERS). Tunicamycin (Tm) and dithiothreitol (DTT) were used to induce ERS in the ex vivo cultured myocardium of rats. Myocardial injury was determined by the activities of lactate dehydrogenase and creatine kinase-MB in the culture medium. The protein levels of an ERS-associated molecule, apelin, and its receptor angiotensin domain type 1 receptor-associated proteins (APJ) in the myocardium were determined by western blot analysis. The level of apelin in the culture medium was determined by enzyme immunoassay. Administration of Tm and DTT triggered ERS activation and myocardial injury, and led to a decrease in protein levels of apelin and APJ, in a dose-dependent manner. Integrated stress response inhibitor, an inhibitor of eukaryotic initiation factor 2α phosphorylation that is commonly used to prevent activation of protein kinase R-like ER kinase cascades, blocked ERS-induced myocardial injury and reduction of apelin and APJ levels. The ameliorative effect of integrated stress response inhibitor was partially inhibited by [Ala]-apelin-13, an antagonist of APJ. Furthermore, apelin treatment inhibited activation of the 3 branches of ERS induced by Tm and DTT in a dose-dependent manner, thereby preventing Tm-induced or DTT-induced myocardial injury. The negative feedback regulation between ERS activation and apelin/APJ suppression might play a critical role in myocardial injury. Restoration of apelin/APJ signaling provides a potential target for the treatment and prevention of ERS-associated tissue injury and diseases.
Collapse
|
4
|
Kim JT, Lim MA, Lee SE, Kim HJ, Koh HY, Lee JH, Jun SM, Kim JM, Kim KH, Shin HS, Cho SW, Kim KS, Shong M, Koo BS, Kang YE. Adrenomedullin2 stimulates progression of thyroid cancer in mice and humans under nutrient excess conditions. J Pathol 2022; 258:264-277. [PMID: 36098211 PMCID: PMC9826144 DOI: 10.1002/path.5997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023]
Abstract
Thyroid cancer is associated with genetic alterations, e.g. BRAFV600E , which may cause carcinomatous changes in hormone-secreting epithelial cells. Epidemiological studies have shown that overnutrition is related to the development and progression of cancer. In this study, we attempted to identify the cell nonautonomous factor responsible for the progression of BRAFV600E thyroid cancer under overnutrition conditions. We developed a mouse model for inducible thyrocyte-specific activation of BRAFV600E , which showed features similar to those of human papillary thyroid cancer. LSL-BrafV600E ;TgCreERT2 showed thyroid tumour development in the entire thyroid, and the tumour showed more abnormal cellular features with mitochondrial abnormalities in mice fed a high-fat diet (HFD). Transcriptomics revealed that adrenomedullin2 (Adm2) was increased in LSL-BrafV600E ;TgCreERT2 mice fed HFD. ADM2 was upregulated on the addition of a mitochondrial complex I inhibitor or palmitic acid with integrated stress response (ISR) in cancer cells. ADM2 stimulated protein kinase A and extracellular signal-regulated kinase in vitro. The knockdown of ADM2 suppressed the proliferation and migration of thyroid cancer cells. We searched The Cancer Genome Atlas and Genotype-Tissue Expression databases and found that increased ADM2 expression was associated with ISR and poor overall survival. Consistently, upregulated ADM2 expression in tumour cells and circulating ADM2 molecules were associated with aggressive clinicopathological parameters, including body mass index, in thyroid cancer patients. Collectively, we identified that ADM2 is released from cancer cells under mitochondrial stress resulting from overnutrition and acts as a secretory factor determining the progressive properties of thyroid cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jung Tae Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Department of Medical ScienceChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology‐Head and Neck SurgeryChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Hyun Yong Koh
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sang Mi Jun
- Center for Research EquipmentKorea Basic Science InstituteCheongjuRepublic of Korea,Convergent Research Center for Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea
| | - Jin Man Kim
- Department of PathologyChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Kun Ho Kim
- Department of Nuclear MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Hyo Shik Shin
- Department of Internal MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Sun Wook Cho
- Department of Internal MedicineSeoul National University College of MedicineSeoulRepublic of Korea,Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea,Cellus Inc.SeoulRepublic of Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Division of Endocrinology and Metabolism, Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Department of Medical ScienceChungnam National University School of MedicineDaejeonRepublic of Korea,Division of Endocrinology and Metabolism, Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Bon Seok Koo
- Department of Medical ScienceChungnam National University School of MedicineDaejeonRepublic of Korea,Department of Otolaryngology‐Head and Neck SurgeryChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Division of Endocrinology and Metabolism, Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| |
Collapse
|
5
|
The Ameliorative Effect of Berberine on Vascular Calcification by Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2022; 80:294-304. [PMID: 35580317 DOI: 10.1097/fjc.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Vascular calcification (VC), which currently cannot be prevented or treated, is an independent risk factor for cardiovascular events. We aimed to investigate the ameliorative effect of berberine on VC via the activation of Akt signaling and inhibition of endoplasmic reticulum stress (ERS). The VC model was induced by high-dose Vitamin D 3 in rats and beta-glycerophosphate in primary vascular smooth muscle cells of rat aortas, which were evaluated by Alizarin red staining to determine the calcium content and alkaline phosphatase activity. ERS was determined by the levels of GRP78 and CHOP, whereas that of the Akt signaling pathway was determined by the levels of phosphorylated Akt and GSK3β. VC was significantly ameliorated by berberine treatment in vivo and in vitro, and the inhibition of ERS and the activation of the Akt/GSK3 signaling pathway. In the vascular smooth muscle cells of primary rats, tunicamycin, an ERS activator, blocked the ameliorative effect of berberine on VC and ERS, but not the activation of Akt/GSK3. The ameliorative effects of berberine on VC, ERS, and the Akt signaling pathway were all prevented by inhibitor IV. Four-phenylbutyric acid, an ERS inhibitor, can restore the ameliorative effect of berberine on VC and ERS that was blocked by inhibitor IV. Our results are the first to demonstrate the ameliorative effect of VC that was mediated by the activation of the Akt signaling pathway and inhibition of ERS. These results may provide a new pharmaceutical candidate for the prevention and treatment of VC.
Collapse
|
6
|
Zhang LS, Zhang JS, Hou YL, Lu WW, Ni XQ, Lin F, Liu XY, Wang XJ, Yu YR, Jia MZ, Tang CS, Han L, Chai SB, Qi YF. Intermedin 1-53 Inhibits NLRP3 Inflammasome Activation by Targeting IRE1α in Cardiac Fibrosis. Inflammation 2022; 45:1568-1584. [PMID: 35175495 DOI: 10.1007/s10753-022-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigated cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography, and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) were found in Ang II-treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II-induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3, and anti-fibrotic response. In conclusion, IMD alleviated cardiac fibrosis by inhibiting NLRP3 inflammasome activation through suppressing IRE1α via the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Lin-Shuang Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.,School of Nursing, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Sheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Yue-Long Hou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei-Wei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Xian-Qiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Fan Lin
- Department of Respiratory Disease, Peking University Third Hospital, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ling Han
- Department of Cardiology, Fu Xing Hospital, Capital Medical University, A20 Fuxingmenwai Street, Xicheng District, Beijing, 100038, China.
| | - San-Bao Chai
- Department of Endocrinology, Peking University International Hospital, Life Park Road No. 1, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China.
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China. .,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
7
|
Wang F, Kong L, Wang W, Shi L, Wang M, Chai Y, Xu J, Kang Q. Adrenomedullin 2 improves bone regeneration in type 1 diabetic rats by restoring imbalanced macrophage polarization and impaired osteogenesis. Stem Cell Res Ther 2021; 12:288. [PMID: 33985585 PMCID: PMC8117361 DOI: 10.1186/s13287-021-02368-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Both advanced glycation end products (AGEs) and AGE-mediated M1 macrophage polarization contribute to bone marrow mesenchymal stem cell (BMSC) dysfunction, leading to impaired bone regeneration in type 1 diabetes mellitus (T1DM). Adrenomedullin 2 (ADM2), an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family, exhibits various biological activities associated with the inhibition of inflammation and reduction of insulin resistance. However, the effects and underlying mechanisms of ADM2 in AGE-induced macrophage M1 polarization, BMSC dysfunction, and impaired bone regeneration remain poorly understood. Methods The polarization of bone marrow-derived macrophages was verified using flow cytometry analysis. Alkaline phosphatase (ALP) staining, ALP activity detection, and alizarin red staining were performed to assess the osteogenesis of BMSCs. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, and immunofluorescence staining were used to assess polarization markers, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and osteogenic markers. In vivo, a distraction osteogenesis (DO) rat model with T1DM was established, and tibia samples were collected at different time points for radiological, biomechanical, and histological analyses, to verify the effects of ADM2 on bone regeneration and M2 polarization under diabetic conditions. Results ADM2 treatment reversed AGE-induced M1 macrophage polarization towards the M2 phenotype, which was partially achieved by the peroxisome proliferator-activated receptor γ (PPARγ)-mediated inhibition of NF-κB signaling. The PPARγ inhibitor GW9662 significantly attenuated the effects of ADM2. Besides, ADM2 treatment improved the AGE-impaired osteogenic potential of BMSCs in vitro. Furthermore, ADM2 accelerated bone regeneration, as revealed by improved radiological and histological manifestations and biomechanical parameters, accompanied by improved M2 macrophage polarization in diabetic DO rats, and these effects were partially blocked by GW9662 administration. Conclusions These results indicate that ADM2 enhances diabetic bone regeneration during DO, by attenuating AGE-induced imbalances in macrophage polarization, partly through PPARγ/NF-κB signaling, and improving AGE-impaired osteogenic differentiation of BMSCs simultaneously. These findings reveal that ADM2 may serve as a potential bioactive factor for promoting bone regeneration under diabetic conditions, and imply that management of inflammation and osteogenesis, in parallel, may present a promising therapeutic strategy for diabetic patients during DO treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02368-9.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Wenbo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Li Shi
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Mengwei Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yimin Chai
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
8
|
Su RY, Geng XY, Yang Y, Yin HS. Nesfatin-1 inhibits myocardial ischaemia/reperfusion injury through activating Akt/ERK pathway-dependent attenuation of endoplasmic reticulum stress. J Cell Mol Med 2021; 25:5050-5059. [PMID: 33939297 PMCID: PMC8178279 DOI: 10.1111/jcmm.16481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Nesfatin‐1 (encoded by NUCB2) is a cardiac peptide possessing protective activities against myocardial ischaemia/reperfusion (MI/R) injury. However, the regulation of NUCB2/nesfatin‐1 and the molecular mechanisms underlying its roles in MI/R injury are not clear. Here, by investigating a mouse MI/R injury model developed with transient myocardial ischaemia followed by reperfusion, we found that the levels of NUCB2 transcript and nesfatin‐1 amount in the heart were both decreased, suggesting a transcriptional repression of NUCB2/nesfatin‐1 in response to MI/R injury. Moreover, cardiac nesfatin‐1 restoration reduced infarct size, troponin T (cTnT) level and myocardial apoptosis, supporting its cardioprotection against MI/R injury in vivo. Mechanistically, the Akt/ERK pathway was activated, and in contrast, endoplasmic reticulum (ER) stress was attenuated by nesfatin‐1 following MI/R injury. In an in vitro system, similar results were obtained in nesfatin‐1‐treated H9c2 cardiomyocytes with hypoxia/reoxygenation (H/R) injury. More importantly, the treatment of wortmannin, an inhibitor of Akt/ERK pathway, abrogated nesfatin‐1 effects on attenuating ER stress and H/R injury in H9c2 cells. Furthermore, nesfatin‐1‐mediated protection against H/R injury also vanished in the presence of tunicamycin (TM), an ER stress inducer. Lastly, Akt/ERK inhibition reversed nesfatin‐1 effects on mouse ER stress and MI/R injury in vivo. Taken together, these findings demonstrate that NUCB2/nesfatin‐1 inhibits MI/R injury through attenuating ER stress, which relies on Akt/ERK pathway activation. Hence, our study provides a molecular basis for understanding how NUCB2/nesfatin‐1 reduces MI/R injury.
Collapse
Affiliation(s)
- Rui-Ying Su
- Department of Cardiac Function Inspection, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Yong Geng
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Yang
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong-Shan Yin
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Wang F, Wang W, Kong L, Shi L, Wang M, Chai Y, Xu J, Kang Q. Accelerated Bone Regeneration by Adrenomedullin 2 Through Improving the Coupling of Osteogenesis and Angiogenesis via β-Catenin Signaling. Front Cell Dev Biol 2021; 9:649277. [PMID: 33937244 PMCID: PMC8079771 DOI: 10.3389/fcell.2021.649277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Both osteogenic differentiation and the pro-angiogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during distraction osteogenesis (DO). Adrenomedullin 2 (ADM2), an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family, exhibits various biological activities associated with the inhibition of inflammation and the attenuation of ischemic-hypoxic injury. However, the effects and underlying mechanisms of ADM2 in osteogenic differentiation and the pro-angiogenic potential of BMSCs, along with bone regeneration, remain poorly understood. In the present study, we found that osteogenic induction enhanced the pro-angiogenic potential of BMSCs, and ADM2 treatment further improved the osteogenic differentiation and pro-angiogenic potential of BMSCs. Moreover, the accumulation and activation of β-catenin, which is mediated by the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the activation of protein kinase B (AKT), have been shown to contribute to the effects of ADM2 on BMSCs. In vivo, ADM2 accelerated vessel expansion and bone regeneration, as revealed by improved radiological and histological manifestations and the biomechanical parameters in a rat DO model. Based on the present results, we concluded that ADM2 accelerates bone regeneration during DO by enhancing the osteogenic differentiation and pro-angiogenic potential of BMSCs, partly through the NF-κB/β-catenin and AKT/β-catenin pathways. Moreover, these findings imply that BMSC-mediated coupling of osteogenesis and angiogenesis may be a promising therapeutic strategy for DO patients.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenbo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Shi
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mengwei Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yimin Chai
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Li Y, Lu H, Xu W, Shang Y, Zhao C, Wang Y, Yang R, Jin S, Wu Y, Wang X, Teng X. Apelin ameliorated acute heart failure via inhibiting endoplasmic reticulum stress in rabbits. Amino Acids 2021; 53:417-427. [PMID: 33609179 DOI: 10.1007/s00726-021-02955-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate whether inhibition of endoplasmic reticulum stress (ERS) mediated the ameliorative effect of apelin on acute heart failure (AHF). Rabbit model of AHF was induced by sodium pentobarbital. Cardiac dysfunction and injury were detected in the rabbit models of AHF, including impaired hemodynamic parameters and increased levels of CK-MB and cTnI. Apelin treatment dramatically improved cardiac impairment caused by AHF. ERS, indexed by increased GRP78, CHOP, and cleaved-caspase12 protein levels, was simultaneously attenuated by apelin. Apelin also could ameliorate increased protein levels of cleaved-caspase3 and Bax, and improved decreased protein levels of Bcl-2. Two common ERS stimulators, tunicamycin (Tm) and dithiothreitol (DTT) blocked the ameliorative effect of apelin on AHF. Phosphorylated Akt levels increased after apelin treatment in the rabbit models of AHF. The Akt signaling inhibitors wortmannin and LY294002 could block the cardioprotective effect of apelin, which could be relieved by ERS inhibitor 4-phenyl butyric acid (4-PBA). The aforementioned beneficial effects of apelin could all be blocked by APJ receptor antagonist F13A. 4-PBA and SC79, an Akt activator, can restore the ameliorative effect of apelin on AHF blocked by F13A. Apelin treatment dramatically ameliorated cardiac impairment caused by AHF, which might be mediated by APJ/Akt/ERS signaling pathway. These results will shed new light on AHF therapy.
Collapse
Affiliation(s)
- Yanqing Li
- Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chines Medicine, Shijiazhuang, 050011, China
| | - Haohan Lu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Wenyuan Xu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yuxuan Shang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Cece Zhao
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yipu Wang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Rui Yang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050017, China
| | - Xiaoning Wang
- The Second Hospital, Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China.
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Laboratory Animal Science, Shijiazhuang, 050017, China.
| |
Collapse
|
11
|
Ni XQ, Zhang YR, Jia LX, Lu WW, Zhu Q, Ren JL, Chen Y, Zhang LS, Liu X, Yu YR, Jia MZ, Ning ZP, Du J, Tang CS, Qi YF. Inhibition of Notch1-mediated inflammation by intermedin protects against abdominal aortic aneurysm via PI3K/Akt signaling pathway. Aging (Albany NY) 2021; 13:5164-5184. [PMID: 33535178 PMCID: PMC7950288 DOI: 10.18632/aging.202436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
The Notch1-mediated inflammatory response participates in the development of abdominal aortic aneurysm (AAA). The vascular endogenous bioactive peptide intermedin (IMD) plays an important role in maintaining vascular homeostasis. However, whether IMD inhibits AAA by inhibiting Notch1-mediated inflammation is unclear. In this study, we found Notch intracellular domain (NICD) and hes1 expression were higher in AAA patients’ aortas than in healthy controls. In angiotensin II (AngII)-induced AAA mouse model, IMD treatment significantly reduced AAA incidence and maximal aortic diameter. IMD inhibited AngII-enlarged aortas and -degraded elastic lamina, reduced NICD, hes1 and inflammatory factors expression, decreased infiltration of CD68 positive macrophages and the NOD-like receptor family pyrin domain containing 3 protein level. IMD inhibited lipopolysaccharide-induced macrophage migration in vitro and regulated macrophage polarization. Moreover, IMD overexpression significantly reduced CaCl2-induced AAA incidence and down-regulated NICD and hes1 expression. However, IMD deficiency showed opposite results. Mechanically, IMD treatment significantly decreased cleavage enzyme-a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) level. Pre-incubation with IMD17-47 (IMD receptors blocking peptide) and the phosphatidylinositol 3-kinase/protein kinase b (PI3K/Akt) inhibitor LY294002 reversed ADAM10 level. In conclusion, exogenous and endogenous IMD could inhibit the development of AAA by inhibiting Notch1 signaling-mediated inflammation via reducing ADAM10 through IMD receptor and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Li-Xin Jia
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing 100029, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Xin Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing 100029, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| |
Collapse
|
12
|
Xu Z, Liu X, Li Y, Gao H, He T, Zhang C, Hao W, Teng X. Shuxuetong injection simultaneously ameliorates dexamethasone-driven vascular calcification and osteoporosis. Exp Ther Med 2021; 21:197. [PMID: 33488806 PMCID: PMC7812579 DOI: 10.3892/etm.2021.9630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis (OP) and vascular calcification (VC) share a number of common risk factors, pathophysiological mechanisms and etiology, which are known as bone-vascular axis. The present study aimed to investigate the effects of Shuxuetong (SXT) injection on VC and osteoporosis. A rat model of VC and osteoporosis was induced by dexamethasone (DEX; 1 mg/kg/day for 4 weeks, intramuscularly). Simultaneously, 0.6 ml/kg/day SXT was intraperitoneally injected. Compared with control rats, DEX induced significantly more VC and OP, as determined by increased calcium deposition and alkaline phosphatase activity in the aorta, disturbed structure, decreased levels of cortical bone thickness and trabecular bone area, and increased apoptosis in the bone. SXT injection ameliorated DEX-induced VC and osteoporosis; furthermore, the osteoblastic differentiation of vascular smooth muscle cells and the activation of endoplasmic reticulum stress in the DEX group was also prevented by SXT injection. Compared with control rats, protein expression levels of sclerostin, a crucial crosslink of the bone-vascular axis, were significantly increased in the aorta and bone of rats with DEX, which was also attenuated by SXT injection. Thus, the present study suggested that SXT injection could ameliorate both VC and OP, and may be mediated by the regulation of sclerostin. The present study may provide the basis a novel strategy for the prevention and treatment of VC and OP, which emerge as side-effects of glucocorticoids.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaoguang Liu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Yanqing Li
- Department of Gynecology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongliang Gao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Tao He
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunlei Zhang
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Hao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
13
|
Li Z, Guo J, Bian Y, Zhang M. Intermedin protects thapsigargin‑induced endoplasmic reticulum stress in cardiomyocytes by modulating protein kinase A and sarco/endoplasmic reticulum Ca 2+‑ATPase. Mol Med Rep 2020; 23:107. [PMID: 33300086 PMCID: PMC7723158 DOI: 10.3892/mmr.2020.11746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intermedin (IMD) is a calcitonin/calcitonin-related peptide that elicits cardioprotective effects in a variety of heart diseases, such as cardiac hypertrophy and heart failure. However, the molecular mechanism of IMD remains unclear. The present study investigated the effects of IMD on neonatal rat ventricular myocytes treated with thapsigargin. The results of the present study demonstrated that thapsigargin induced apoptosis in cardiomyocytes in a dose- and time-dependent manner. Thapsigargin induced endoplasmic reticulum stress, as determined by increased expression levels of 78-kDa glucose-regulated protein, C/EBP-homologous protein and caspase-12, which were dose-dependently attenuated by pretreatment with IMD. In addition, IMD treatment counteracted the thapsigargin-induced suppression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression levels, and cytoplasmic Ca2+ overload. IMD treatment also augmented the phosphorylation of phospholamban, which is a crucial regulator of SERCA. Additionally, treatment with the protein kinase A antagonist H-89 inhibited the IMD-mediated cardioprotective effects, including SERCA activity restoration, anti-Ca2+ overload, endoplasmic reticulum stress inhibition and antiapoptosis effects. In conclusion, the results of the present study suggested that IMD may protect cardiomyocytes against thapsigargin-induced endoplasmic reticulum stress and the associated apoptosis at least partly by activating the protein kinase A/SERCA pathway.
Collapse
Affiliation(s)
- Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jia Guo
- Department of Cardiology, Shanxi Medical University First Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Yunfei Bian
- Department of Cardiology, Shanxi Medical University Second Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
14
|
Li Y, Li Y, Li Y, Yang Z, Geng H, Liu C, Hao W, Yang R, Jin S, Wu Y, Wang X, Teng X. Inhibition of endoplasmic reticulum stress mediates the ameliorative effect of apelin on vascular calcification. J Mol Cell Cardiol 2020; 152:17-28. [PMID: 33279504 DOI: 10.1016/j.yjmcc.2020.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS Apelin is the endogenous ligand of G protein-coupled receptor APJ and play an important role in the regulation of cardiovascular homeostasis. We aimed to investigate whether apelin ameliorates vascular calcification (VC) by inhibition of endoplasmic reticulum stress (ERS). METHODS AND RESULTS VC model in rats was induced by nicotine plus vitamin D, while calcification of vascular smooth muscle cell (VSMC) was induced by beta-glycerophosphate. Alizarin Red S staining showed dramatic calcium deposition in the aorta of rats with VC, while calcium contents and ALP activity also increased in calcified aorta. Protein levels of apelin and APJ were decreased in the calcified aorta. In rats with VC, apelin treatment significantly ameliorated aortic calcification, compliance and stimulation of ERS. The ameliorative effect of apelin on VC and ERS was also observed in calcified VSMCs. ERS stimulator (tunicamycin or DTT) blocked the beneficial effect of apelin. Apelin treatment activated the PI3K/Akt signaling, blockage of which by wortmannin or inhibitor IV prevented the ameliorative effect of apelin, while ERS inhibitor 4-PBA rescued the blockade effect of wortmannin. Akt-induced GSK inhibition prevented the phosphorylation of PERK and IRE1, and the activation of these two major ERS branches. F13A blocked the ameliorative effect of apelin on VC and ERS, which was reversed by treatment with 4-PBA or Akt activator SC79 CONCLUSIONS: Apelin ameliorated VC by binding to APJ and then prevented ERS activation by stimulating Akt signaling. These results might provide new target for therapy and prevention of VC.
Collapse
Affiliation(s)
- Yanqing Li
- Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chines Medicine, Shijiazhuang 050011, China
| | - Yuqing Li
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ziyuan Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Haigang Geng
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chenxi Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wei Hao
- Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chines Medicine, Shijiazhuang 050011, China
| | - Rui Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050017, China
| | - Xiaoning Wang
- The Second Hospital, Hebei Medical University, Shijiazhuang 050000, China.
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Laboratory Animal Science, Shijiazhuang 050017, China.
| |
Collapse
|
15
|
Neuroprotection of Intermedin Against Cerebral Ischemia/Reperfusion Injury Through Cerebral Microcirculation Improvement and Apoptosis Inhibition. J Mol Neurosci 2020; 71:767-777. [PMID: 32910355 DOI: 10.1007/s12031-020-01697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Abstract
Ischemic stroke is the primary cause of disability and mortality worldwide. Ischemia/reperfusion (I/R)-induced microcirculatory dysfunction and organ injury generally occur after ischemic stroke. Several studies have shown that intermedin (IMD) has a regulating function on cerebral microcirculation and blood-brain barrier via relaxing cerebral vessels and improving the local blood supply after cerebral ischemia. However, a unified conclusion has not been reached, and the underlying mechanism remains unclear. To observe and analyze the changes of cerebral microcirculation perfusion of cerebral IRI by IMD post-treatment in the rats and further explore the mechanism underlying the beneficial effect of IMD on cerebral IRI. Thirty-nine rats were divided into three groups: sham, I/R, and I/R + IMD groups. After IMD ischemia post-treatment, the rat cerebral infarction rate and the degree of neurological deficit were evaluated by TTC staining and neurological function score; the changes in the amount of cerebral microcirculation implantation on the injured side of the rats were observed by laser Doppler; the pathological changes and cell ultrastructure of rat cortex and hippocampus were observed by HE staining and transmission electron microscopy; the neuron apoptosis in the rat cortex and hippocampus was detected by TUNEL staining and immunohistochemical staining. Impaired neurological function, abnormal cortical/hippocampal neuron morphology, and the proportion of cerebral infarction were significantly improved in the IMD group compared with the I/R group, which suggested a possible neuroprotective role of IMD. IMD treatment also increased the average perfusion of cerebral surface microcirculation in rats by astonished 42.7 times. Finally, IMD administration decreased the caspase-3- and Bax-positive cell numbers and apoptotic cell ratio. IMD has a significant protective effect on neuronal damage caused by cerebral I/R in rats by improving cerebral microcirculation and inhibiting apoptosis.
Collapse
|
16
|
Fan S, Qi D, Yu Q, Tang X, Wen X, Wang D, Deng X. Intermedin alleviates the inflammatory response and stabilizes the endothelial barrier in LPS-induced ARDS through the PI3K/Akt/eNOS signaling pathway. Int Immunopharmacol 2020; 88:106951. [PMID: 32892076 DOI: 10.1016/j.intimp.2020.106951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory storms and endothelial barrier dysfunction are the central pathophysiological features of acute respiratory distress syndrome (ARDS). Intermedin (IMD), a member of the calcitonin gene-related peptide (CGRP) family, has been reported to alleviate inflammation and protect endothelial cell (EC) integrity. However, the effects of IMD on ARDS have not been clearly elucidated. In the present study, clinical ARDS data were used to explore the relationship between serum IMD levels and disease severity and prognosis, and we then established a model to predict the possibility of hospital survival. Mouse models of ARDS and LPS-challenged endothelial cells were used to analyze the protective effect and underlying mechanism of IMD. We found that in patients with ARDS, increased serum IMD levels were associated with reduced disease severity and increased rates of hospital survival. IMD alleviated the LPS-induced inflammatory response by decreasing proinflammatory cytokines, NF-κB p65 expression and NF-κB p65 nuclear translocation. In addition, IMD stabilized the endothelial barrier by repairing adherens junctions (AJs), cytoskeleton and capillary leakage. IMD exerted protective effects against ARDS on pulmonary endothelial cells, at least partly, through PI3K/Akt/eNOS signaling, while IMD's anti-inflammation effect was mediated through an eNOS-independent mechanism. Our study may provide new therapeutic insight for ARDS treatment.
Collapse
Affiliation(s)
- Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoting Wen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Chen Y, Zhang LS, Ren JL, Zhang YR, Wu N, Jia MZ, Yu YR, Ning ZP, Tang CS, Qi YF. Intermedin 1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1. Aging (Albany NY) 2020; 12:5651-5674. [PMID: 32229709 PMCID: PMC7185112 DOI: 10.18632/aging.102934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/27/2020] [Indexed: 02/01/2023]
Abstract
Vascular calcification is a common phenomenon in older adults. Intermedin (IMD) is a cardiovascular bioactive peptide inhibiting vascular calcification. In this study, we aimed to investigate whether IMD1-53 attenuates aging-associated vascular calcification. Vascular calcification was induced by vitamin D3 plus nicotine (VDN) in young and old rats. The calcification in aortas was more severe in old rats treated with VDN than young control rats, and IMD expression was lower. Exogenous administration of IMD1-53 significantly inhibited the calcium deposition in aortas and the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) in VDN-treated old rats. Moreover, levels of aging-related p16, p21 and β-galactosidase were all greatly decreased by IMD1-53. These results were further confirmed in rat and human VSMCs in vitro. In addition, IMD-deficient mouse VSMCs showed senescence features coinciding with osteogenic transition as compared with wild-type mouse VSMCs. Mechanistically, IMD1-53 significantly increased the expression of the anti-aging factor sirtuin 1 (sirt1); the inhibitory effects of IMD1-53 on calcification and senescence were blocked by sirt1 knockdown. Furthermore, preincubation with inhibitors of PI3K, AMPK or PKA efficiently blunted the upregulatory effect of IMD1-53 on sirt1. Consequently, IMD1-53 could attenuate aging-associated vascular calcification by upregulating sirt1 via activating PI3K/Akt, AMPK and cAMP/PKA signaling.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ning Wu
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
18
|
Zhang BF, Jiang H, Chen J, Guo X, Li Y, Hu Q, Yang S. Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway. Int Immunopharmacol 2019; 73:98-107. [PMID: 31082728 DOI: 10.1016/j.intimp.2019.04.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nobiletin is a natural polymethoxylated flavone that confers antioxidative, anti-inflammatory and anti-apoptotic efficacies. However, the potential benefits of nobiletin preconditioning on myocardial ischemia and reperfusion injury (MIRI) remains largely unknown. METHODS MIRI was induced by ligation of the left anterior descending coronary artery and reperfusion. Pre-treatment with nobiletin, with or without PI3K/AKT inhibitor LY294002, was performed at the onset of reperfusion. Histological analyses, apoptotic evaluation, plasma biomarkers of myocardial injury, echocardiographic evaluation of cardiac function and myocardial levels of endoplasmic reticulum stress (ERS)-related molecules were observed. RESULTS Nobiletin pre-treatment significantly deceased the infract size and number of apoptotic cells in the myocardium of MIRI rats, as determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Moreover, the plasma levels of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) also markedly decreased. In addition, pre-treatment with nobiletin restored the impaired cardiac systolic function, as evidenced by echocardiographic evaluation results. Importantly, pre-treatment with nobiletin significantly downregulated the myocardial mRNA and protein levels of ERS-related signal molecules, including GRP78, CHOP and caspase-12, but upregulated the levels of p-PI3K and p-AKT. Interestingly, co-treatment with LY294002 significantly abolished the benefits of nobiletin pre-treatment on cardiac function, myocardial apoptosis, cardiomyocyte injuries, and changes in myocardial levels of ERS-related signaling molecules. CONCLUSION Nobiletin pre-treatment may alleviate MIRI probably via the attenuation of PI3K/AKT-mediated ERS-related myocardial apoptosis.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Xin Guo
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 43000, Hubei Province, China
| | - Yue Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
19
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
20
|
Guo C, Zhang J, Zhang P, Si A, Zhang Z, Zhao L, Lv F, Zhao G. Ginkgolide B ameliorates myocardial ischemia reperfusion injury in rats via inhibiting endoplasmic reticulum stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:767-774. [PMID: 30880910 PMCID: PMC6396660 DOI: 10.2147/dddt.s179101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose Ginkgolide B (GB) is a terpene lactone component found in Ginkgo biloba, which has a protective role on ischemia reperfusion (I/R) injury. This study was aimed at exploring the protective mechanism of GB on the myocardial I/R. Patients and methods Myocardial I/R model was established on Sprague Dawley rats. The levels of cardiac troponin I, cardiac troponin T, lactic dehydrogenase, and myoglobin were determined by a 200FR NEO automatic biochemical analyzer. Histological examination was performed through HE and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. The expression levels of p-PERK, p-IRE1α, ATF6, p-AKT, and mTOR were detected by Western blot. Results The results exhibited that GB treatment suppressed the high levels of cardiac troponin I, cardiac troponin T, lactic dehydrogenase, and myoglobin and ameliorated the damaged and irregularly arranged myocardial cells induced by I/R injury significantly, indicating that GB could ameliorate myocardial I/R injury. Moreover, the high expression levels of endoplasmic reticulum (ER) stress key proteins caused by I/R injury were suppressed significantly by GB treatment, including p-PERK, p-IRE1α, and ATF6. GB treatment also decreased the number of apoptotic cells compared with I/R group. In addition, activation of ER stress by Tunicamycin treatment could counteract the protective effects of GB on I/R injury, suggesting that GB ameliorated myocardial I/R injury through inhibition of ER stress-induced apoptosis. Finally, the decreased p-AKT and p-mTOR expressions caused by I/R injury were upregulated by GB and inhibition of PI3K/AKT/mTOR pathway by LY294002 abolished the protective effects of GB on I/R injury, indicating that GB activated PI3K/AKT/mTOR pathway during I/R injury. Conclusion GB protected against myocardial I/R injury through inhibiting ER stress-induced apoptosis via PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Changlei Guo
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| | - Junbiao Zhang
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| | - Peiyong Zhang
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| | - Aoyang Si
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| | - Zhenling Zhang
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| | - Liangping Zhao
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| | - Fenghua Lv
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital Xinxiang Medical University, Weihui 452100, Henan, China,
| |
Collapse
|
21
|
Li H, Chen H, Li R, Xin J, Wu S, Lan J, Xue K, Li X, Zuo C, Jiang W, Zhu L. Cucurbitacin I induces cancer cell death through the endoplasmic reticulum stress pathway. J Cell Biochem 2019; 120:2391-2403. [PMID: 30277611 DOI: 10.1002/jcb.27570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum stress (ERS) is usually involved in tumor development and progression, and anticancer agents have recently been recognized to induce ERS. Cucurbitacin-I showed a potent anticancer action by inducing apoptosis through the inhibition of signal transducer and activator of transcription 3 pathway and triggering autophagic cell death. It is not known whether ERS mediates the cancer cell death induced by cucurbitacin-I. Here, we investigated the role of ERS in cucurbitacin-I-treated SKOV3 ovarian cancer cells and PANC-1 pancreatic cancer cells. We confirmed that cucurbitacin-I caused cell death and stirred excessive ERS levels by activating inositol requiring enzyme 1α (IRE1α) and protein kinase R-like endoplasmic reticulum kinase (PERK), as well as PERK downstream factors, including IRE1α and C/EBP homologous protein, but not activating transcription factor 6 (ATF6α) pathway, which was in parallel with the increased Bax and caspase-12-dependent ERS-associated apoptosis, autophagy and autophagy flux levels and caspase-independent nonapoptotic cell death. Furthermore, 4-phenylbutyrate, an ERS inhibitor, suppressed cucurbitacin-I-induced apoptosis, autophagy, autophagy flux, and autophagic cell death. Simultaneously, there are positive correlations among ERS and cucurbitacin-I-induced reactive oxygen species and Ca 2+ . Our results suggested that cucurbitacin-I-induced cancer cell death through the excessive ERS and CHOP-Bax and caspase-12-dependent ERS-associated apoptosis, as well as ERS-dependent autophagy, autophagy flux, and caspase-independent nonapoptotic cell death. These novel signaling insights may be useful for developing new, effective anticancer strategies in oncotherapy.
Collapse
Affiliation(s)
- He Li
- Department of Pharmacology, West China, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.,Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Juanjuan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sisi Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kunyue Xue
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Caili Zuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhu
- Department of Pharmacology, West China, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Ni XQ, Lu WW, Zhang JS, Zhu Q, Ren JL, Yu YR, Liu XY, Wang XJ, Han M, Jing Q, Du J, Tang CS, Qi YF. Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice. Endocrine 2018; 62:90-106. [PMID: 29943223 DOI: 10.1007/s12020-018-1657-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum stress (ERS) is involved in the development of abdominal aortic aneurysm (AAA). Since bioactive peptide intermedin (IMD)1-53 protects against AAA formation, here we investigated whether IMD1-53 attenuates AAA by inhibiting ERS. AAA model was induced by angiotensin II (AngII) in ApoE KO mouse background. AngII-treated mouse aortas showed increased ERS gene transcription of caspase12, eukaryotic translation initiation factor 2a (eIf2a) and activating transcription factor 4(ATF4).The protein level of ERS marker glucose regulated protein 94(GRP94), ATF4 and C/EBP homologous protein 10(CHOP) was also up-regulated by AngII. Increased ERS levels were accompanied by severe VSMC apoptosis in human AAA aorta. In vivo administration of IMD1-53 greatly reduced AngII-induced AAA and abrogated the activation of ERS. To determine whether IMD inhibited AAA by ameliorating ERS, we used 2 non-selective ERS inhibitors phenyl butyrate (4-PBA) and taurine (TAU). Similar to IMD, PBA, and TAU significantly reduced the incidence of AAA and AAA-related pathological disorders. In vitro, AngII infusion up-regulated CHOP, caspase12 expression and led to VSMC apoptosis. IMD siRNA aggravated the CHOP, caspase12-mediated VSMC apoptosis, which was abolished by ATF4 silencing. IMD infusion promoted the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in aortas in ApoE KO mice, and the AMPK inhibitor compound C abolished the protective effect of IMD on VSMC ERS and apoptosis induced by AngII. In conclusion, IMD may protect against AAA formation by inhibiting ERS via activating AMPK phosphorylation.
Collapse
MESH Headings
- Adenylate Kinase/metabolism
- Angiotensin II
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Endoplasmic Reticulum Stress/drug effects
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Peptide Hormones/pharmacology
- Peptide Hormones/therapeutic use
- Phosphorylation/drug effects
Collapse
Affiliation(s)
- Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Sheng Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Yan-Rong Yu
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, 050017, Shijiazhuang, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, 100029, Beijing, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China.
| |
Collapse
|
23
|
Liu AJ, Pang CX, Liu GQ, Wang SD, Chu CQ, Li LZ, Dong Y, Zhu DZ. Ameliorative effect of sevoflurane on endoplasmic reticulum stress mediates cardioprotection against ischemia-reperfusion injury 1. Can J Physiol Pharmacol 2018; 97:345-351. [PMID: 29894643 DOI: 10.1139/cjpp-2018-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We aimed to investigate whether the cardioprotection of sevoflurane against ischemia-reperfusion (IR) injury is via inhibiting endoplasmic reticulum stress. The rat in vivo model of myocardial IR injury was induced by ligation of the left anterior descending coronary artery. Sevoflurane significantly ameliorated the reduced cardiac function, increased infarct size, and elevated troponin I level and lactate dehydrogenase activity in plasma induced by IR injury. Sevoflurane suppressed the IR-induced myocardial apoptosis. The increased protein levels of glucose-regulated protein 78 and C/EBP homologous protein (CHOP) after myocardial IR were significantly reduced by sevoflurane. The protein levels of phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (PERK), phosphorylated eukaryotic initiation factor 2 (eIF2α), and activating transcription factor 4 (ATF4) were significantly increased in rats with IR and attenuated by sevoflurane treatment. The phosphorylation of Akt was further activated by sevoflurane. The cardioprotection of sevoflurane could be blocked by wortmannin, a PI3K/Akt inhibitor. Our results suggest that the cardioprotection of sevoflurane against IR injury might be mediated by suppressing PERK/eIF2a/ATF4/CHOP signaling via activating the Akt pathway, which helps in understanding the novel mechanism of the cardioprotection of sevoflurane.
Collapse
Affiliation(s)
- Ai-Jie Liu
- a Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Chun-Xia Pang
- a Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Guo-Qiang Liu
- a Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Shi-Duan Wang
- a Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Chun-Qin Chu
- a Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Lin-Zhang Li
- a Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Yan Dong
- b Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - De-Zhang Zhu
- a Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| |
Collapse
|
24
|
Wu D, Shi L, Li P, Ni X, Zhang J, Zhu Q, Qi Y, Wang B. Intermedin 1-53 Protects Cardiac Fibroblasts by Inhibiting NLRP3 Inflammasome Activation During Sepsis. Inflammation 2018; 41:505-514. [PMID: 29192367 DOI: 10.1007/s10753-017-0706-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis is a disease that occurs as a result of systemic inflammatory response syndrome (SIRS) in response to an infection, contributing to multiple organ dysfunction and a high mortality rate. Interleukin-lβ (IL-1β) is a cytokine that plays critical roles in inflammation and cardiac dysfunction during severe sepsis. Intermedin1-53 (IMD1-53) has been recently discovered to possess potential endogenous anti-inflammatory and strong cardiovascular protective effects. To investigate whether IMD1-53 can inhibit the NLRP3/caspase-1/IL-1β pathway to alleviate cardiac injury and rescue heart function, sepsis was induced in vivo by caecal ligation and puncture (CLP) surgery, and lipopolysaccharides were used as septic stressors for cardiac fibroblasts (CFs) in vitro. The expressions of IMD1-53 receptors in sepsis rat heart were increased. After IMD1-53 treatment, inflammation caused by sepsis in vivo was greatly reduced, as shown by the downregulation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), nucleotide-binding domain and leucine-rich repeat containing family, pyrin containing 3 (NLRP3), pro-IL-1β, caspase 1, and nuclear translocation of nuclear factor-κB (NF-kB) protein levels. In addition, cardiac function was significantly improved and mean arterial blood pressure (MABP) increased by 34.8% (P < 0.05) which almost back to normal. Surprisingly, IMD1-53 inhibited cell apoptosis, as caspase 3 activity and Bax expression was significantly reduced in the heart upon IMD1-53 treatment. IMD1-53 abolished the upregulation of ASC, NLRP3, and caspase 1 protein levels in CFs induced by lipopolysaccharide (LPS). IMD1-53 increased cell survival rates and inhibited IL-1β production in the cell culture medium. IMD1-53 can protect against inflammation and heart injury during sepsis via attenuating the NLRP3/caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Di Wu
- The Peking University Aerospace School of Clinical Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Lin Shi
- The Peking University People's Hospital, Beijing, 100191, China
| | - Pengyang Li
- Texas Heart Institute, Houston, TX, 77030, USA
| | - Xianqiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Jinsheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Qing Zhu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Bin Wang
- The Peking University Aerospace School of Clinical Medicine, Peking University Health Science Center, Beijing, 100191, China.
- The First Affiliated Hospital of Shantou University Medical College, Guangdong, 515041, China.
| |
Collapse
|
25
|
Yuan F, Zhang L, Li YQ, Teng X, Tian SY, Wang XR, Zhang Y. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress. Sci Rep 2017; 7:7922. [PMID: 28801645 PMCID: PMC5554163 DOI: 10.1038/s41598-017-08388-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Abstract
We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Li Zhang
- Orthopedic Department of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Qing Li
- Department of Gynecology, Hebei Traditional Medicine Hospital, Shijiazhuang, 050011, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Lab of Laboratory Animal Science, Shijiazhuang, 050017, China
| | - Si-Yu Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiao-Ran Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| |
Collapse
|
26
|
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. Br J Pharmacol 2017; 175:1230-1240. [PMID: 28407200 DOI: 10.1111/bph.13814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
Adrenomedullin (ADM) 2/intermedin (IMD) is a short peptide that belongs to the CGRP superfamily. Although it shares receptors with CGRP, ADM and amylin, ADM2 has significant and unique functions in the cardiovascular system. In the past decade, the cardiovascular effect of ADM2 has been carefully analysed. In this review, progress in understanding the effects of ADM2 on the cardiovascular system and its protective role in cardiometabolic diseases are summarized. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
27
|
Fang SJ, Li PY, Wang CM, Xin Y, Lu WW, Zhang XX, Zuo S, Ma CS, Tang CS, Nie SP, Qi YF. Inhibition of endoplasmic reticulum stress by neuregulin-1 protects against myocardial ischemia/reperfusion injury. Peptides 2017; 88:196-207. [PMID: 27993557 DOI: 10.1016/j.peptides.2016.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 11/21/2022]
Abstract
Neuregulin-1 (NRG-1), an endogenously produced polypeptide, is the ligand of cardiomyocyte ErbB receptors, with cardiovascular protective effects. In the present study, we explored whether the cardioprotective effect of NRG-1 against I/R injury is mediated by inhibiting myocardial endoplasmic reticulum (ER) stress. In vitro, NRG-1 directly inhibited the upregulation of ER stress markers such as glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12 induced by the ER stress inducers tunicamycin or dithiothreitol in both neonatal and adult ventricular myocytes. Attenuating ErbB signals by an ErbB inhibitor AG1478 or ErbB4 knockdown and preincubation with phosphoinositide 3-kinase inhibitors all reversed the effect of NRG-1 inhibiting ER stress in cultured neonatal rat cardiomyocytes. Concurrently, cardiomyocyte ER stress and apoptosis induced by hypoxia-reoxygenation were decreased by NRG-1 treatment in vitro. Furthermore, in an in vivo rat model of myocardium ischemia/reperfusion (I/R), intravenous NRG-1 administration significantly decreased ER stress and myocardial infarct size induced by I/R. NRG-1 could protect the heart against I/R injury by inhibiting myocardial ER stress, which might be mediated by the phosphoinositide 3-kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Shan-Juan Fang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Peng-Yang Li
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Chun-Mei Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yi Xin
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Wei-Wei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China; Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Xia Zhang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Song Zuo
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Chang-Sheng Ma
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shao-Ping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China; Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
28
|
Kovaleva IE, Garaeva AA, Chumakov PM, Evstafieva AG. Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4. Gene 2016; 590:177-85. [DOI: 10.1016/j.gene.2016.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
29
|
Zhang SY, Lv Y, Zhang H, Gao S, Wang T, Feng J, Wang Y, Liu G, Xu MJ, Wang X, Jiang C. Adrenomedullin 2 Improves Early Obesity-Induced Adipose Insulin Resistance by Inhibiting the Class II MHC in Adipocytes. Diabetes 2016; 65:2342-55. [PMID: 27207558 DOI: 10.2337/db15-1626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/26/2016] [Indexed: 11/13/2022]
Abstract
MHC class II (MHCII) antigen presentation in adipocytes was reported to trigger early adipose inflammation and insulin resistance. However, the benefits of MHCII inhibition in adipocytes remain largely unknown. Here, we showed that human plasma polypeptide adrenomedullin 2 (ADM2) levels were negatively correlated with HOMA of insulin resistance in obese human. Adipose-specific human ADM2 transgenic (aADM2-tg) mice were generated. The aADM2-tg mice displayed improvements in high-fat diet-induced early adipose insulin resistance. This was associated with increased insulin signaling and decreased systemic inflammation. ADM2 dose-dependently inhibited CIITA-induced MHCII expression by increasing Blimp1 expression in a CRLR/RAMP1-cAMP-dependent manner in cultured adipocytes. Furthermore, ADM2 treatment restored the high-fat diet-induced early insulin resistance in adipose tissue, mainly via inhibition of adipocyte MHCII antigen presentation and CD4(+) T-cell activation. This study demonstrates that ADM2 is a promising candidate for the treatment of early obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Ying Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Song Gao
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Ting Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
30
|
Feng J, Li S, Chen H. Tanshinone IIA ameliorates apoptosis of cardiomyocytes induced by endoplasmic reticulum stress. Exp Biol Med (Maywood) 2016; 241:2042-2048. [PMID: 27465140 DOI: 10.1177/1535370216660634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fat-soluble diterpenoids tanshinone IIA (TSA) is the major active element of Danshen, which has widespread cardioprotective effect. However, the mechanism of its beneficial effect on cardiomyocytes has not been fully investigated. Here, we aim to demonstrate that TSA ameliorates apoptosis of cardiomyocytes activated by endoplasmic reticulum stress (ERS). Primary cultures of neonatal rat cardiomyocytes are used, in which ERS-mediated apoptosis is induced by tunicamycin (Tm). Apoptosis of cardiomyocytes are detected by Hoechst staining and caspase 3 activity analysis. Protein expression of ERS markers are detected by Western blot, and level of miroRNA-133 (miR-133) is detected by real-time polymerase chain reaction. Tm treatment significantly triggers the apoptosis and ERS of cardiomyocytes. TSA dramatically ameliorates apoptosis and ERS of cardiomyocytes induced by Tm. Interestingly, level of miR-133 is reduced by Tm treatment, which is reversed by TSA. The cardioprotective effect of TSA on apoptosis and ERS of cardiomyocytes is blocked by anti-miR-133. These results suggest that TSA protects cardiomyocytes through ameliorated ERS-mediated apoptosis, which may be resulted from upregulation of miR-133.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huawen Chen
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Zhang JS, Hou YL, Lu WW, Ni XQ, Lin F, Yu YR, Tang CS, Qi YF. Intermedin 1-53 Protects Against Myocardial Fibrosis by Inhibiting Endoplasmic Reticulum Stress and Inflammation Induced by Homocysteine in Apolipoprotein E-Deficient Mice. J Atheroscler Thromb 2016; 23:1294-1306. [PMID: 27052784 PMCID: PMC5113747 DOI: 10.5551/jat.34082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Endoplasmic reticulum stress (ERS) and inflammation participate in cardiac fibrosis. Importantly, a novel paracrine/autocrine peptide intermedin1-53 (IMD1-53) in the heart inhibits myocardial fibrosis in rats. However, the mechanisms are yet to be fully elucidated. METHODS Myocardial fibrosis in apolipoprotein E-deficient (ApoE -/-) mice and neonatal rat cardiac fibroblasts (CFs) were induced using homocysteine (Hcy). RESULTS IMD1-53 inhibited myocardial fibrosis in vivo and in vitro. Picrosirius red staining showed that IMD1-53 reduced myocardial interstitial collagen deposition in ApoE-/- mice treated with Hcy and decreased the expression of myocardial collagen I and III, which was further verified in rat CFs. IMD1-53 attenuated myocardial hypertrophy, as shown by cardiomyocyte cross-sectional area, ratio of heart weight to body weight, and mRNA levels of atrial natriuretic peptide and brain natriuretic peptide. IMD1-53 inhibited the upregulation of ERS hallmarkers such as glucose-regulated protein 78 (GRP78), GRP94, activating transcription factor 6 (ATF6), ATF4, inositol-requiring enzyme 1α, spliced-X-box-binding protein-1, protein kinase receptor-like ER kinase, and eukaryotic translation initiation factor 2α in mouse myocardium and rat CFs treated with Hcy. In addition, IMD1-53 decreased the production of inflammatory factors such as tumor necrosis factor-α, monocyte chemotactic protein-1, interleukin-6 (IL-6), and IL-1β in the mouse myocardium and rat CFs treated with Hcy. Concurrently, IMD1-53 ameliorated the expression of nuclear factor-κB, transforming growth factor-β1, and c-Jun N-terminal kinase in the mouse myocardium and rat CFs treated with Hcy. CONCLUSIONS IMD potentially protects against myocardial fibrosis induced by Hcy in ApoE-/- mice, possibly via attenuating myocardial ERS and inflammation.
Collapse
Affiliation(s)
- Jin-Sheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hydrogen Sulfide Improves Vascular Calcification in Rats by Inhibiting Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9095242. [PMID: 27022436 PMCID: PMC4789052 DOI: 10.1155/2016/9095242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/20/2023]
Abstract
In this study, the vitamin D3 plus nicotine (VDN) model of rats was used to prove that H2S alleviates vascular calcification (VC) and phenotype transformation of vascular smooth muscle cells (VSMC). Besides, H2S can also inhibit endoplasmic reticulum stress (ERS) of calcified aortic tissues. The effect of H2S on alleviating VC and phenotype transformation of VSMC can be blocked by TM, while PBA also alleviated VC and phenotype transformation of VSMC that was similar to the effect of H2S. These results suggest that H2S may alleviate rat aorta VC by inhibiting ERS, providing new target and perspective for prevention and treatment of VC.
Collapse
|
33
|
Wang Y, Tian J, Qiao X, Su X, Mi Y, Zhang R, Li R. Intermedin protects against renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. BMC Nephrol 2015; 16:169. [PMID: 26498843 PMCID: PMC4619099 DOI: 10.1186/s12882-015-0157-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/02/2015] [Indexed: 11/15/2022] Open
Abstract
Background Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. Endoplasmic reticulum stress (ERS) has been implicated in the pathology of renal ischemia/reperfusion (IRI). In the present study, we investigated whether IMD could reduce ERS damage after renal ischemia. Methods The kidneys of SD rats were subjected to 45 min of warm ischemia followed by 24 h of reperfusion. The hypoxia/reoxygenation(H/R) model in NRK-52E cells consisted of hypoxia for 1 h and reoxygenation for 2 h. IMD was over-expressed in vivo and in vitro using the vector pcDNA3.1-IMD. The serum creatinine concentration and lactate dehydrogenase (LDH) activity in the plasma were determined. Histologic examinations of renal tissues were performed with PAS staining. Real-time PCR and Western blotting were used to determine the mRNA and protein levels, respectively. Additionally, ER staining was used to detect the ERS response. Results In the rat renal IRI model, we found that IMD gene transfer markedly improved renal function and pathology and decreased LDH activity and cell apoptosis compared with the kidneys that were transfected with the control plasmid. IMD significantly attenuated the ERS stress parameters compared with IRI group. Indeed, IMD down-regulated glucose-regulated protein 78 (GRP78), C/EBP homologous protein(CHOP), and caspase 12 protein and mRNA levels. Moreover, in the NRK-52E cell H/R model, IMD overexpression prevented the apoptosis induced by H/R. Furthermore, IMD ameliorated the ER structural changes and concomitantly decreased the levels of GRP78, CHOP and caspase-12. Conclusion This study revealed that IMD protects against renal IRI by suppressing ERS and ERS-related apoptosis.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yang Mi
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Ruijing Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Rongshan Li
- Department of Nephrology, the Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, No. 29 Shuang Ta East Street, Taiyuan, 030012, , Shanxi, P. R. China.
| |
Collapse
|
34
|
Duan L, Lei H, Zhang Y, Wan B, Chang J, Feng Q, Huang W. Calcitonin Gene-Related Peptide Improves Hypoxia-Induced Inflammation and Apoptosis via Nitric Oxide in H9c2 Cardiomyoblast Cells. Cardiology 2015; 133:44-53. [PMID: 26430901 DOI: 10.1159/000439123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of this work was to investigate whether calcitonin gene-related peptide (CGRP) plays a protective role in cardiomyocytes against hypoxia-induced inflammation and apoptosis via an NO-mediated pathway. METHODS H9c2 cardiac cells were exposed to hypoxia for 2 h to establish a model of myocardial hypoxic-ischemic injury. The cells were pretreated with either CGRP or nitric oxide synthase (NOS) inhibitor (L-NAME) before being exposed to hypoxia for 30 min. Cell viability was analyzed using a cell counter kit 8 (CCK-8). The levels of IL-6 and TNF-α were determined by the corresponding enzyme-linked immunosorbent assay. The expression levels of several apoptosis proteins (p53, caspase-3, cytochrome C) and NOS were detected by Western blot assays. An NO kit was used to evaluate the production of NO. RESULTS Pretreatment of H9c2 cardiac cells with CGRP for 30 min prior to exposure to hypoxia markedly improved cell viability (83.57 ± 3.21 vs. 62.83 ± 8.30%, p < 0.001); the same effect was observed following pretreatment with the NOS inhibitor L-NAME (89.34 ± 5.95 vs. 75.01 ± 5.61%, p < 0.01). Pretreatment with CGRP also significantly attenuated the inflammatory responses induced by hypoxia, as evidenced by decreases of the levels of both IL-6 (193.21 ± 13.54 vs. 293.38 ± 56.49%, p < 0.001) and TNF-α (207.71 ± 44.27 vs. 281.46 ± 64.88%, p < 0.001). Additionally, CGRP significantly decreased the hypoxia-induced overexpression of the apoptotic proteins (p53: 0.27 ± 0.10 vs. 0.87 ± 0.30, p < 0.001; caspase-3: 0.65 ± 0.15 vs. 0.98 ± 0.26, p < 0.001; cytochrome C: 1.51 ± 0.39 vs. 2.80 ± 0.69, p < 0.001) and enhanced the expression of both endothelial NOS (eNOS; 0.59 ± 0.24 vs. 0.37 ± 0.14, p < 0.05) and phosphorylated eNOS (0.60 ± 0.13 vs. 0.40 ± 0.07, p < 0.05). Furthermore, the application of both L-NAME and CGRP attenuated the hypoxia-induced expression of inducible NOS (iNOS; p < 0.05) and enhanced a hypoxia-mediated decrease in NO (p < 0.01). Interestingly, the expression levels of cell apoptosis (p < 0.05), iNOS and eNOS (p < 0.05) were decreased with L-NAME and CGRP cotreatment following 2 h of acute hypoxia, but the apoptotic factors (p < 0.05) were increased compared with only CGRP pretreatment. CONCLUSION CGRP protects cardiomyocytes from hypoxia-induced inflammation and apoptosis by modulating NO production.
Collapse
Affiliation(s)
- Lixiao Duan
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Intermedin1–53 protects against cardiac hypertrophy by inhibiting endoplasmic reticulum stress via activating AMP-activated protein kinase. J Hypertens 2015; 33:1676-87. [DOI: 10.1097/hjh.0000000000000597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Yamac AH, Bacaksiz A, Ismailoglu Z, Kucukbuzcu S, Sevgili E, Asoglu E, Nasifov M, Jafarov P, Erdogan E, Goktekin O. Implication of plasma intermedin levels in patients who underwent first-time diagnostic coronary angiography: a single centre, cross-sectional study. BMC Cardiovasc Disord 2014; 14:182. [PMID: 25495100 PMCID: PMC4271361 DOI: 10.1186/1471-2261-14-182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Intermedin (IMD) is involved in the prevention of atherosclerotic plaque progression, possessing cardioprotective effects from hypertrophy, fibrosis and ischemia-reperfusion injury. Elevated plasma IMD levels have been demonstrated in patients with acute coronary syndromes. No human study has examined the role of IMD in stable patients who underwent diagnostic coronary angiography with suspicion of coronary artery disease (CAD). Thus we investigated the role of IMD as a biomarker to discriminate patients with CAD and predict those with severe disease who require early and intensive therapeutic intervention before presenting with acute coronary syndrome. Methods Eligible two hundred and thirty-eight consecutive patients (123 males, mean age 58.4 ± 10.0 years) who underwent first-time diagnostic coronary angiography were included in this study. Plasma concentrations of IMD were measured from arterial blood samples by the enzyme-linked immunosorbent assay. Patients were divided into three groups according to the presence and degree of CAD, consisting of 48 patients with normal coronary anatomy (Group 1), 111 patients with < 50% coronary stenosis (Group 2), and 79 patients with ≥ 50% stenosis in at least one of the major coronary arteries (group 3). The severity and extent of CAD was evaluated by calculations of the vessel, Gensini, and SYNTAX scores. Results Circulating plasma IMD levels in patients with CAD were significantly higher than those in patients without CAD (157.7 ± 9.6, 134.8 ± 11.9, and 117.6 ± 7.9 pg/mL in groups 3, 2 and 1 respectively; p < 0.001). Besides, plasma IMD levels were correlated with Gensini and SYNTAX scores (rs = 0.742, and rs = 0.296, respectively; p < 0.05). The presence of ≥50% coronary artery stenosis could be predicted if a cut-off value of 147.7 pg/mL for plasma IMD was used with 88.6% sensitivity and 88.7% specificity. Moreover, a plasma IMD level of <126.6 pg/mL could discriminate a patient with normal coronary arteries from patients with angiographically proven CAD with a sensitivity and specificity of 84.7%, and 83.3% respectively. Conclusions We demonstrated that IMD might be used as a biomarker to predict CAD and its severity in patients who underwent first time diagnostic coronary angiography.
Collapse
Affiliation(s)
- Aylin Hatice Yamac
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093 Fatih, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Körner C, Kuchenbuch T, Pfeil U, Jung K, Padberg W, Kummer W, Mühlfeld C, Grau V. Low-dose adrenomedullin-2/intermedin(8-47) reduces pulmonary ischemia/reperfusion injury. Peptides 2014; 62:49-54. [PMID: 25290159 DOI: 10.1016/j.peptides.2014.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Adrenomedullin-2/intermedin stabilizes the pulmonary microvascular barrier challenged by application of thrombin ex vivo and by experimental ventilation in vivo. Here, we test the hypothesis that adrenomedullin-2/intermedin(8-47) protects mouse lungs from ischemia/reperfusion injury in vivo. C57BL/6 mice were anesthetized, intubated, ventilated, and heparinized. Blood vessels and the main bronchus of the left lung were clamped for 90min. Thereafter, lungs were reperfused for 120min. Five min before clamping and before reperfusion, mice obtained intravenous injections of adrenomedullin-2/intermedin(8-47). After reperfusion, mice were sacrificed and bronchoalveolar lavage of the left and the right lung was performed separately. The integrity of the blood-air barrier was investigated by electron microscopy using stereological methods. In response to ischemia/reperfusion injury, intraalveolar leukocytes accumulated in the ischemic lung. Two applications of 10ng/kg body weight adrenomedullin-2/intermedin(8-47) dramatically reduced leukocyte infiltration to about 15% (p≤0.001). Also the proportion of the subpopulation of neutrophil granulocytes decreased (12% vs 5%, p=0.013). Electron microscopy revealed a protection of the blood-air barrier by adrenomedullin-2/intermedin(8-47). Adrenomedullin-2/intermedin(8-47) ameliorates early ischemia/reperfusion injury in mouse lungs by protecting the integrity of the blood-air barrier and by potently reducing leukocyte influx into the alveolar space. Adrenomedullin-2/intermedin(8-47) might be of therapeutic interest in lung transplantation and cardiopulmonary bypass.
Collapse
Affiliation(s)
- Christian Körner
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| | - Tim Kuchenbuch
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Uwe Pfeil
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany
| | - Kristina Jung
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany
| | - Christian Mühlfeld
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the DZL, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
38
|
Tang B, Zhong Z, Shen HW, Wu HP, Xiang P, Hu B. Intermedin as a prognostic factor for major adverse cardiovascular events in patients with ST-segment elevation acute myocardial infarction. Peptides 2014; 58:98-102. [PMID: 24969626 DOI: 10.1016/j.peptides.2014.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/15/2022]
Abstract
Intermedin functions systemically as a potent vasodilator and its plasma levels have been shown to be elevated in patients with acute myocardial infarction. This study aimed to evaluate the prognostic value of plasma intermedin level in the patients with ST-segment elevation acute myocardial infarction. Plasma intermedin concentrations of 128 patients and 128 healthy controls were determined using a radioimmunoassay. Patients were followed up for 6 months for major adverse cardiovascular events (MACE) consisting of cardiovascular mortality, reinfarction, hospitalization for decompensated heart failure, and lift-threatening arrhythmia. The association of plasma intermedin levels with MACE was investigated by univariate and multivariate analyses. Plasma intermedin levels were significantly higher in patients than in healthy subjects. Elevated plasma level of intermedin was identified as an independent predictor of MACE. Receiver operating characteristic curve analysis showed that plasma intermedin levels had high predictive value for MACE. Moreover, its predictive value was similar to Global Registry of Acute Coronary Events scores' based on area under curve. Meantime, it obviously improved Global Registry of Acute Coronary Events scores' predictive value in a combined logistic-regression model. In multivariate Cox's proportional hazard analysis, plasma intermedin level emerged as an independent predictor of MACE-free survival. Thus, our results suggest that high plasma intermedin level is associated with poor outcomes of patients and may be a useful prognostic biomarker in ST-segment elevation acute myocardial infarction.
Collapse
Affiliation(s)
- Bei Tang
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Ze Zhong
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China.
| | - Hong-Wei Shen
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Hui-Ping Wu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Peng Xiang
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Bin Hu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| |
Collapse
|
39
|
Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 2014; 8:213. [PMID: 25120434 PMCID: PMC4114208 DOI: 10.3389/fncel.2014.00213] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
Collapse
Affiliation(s)
- Namrata Chaudhari
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Priti Talwar
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Avinash Parimisetty
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Christian Lefebvre d'Hellencourt
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Palaniyandi Ravanan
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| |
Collapse
|
40
|
Chang JR, Duan XH, Zhang BH, Teng X, Zhou YB, Liu Y, Yu YR, Zhu Y, Tang CS, Qi YF. Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway. Exp Biol Med (Maywood) 2013; 238:1136-46. [PMID: 24006303 DOI: 10.1177/1535370213502619] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously reported that endoplasmic reticulum (ER) stress-mediated apoptosis participated in vascular calcification. Importantly, a novel paracrine/autocrine peptide intermedin1-53 (IMD1-53) in the vasculature inhibited vascular calcification in rats. But the mechanisms needed to be fully elucidated. Vascular smooth muscle cells (VSMCs) calcification was induced by CaCl2 and β-glycerophosphate. Tunicamycin (Tm) or dithiothreitol (DTT) was used to induce ER stress. We found that IMD1-53 (10(-7)mol/L) treatment significantly alleviated the protein expression of ER stress hallmarks activating transcription factor 4 (ATF4), ATF6, glucose-regulated protein 78 (GRP78) and GRP94 induced by Tm or DTT. ER stress occurred in early and late calcification of VSMCs but was inhibited by IMD1-53. These inhibitory effects of IMD1-53 were abolished by treatment with the protein kinase A (PKA) inhibitor H89. Pretreatment with IMD1-53 decreased the number of apoptotic VSMCs and downregulated protein expression of cleaved caspase 12 and C/EBP homologous protein (CHOP) in calcified VSMCs. Concurrently, IMD1-53 restored the loss of VSMC lineage markers and ameliorated calcium deposition and alkaline phosphatase activity in calcified VSMCs as well. The observation was further verified by Alizarin Red S staining, which showed that IMD1-53 reduced positive red nodules among calcified VSMCs. In conclusion, IMD1-53 attenuated VSMC calcification by inhibiting ER stress through cAMP/PKA signalling.
Collapse
Affiliation(s)
- Jin-Rui Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li H, Bian Y, Zhang N, Guo J, Wang C, Lau WB, Xiao C. Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats. Cardiovasc Diabetol 2013; 12:91. [PMID: 23777472 PMCID: PMC3703263 DOI: 10.1186/1475-2840-12-91] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
Background Diabetic patients, through incompletely understood mechanisms, endure exacerbated ischemic heart injury compared to non-diabetic patients. Intermedin (IMD) is a novel calcitonin gene-related peptide (CGRP) superfamily member with established cardiovascular protective effects. However, whether IMD protects against diabetic myocardial ischemia/reperfusion (MI/R) injury is unknown. Methods Diabetes was induced by streptozotocin in Sprague–Dawley rats. Animals were subjected to MI via left circumflex artery ligation for 30 minutes followed by 2 hours R. IMD was administered formally 10 minutes before R. Outcome measures included left ventricular function, oxidative stress, cellular death, infarct size, and inflammation. Results IMD levels were significantly decreased in diabetic rats compared to control animals. After MI/R, diabetic rats manifested elevated intermedin levels, both in plasma (64.95 ± 4.84 pmol/L, p < 0.05) and myocardial tissue (9.8 ± 0.60 pmol/L, p < 0.01) compared to pre-MI control values (43.62 ± 3.47 pmol/L and 4.4 ± 0.41). IMD administration to diabetic rats subjected to MI/R decreased oxidative stress product generation, apoptosis, infarct size, and inflammatory cytokine release (p < 0.05 or p < 0.01). Conclusions By reducing oxidative stress, inflammation, and apoptosis, IMD may represent a promising novel therapeutic target mitigating diabetic ischemic heart injury.
Collapse
|
42
|
Qin YW, Teng X, He JQ, Du J, Tang CS, Qi YF. Increased plasma levels of intermedin and brain natriuretic peptide associated with severity of coronary stenosis in acute coronary syndrome. Peptides 2013; 42:84-8. [PMID: 23391507 DOI: 10.1016/j.peptides.2013.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 02/07/2023]
Abstract
Intermedin (IMD) is a newly discovered peptide with increased levels in plasma and cardiac tissue in mice with ischemia/reperfusion. Continuous administration of low dose IMD markedly elevated the mRNA abundance of myocardial BNP in rats. Plasma BNP levels may reflect the severity of degree of coronary stenosis in patients with acute coronary syndrome (ACS). However, the role of circulating IMD in coronary heart disease remains unclear. We aimed to examine the plasma content of IMD and brain natriuretic peptide (BNP) and its clinical significance in patients with ACS. We collected plasma samples from 41 patients with ACS and 31 controls and measured IMD and BNP levels by radioimmunoassay. The severity of coronary artery stenosis for patients with ACS was measured by coronary angiography. Plasma IMD and BNP levels were markedly higher in ACS patients than that in controls (P<0.05). The increased plasma IMD and BNP were positively correlated with degree of coronary stenosis in ACS patients (r=0.263 and r=0.238, respectively, both P<0.05). In addition, plasma levels of IMD were positively correlated with BNP levels.
Collapse
Affiliation(s)
- Yan-Wen Qin
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Wong CW, O WS, Tang F. Intermedin in rat uterus: changes in gene expression and peptide levels across the estrous cycle and its effects on uterine contraction. Reprod Biol Endocrinol 2013; 11:13. [PMID: 23442365 PMCID: PMC3598482 DOI: 10.1186/1477-7827-11-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/19/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The present study demonstrates the expression of intermedin (IMD) and its receptor components in the uterus of the female rat during the estrous cycle and its effect on uterine contraction. METHODS The gene expression level of intermedin and its receptor components and the peptide level of intermedin were studied by real-time RT-PCR and enzyme immunoassay (EIA) respectively. The separation of precursor and mature IMD was studied by gel filtration chromatography and EIA. The localization of IMD in the uterus was investigated by immunohistochemistry. The effect of IMD on in vitro uterine contraction was studied by organ bath technique. RESULTS Uterine mRNAs of Imd and its receptor components and IMD levels displayed cyclic changes across the estrous cycle. Imd mRNA level was the highest at proestrus while the IMD level was the highest at diestrus. IMD was found in the luminal and glandular epithelia and IMD treatment significantly reduced the amplitude and frequency of uterine contraction but not the basal tone. Both calcitonin gene-related peptide (CGRP) receptor antagonist hCGRP8-37 and adrenomedullin (ADM) receptor antagonist hADM22-52 partially abolished the inhibitory effect of IMD on uterine contraction while the specific IMD receptor antagonist hIMD17-47 completely blocked the actions. The enzyme inhibitors of NO (L-NAME) and PI3K (Wortmannin) pathways diminished the IMD effects on uterine contraction while the cAMP/PKA blocker, KT5720, had no effect, indicating an involvement of NO and PI3K/Akt but not PKA. CONCLUSIONS IMD and the gene expression of its receptor components are differentially regulated in the uterus during the estrous cycle and IMD inhibits uterine contraction by decreasing the amplitude and frequency.
Collapse
Affiliation(s)
- Chi-Wai Wong
- Departments of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Pokfulam, China
| | - Wai-Sum O
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Pokfulam, China
- Center of Growth, Reproduction and Development, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Pokfulam, China
| | - Fai Tang
- Departments of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Pokfulam, China
- Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Pokfulam, China
| |
Collapse
|
44
|
Yang X, Zhang H, Jia Y, Ni L, Li G, Xue L, Jiang Y. Effects of intermedin1-53 on myocardial fibrosis. Acta Biochim Biophys Sin (Shanghai) 2013; 45:141-8. [PMID: 23174675 DOI: 10.1093/abbs/gms093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermedin (IMD) is a member of the calcitonin/calcitonin gene-related peptide (CGRP) family and has similar or more potent cardiovascular actions than adrenomedullin (ADM) and any other CGRP. The aim of the present work is to study the effects of IMD1-53 on cardiac fibroblast fibrosis in vivo and in vitro. Myocardial infarction model was prepared by ligating rats' left anterior descending coronary artery. Mesenchymal collagen contents in the left ventricle were accessed by Sirius-red stain. Heart functions were explored by hemodynamic changes. Expression of I and III type collagens, IMD1-53, receptor activity-modifying proteins (RAMP)1/2/3, and calcitonin receptor-like receptor (CRLR) in left ventricle were detected by western blot analysis. Cardiac fibroblasts (CFbs) fibrosis was induced by treating the cells with aldosterone (ALD). CFbs proliferation and the hydroxyproline contents in supernatants were determined by 3-[4,5-dimehyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay and enzyme-linked immunosorbent assay. Heart function was decreased in myocardial infarction model rats. Expression of type I and type III collagens in infarcted zone in myocardial rats was higher than those in the sham-operated group. IMD1-53, RAMP, and CRLR in left ventricle were also up-regulated. In vitro experiment showed that ALD was a powerful stimulator of CFbs activation. IMD1-53 decreased ALD-induced CFbs proliferation in a dose-dependent manner. Moreover, CGRP8-37 and ADM22-52 remarkably blocked the effect of IMD1-53 on ALD-induced myocardial cell fibrosis. IMD could be involved in the onset of cardiac fibrosis. Like ADM, IMD1-53 exerts an antifibrotic effect on CFbs, which might be mediated by CRLR/RAMP complex and ADM receptor.
Collapse
Affiliation(s)
- Xiaoling Yang
- Department of Pathophysiology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Dai XY, Cai Y, Mao DD, Qi YF, Tang C, Xu Q, Zhu Y, Xu MJ, Wang X. Increased stability of phosphatase and tensin homolog by intermedin leading to scavenger receptor A inhibition of macrophages reduces atherosclerosis in apolipoprotein E-deficient mice. J Mol Cell Cardiol 2012; 53:509-20. [PMID: 22841663 DOI: 10.1016/j.yjmcc.2012.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/29/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Intermedin, a novel member of calcitonin gene-related peptide family, is an endogenous cardiovascular-protective peptide. Because intermedin exists in human atherosclerotic plaque, we studied the role of intermedin in macrophage scavenger receptor A (SR-A)-mediated foam-cell formation and atherogenesis. In an in vitro foam-cell formation model (induced by acetylated low-density lipoprotein [AcLDL]) with mouse (C57BL/6J) macrophages, intermedin reduced AcLDL uptake and binding, decreased intracellular cholesterol content, and suppressed both mRNA and protein levels of SR-A. Simultaneously, intermedin increased phosphatase and tensin homolog (PTEN) protein levels by increasing PTEN phosphorylation and inhibiting ubiquitin-mediated PTEN degradation. These effects were blocked by the intermedin receptor antagonist or cAMP-protein kinase A inhibitors. PTEN overexpression mimicked the inhibitory effects of intermedin on SR-A expression and AcLDL uptake. However, knockdown of PTEN by short-hairpin RNA completely blocked all inhibitory effects of intermedin. Furthermore, in apolipoprotein E-deficient (apoE(-/-)) mice, 6-week intermedin infusion reduced AcLDL uptake and SR-A mRNA and protein levels and increased PTEN protein level in peritoneal macrophages. PTEN level was increased and SR-A expression decreased in parallel in macrophages in atherosclerotic lesions. Thus, intermedin inhibited atherosclerosis in apoE(-/-) mice. Increased stability of PTEN by intermedin leads to SR-A inhibition in macrophages, which ameliorates foam-cell formation and atherosclerosis in apoE(-/-) mice.
Collapse
Affiliation(s)
- Xiao-Yan Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liao J, Sun A, Xie Y, Isse T, Kawamoto T, Zou Y, Ge J. Aldehyde dehydrogenase-2 deficiency aggravates cardiac dysfunction elicited by endoplasmic reticulum stress induction. Mol Med 2012; 18:785-93. [PMID: 22430940 DOI: 10.2119/molmed.2011.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/13/2012] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items--78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47(phox) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal--were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47(phox) NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47(phox) NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress-induced apoptosis. The protective role of ALDH2 against ER stress-induced cell death was probably mediated by Akt via a p47(phox) NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress in heart disease.
Collapse
Affiliation(s)
- Jianquan Liao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
47
|
|