1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Fernández AC, Estrella J, Oglesbee D, Larson AA, Van Hove JL. The clinical utility in hospital-wide use of growth differentiation factor 15 as a biomarker for mitochondrial DNA-related disorders. J Inherit Metab Dis 2025; 48:e12821. [PMID: 39582258 PMCID: PMC11671288 DOI: 10.1002/jimd.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Clinical recognition of primary mitochondrial disorders (PMD) is difficult due to the clinical and genetic heterogeneity. Whereas lactate has low sensitivity and specificity, in structured clinical studies growth differentiation factor 15 (GDF15) has shown promise with elevations in mitochondrial DNA (mtDNA)-related PMD, but its specificity has been questioned. In a tertiary care hospital-wide study, medical records were retrospectively reviewed from 418 cases where GDF15 levels were obtained by clinicians. Patients were classified into patients with PMD due to mtDNA-related defects (mtDNA maintenance, mtDNA deletions, and mtDNA-encoded tRNA variants), PMD due to structural defects or other nuclear causes, and in non-mitochondrial disease. Patients with liver disease or systemic critical illness were excluded. GDF15 was assayed in a clinical laboratory with a cutoff of 750 ng/L. There were 38 mtDNA-related PMD (GDF15 >750 pg/mL in 76%), 35 other nuclear DNA-encoded PMD or structural subunits (31% elevated GDF15), 309 non-mitochondrial disorders (13% elevated GDF15). Based on the highest Youden J-index, the optimal cut-off value to identify these target mtDNA-related disorders was 815 pg/mL, with sensitivity 76%, specificity 88%, positive predictive value of 41% and negative predictive value of 97%. At this optimized cutoff level, mtDNA-encoded PMD patients had elevated GDF15 in 76%, nuclear DNA-encoded PMD in 26%, and non-mitochondrial disorders in 11% of patients. Thus, in a real-life clinical setting, after excluding abnormal liver function and critical illness, GDF15 had good clinical utility increasing the odds at predicting mtDNA-related primary mitochondrial disorders 14-fold, but not for structural or other nuclear-encoded primary mitochondrial disorders.
Collapse
Affiliation(s)
- Andrea Cortés Fernández
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Jane Estrella
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - Austin A. Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Johan L.K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
3
|
Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol 2025; 32:e70014. [PMID: 39831374 PMCID: PMC11744304 DOI: 10.1111/ene.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration. METHODS Medline, Embase, Scopus and Web of Science were searched for articles published from inception until October 2023. Studies focused on mtDNA haplogroups or hereditary pathogenic variants were excluded. Critical appraisal was performed using the Quality Assessment for Diagnostic Accuracy Studies criteria. RESULTS Fifty-nine original studies met our a priori-defined inclusion criteria. The majority of CSF-focused studies showed (i) decreased mtDNA levels in PD and AD; (ii) increased levels in MS compared to controls. No studies evaluated CSF mtDNA in ALS. Results focused on blood cell-free and intracellular mtDNA were contradictory, even within studies evaluating the same disease. This poor reproducibility is likely due to the lack of consideration of the many factors known to affect mtDNA levels. mtDNA damage and methylation levels were increased and reduced in patients compared to controls, respectively. A few studies investigated the correlation between mtDNA and disease severity, with conflicting results. CONCLUSIONS Additional well-designed studies are needed to evaluate CSF and blood mtDNA profiles as putative biomarkers in neurodegenerative diseases. The identification of "mitochondrial subtypes" of disease may enable novel precision medicine strategies to counteract neurodegeneration.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Giada Cuconato
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Alessandro Padovani
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Unit of NeurologyASST Spedali CiviliBresciaItaly
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Massimiliano Filosto
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
4
|
Isik FI, Thomson S, Cueto JF, Spathos J, Breit SN, Tsai VWW, Brown DA, Finney CA. A systematic review of the neuroprotective role and biomarker potential of GDF15 in neurodegeneration. Front Immunol 2024; 15:1514518. [PMID: 39737171 PMCID: PMC11682991 DOI: 10.3389/fimmu.2024.1514518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegeneration is characteristically multifaceted, with limited therapeutic options. One of the chief pathophysiological mechanisms driving these conditions is neuroinflammation, prompting increasing clinical interest in immunomodulatory agents. Growth differentiation factor 15 (GDF15; previously also called macrophage inhibitory cytokine-1 or MIC-1), an anti-inflammatory cytokine with established neurotrophic properties, has emerged as a promising therapeutic agent in recent decades. However, methodological challenges and the delayed identification of its specific receptor GFRAL have hindered research progress. This review systematically examines literature about GDF15 in neurodegenerative diseases and neurotrauma. The evidence collated in this review indicates that GDF15 expression is upregulated in response to neurodegenerative pathophysiology and increasing its levels in preclinical models typically improves outcomes. Key knowledge gaps are addressed for future investigations to foster a more comprehensive understanding of the neuroprotective effects elicited by GDF15.
Collapse
Affiliation(s)
- Finula I. Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - John F. Cueto
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Samuel N. Breit
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Vicky W. W. Tsai
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Western Sydney Local Health District, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Huang Q, Monzel AS, Rausser S, Haahr R, Devine J, Liu CC, Kelly C, Thompson E, Kurade M, Michelson J, Li S, Engelstad K, Tanji K, Lauriola V, Wang T, Wang S, Marsland AL, Kaufman BA, St-Onge MP, Sloan R, Juster RP, Gouspillou G, Hirano M, Picard M, Trumpff C. The Energetic Stress Marker GDF15 is Induced by Acute Psychosocial Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590241. [PMID: 38659958 PMCID: PMC11042343 DOI: 10.1101/2024.04.19.590241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
GDF15 (growth differentiation factor 15) is a marker of cellular and mitochondrial energetic stress linked to physical-mental illness, aging, and mortality. Here, we describe the psychobiological regulation of plasma and saliva GDF15 in four human studies including 3,599 samples from 148 healthy individuals. We report two main observations establishing GDF15 as a novel tractable biomarker of psychosocial stress. 1) In two experimental laboratory studies, socio-evaluative stress rapidly elevates GDF15 and lactate, two molecular markers of energetic/reductive stress. 2) Similar to other stress-related metabolic hormones, we also find that saliva GDF15 exhibit a robust awakening response, being highest at the time of waking up and declining by ~42-92% within 30-45 minutes. These data position GDF15 as a dynamic biomarker of psychosocial stress accessible in human blood and saliva, pointing towards a shared psychobiological pathway linking mental and mitochondrial energetic stress. These foundational observations open the door to large-scale studies using GDF15 to non-invasively probe how acute psychosocial factors promote cellular and mitochondrial and energetic stress contributing to the stress-disease cascade across the lifespan.
Collapse
Affiliation(s)
- Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S. Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shannon Rausser
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Haahr
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Cynthia C. Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Catherine Kelly
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth Thompson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Mangesh Kurade
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shufang Li
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Kris Engelstad
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Kurenai Tanji
- Department of pathology and cell biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Lauriola
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Tian Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Shuang Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brett A Kaufman
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA United States
| | - Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Richard Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Gilles Gouspillou
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC, Canada
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | | |
Collapse
|
7
|
Sepulveda CJ, Walsh E, Carlin K, Saneto RP. Using a Previsit Questionnaire for Initial Visits in a Pediatric Mitochondrial Clinic: Perspectives of Parents, a Specialty Physician, and a Clinical Coordinator. J Child Neurol 2024; 39:453-460. [PMID: 39268553 DOI: 10.1177/08830738241278388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Objective: In this study, we assessed the usefulness of a previsit questionnaire for children who were referred for an initial evaluation in a mitochondrial subspecialty clinic. We explored the themes regarding parent's questions, concerns, and goals. We aimed to add to existing knowledge about the usefulness of previsit questionnaires in a pediatric specialty setting from the perspective of parents, the specialist, and the clinical coordinator. Method: We enrolled 25 patients and their parent(s) over 25 months. Questionnaires were completed by the parent(s), the clinical coordinator, and the mitochondrial specialist. Descriptive statistics and thematic analysis were used to summarize results. Results: Parental responses suggested that they are most concerned about their child's clinical problems, communication, language and developmental delays, disease progression and prognosis, understanding mitochondrial disease, quality of life, and physical challenges including muscle and energy problems. Parents felt the previsit questionnaire was very helpful for both the doctor and for themselves to be prepared for their visit. The specialist and the clinical coordinator also found it to be helpful. Parental comments suggested that they felt that writing down the story of their child's life was helpful for the provider, allowed time for reflection, and improved the appointment experience. Some felt it was a difficult or redundant activity. Conclusion: Parents were often pleased to complete the previsit questionnaire. This allowed them to highlight concerns and share information that they wanted the care team to know about their child. We revised the tool based on feedback from parents and the specialist and will continue to use it in our clinic.
Collapse
Affiliation(s)
| | - Elaine Walsh
- Center for Pediatric Nursing Research, Seattle Children's, Seattle, WA, USA
- Child, Family, and Population Health Nursing, University of Washington School of Nursing, Seattle, WA, USA
| | - Kristen Carlin
- Biostatistics, Epidemiology and Analytics in Research, Seattle Children's Research Institute, Clinical and Translational Research, Seattle, WA, USA
| | - Russell P Saneto
- Program for Mitochondrial Medicine and Metabolism, Neuroscience Institute, Center for Integrated Brain Research, Department of Neurology, Division of Pediatric Neurology, Seattle Children's Hospital/University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Zhou W, Karan KR, Gu W, Klein HU, Sturm G, De Jager PL, Bennett DA, Hirano M, Picard M, Mills RE. Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. PLoS Biol 2024; 22:e3002723. [PMID: 39172952 PMCID: PMC11340991 DOI: 10.1371/journal.pbio.3002723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024] Open
Abstract
The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in nonhuman species and recently demonstrated to occur in rare instances from one human generation to the next. Here, we investigated numtogenesis dynamics in humans in 2 ways. First, we quantified Numts in 1,187 postmortem brain and blood samples from different individuals. Compared to circulating immune cells (n = 389), postmitotic brain tissue (n = 798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples, we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex (DLPFC) compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, an increase in the number of brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment (NCI) who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures whole-genome sequencing design in a human fibroblast model that recapitulates several molecular hallmarks of aging. These longitudinal experiments revealed a gradual accumulation of 1 Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven by cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human postmitotic tissues produces functionally relevant human Numts over timescales shorter than previously assumed.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kalpita R. Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Michio Hirano
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, New York, New York, United States of America
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Çakmak HM, Alpay M, Mahdızadeh C, Özalp SÇ, Türay S, Özde Ş, Kocabay K. Heightened Serum Mitochondrial Biomarkers; FGF21 and NOS in Pediatric Anemia and a Negative Correlation between GDF15 and Serum Ferritin. J Clin Med 2024; 13:4403. [PMID: 39124668 PMCID: PMC11313501 DOI: 10.3390/jcm13154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Objective: Mitochondrial dysfunction is closely linked to chronic disorders. This study aims to explore the correlation between pediatric anemia and mitochondrial markers, specifically fibroblast growth factor 21 (FGF21), growth/differentiation factor 15 (GDF-15), and nitric oxide synthase (eNOS). Method: This study included 66 children, with 34 diagnosed with anemia and 32 in the healthy control group. Statistically significant biomarkers were determined through cutoff levels. Results: Among the participants, 34 children were classified as anemic, while 32 were categorized as healthy. The study revealed that FGF21 levels ≥ 0.745 pg/mL and eNOS levels ≥ 1.265 µg/mL predicted anemia. Hemoglobin levels exhibited a negative correlation with FGF21 (r = -0.381; p = 0.002) and eNOS levels (r = -0.462; p < 0.001). Furthermore, a significant negative correlation was observed between GDF-15 and ferritin (r = -0.311; p = 0.019), while eNOS levels correlated positively with folate (r = 0.313; p = 0.019). Conclusions: Anemia induced elevated mitochondrial biomarkers; FGF21 and eNOS levels. The findings suggest that the long-term ramifications of anemia in childhood may be associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hatice Mine Çakmak
- Pediatric Hematology-Oncology, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Merve Alpay
- Biochemistry, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Cansu Mahdızadeh
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Seray Çevikel Özalp
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Sevim Türay
- Pediatric Neurology, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Şükriye Özde
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| | - Kenan Kocabay
- Pediatrics, Duzce University School of Medicine, Konuralp Provinence, 81620 Duzce, Turkey
| |
Collapse
|
10
|
Launay N, Lopez-Erauskin J, Bianchi P, Guha S, Parameswaran J, Coppa A, Torreni L, Schlüter A, Fourcade S, Paredes-Fuentes AJ, Artuch R, Casasnovas C, Ruiz M, Pujol A. Imbalanced mitochondrial dynamics contributes to the pathogenesis of X-linked adrenoleukodystrophy. Brain 2024; 147:2069-2084. [PMID: 38763511 DOI: 10.1093/brain/awae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 05/21/2024] Open
Abstract
The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Jone Lopez-Erauskin
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Patrizia Bianchi
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Physiology and Immunology, Facultat de Medicina, Institut de Neurociències and Department of Cell Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sanjib Guha
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Nautilus Biotechnology, San Carlos, CA 94070, USA
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrea Coppa
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorenzo Torreni
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona, 08193 Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, 08028 Barcelona, Spain
| | - Rafael Artuch
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Universitat de Barcelona, 08907 Lhospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
11
|
Nogueira C, Pereira C, Silva L, Laranjeira M, Lopes A, Neiva R, Rodrigues E, Campos T, Martins E, Bandeira A, Coelho M, Magalhães M, Damásio J, Gaspar A, Janeiro P, Gomes AL, Ferreira AC, Jacinto S, Vieira JP, Diogo L, Santos H, Mendonça C, Vilarinho L. The genetic landscape of mitochondrial diseases in the next-generation sequencing era: a Portuguese cohort study. Front Cell Dev Biol 2024; 12:1331351. [PMID: 38465286 PMCID: PMC10920333 DOI: 10.3389/fcell.2024.1331351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Rare disorders that are genetically and clinically heterogeneous, such as mitochondrial diseases (MDs), have a challenging diagnosis. Nuclear genes codify most proteins involved in mitochondrial biogenesis, despite all mitochondria having their own DNA. The development of next-generation sequencing (NGS) technologies has revolutionized the understanding of many genes involved in the pathogenesis of MDs. In this new genetic era, using the NGS approach, we aimed to identify the genetic etiology for a suspected MD in a cohort of 450 Portuguese patients. Methods: We examined 450 patients using a combined NGS strategy, starting with the analysis of a targeted mitochondrial panel of 213 nuclear genes, and then proceeding to analyze the whole mitochondrial DNA. Results and Discussion: In this study, we identified disease-related variants in 134 (30%) analyzed patients, 88 with nuclear DNA (nDNA) and 46 with mitochondrial DNA (mtDNA) variants, most of them being pediatric patients (66%), of which 77% were identified in nDNA and 23% in mtDNA. The molecular analysis of this cohort revealed 72 already described pathogenic and 20 novel, probably pathogenic, variants, as well as 62 variants of unknown significance. For this cohort of patients with suspected MDs, the use of a customized gene panel provided a molecular diagnosis in a timely and cost-effective manner. Patients who cannot be diagnosed after this initial approach will be further selected for whole-exome sequencing. Conclusion: As a national laboratory for the study and research of MDs, we demonstrated the power of NGS to achieve a molecular etiology, expanding the mutational spectrum and proposing accurate genetic counseling in this group of heterogeneous diseases without therapeutic options.
Collapse
Affiliation(s)
- C. Nogueira
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - C. Pereira
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - L. Silva
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Mateus Laranjeira
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - A. Lopes
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - R. Neiva
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - E. Rodrigues
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, Porto, Portugal
| | - T. Campos
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, Porto, Portugal
| | - E. Martins
- Inherited Metabolic Diseases Reference Centre, Santo António Hospital University Centre, Porto, Portugal
| | - A. Bandeira
- Inherited Metabolic Diseases Reference Centre, Santo António Hospital University Centre, Porto, Portugal
| | - M. Coelho
- Inherited Metabolic Diseases Reference Centre, Santo António Hospital University Centre, Porto, Portugal
| | - M. Magalhães
- Neurology Department, Santo António Hospital University Centre, Porto, Portugal
| | - J. Damásio
- Neurology Department, Santo António Hospital University Centre, Porto, Portugal
| | - A. Gaspar
- Inherited Metabolic Diseases Reference Centre, Lisboa Norte Hospital University Centre, Lisboa, Portugal
| | - P Janeiro
- Inherited Metabolic Diseases Reference Centre, Lisboa Norte Hospital University Centre, Lisboa, Portugal
| | - A. Levy Gomes
- Neurology Department, Lisboa Norte Hospital University Centre, Lisboa, Portugal
| | - A. C. Ferreira
- Inherited Metabolic Diseases Reference Centre, Lisboa Central Hospital Centre, Lisboa, Portugal
| | - S. Jacinto
- Inherited Metabolic Diseases Reference Centre, Lisboa Central Hospital Centre, Lisboa, Portugal
| | - J. P. Vieira
- Inherited Metabolic Diseases Reference Centre, Lisboa Central Hospital Centre, Lisboa, Portugal
| | - L. Diogo
- Inherited Metabolic Diseases Reference Centre, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - H. Santos
- Inherited Metabolic Diseases Reference Centre, Vila Nova de Gaia Hospital Centre, Vila Nova de Gaia, Portugal
| | - C. Mendonça
- Pediatric Department, Faro Hospital and University Centre, Faro, Portugal
| | - L. Vilarinho
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
12
|
Citrigno L, Qualtieri A, Cerantonio A, De Benedittis S, Gallo O, Di Palma G, Spadafora P, Cavalcanti F. Genomics landscape of mitochondrial DNA variations in patients from South Italy affected by mitochondriopathies. J Neurol Sci 2024; 457:122869. [PMID: 38215527 DOI: 10.1016/j.jns.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial DNA (mtDNA) is a 16,569 base pairs, double-stranded, circular molecule that contains 37 genes coding for 13 subunits of the respiratory chain plus 2 rRNAs and 22 tRNAs. Mutations in these genes have been identified in patients with a variety of disorders affecting every system in the body. The advent of next generation sequencing technologies has provided the possibility to perform the whole mitochondrial DNA sequencing, allowing the identification of disease-causing pathogenic variants in a single platform. In this study, the whole mtDNA of 100 patients from South Italy affected by mitochondrial diseases was analyzed by using an amplicon-based approach and then the enriched libraries were deeply sequenced on the ION Torrent platform (Thermofisher Scientific Waltham, MA, USA). After bioinformatics analysis and filtering, we were able to find 26 nonsynonymous variants with a MAF <1% that were associated with different pathological phenotypes, expanding the mutational spectrum of these diseases. Moreover, among the new mutations found, we have also analyzed the 3D structure of the MT-ATP6 A200T gene variation in order to confirm suspected functional alterations. This work brings light on new variants possibly associated with several mitochondriopathies in patients from South Italy and confirms that deep sequencing approach, compared to the standard methods, is a reliable and time-cost reducing strategy to detect all the variants present in the mitogenome, making the possibility to create a genomics landscape of mitochondrial DNA variations in human diseases.
Collapse
Affiliation(s)
- Luigi Citrigno
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy.
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Annamaria Cerantonio
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Olivier Gallo
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Gemma Di Palma
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| |
Collapse
|
13
|
Calame DG, Emrick LT. Functional genomics and small molecules in mitochondrial neurodevelopmental disorders. Neurotherapeutics 2024; 21:e00316. [PMID: 38244259 PMCID: PMC10903096 DOI: 10.1016/j.neurot.2024.e00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Mitochondria are critical for brain development and homeostasis. Therefore, pathogenic variation in the mitochondrial or nuclear genome which disrupts mitochondrial function frequently results in developmental disorders and neurodegeneration at the organismal level. Large-scale application of genome-wide technologies to individuals with mitochondrial diseases has dramatically accelerated identification of mitochondrial disease-gene associations in humans. Multi-omic and high-throughput studies involving transcriptomics, proteomics, metabolomics, and saturation genome editing are providing deeper insights into the functional consequence of mitochondrial genomic variation. Integration of deep phenotypic and genomic data through allelic series continues to uncover novel mitochondrial functions and permit mitochondrial gene function dissection on an unprecedented scale. Finally, mitochondrial disease-gene associations illuminate disease mechanisms and thereby direct therapeutic strategies involving small molecules and RNA-DNA therapeutics. This review summarizes progress in functional genomics and small molecule therapeutics in mitochondrial neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Lisa T Emrick
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Shayota BJ. Biomarkers of mitochondrial disorders. Neurotherapeutics 2024; 21:e00325. [PMID: 38295557 PMCID: PMC10903091 DOI: 10.1016/j.neurot.2024.e00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Mitochondrial diseases encompass a heterogeneous group of disorders with a wide range of clinical manifestations, most classically resulting in neurological, muscular, and metabolic abnormalities, but having the potential to affect any organ system. Over the years, substantial progress has been made in identifying and characterizing various biomarkers associated with mitochondrial diseases. This review summarizes the current knowledge of mitochondrial biomarkers based on a literature review and discusses the evidence behind their use in clinical practice. A total of 13 biomarkers were thoroughly reviewed including lactate, pyruvate, lactate:pyruvate ratio, creatine kinase, creatine, amino acid profiles, glutathione, malondialdehyde, GDF-15, FGF-21, gelsolin, neurofilament light-chain, and circulating cell-free mtDNA. Most biomarkers had mixed findings depending on the study, especially when considering their utility for specific mitochondrial diseases versus mitochondrial conditions in general. However, in large biomarker comparison studies, GDF-15 followed by FGF-21, seem to have the greatest value though they are still not perfect. As such, additional studies are needed, especially in light of newer biomarkers that have not yet been thoroughly investigated. Understanding the landscape of biomarkers in mitochondrial diseases is crucial for advancing early detection, improving patient management, and developing targeted therapies.
Collapse
Affiliation(s)
- Brian J Shayota
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
16
|
Dong XC, Xu DY. Research Progress on the Role and Mechanism of GDF15 in Body Weight Regulation. Obes Facts 2023; 17:1-11. [PMID: 37989122 PMCID: PMC10836939 DOI: 10.1159/000535089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Growth differentiation factor-15 (GDF15) is a member of the growth differentiation factor subfamily in the transforming growth factor beta superfamily. GDF15 has multiple functions and can regulate biological processes. High levels of GDF15 in the circulation can affect metabolic processes. Studies have shown that GDF15 is associated with changes in body weight. SUMMARY This review reviews the current knowledge on the relationship between GDF15 and body weight change, focusing on the role and mechanism of GDF15 in body weight regulation. GDF15 plays an important role in reducing food intake, improving insulin resistance, and breaking down fat, suggesting that GDF15 has an important regulatory effect on body weight. The mechanism by which GDF15 causes reduced food intake may be related to changes in food preference, delayed gastric emptying, and conditioned taste aversion. GDF15 can combat insulin resistance induced by inflammation or protect β cell from apoptosis. GDF15 probably promotes lipolysis through a brain-somatic tissue circuit. Several factors and related signaling pathways are also mentioned that can contribute to the effects of GDF15 on reducing weight. KEY MESSAGE GDF15 plays an important role in weight regulation and provides a new direction for the treatment of obesity. Its effects on resisting obesity are of great significance to inhibiting the progression of metabolic diseases. It is expected to become a new target for regulating body weight, improving obesity, and treating metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Xiao-Chen Dong
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Miyahara H, Tamai C, Inoue M, Sekiguchi K, Tahara D, Tahara N, Takeda K, Arafuka S, Moriyoshi H, Koizumi R, Akagi A, Riku Y, Sone J, Yoshida M, Ihara K, Iwasaki Y. Neuropathological hallmarks in autopsied cases with mitochondrial diseases caused by the mitochondrial 3243A>G mutation. Brain Pathol 2023; 33:e13199. [PMID: 37534760 PMCID: PMC10580013 DOI: 10.1111/bpa.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
The mitochondrial (m.) 3243A>G mutation is known to be associated with various mitochondrial diseases including mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Their clinical symptoms have been estimated to occur with an increased mitochondrial DNA (mtDNA) heteroplasmy and reduced activity of oxidative phosphorylation (OXPHOS) complexes, but their trends in the central nervous system remain unknown. Six autopsied mutant cases and three disease control cases without the mutation were enrolled in this study. The mutant cases had a disease duration of 1-27 years. Five of six mutant cases were compatible with MELAS. In the mutant cases, cortical lesions including a laminar necrosis were frequently observed in the parietal, lateral temporal, and occipital lobes; less frequently in the frontal lobe including precentral gyrus; and not at all in the medial temporal lobe. The mtDNA heteroplasmy in brain tissue samples of the mutant cases was strikingly high, ranging from 53.8% to 85.2%. The medial temporal lobe was preserved despite an inhospitable environment having high levels of mtDNA heteroplasmy and lactic acid. OXPHOS complex I was widely decreased in the mutant cases. The swelling of smooth muscle cells in the vessels on the leptomeninges, with immunoreactivity (IR) against mitochondria antibody, and a decreased nuclear/cytoplasmic ratio of choroidal epithelial cells were observed in all mutant cases but in none without the mutation. Common neuropathological findings such as cortical laminar necrosis and basal ganglia calcification were not always observed in the mutant cases. A high level of mtDNA heteroplasmy was observed throughout the brain in spite of heterogeneous cortical lesions. A lack of medial temporal lesion, mitochondrial vasculopathy in vessels on the leptomeninges, and an increased cytoplasmic size of epithelial cells in the choroid plexus could be neuropathological hallmarks helpful in the diagnosis of mitochondrial diseases.
Collapse
Affiliation(s)
- Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Chisato Tamai
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Masanori Inoue
- Department of PediatricsOita University Faculty of MedicineOitaJapan
| | | | - Daisuke Tahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Nao Tahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Kazuhiro Takeda
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Shusei Arafuka
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Hideyuki Moriyoshi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Kenji Ihara
- Department of PediatricsOita University Faculty of MedicineOitaJapan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| |
Collapse
|
18
|
Igual Gil C, Löser A, Lossow K, Schwarz M, Weber D, Grune T, Kipp AP, Klaus S, Ost M. Temporal dynamics of muscle mitochondrial uncoupling-induced integrated stress response and ferroptosis defense. Front Endocrinol (Lausanne) 2023; 14:1277866. [PMID: 37941910 PMCID: PMC10627798 DOI: 10.3389/fendo.2023.1277866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (mUcp1-transgenic, TG). TG mice are characterized by increased muscle ISR, elevated oxidative stress defense, and increased secretion of FGF21 and GDF15 as ISR-induced myokines. We observed a temporal signature of both cell-autonomous and systemic ISR in the context of endocrine myokine signaling and cellular redox balance, but not of ferroptotic signature which was also increased in TG muscle. We show a progressive increase of muscle ISR on transcriptional level during the active phase (night time), with a subsequent peak in circulating FGF21 and GDF15 in the early resting phase. Moreover, we found highest levels of muscle oxidative defense (GPX and NQO1 activity) between the late active to early resting phase, which could aim to counteract excessive iron-dependent lipid peroxidation and ferroptosis in muscle of TG mice. These findings highlight the temporal dynamics of cell-autonomous and endocrine ISR signaling under skeletal muscle mitochondrial uncoupling, emphasizing the importance of considering such dissociation in translational strategies and sample collection for diagnostic biomarker analysis.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tilman Grune
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Anna P. Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Ueda S, Yagi M, Tomoda E, Matsumoto S, Ueyanagi Y, Do Y, Setoyama D, Matsushima Y, Nagao A, Suzuki T, Ide T, Mori Y, Oyama N, Kang D, Uchiumi T. Mitochondrial haplotype mutation alleviates respiratory defect of MELAS by restoring taurine modification in tRNA with 3243A > G mutation. Nucleic Acids Res 2023; 51:7480-7495. [PMID: 37439353 PMCID: PMC10415116 DOI: 10.1093/nar/gkad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.
Collapse
Affiliation(s)
- Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Mori
- Department of Internal Medicine Kitakyushu City Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Noriko Oyama
- Department of Endocrinology and Metabolism, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
Lam XJ, Xu B, Yeo PL, Cheah PS, Ling KH. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neurosci Rep 2023; 14:407-418. [PMID: 37388495 PMCID: PMC10300489 DOI: 10.1016/j.ibneur.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/08/2023] [Indexed: 07/01/2023] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, 132 Daxuecheng Outer Ring E Rd, Panyu Qu, Guangzhou Shi, Guangdong 511434, People's Republic of China
| | - Pei-Ling Yeo
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Gill EL, Wang J, Viaene AN, Master SR, Ganetzky RD. Methodologies in Mitochondrial Testing: Diagnosing a Primary Mitochondrial Respiratory Chain Disorder. Clin Chem 2023:7143230. [PMID: 37099687 DOI: 10.1093/clinchem/hvad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca D Ganetzky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children's Hospital of Philadelphia, Mitochondrial Medicine Frontier Program, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Zhou W, Karan KR, Gu W, Klein HU, Sturm G, De Jager PL, Bennett DA, Hirano M, Picard M, Mills RE. Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527065. [PMID: 36778249 PMCID: PMC9915708 DOI: 10.1101/2023.02.03.527065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species 1-3 and recently demonstrated to occur in rare instances from one human generation to the next 4. Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals. Compared to circulating immune cells (n=389), post-mitotic brain tissue (n=798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, more brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures WGS design in a human fibroblast model that recapitulates several molecular hallmarks of aging 5. These longitudinal experiments revealed a gradual accumulation of one Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human post-mitotic tissues produce functionally-relevant human Numts over timescales shorter than previously assumed.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kalpita R. Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Michio Hirano
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Bermejo-Guerrero L, de Fuenmayor-Fernández de la Hoz CP, Guerrero-Molina MP, Martín-Jiménez P, Blázquez A, Serrano-Lorenzo P, Lora D, Morales-Conejo M, González-Martínez I, López-Jiménez EA, Martín MA, Domínguez-González C. Serum GDF-15 Levels Accurately Differentiate Patients with Primary Mitochondrial Myopathy, Manifesting with Exercise Intolerance and Fatigue, from Patients with Chronic Fatigue Syndrome. J Clin Med 2023; 12:jcm12062435. [PMID: 36983435 PMCID: PMC10059275 DOI: 10.3390/jcm12062435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Primary mitochondrial myopathies (PMM) are a clinically and genetically highly heterogeneous group that, in some cases, may manifest exclusively as fatigue and exercise intolerance, with minimal or no signs on examination. On these occasions, the symptoms can be confused with the much more common chronic fatigue syndrome (CFS). Nonetheless, other possibilities must be excluded for the final diagnosis of CFS, with PMM being one of the primary differential diagnoses. For this reason, many patients with CFS undergo extensive studies, including extensive genetic testing and muscle biopsies, to rule out this possibility. This study evaluated the diagnostic performance of growth differentiation factor-15 (GDF-15) as a potential biomarker to distinguish which patient with chronic fatigue has a mitochondrial disorder. We studied 34 adult patients with symptoms of fatigue and exercise intolerance with a definitive diagnosis of PMM (7), CFS (22), or other non-mitochondrial disorders (5). The results indicate that GDF-15 can accurately discriminate between patients with PMM and CFS (AUC = 0.95) and between PMM and patients with fatigue due to other non-mitochondrial disorders (AUC = 0.94). Therefore, GDF-15 emerges as a promising biomarker to select which patients with fatigue should undergo further studies to exclude mitochondrial disease.
Collapse
Affiliation(s)
- Laura Bermejo-Guerrero
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - María Paz Guerrero-Molina
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - Alberto Blázquez
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical Research Unit, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
| | - Pablo Serrano-Lorenzo
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical Research Unit, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
| | - David Lora
- Clinical Research Unit, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Department of Statistics and Data Science, Facultad de Estudios Estadísticos, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Montserrat Morales-Conejo
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Congenital Metabolic Defects Group, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | | | - Miguel A Martín
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genetics Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Paredes-Fuentes AJ, Oliva C, Urreizti R, Yubero D, Artuch R. Laboratory testing for mitochondrial diseases: biomarkers for diagnosis and follow-up. Crit Rev Clin Lab Sci 2023; 60:270-289. [PMID: 36694353 DOI: 10.1080/10408363.2023.2166013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The currently available biomarkers generally lack the specificity and sensitivity needed for the diagnosis and follow-up of patients with mitochondrial diseases (MDs). In this group of rare genetic disorders (mutations in approximately 350 genes associated with MDs), all clinical presentations, ages of disease onset and inheritance types are possible. Blood, urine, and cerebrospinal fluid surrogates are well-established biomarkers that are used in clinical practice to assess MD. One of the main challenges is validating specific and sensitive biomarkers for the diagnosis of disease and prediction of disease progression. Profiling of lactate, amino acids, organic acids, and acylcarnitine species is routinely conducted to assess MD patients. New biomarkers, including some proteins and circulating cell-free mitochondrial DNA, with increased diagnostic specificity have been identified in the last decade and have been proposed as potentially useful in the assessment of clinical outcomes. Despite these advances, even these new biomarkers are not sufficiently specific and sensitive to assess MD progression, and new biomarkers that indicate MD progression are urgently needed to monitor the success of novel therapeutic strategies. In this report, we review the mitochondrial biomarkers that are currently analyzed in clinical laboratories, new biomarkers, an overview of the most common laboratory diagnostic techniques, and future directions regarding targeted versus untargeted metabolomic and genomic approaches in the clinical laboratory setting. Brief descriptions of the current methodologies are also provided.
Collapse
Affiliation(s)
- Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Roser Urreizti
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Delia Yubero
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetic and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Young C, Batkovskyte D, Kitamura M, Shvedova M, Mihara Y, Akiba J, Zhou W, Hammarsjö A, Nishimura G, Yatsuga S, Grigelioniene G, Kobayashi T. A hypomorphic variant in the translocase of the outer mitochondrial membrane complex subunit TOMM7 causes short stature and developmental delay. HGG ADVANCES 2023; 4:100148. [PMID: 36299998 PMCID: PMC9589026 DOI: 10.1016/j.xhgg.2022.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial diseases are a heterogeneous group of genetic disorders caused by pathogenic variants in genes encoding gene products that regulate mitochondrial function. These genes are located either in the mitochondrial or in the nuclear genome. The TOMM7 gene encodes a regulatory subunit of the translocase of outer mitochondrial membrane (TOM) complex that plays an essential role in translocation of nuclear-encoded mitochondrial proteins into mitochondria. We report an individual with a homozygous variant in TOMM7 (c.73T>C, p.Trp25Arg) that presented with a syndromic short stature, skeletal abnormalities, muscle hypotonia, microvesicular liver steatosis, and developmental delay. Analysis of mouse models strongly suggested that the identified variant is hypomorphic because mice homozygous for this variant showed a milder phenotype than those with homozygous Tomm7 deletion. These Tomm7 mutant mice show pathological changes consistent with mitochondrial dysfunction, including growth defects, severe lipoatrophy, and lipid accumulation in the liver. These mice die prematurely following a rapidly progressive weight loss during the last week of their lives. Tomm7 deficiency causes a unique alteration in mitochondrial function; despite the bioenergetic deficiency, mutant cells show increased oxygen consumption with normal responses to electron transport chain (ETC) inhibitors, suggesting that Tomm7 deficiency leads to an uncoupling between oxidation and ATP synthesis without impairing the function of the tricarboxylic cycle metabolism or ETC. This study presents evidence that a hypomorphic variant in one of the genes encoding a subunit of the TOM complex causes mitochondrial disease.
Collapse
Affiliation(s)
- Cameron Young
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
| | - Miyuki Kitamura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Maria Shvedova
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yutaro Mihara
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka 830-0011, Japan
| | - Wen Zhou
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Gen Nishimura
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
- Center for Intractable Disease, Saitama Medical University Hospital, Saitama, Japan
| | - Shuichi Yatsuga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm 17176, Sweden
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58183, Sweden
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Sturm G, Karan KR, Monzel AS, Santhanam B, Taivassalo T, Bris C, Ware SA, Cross M, Towheed A, Higgins-Chen A, McManus MJ, Cardenas A, Lin J, Epel ES, Rahman S, Vissing J, Grassi B, Levine M, Horvath S, Haller RG, Lenaers G, Wallace DC, St-Onge MP, Tavazoie S, Procaccio V, Kaufman BA, Seifert EL, Hirano M, Picard M. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 2023; 6:22. [PMID: 36635485 PMCID: PMC9837150 DOI: 10.1038/s42003-022-04303-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 01/13/2023] Open
Abstract
Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Balaji Santhanam
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, Clinical and Translational Research Building, University of Florida, Gainesville, FL, USA
| | - Céline Bris
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Sarah A Ware
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Cross
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Atif Towheed
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Internal Medicine-Pediatrics Residency Program, University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Meagan J McManus
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Ronald G Haller
- Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Resources and Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guy Lenaers
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep & Circadian Research and Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Saeed Tavazoie
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Vincent Procaccio
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin L Seifert
- Department of Pathology and Genomic Medicine, and MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
27
|
Jett KA, Baker ZN, Hossain A, Boulet A, Cobine PA, Ghosh S, Ng P, Yilmaz O, Barreto K, DeCoteau J, Mochoruk K, Ioannou GN, Savard C, Yuan S, Abdalla OH, Lowden C, Kim BE, Cheng HYM, Battersby BJ, Gohil VM, Leary SC. Mitochondrial dysfunction reactivates α-fetoprotein expression that drives copper-dependent immunosuppression in mitochondrial disease models. J Clin Invest 2023; 133:e154684. [PMID: 36301669 PMCID: PMC9797342 DOI: 10.1172/jci154684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2022] [Indexed: 02/04/2023] Open
Abstract
Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kimberly A. Jett
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Zakery N. Baker
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Amzad Hossain
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Philip Ng
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Orhan Yilmaz
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kris Barreto
- Department of Laboratory and Pathology Medicine, University of Saskatchewan, Saskatoon, Canada
| | - John DeCoteau
- Department of Laboratory and Pathology Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Karen Mochoruk
- Department of Laboratory and Pathology Medicine, University of Saskatchewan, Saskatoon, Canada
| | - George N. Ioannou
- Division of Gastroenterology
- Research and Development, Veterans Affairs Puget Sound Health Care System and the
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Christopher Savard
- Division of Gastroenterology
- Research and Development, Veterans Affairs Puget Sound Health Care System and the
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sai Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Osama H.M.H. Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Christopher Lowden
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Byung-Eun Kim
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Scot C. Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
28
|
Starosta RT, Shinawi M. Primary Mitochondrial Disorders in the Neonate. Neoreviews 2022; 23:e796-e812. [PMID: 36450643 DOI: 10.1542/neo.23-12-e796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Primary mitochondrial disorders (PMDs) are a heterogeneous group of disorders characterized by functional or structural abnormalities in the mitochondria that lead to a disturbance of cellular energy, reactive oxygen species, and free radical production, as well as impairment of other intracellular metabolic functions, causing single- or multiorgan dysfunction. PMDs are caused by pathogenic variants in nuclear and mitochondrial genes, resulting in distinct modes of inheritance. Onset of disease is variable and can occur in the neonatal period, with a high morbidity and mortality. In this article, we review the most common methods used for the diagnosis of PMDs, as well as their prenatal and neonatal presentations. We highlight the shift in the diagnostic approach for PMDs since the introduction of nontargeted molecular tests into clinical practice, which has significantly reduced the use of invasive studies. We discuss common PMDs that can present in the neonate, including general, nonsyndromic presentations as well as specific syndromic disorders. We also review current treatment advances, including the use of mitochondrial "cocktails" based on limited scientific evidence and theoretical reasoning, as well as the impending arrival of personalized mitochondrial-specific treatments.
Collapse
Affiliation(s)
| | - Marwan Shinawi
- Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
29
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Falabella M, Minczuk M, Hanna MG, Viscomi C, Pitceathly RDS. Gene therapy for primary mitochondrial diseases: experimental advances and clinical challenges. Nat Rev Neurol 2022; 18:689-698. [PMID: 36257993 DOI: 10.1038/s41582-022-00715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CESNE - Center for the Study of Neurodegeneration, University of Padova, Padova, Italy
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
31
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
33
|
Capristo M, Del Dotto V, Tropeano CV, Fiorini C, Caporali L, La Morgia C, Valentino ML, Montopoli M, Carelli V, Maresca A. Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNA Lys. Mol Med 2022; 28:90. [PMID: 35922766 PMCID: PMC9347137 DOI: 10.1186/s10020-022-00519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. Methods We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. Results The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). Conclusions Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00519-z.
Collapse
Affiliation(s)
- Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Valentina Del Dotto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Concetta Valentina Tropeano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Largo Meneghetti 2, 3513, Padova, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy. .,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy.
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
34
|
Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP. The Biochemical Assessment of Mitochondrial Respiratory Chain Disorders. Int J Mol Sci 2022; 23:ijms23137487. [PMID: 35806492 PMCID: PMC9267223 DOI: 10.3390/ijms23137487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) disorders are a complex group of diseases whose diagnosis requires a multidisciplinary approach in which the biochemical investigations play an important role. Initial investigations include metabolite analysis in both blood and urine and the measurement of lactate, pyruvate and amino acid levels, as well as urine organic acids. Recently, hormone-like cytokines, such as fibroblast growth factor-21 (FGF-21), have also been used as a means of assessing evidence of MRC dysfunction, although work is still required to confirm their diagnostic utility and reliability. The assessment of evidence of oxidative stress may also be an important parameter to consider in the diagnosis of MRC function in view of its association with mitochondrial dysfunction. At present, due to the lack of reliable biomarkers available for assessing evidence of MRC dysfunction, the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ is considered the ‘Gold Standard’ biochemical method to provide evidence of MRC dysfunction. The purpose of this review is to outline a number of biochemical methods that may provide diagnostic evidence of MRC dysfunction in patients.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Neve Cufflin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mollie Dewsbury
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Olivia Fitzpatrick
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Rahida Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Lowidka Linares Watler
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Cara McPartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Sophie Whitelaw
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Caitlin Connor
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Charlotte Morris
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jason Fang
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Ollie Gartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Liv Holt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
35
|
López-Gómez C, Cámara Y, Hirano M, Martí R. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2022; 32:609-620. [PMID: 35641351 DOI: 10.1016/j.nmd.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Michio Hirano
- Columbia University Irving Medical Center, New York, USA
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
36
|
Leukocyte cytokine responses in adult patients with mitochondrial DNA defects. J Mol Med (Berl) 2022; 100:963-971. [PMID: 35635577 PMCID: PMC9885136 DOI: 10.1007/s00109-022-02206-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Patients with oxidative phosphorylation (OxPhos) defects causing mitochondrial diseases appear particularly vulnerable to infections. Although OxPhos defects modulate cytokine production in vitro and in animal models, little is known about how circulating leukocytes of patients with inherited mitochondrial DNA (mtDNA) defects respond to acute immune challenges. In a small cohort of healthy controls (n = 21) and patients (n = 12) with either the m.3243A > G mutation or single, large-scale mtDNA deletions, we examined (i) cytokine responses (IL-6, TNF-α, IL-1β) in response to acute lipopolysaccharide (LPS) exposure and (ii) sensitivity to the immunosuppressive effects of glucocorticoid signaling (dexamethasone) on cytokine production. In dose-response experiments to determine the half-maximal effective LPS concentration (EC50), relative to controls, leukocytes from patients with mtDNA deletions showed 74-79% lower responses for IL-6 and IL-1β (pIL-6 = 0.031, pIL-1β = 0.009). Moreover, whole blood from patients with mtDNA deletions (pIL-6 = 0.006), but not patients with the m.3243A > G mutation, showed greater sensitivity to the immunosuppressive effects of dexamethasone. Together, these ex vivo data provide preliminary evidence that some systemic OxPhos defects may compromise immune cytokine responses and increase the sensitivity to immune cytokine suppression by glucocorticoids. Further work in larger cohorts is needed to define the nature of immune dysregulation in patients with mitochondrial disease, and their potential implications for disease phenotypes. KEY MESSAGES: Little is known about leukocyte cytokine responses in patients with mitochondrial diseases. Leukocytes of patients with mtDNA deletions show blunted LPS sensitivity and cytokine responses. Leukocytes of patients with mtDNA deletions are more sensitive to glucocorticoid-mediated IL-6 suppression. Work in larger cohorts is needed to delineate potential immune alterations in mitochondrial diseases.
Collapse
|
37
|
THE INTEGRATED STRESS RESPONSE AS A KEY PATHWAY DOWNSTREAM OF MITOCHONDRIAL DYSFUNCTION. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Circulating cell-free mtDNA release is associated with the activation of cGAS-STING pathway and inflammation in mitochondrial diseases. J Neurol 2022; 269:4985-4996. [PMID: 35486214 DOI: 10.1007/s00415-022-11146-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There is increasing evidence for the role of inflammation in the pathogenesis of mitochondrial diseases (MDs). However, the mechanisms underlying mutation-induced inflammation in MD remain elusive. Our previous study suggested that mitophagy is impaired in the skeletal muscle of those with MD, likely causing mitochondrial DNA (mtDNA) release and thereby triggering inflammation. We here aimed to decipher the role of the cGAS-STING pathway in inflammatory process in MDs. METHODS We investigated the levels of circulating cell-free mtDNA (ccf-mtDNA) in the serum of 104 patients with MDs. Immunofluorescence was performed in skeletal muscles in MDs and control. Biochemical analysis of muscle biopsies was conducted with western blot to detect cGAS, STING, TBK1, IRF3 and phosphorylated IRF3 (p-IRF3). RT-qPCR was performed to detect the downstream genes of type I interferon in skeletal muscles. Furthermore, a protein microarray was used to examine the cytokine levels in the serum of patients with MDs. RESULTS We found that ccf-mtDNA levels were significantly increased in those with MDs compared to the controls. Consistently, the immunofluorescent results showed that cytosolic dsDNA levels were increased in the muscle samples of MD patients. Biochemical analysis of muscle biopsies showed that cGAS, IRF3, and TBK1 protein levels were significantly increased in those with MDs, indicating that there was activation of the cGAS-STING pathway. RT-qPCR showed that downstream genes of type I interferon were upregulated in muscle samples of MDs. Protein microarray results showed that a total of six cytokines associated with the cGAS-STING pathway were significantly increased in MD patients (fold change > 1.2, p value < 0.05). CONCLUSIONS These findings suggest that increases in ccf-mtDNA levels is associated with the activation of the cGAS-STING pathway, thereby triggering inflammation in MDs.
Collapse
|
39
|
Sun Y, Kong L, Zhang AH, Han Y, Sun H, Yan GL, Wang XJ. A Hypothesis From Metabolomics Analysis of Diabetic Retinopathy: Arginine-Creatine Metabolic Pathway May Be a New Treatment Strategy for Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:858012. [PMID: 35399942 PMCID: PMC8987289 DOI: 10.3389/fendo.2022.858012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy is one of the serious complications of diabetes, which the leading causes of blindness worldwide, and its irreversibility renders the existing treatment methods unsatisfactory. Early detection and timely intervention can effectively reduce the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology and a powerful tool for studying pathophysiological processes, which can help identify the characteristic metabolic changes marking the progression of diabetic retinopathy, discover potential biomarkers to inform clinical diagnosis and treatment. This review provides an update on the known metabolomics biomarkers of diabetic retinopathy. Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a precursor, has attracted our attention due to its important correlation with diabetic retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a therapeutic strategy for diabetic retinopathy.
Collapse
Affiliation(s)
- Ye Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
40
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
41
|
Evangelisti S, Gramegna LL, La Morgia C, Di Vito L, Maresca A, Talozzi L, Bianchini C, Mitolo M, Manners DN, Caporali L, Valentino ML, Liguori R, Carelli V, Lodi R, Testa C, Tonon C. Molecular biomarkers correlate with brain grey and white matter changes in patients with mitochondrial m.3243A > G mutation. Mol Genet Metab 2022; 135:72-81. [PMID: 34916127 DOI: 10.1016/j.ymgme.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The mitochondrial DNA (mtDNA) m.3243A > G mutation in the MT-TL1 gene results in a multi-systemic disease, that is commonly associated with neurodegenerative changes in the brain. METHODS Seventeen patients harboring the m3243A > G mutation were enrolled (age 43.1 ± 11.4 years, 10 M/7F). A panel of plasma biomarkers including lactate acid, alanine, L-arginine, fibroblast growth factor 21 (FGF-21), growth/differentiation factor 15 (GDF-15) and circulating cell free -mtDNA (ccf-mtDNA), as well as blood, urine and muscle mtDNA heteroplasmy were evaluated. Patients also underwent a brain standardized MR protocol that included volumetric T1-weighted images and diffusion-weighted MRI. Twenty sex- and age-matched healthy controls were included. Voxel-wise analysis was performed on T1-weighted and diffusion imaging, respectively with VBM (voxel-based morphometry) and TBSS (Tract-based Spatial Statistics). Ventricular lactate was also evaluated by 1H-MR spectroscopy. RESULTS A widespread cortical gray matter (GM) loss was observed, more severe (p < 0.001) in the bilateral calcarine, insular, frontal and parietal cortex, along with infratentorial cerebellar cortex. High urine mtDNA mutation load, high levels of plasma lactate and alanine, low levels of plasma arginine, high levels of serum FGF-21 and ventricular lactate accumulation significantly (p < 0.05) correlated with the reduced brain GM density. Widespread microstructural alterations were highlighted in the white matter, significantly (p < 0.05) correlated with plasma alanine and arginine levels, with mtDNA mutation load in urine, with high level of serum GDF-15 and with high content of plasma ccf-mtDNA. CONCLUSIONS Our results suggest that the synergy of two pathogenic mechanisms, mtDNA-related mitochondrial respiratory deficiency and defective nitric oxide metabolism, contributes to the brain neurodegeneration in m.3243A > G patients.
Collapse
Affiliation(s)
- Stefania Evangelisti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Bianchini
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - David Neil Manners
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria Lucia Valentino
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Claudia Testa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy.
| |
Collapse
|
42
|
Wesół-Kucharska D, Rokicki D, Greczan M, Kaczor M, Czkuć-Kryśkiewicz E, Piekutowska-Abramczuk D, Halat-Wolska P, Ciara E, Jaworski M, Jezela-Stanek A. The fibroblast growth factor 21 concentration in children with mitochondrial disease does not depend on the disease stage, but rather on the disease genotype. Pediatr Endocrinol Diabetes Metab 2022; 28:141-151. [PMID: 35620925 PMCID: PMC10214940 DOI: 10.5114/pedm.2022.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 06/07/2023]
Abstract
ABSTRACT The fibroblast growth factor 21 (FGF21) is a new biomarker of mitochondrial diseases (MD). FGF21 concentration may be used to define the severity of mitochondrial disease. AIM OF THE STUDY The study objective was to verify if the FGF21 concentration in paediatric patients with MD was correlated with the disease severity and stage and to assess the correlation between FGF21 levels and the genetic background of MD. MATERIAL AND METHODS The disease stage in MD subjects was determined on the basis of the International Paediatric Mitochondrial Disease Scale (IPMDS) and the concentrations of FGF21, lactic and pyruvic acids, alanine and creatine kinase in serum were assessed in those patients. RESULTS The median age of children with MD (n = 32) was 33 months (range: 2-213), in the control group (n = 21) the median age was 42 months (range: 8-202). The concentrations of FGF21, lactic acid and pyruvic acid were higher in MD patients than in the control group. No correlation between the disease severity (IPMDS) and serum FGF21 concentration was found. The FGF21 concentration was higher in patients whose MD resulted from nuclear gene damage (nDNA), median FGF21 = 1022 (84-8873) pg/ml, than in patients with MD resulting from mitochondrial damage (mtDNA), median FGF21 = 736 (188-2906) pg/ml, or with an abnormal variant in the PDHA1 gene, median FGF21 = 58 (25-637) pg/ml. CONCLUSIONS There is no correlation between the stage of MD and FGF21 level. Higher FGF21 values are seen in patients whose MD results from an abnormal nDNA variant rather than mtDNA damage.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Edyta Czkuć-Kryśkiewicz
- Laboratory of Radioimmunology and Experimental Medicine, Department of Biochemistry, Radioimmunology and Experimental Medicine; The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
43
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
44
|
Huddar A, Govindaraj P, Chiplunkar S, Deepha S, Jessiena Ponmalar JN, Philip M, Nagappa M, Narayanappa G, Mahadevan A, Sinha S, Taly AB, Parayil Sankaran B. Serum fibroblast growth factor 21 and growth differentiation factor 15: Two sensitive biomarkers in the diagnosis of mitochondrial disorders. Mitochondrion 2021; 60:170-177. [PMID: 34419687 DOI: 10.1016/j.mito.2021.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Mitochondrial disorders are often difficult to diagnose because of diverse clinical phenotypes. FGF-21 and GDF-15 are metabolic hormones and promising biomarkers for the diagnosis of these disorders. This study has systematically evaluated serum FGF-21 and GDF-15 levels by ELISA in a well-defined cohort of patients with definite mitochondrial disorders (n = 30), neuromuscular disease controls (n = 36) and healthy controls (n = 36) and aimed to ascertain their utility in the diagnosis of mitochondrial disorders. Both serum FGF-21 and GDF-15 were significantly elevated in patients with mitochondrial disorders, especially in those with muscle involvement. The levels were higher in patients with mitochondrial deletions (both single and multiple) and translation disorders compared to respiratory chain subunit or assembly factor defects.
Collapse
Affiliation(s)
- Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Shwetha Chiplunkar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Mariyamma Philip
- Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; The Children's Hospital at Westmead Clinical School, Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
45
|
GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021; 22:ijms22168889. [PMID: 34445593 PMCID: PMC8396208 DOI: 10.3390/ijms22168889] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by “injury”. Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.
Collapse
|
46
|
Trifunov S, Paredes-Fuentes AJ, Badosa C, Codina A, Montoya J, Ruiz-Pesini E, Jou C, Garrabou G, Grau-Junyent JM, Yubero D, Montero R, Muchart J, Ortigoza-Escobar JD, O'Callaghan MM, Nascimento A, Català A, Garcia-Cazorla À, Jimenez-Mallebrera C, Artuch R. Circulating Cell-Free Mitochondrial DNA in Cerebrospinal Fluid as a Biomarker for Mitochondrial Diseases. Clin Chem 2021; 67:1113-1121. [PMID: 34352085 DOI: 10.1093/clinchem/hvab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD. METHODS Measurement of ccfmtDNA was performed by using droplet digital PCR. RESULTS The mean copy number of ccfmtDNA was approximately 6 times higher in the MD cohort compared to the control group; patients with mitochondrial deletion and depletion syndromes (MDD) had the higher levels. We also detected the presence of both wild-type mtDNA and mtDNA deletions in CSF samples of patients with single deletions. Patients with MDD with single deletions had significantly higher concentrations of GDF-15 in CSF than controls, whereas patients with point mutations in mitochondrial DNA presented no statistically significant differences. Additionally, we found a significant positive correlation between ccfmtDNA levels and GDF-15 concentrations (r = 0.59, P = 0.016). CONCLUSION CSF ccfmtDNA levels are significantly higher in patients with MD in comparison to controls and, thus, they can be used as a novel biomarker for MD research. Our results could also be valuable to support the clinical outcome assessment of MD patients.
Collapse
Affiliation(s)
- Selena Trifunov
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Abraham J Paredes-Fuentes
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Julio Montoya
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Cristina Jou
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Glòria Garrabou
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Josep M Grau-Junyent
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Dèlia Yubero
- Department of Genetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Raquel Montero
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordi Muchart
- Department of Radiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | - Andrés Nascimento
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Hematology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Ng YS, Bindoff LA, Gorman GS, Klopstock T, Kornblum C, Mancuso M, McFarland R, Sue CM, Suomalainen A, Taylor RW, Thorburn DR, Turnbull DM. Mitochondrial disease in adults: recent advances and future promise. Lancet Neurol 2021; 20:573-584. [PMID: 34146515 DOI: 10.1016/s1474-4422(21)00098-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are some of the most common inherited neurometabolic disorders, and major progress has been made in our understanding, diagnosis, and treatment of these conditions in the past 5 years. Development of national mitochondrial disease cohorts and international collaborations has changed our knowledge of the spectrum of clinical phenotypes and natural history of mitochondrial diseases. Advances in high-throughput sequencing technologies have altered the diagnostic algorithm for mitochondrial diseases by increasingly using a genetics-first approach, with more than 350 disease-causing genes identified to date. While the current management strategy for mitochondrial disease focuses on surveillance for multisystem involvement and effective symptomatic treatment, new endeavours are underway to find better treatments, including repurposing current drugs, use of novel small molecules, and gene therapies. Developments made in reproductive technology offer women the opportunity to prevent transmission of DNA-related mitochondrial disease to their children.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, LMU Hospital, Ludwig Maximilians University, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany; Centre for Rare Diseases, University Hospital Bonn, Bonn, Germany
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Italy
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Anu Suomalainen
- Research Program in Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Neuroscience Centre, HiLife, University of Helsinki, Helsinki, Finland; Helsinki University Hospital, HUSlab, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
48
|
Plasma Gelsolin Reinforces the Diagnostic Value of FGF-21 and GDF-15 for Mitochondrial Disorders. Int J Mol Sci 2021; 22:ijms22126396. [PMID: 34203775 PMCID: PMC8232645 DOI: 10.3390/ijms22126396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial disorders (MD) comprise a group of heterogeneous clinical disorders for which non-invasive diagnosis remains a challenge. Two protein biomarkers have so far emerged for MD detection, FGF-21 and GDF-15, but the identification of additional biomarkers capable of improving their diagnostic accuracy is highly relevant. Previous studies identified Gelsolin as a regulator of cell survival adaptations triggered by mitochondrial defects. Gelsolin presents a circulating plasma isoform (pGSN), whose altered levels could be a hallmark of mitochondrial dysfunction. Therefore, we investigated the diagnostic performance of pGSN for MD relative to FGF-21 and GDF-15. Using ELISA assays, we quantified plasma levels of pGSN, FGF-21, and GDF-15 in three age- and gender-matched adult cohorts: 60 genetically diagnosed MD patients, 56 healthy donors, and 41 patients with unrelated neuromuscular pathologies (non-MD). Clinical variables and biomarkers’ plasma levels were compared between groups. Discrimination ability was calculated using the area under the ROC curve (AUC). Optimal cut-offs and the following diagnostic parameters were determined: sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and efficiency. Comprehensive statistical analyses revealed significant discrimination ability for the three biomarkers to classify between MD and healthy individuals, with the best diagnostic performance for the GDF-15/pGSN combination. pGSN and GDF-15 preferentially discriminated between MD and non-MD patients under 50 years, whereas FGF-21 best classified older subjects. Conclusion: pGSN improves the diagnosis accuracy for MD provided by FGF-21 and GDF-15.
Collapse
|
49
|
Del Dotto V, Carelli V. Dominant Optic Atrophy (DOA): Modeling the Kaleidoscopic Roles of OPA1 in Mitochondrial Homeostasis. Front Neurol 2021; 12:681326. [PMID: 34177786 PMCID: PMC8220150 DOI: 10.3389/fneur.2021.681326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
In the year 2000, the discovery of OPA1 mutations as causative for dominant optic atrophy (DOA) was pivotal to rapidly expand the field of mitochondrial dynamics and describe the complex machinery governing this pathway, with a multitude of other genes and encoded proteins involved in neurodegenerative disorders of the optic nerve. OPA1 turned out to be a much more complex protein than initially envisaged, connecting multiple pathways beyond its strict role in mitochondrial fusion, such as sensing of OXPHOS needs and mitochondrial DNA maintenance. As a consequence, an increasing need to investigate OPA1 functions at multiple levels has imposed the development of multiple tools and models that are here reviewed. Translational mitochondrial medicine, with the ultimate objective of translating basic science necessary to understand pathogenic mechanisms into therapeutic strategies, requires disease modeling at multiple levels: from the simplest, like in yeast, to cell models, including the increasing use of reprogrammed stem cells (iPSCs) from patients, to animal models. In the present review, we thoroughly examine and provide the state of the art of all these approaches.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| |
Collapse
|
50
|
Richter U, McFarland R, Taylor RW, Pickett SJ. The molecular pathology of pathogenic mitochondrial tRNA variants. FEBS Lett 2021; 595:1003-1024. [PMID: 33513266 PMCID: PMC8600956 DOI: 10.1002/1873-3468.14049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous disorders, caused by pathogenic variants in either the nuclear or mitochondrial genome. This heterogeneity is particularly striking for disease caused by variants in mitochondrial DNA-encoded tRNA (mt-tRNA) genes, posing challenges for both the treatment of patients and understanding the molecular pathology. In this review, we consider disease caused by the two most common pathogenic mt-tRNA variants: m.3243A>G (within MT-TL1, encoding mt-tRNALeu(UUR) ) and m.8344A>G (within MT-TK, encoding mt-tRNALys ), which together account for the vast majority of all mt-tRNA-related disease. We compare and contrast the clinical disease they are associated with, as well as their molecular pathologies, and consider what is known about the likely molecular mechanisms of disease. Finally, we discuss the role of mitochondrial-nuclear crosstalk in the manifestation of mt-tRNA-associated disease and how research in this area not only has the potential to uncover molecular mechanisms responsible for the vast clinical heterogeneity associated with these variants but also pave the way to develop treatment options for these devastating diseases.
Collapse
Affiliation(s)
- Uwe Richter
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiFinland
- Newcastle University Biosciences InstituteNewcastle UniversityUK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Newcastle University Translational and Clinical Research InstituteNewcastle UniversityUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Newcastle University Translational and Clinical Research InstituteNewcastle UniversityUK
| | - Sarah J. Pickett
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Newcastle University Translational and Clinical Research InstituteNewcastle UniversityUK
| |
Collapse
|