1
|
Erren TC, Morfeld P. Circadian epidemiology: Structuring circadian causes of disease and practical implications. Chronobiol Int 2024; 41:38-52. [PMID: 38047448 DOI: 10.1080/07420528.2023.2288219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
That disruptions of the body's internal clockwork can lead to negative health consequences, including cancer, is a plausible hypothesis. Yet, despite strong mechanistic and animal support, the International Agency for Research on Cancer (IARC) experts considered epidemiological evidence as limited regarding the carcinogenicity of "shift-work involving circadian disruption" (2007) and "night shift work" (2019). We use directed acyclic graphs (DAGs) to outline a concept of circadian causes that discloses challenges when choosing appropriate exposure variables. On this basis, we propose to move beyond shift-work alone as a direct cause of disease. Instead, quantifying chronodisruption as individual doses can lead to interpretable circadian epidemiology. The hypothesis is that doses of chronodisruption cause disrupted circadian organisation by leading to desynchronization of circadian rhythms. Chronodisruption can be conceptualized as the split physiological nexus of internal and external times. Biological (or internal) night - an individual's intrinsically favoured sleep time window - could be the backbone of circadian epidemiology. In practice, individual doses that cause disrupted circadian organisation are derived from the intersection of time intervals of being awake and an individual's biological night. After numerous studies counted work shifts, chronobiology may now advance circadian epidemiology with more specific dose estimation - albeit with greater challenges in measurement (time-dependent individual data) and analysis (time-dependent confounding).
Collapse
Affiliation(s)
- Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Köln, Germany
| | - Peter Morfeld
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Köln, Germany
| |
Collapse
|
2
|
van de Langenberg D, Dollé MET, van Kerkhof LWM, Vermeulen RCH, Vlaanderen JJ. Effects of Nightshift Work on Blood Metabolites in Female Nurses and Paramedic Staff: A Cross-sectional Study. Ann Work Expo Health 2023; 67:694-705. [PMID: 37186247 PMCID: PMC10394501 DOI: 10.1093/annweh/wxad018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023] Open
Abstract
Nightshift work disturbs the circadian rhythm, which might contribute to the development of cardio-metabolic disorders. In this cross-sectional study, we aimed to gain insight into perturbations of disease relevant metabolic pathways due to nightshift work. We characterized the metabolic profiles of 237 female nurses and paramedic staff participating in the Klokwerk study using the Nightingale Health platform. We performed analyses on plasma levels of 225 metabolites, including cholesterol, triglycerides, fatty acids, and amino acids. Using both principal component- and univariate-regression, we compared metabolic profiles of nightshift workers to metabolic profiles from workers that did not work night shifts (defined as day workers). We also assessed whether differential effects were observed between recently started versus more experienced workers. Within the group of nightshift workers, we compared metabolic profiles measured right after a nightshift with metabolic profiles measured on a day when no nightshift work was conducted. We observed evidence for an impact of nightshift work on the presence of unfavorable fatty acid profiles in blood. Amongst the fatty acids, effects were most prominent for PUFA/FA ratios (consistently decreased) and SFA/FA ratios (consistently elevated). This pattern of less favorable fatty acid profiles was also observed in samples collected directly after a night shift. Amino acid levels (histidine, glutamine, isoleucine, and leucine) and lipoproteins (especially HDL-cholesterol, VLDL-cholesterol, and triglycerides) were elevated when comparing nightshift workers with day workers. Amino acid levels were decreased in the samples that were collected directly after working a nightshift (compared to levels in samples that were collected during a non-nightshift period). The observed effects were generally more pronounced in samples collected directly after the nightshift and among recently started compared to more experienced nightshift workers. Our finding of a suggested impact of shift work on impaired lipid metabolism is in line with evidence that links disruption of circadian rhythmicity to obesity and metabolic disorders.
Collapse
Affiliation(s)
- Daniella van de Langenberg
- IRAS, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
- RIVM, Rijksinstituut voor Volksgezondheid en Milieu (National Institute for Public Health and the Environment), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Martijn E T Dollé
- RIVM, Rijksinstituut voor Volksgezondheid en Milieu (National Institute for Public Health and the Environment), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Linda W M van Kerkhof
- RIVM, Rijksinstituut voor Volksgezondheid en Milieu (National Institute for Public Health and the Environment), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Roel C H Vermeulen
- IRAS, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Jelle J Vlaanderen
- IRAS, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| |
Collapse
|
3
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
4
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
5
|
Sempere-Rubio N, Aguas M, Faubel R. Association between Chronotype, Physical Activity and Sedentary Behaviour: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159646. [PMID: 35955020 PMCID: PMC9367887 DOI: 10.3390/ijerph19159646] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND The aim of this systematic review is to compile and assess the scientific evidence about the relationship between chronotypes and physical activity (PA). Methods: A systematic review was executed using a structured electronic search in PubMED, Cochrane Library, PsycInfo and Trip Database. The searches employed keywords such as chronotype, sleep, acrophase, chronotype preference, morningness, physical activity and sedentary, using MeSH terms. JBI critical tools were used to appraise methodological aspects. RESULTS This systematic review includes 23 studies and a total of 505,375 participants. The results show that evening chronotypes are associated with less PA and more time in sedentary activities. It occurs independently of the instruments used to collect information about chronotype and PA. Nevertheless, this association could be mitigated in young populations and university stages. CONCLUSIONS The chronotypes are clearly associated with the PA level and the sedentary behaviour, especially in the population over their mid-twenties. Evening chronotypes are associated with less PA and more time in sedentary activities compared to morning chronotypes.
Collapse
Affiliation(s)
- Nuria Sempere-Rubio
- Clinical Biomechanics Research Unit (UBIC), Department of Physiotherapy, Universitat de València, Gasco Oliag 5, 46010 Valencia, Spain
| | - Mariam Aguas
- Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Health Research Institute La Fe, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Raquel Faubel
- Joint Research Unit in ICT Applied to Reengineering Socio-Sanitary Process, IIS La Fe—Universitat Politècnica de València, 46026 Valencia, Spain
- PTinMOTION—Physiotherapy in Motion Multispeciality Research Group, Department of Physiotherapy, Universitat de València, Gasco Oliag 5, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
6
|
Fernández-Ortiz M, Sayed RKA, Román-Montoya Y, de Lama MÁR, Fernández-Martínez J, Ramírez-Casas Y, Florido-Ruiz J, Rusanova I, Escames G, Acuña-Castroviejo D. Age and Chronodisruption in Mouse Heart: Effect of the NLRP3 Inflammasome and Melatonin Therapy. Int J Mol Sci 2022; 23:ijms23126846. [PMID: 35743288 PMCID: PMC9224376 DOI: 10.3390/ijms23126846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Age and age-dependent inflammation are two main risk factors for cardiovascular diseases. Aging can also affect clock gene-related impairments such as chronodisruption and has been linked to a decline in melatonin synthesis and aggravation of the NF-κB/NLRP3 innate immune response known as inflammaging. The molecular drivers of these mechanisms remain unknown. This study investigated the impact of aging and NLRP3 expression on the cardiac circadian system, and the actions of melatonin as a potential therapy to restore daily rhythms by mitigating inflammaging. We analyzed the circadian expression and rhythmicity of clock genes in heart tissue of wild-type and NLRP3-knockout mice at 3, 12, and 24 months of age, with and without melatonin treatment. Our results support that aging, NLRP3 inflammasome, and melatonin affected the cardiac clock genes expression, except for Rev-erbα, which was not influenced by genotype. Aging caused small phase changes in Clock, loss of rhythmicity in Per2 and Rorα, and mesor dampening of Clock, Bmal1, and Per2. NLRP3 inflammasome influenced the acrophase of Clock, Per2, and Rorα. Melatonin restored the acrophase and the rhythm of clock genes affected by age or NLRP3 activation. The administration of melatonin re-established murine cardiac homeostasis by reversing age-associated chronodisruption. Altogether, these results highlight new findings about the effects aging and NLRP3 inflammasome have on clock genes in cardiac tissue, pointing to continuous melatonin as a promising therapy to placate inflammaging and restore circadian rhythm in heart muscle. Additionally, light microscopy analysis showed age-related morphological impairments in cardiomyocytes, which were less severe in mice lacking NLRP3. Melatonin supplementation preserved the structure of cardiac muscle fibers in all experimental groups.
Collapse
Affiliation(s)
- Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Department of Pediatrics, Division of Hematology-Oncology, Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
| | - Ramy K. A. Sayed
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Yolanda Román-Montoya
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - María Ángeles Rol de Lama
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB–Arrixaca, 30100 Murcia, Spain;
| | - José Fernández-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
| | - Yolanda Ramírez-Casas
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
| | - Javier Florido-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
| | - Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
| | - Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (M.F.-O.); (R.K.A.S.); (J.F.-M.); (Y.R.-C.); (J.F.-R.); (I.R.); (G.E.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs), 18012 Granada, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958241000 (ext. 20196)
| |
Collapse
|
7
|
Almaida-Pagan PF, Torrente M, Campos M, Provencio M, Madrid JA, Franco F, Morilla BR, Cantos B, Sousa PA, Madrid MJM, Pimentao J, Rol MÁ. Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock. Curr Oncol Rep 2022; 24:135-149. [PMID: 35061192 PMCID: PMC8857092 DOI: 10.1007/s11912-021-01158-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 02/01/2023]
Abstract
Purpose of Review Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Torrente
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
- Medical Oncology Department, Puerta de Hierro-Majadahonda University Hospital, Calle Manuel de Falla, 1, 28222, Madrid, Spain.
- Faculty of Health Sciences, Francisco de Vitoria University, Madrid, Spain.
| | - Manuel Campos
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Juan Antonio Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabio Franco
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Beatriz Rodríguez Morilla
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca Cantos
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Pedro A Sousa
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María José Martínez Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joao Pimentao
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María Ángeles Rol
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Chronodisruption: Origin, Roots, and Developments of an 18-Year-Old Concept. Comment on Desmet et al. Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag. Nutrients 2021, 13, 3846. Nutrients 2022; 14:nu14020315. [PMID: 35057496 PMCID: PMC8779712 DOI: 10.3390/nu14020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
We read with interest the article by Desmet and colleagues entitled "Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag" [...].
Collapse
|
9
|
Arguelles-Prieto R, Madrid JA, Rol MA, Bonmati-Carrion MA. Correlated color temperature and light intensity: Complementary features in non-visual light field. PLoS One 2021; 16:e0254171. [PMID: 34252130 PMCID: PMC8274909 DOI: 10.1371/journal.pone.0254171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
An appropriate exposure to the light-dark cycle, with high irradiances during the day and darkness during the night is essential to keep our physiology on time. However, considering the increasing exposure to artificial light at night and its potential harmful effects on health (i.e. chronodisruption and associated health conditions), it is essential to understand the non-visual effects of light in humans. Melatonin suppression is considered the gold standard for nocturnal light effects, and the activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) through the assessment of pupillary light reflex (PLR) has been recently gaining attention. Also, some theoretical models for melatonin suppression and retinal photoreceptors activation have been proposed. Our aim in this study was to determine the influence of correlated color temperature (CCT) on melatonin suppression and PLR, considering two commercial light sources, as well as to explore the possible correlation between both processes. Also, the contribution of irradiance (associated to CCT) was explored through mathematical modelling on a wider range of light sources. For that, melatonin suppression and PLR were experimentally assessed on 16 healthy and young volunteers under two light conditions (warmer, CCT 3000 K; and cooler, CCT 5700 K, at ~5·1018 photons/cm2/sec). Our experimental results yielded greater post-stimulus constriction under the cooler (5700 K, 13.3 ± 1.9%) than under the warmer light (3000 K, 8.7 ± 1.2%) (p < 0.01), although no significant differences were found between both conditions in terms of melatonin suppression. Interestingly, we failed to demonstrate correlation between PLR and melatonin suppression. Although methodological limitations cannot be discarded, this could be due to the existence of different subpopulations of Type 1 ipRGCs differentially contributing to PLR and melatonin suppression, which opens the way for further research on ipRGCs projection in humans. The application of theoretical modelling suggested that CCT should not be considered separately from irradiance when designing nocturnal/diurnal illumination systems. Further experimental studies on wider ranges of CCTs and light intensities are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Raquel Arguelles-Prieto
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
| | - Juan Antonio Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maria Angeles Rol
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maria Angeles Bonmati-Carrion
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
10
|
Electrochromic selective filtering of chronodisruptive visible wavelengths. PLoS One 2020; 15:e0241900. [PMID: 33152042 PMCID: PMC7643985 DOI: 10.1371/journal.pone.0241900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023] Open
Abstract
We present evidence of pupil response modification, as well as differential theoretical melatonin suppression through selective and dynamic electrochromic filtering of visible light in the 400-500 nm range to minimize chronodisruptive nocturnal blue light exposure. A lower activation of intrinsically photosensitive retinal ganglion cells (ipRGCs), the first step for light to reach a human's internal clock, is related to melatonin secretion therefore avoiding detrimental effects of excessive blue light exposure. Pupillary Light Reflex and Color Naming were experimentally assessed under light filtered by two different coloration states (transmissive and absorptive) of these novel dynamic filters, plus an uncoated test device, in 16 volunteers. Also, different commercial light sources at illuminances ranging from 1 to 1000 lux were differentially filtered and compared in terms of theoretical melatonin suppression. Representative parameters of the pupil responses reflected lower pupil constriction when the electrochromic filters (ECFs) were switched on (absorptive state, blue light is absorbed by the filter) compared to uncoated filters (control sample), but failed to do so under transmissive state (blue light passes through the filter) indicating less activation of ipRGCs under absorptive state (although no significant differences between states was found). Out of eight colors tested, just one showed significant differences in naming between both filter states. Thus, the ECF would have some protecting effect on ipRGC activation with very limited changes in color perception. While there are some limitations of the theoretical model used, the absorptive state yielded significantly lower theoretical melatonin suppression in all those light sources containing blue wavelengths across the illuminance range tested. This would open the way for further research on biological applications of electrochromic devices.
Collapse
|
11
|
Padilla-Martínez JM, Abad-Corpa E, Gea-Sánchez M, Casado-Ramírez E, Rol-de Lama MA, Madrid-Pérez JA, Moreno-Casbas MT. Detection of factors influencing circadian rhythms on Intensive Care inpatients and hospitalization: Protocol for an observational study. J Adv Nurs 2020; 77:411-416. [PMID: 32996642 DOI: 10.1111/jan.14569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 01/21/2023]
Abstract
AIMS Identify the prevalence of circadian health disorders in ICU and hospitalized patients. Stablish the relationship of the circadian system with light, temperature, noise and nursing activities. BACKGROUND Commonly, self-assessment through subjective questionnaires is used for research about sleep quality. However, more reliable and valid measures should be applied objectively to find out the real prevalence of the problem. There is a negative relationship between circadian rhythms and hospitalization. In this study, we will analyse sleep patterns and hospital environments to implement measures to improve the quality of care related to sleep. DESIGN Descriptive observational study. It is estimated that 975 patients from 13 hospitals need to be recruited from ICU and hospitalization units. The sample should meet the following criteria: Patients over 18 admitted to ICU and medical units, length of stay between 96-148 hr, with no visual, hearing or moderate-severe cognitive impairment. Variables: Sleep variables are collected with an electronic device (named Kronowise® and Kronobed®), circadian and infrared light exposure, environmental noise, temperature, unit structural characteristics, nursing care (from 0 to 6 a.m.) and, characteristics of hospitalization period. The study, registered on Clinical Trials, initiated in December 2019 and it will continue up to December 2022. DISCUSSION Using objective and subjective measures of sleep and circadian rhythms, this study will shed light on the factors that negatively affect the hospitalized patients' sleep quality and circadian health. The ultimate goal is to design hospital guidelines to minimize the adverse effects on the dependent variables studied. Arguably, these guidelines will contribute to reducing the risk of these alterations and it will also serve to improve the nursing activities. CONCLUSION We expect to obtain adequate results for the creation of a protocol to improve the circadian health, quality of care and health outcomes related to sleep in patients.
Collapse
Affiliation(s)
- Julia M Padilla-Martínez
- Nursing School, University of Murcia, Murcia, Spain.,Murcia Health Service (Emergencies), Murcia, Spain
| | - Eva Abad-Corpa
- University of Murcia-Murcia Health Service (IMIB-Arrixaca), Murcia, Spain.,Nursing and Healthcare Research Unit (Investén-isciii), Madrid, Spain.,Biomedical Research Center for Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - Montserrat Gea-Sánchez
- Biomedical Research Center for Fragility and Healthy Aging (CIBERFES), Madrid, Spain.,Grup d'Estudis Societat, Salut, GESEC, Deparment of Nursing and Physiotherapy, University of Lleida, Lleida, Spain.,Grup de Recerca de Cures en Salut, GRECS, Institut de Recerca Biomèdica, Lleida, Spain
| | | | - María A Rol-de Lama
- Biomedical Research Center for Fragility and Healthy Aging (CIBERFES), Madrid, Spain.,Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus.IUIE. IMIB - Arrixaca, Murcia, Spain
| | - Juan A Madrid-Pérez
- Biomedical Research Center for Fragility and Healthy Aging (CIBERFES), Madrid, Spain.,Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus.IUIE. IMIB - Arrixaca, Murcia, Spain
| | - María T Moreno-Casbas
- Nursing and Healthcare Research Unit (Investén-isciii), Madrid, Spain.,Biomedical Research Center for Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
12
|
Xiong W, Hao Y, Han L, Wang M, He J. Associations between birth season and the anatomic subsites of gastric cancer in Beijing, China. Chronobiol Int 2020; 37:1636-1643. [PMID: 32951479 DOI: 10.1080/07420528.2020.1792481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Birth season is an important risk factor for several cancers; for example, anatomic subsite risk factors for gastric cancer differ substantially by when patients were born. In this population-based retrospective study, we explored the relationship between birth season and gastric cancer of different anatomical sites, focusing on gastric cancer patients who were registered at the Beijing Institute for Cancer Research from 2003 to 2012. In total, 19,668 patients were divided into three groups according to the anatomical site of the primary lesion: cardia (n = 3911), noncardia (n = 5383) and unknown (n = 10,374). The 5383 patients in the noncardia group were further subdivided into the following subgroups: fundus (n = 455), corpus (n = 902), greater curvature (n = 110), lesser curvature (n = 512), antrum (n = 2635), pylorus (n = 106) and overlapping (n = 663). Finally, all gastric cancer cases, the three major groups, and the seven noncardia subgroups were, respectively, compared with inpatients from the Dongzhimen Hospital of Beijing from 2003 to 2013. A logistic regression method with sex and age as control factors was used to evaluate the relationship between birth season and gastric cancer with the level for statistical significance set at P < .05. Taking winter as the reference season, we found people born in summer had a lower probability of developing gastric cancer (summer: odds ratio [OR] = 0.925, 95% confidence interval [CI] = 0.875-0.978, P = .006). Among the three groups, the noncardia group had the lower probability of birth season being spring or summer (spring: OR = 0.917, 95% CI = 0.843-0.997, P = .042; summer: OR = 0.883, 95% CI = 0.810-0.962, P = .004), but the cardia and unknown anatomical groups showed no statistical significance for season of birth (P > .05). Among the seven subgroups, those born in summer were less likely to develop gastric cancer in the antrum and lesser curvature than those born in winter (antrum: OR = 0.861, 95% CI = 0.766-0.968, P = .012; lesser curvature: OR = 0.746, 95% CI = 0.579-0.961, P = .023); the other subgroups showed no significant differences by season of birth (P > .05). This study demonstrated that gastric cancer is related to birth season. For people born in summer, the risk of developing gastric cancer was comparatively lower than for people born in winter. Seasonal differences in immune function and maternal nutrition status during pregnancy may explain these findings; however, further large-scale prospective studies will be required to validate these findings.
Collapse
Affiliation(s)
- Weifeng Xiong
- Preclinical School of Medicine, Beijing University of Chinese Medicine , Beijing, China
| | - Yu Hao
- Preclinical School of Medicine, Beijing University of Chinese Medicine , Beijing, China
| | - Ling Han
- Preclinical School of Medicine, Beijing University of Chinese Medicine , Beijing, China
| | - Mengqi Wang
- Preclinical School of Medicine, Beijing University of Chinese Medicine , Beijing, China
| | - Juan He
- Preclinical School of Medicine, Beijing University of Chinese Medicine , Beijing, China
| |
Collapse
|
13
|
Lewis P, Oster H, Korf HW, Foster RG, Erren TC. Food as a circadian time cue - evidence from human studies. Nat Rev Endocrinol 2020; 16:213-223. [PMID: 32055029 DOI: 10.1038/s41574-020-0318-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/28/2022]
Abstract
Meal timing and composition are frequently reported in the literature as zeitgebers (that is, time cues) for the circadian system of humans and animal models, albeit secondary to light. Although widely assumed to be true, evidence for food zeitgeber effects specific to humans is notably scarce. Fostering zeitgeber hygiene in the general population as the development and practice of healthy use of zeitgebers could potentially reduce chronobiological strain, which is defined as disruption or misalignment within the circadian system. Such chronobiological strain is associated with modern 24/7 lifestyles (for example, shift work) and several negative health outcomes. Adjustments to meal timing and composition are an attractive strategy to synchronize circadian rhythms and develop zeitgeber hygiene. Thus, clarifying the actual effect of meal timing and composition on the human circadian system is a crucial piece of the human chronobiology puzzle. This Review weighs the evidence from human studies pertaining to the hypothesis that food is a circadian zeitgeber by comparing findings against formal zeitgeber criteria put forward by Jürgen Aschoff in the 1950s.
Collapse
Affiliation(s)
- Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, University of Cologne, Cologne, Germany.
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Horst W Korf
- Institute of Anatomy I, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Carmona P, Mendez N, Ili CG, Brebi P. The Role of Clock Genes in Fibrinolysis Regulation: Circadian Disturbance and Its Effect on Fibrinolytic Activity. Front Physiol 2020; 11:129. [PMID: 32231582 PMCID: PMC7083126 DOI: 10.3389/fphys.2020.00129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
The fibrinolytic system is critical during the onset of fibrinolysis, a fundamental mechanism for fibrin degradation. Both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) trigger fibrinolysis, leading to proteolytic activation of plasminogen to plasmin and subsequently fibrin proteolysis. This system is regulated by several inhibitors; plasminogen activator inhibitor-1 (PAI-1), the most studied, binds to and inactivates both tPA and uPA. Through the action of plasmin, this system regulates several physiological processes: embryogenesis, activation of inflammatory cells, cell proliferation and death, synaptic plasticity, wound healing, and others. The deregulated intervention of fibrinolysis in the pathophysiology of various diseases has been widely studied; findings of altered functioning have been reported in different chronic non-communicable diseases (NCD), reinforcing its pleiotropic character and the importance of its physiology and regulation. The evidence indicates that fundamental elements of the fibrinolytic system, such as tPA and PAI-1, show a circadian rhythm in their plasmatic levels and their gene expression are regulated by circadian system elements, known as clock genes – Bmal, Clock, Cry-, and accessory clock genes such as Rev-Erb and Ror. The disturbance in the molecular machinery of the clock by exposure to light during the night alters the natural light/dark cycle and causes disruption of the circadian rhythm. Such exposure affects the synchronization and functioning of peripheral clocks responsible for the expression of the components of the fibrinolytic system. So, this circadian disturbance could be critical in the pathophysiology of chronic diseases where this system has been found to be deregulated.
Collapse
Affiliation(s)
- Pamela Carmona
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Carmen G Ili
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile.,Laboratory of Integrative Biology, Center for Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
15
|
Vetter C. Circadian disruption: What do we actually mean? Eur J Neurosci 2020; 51:531-550. [PMID: 30402904 PMCID: PMC6504624 DOI: 10.1111/ejn.14255] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced when traveling across time zones, will eventually result in re-synchronization to local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as "circadian disruption", but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
16
|
Martinez-Nicolas A, Martinez-Madrid MJ, Almaida-Pagan PF, Bonmati-Carrion MA, Madrid JA, Rol MA. Assessing Chronotypes by Ambulatory Circadian Monitoring. Front Physiol 2019; 10:1396. [PMID: 31824327 PMCID: PMC6879660 DOI: 10.3389/fphys.2019.01396] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
In order to develop objective indexes for chronotype identification by means of direct measurement of circadian rhythms, 159 undergraduate students were recruited as volunteers and instructed to wear ambulatory circadian monitoring (ACM) sensors that continuously gathered information on the individual's environmental light and temperature exposure, wrist temperature, body position, activity, and the integrated TAP (temperature, activity, and position) variable for 7 consecutive days under regular free-living conditions. Among all the proposed indexes, the night phase marker (NPM) of the TAP variable was the best suited to discriminate among chronotypes, due to its relationship with the Munich ChronoType Questionnaire (β = 0.531; p < 0.001). The NPM of TAP allowed subjects to be classified as early- (E-type, 20%), neither- (N-type, 60%), and late-types (L-type, 20%), each of which had its own characteristics. In terms of light exposure, while all subjects had short exposure times to bright light (>100 lux), with a daily average of 93.84 ± 5.72 min, the earlier chronotypes were exposed to brighter days and darker nights compared to the later chronotypes. Furthermore, the earlier chronotypes were associated with higher stability and day-night contrast, along with an earlier phase, which could be the cause or consequence of the light exposure habits. Overall, these data support the use of ACM for chronotype identification and for evaluation under free living conditions, using objective markers.
Collapse
Affiliation(s)
- Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Jose Martinez-Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Francisco Almaida-Pagan
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria-Angeles Bonmati-Carrion
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Rol
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 2019; 10:118. [PMID: 30914979 PMCID: PMC6421311 DOI: 10.3389/fpsyt.2019.00118] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
19
|
Agorastos A, Pervanidou P, Chrousos GP, Kolaitis G. Early life stress and trauma: developmental neuroendocrine aspects of prolonged stress system dysregulation. Hormones (Athens) 2018; 17:507-520. [PMID: 30280316 DOI: 10.1007/s42000-018-0065-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Experience of early life stress (ELS) and trauma is highly prevalent in the general population and has a high public health impact, as it can trigger a health-related risk cascade and lead to impaired homeostatic balance and elevated cacostatic load even decades later. The prolonged neuropsychobiological impact of ELS can, thus, be conceptualized as a common developmental risk factor for disease associated with increased physical and mental morbidity in later life. ELS during critical periods of brain development with elevated neuroplasticity could exert a programming effect on particular neuronal networks related to the stress response and lead to enduring neuroendocrine alterations, i.e., hyper- or hypoactivation of the stress system, associated with adult hypothalamic-pituitary-adrenal axis and glucocorticoid signaling dysregulation. This paper reviews the pathophysiology of the human stress response and provides evidence from human research on the most acknowledged stress axis-related neuroendocrine pathways exerting the enduring adverse effects of ELS and mediating the cumulative long-term risk of disease vulnerability in adulthood.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Thessaloniki General Hospital "G. Papanicolaou", Psychiatric Hospital of Thessaloniki, Lagkada Str. 196, Stavroupoli, 56430, Thessaloniki, Greece.
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Kolaitis
- Department of Child Psychiatry, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Beauvalet JC, Pilz LK, Hidalgo MPL, Elisabetsky E. Is chronodisruption a vulnerability factor to stress? Behav Brain Res 2018; 359:333-341. [PMID: 30445124 DOI: 10.1016/j.bbr.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023]
Abstract
Since the circadian system seems to modulate stress responses, this study aimed to evaluate if the combination of circadian strain and stress amplifies changes expected from each factor alone. Control Balb/c mice (12:12-NS) kept in standard 12:12 light:dark cycles (LD) and submitted to no stress procedures (NS) were compared to groups submitted to shortened LD (10:10-NS), chronic mild stress (CMS) but no circadian strain (12:12-CMS), or shortened LD followed by CMS (10:10-CMS). Rest-activity/temperature rhythms and body weight were assessed throughout the experiments. In Experiment 1 mice were submitted to 3 weeks of CMS; in Experiment 2 sucrose preference and light-dark tests were performed. Also, blood samples were collected at the end of Experiment 2 to assess metabolic parameters. Relative amplitude of temperature after CMS was increased only in the 10:10-CMS group, while body weight change was reduced during CMS regardless of LD intervention. During the CMS, the relative amplitude of temperature was negatively correlated with body weight gain. No differences in behavior and metabolic parameters were seen among groups. Identifying suitable research designs to investigate our hypothesis that circadian disturbances may increase vulnerability to stress-induced depression and anxiety is warranted.
Collapse
Affiliation(s)
- Juliana C Beauvalet
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS). Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciencias do Comportamento, UFRGS. Porto Alegre, RS, Brazil
| | - Luísa K Pilz
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS). Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciencias do Comportamento, UFRGS. Porto Alegre, RS, Brazil.
| | - Maria Paz L Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS). Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciencias do Comportamento, UFRGS. Porto Alegre, RS, Brazil; Departamento de Psiquiatria e Medicina Legal, UFRGS. Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS). Porto Alegre, RS, Brazil; Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS. Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Pilz LK, Carissimi A, Oliveira MAB, Francisco AP, Fabris RC, Medeiros MS, Scop M, Frey BN, Adan A, Hidalgo MP. Rhythmicity of Mood Symptoms in Individuals at Risk for Psychiatric Disorders. Sci Rep 2018; 8:11402. [PMID: 30061722 PMCID: PMC6065390 DOI: 10.1038/s41598-018-29348-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022] Open
Abstract
Despite emerging evidence that disruption in circadian rhythms may contribute to the pathophysiology of psychiatric disorders, there is a significant knowledge gap on the rhythmicity of psychological symptoms. Here, we aimed at investigating the rhythmicity of mood symptoms in individuals at risk for psychiatric disorders. 391 Brazilian and 317 Spanish participants completed the Self-Reporting Questionnaire-20 for non-psychotic mental disorders; the Mood Rhythm Instrument was used to assess rhythmicity of mood symptoms and the Munich ChronoType Questionnaire to assess sleep patterns. We found that the rhythmicity of specific mood-related symptoms and behaviors, particularly pessimism and motivation to exercise, were associated with being at risk for psychiatric disorders, even after controlling for sleep timing, sleep deficit, and season of data collection. We also found that the peak of some mood symptoms and behaviors were different between individuals at high vs. low risk for psychiatric disorders, with specific differences between countries. These results are consistent with previous research showing that circadian misalignment is associated with higher risk for mental health conditions. These findings also suggest that lifestyle changes preventing circadian misalignment might be useful to reduce the risk of psychiatric disorders, where cultural differences must be taken into account.
Collapse
Affiliation(s)
- Luísa K Pilz
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento - Faculdade de Medicina, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alicia Carissimi
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento - Faculdade de Medicina, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Melissa A B Oliveira
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento - Faculdade de Medicina, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Francisco
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento - Faculdade de Medicina, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raul C Fabris
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Madeleine S Medeiros
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Hospital Materno Infantil Presidente Vargas, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Scop
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada, Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento - Faculdade de Medicina, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Valdés-Tovar M, Estrada-Reyes R, Solís-Chagoyán H, Argueta J, Dorantes-Barrón AM, Quero-Chávez D, Cruz-Garduño R, Cercós MG, Trueta C, Oikawa-Sala J, Dubocovich ML, Benítez-King G. Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression. Br J Pharmacol 2018; 175:3200-3208. [PMID: 29512136 DOI: 10.1111/bph.14197] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023] Open
Abstract
Mood disorders are a spectrum of neuropsychiatric disorders characterized by changes in the emotional state. In particular, major depressive disorder is expected to have a worldwide prevalence of 20% in 2020, representing a huge socio-economic burden. Currently used antidepressant drugs have poor efficacy with only 30% of the patients in remission after the first line of treatment. Importantly, mood disorder patients present uncoupling of circadian rhythms. In this regard, melatonin (5-methoxy-N-acetyltryptamine), an indolamine synthesized by the pineal gland during the night, contributes to synchronization of body rhythms with the environmental light/dark cycle. In this review, we describe evidence supporting antidepressant-like actions of melatonin related to the circadian modulation of neuroplastic changes in the hippocampus. We also present evidence for the role of melatonin receptors and their signalling pathways underlying modulatory effects in neuroplasticity. Finally, we briefly discuss the detrimental consequences of circadian disruption on neuroplasticity and mood disorders, due to the modern human lifestyle. Together, data suggest that melatonin's stimulation of neurogenesis and neuronal differentiation is beneficial to patients with mood disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Daniel Quero-Chávez
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Montserrat G Cercós
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Citlali Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| |
Collapse
|
23
|
Vetter C, Dashti HS, Lane JM, Anderson SG, Schernhammer ES, Rutter MK, Saxena R, Scheer FAJL. Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank. Diabetes Care 2018; 41:762-769. [PMID: 29440150 PMCID: PMC5860836 DOI: 10.2337/dc17-1933] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/02/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine the effects of past and current night shift work and genetic type 2 diabetes vulnerability on type 2 diabetes odds. RESEARCH DESIGN AND METHODS In the UK Biobank, we examined associations of current (N = 272,214) and lifetime (N = 70,480) night shift work exposure with type 2 diabetes risk (6,770 and 1,191 prevalent cases, respectively). For 180,704 and 44,141 unrelated participants of European ancestry (4,002 and 726 cases, respectively) with genetic data, we assessed whether shift work exposure modified the relationship between a genetic risk score (comprising 110 single-nucleotide polymorphisms) for type 2 diabetes and prevalent diabetes. RESULTS Compared with day workers, all current night shift workers were at higher multivariable-adjusted odds for type 2 diabetes (none or rare night shifts: odds ratio [OR] 1.15 [95% CI 1.05-1.26]; some nights: OR 1.18 [95% CI 1.05-1.32]; and usual nights: OR 1.44 [95% CI 1.19-1.73]), except current permanent night shift workers (OR 1.09 [95% CI 0.93-1.27]). Considering a person's lifetime work schedule and compared with never shift workers, working more night shifts per month was associated with higher type 2 diabetes odds (<3/month: OR 1.24 [95% CI 0.90-1.68]; 3-8/month: OR 1.11 [95% CI 0.90-1.37]; and >8/month: OR 1.36 [95% CI 1.14-1.62]; Ptrend = 0.001). The association between genetic type 2 diabetes predisposition and type 2 diabetes odds was not modified by shift work exposure. CONCLUSIONS Our findings show that night shift work, especially rotating shift work including night shifts, is associated with higher type 2 diabetes odds and that the number of night shifts worked per month appears most relevant for type 2 diabetes odds. Also, shift work exposure does not modify genetic risk for type 2 diabetes, a novel finding that warrants replication.
Collapse
Affiliation(s)
- Céline Vetter
- Department of Integrative Physiology, University of Colorado, Boulder, CO .,Broad Institute of MIT and Harvard, Cambridge, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Boston and Harvard Medical School, Boston, MA
| | - Hassan S Dashti
- Broad Institute of MIT and Harvard, Cambridge, MA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jacqueline M Lane
- Broad Institute of MIT and Harvard, Cambridge, MA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Simon G Anderson
- Division of Endocrinology, Diabetes and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, U.K.,Manchester Diabetes Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston and Harvard Medical School, Boston, MA.,Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Martin K Rutter
- Division of Endocrinology, Diabetes and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, U.K.,Manchester Diabetes Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - Richa Saxena
- Broad Institute of MIT and Harvard, Cambridge, MA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Frank A J L Scheer
- Broad Institute of MIT and Harvard, Cambridge, MA.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Pilz LK, Carissimi A, Francisco AP, Oliveira MAB, Slyepchenko A, Epifano K, Garay LLS, Fabris RC, Scop M, Streiner DL, Hidalgo MP, Frey BN. Prospective Assessment of Daily Patterns of Mood-Related Symptoms. Front Psychiatry 2018; 9:370. [PMID: 30186188 PMCID: PMC6110875 DOI: 10.3389/fpsyt.2018.00370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background: The Mood Rhythm Instrument (MRI) is a new self-report questionnaire that aims to assess, the presence, and timing of daily patterns of mood-related symptoms. Here, we examined the reliability of the MRI against a prospective daily investigation over the course of 15 days. As a secondary aim, we examined whether the number of items with a perceived daily pattern correlated with severity of depressive symptoms and psychological well-being. Methods: Thirty-two participants recruited from the general population were asked to prospectively fill out a daily version of the MRI (MRI-d) for 15 days. On the 16th day, they filled out the MRI, the Beck Depression Inventory (BDI) and the World Health Organization 5-item well-being index (WHO-5). Results: The MRI showed high agreement with the MRI-d, which suggests that the MRI is a valid tool to assess daily patterns of mood symptoms. The number of mood symptoms perceived as having daily peaks correlated positively with BDI scores and negatively with WHO-5 scores. Conclusions: The MRI might be a valid tool to investigate the presence of daily patterns and the timing of mood-related factors.The MRI does not seem to be influenced by recall or recency biases. Future studies should test the usefulness of this new clinical instrument in individuals with mood disorders, as well as its ability to detect changes in the daily timing of mood symptoms before and after treatment.
Collapse
Affiliation(s)
- Luísa K Pilz
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento-Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alicia Carissimi
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento-Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Francisco
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento-Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Melissa A B Oliveira
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento-Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anastasiya Slyepchenko
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Kristina Epifano
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Luciene L S Garay
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento-Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raul C Fabris
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Scop
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - David L Streiner
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento-Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Benicio N Frey
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Erren TC, Groß JV, Lewis P. Computing sleep deficiency. J Sleep Res 2017; 27:e12630. [PMID: 29159867 DOI: 10.1111/jsr.12630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
Abstract
Sleep deficiency is a major public health concern. Since epidemiological studies play an important role in public health evaluations, this theoretical paper pursues answers to the question: 'How can we compute sleep deficiency as informative measures of exposures or doses in observational research?' Starting from the social jetlag concept and based on the chronodisruption rationale, we illustrate and discuss five approaches (one established and four untested, each with unique strengths and limitations) to quantify sleep deficiency by focusing on the timing and duration of sleep. Hitherto, social jetlag and chronodisruption rationale were neither explicitly proposed nor developed as assessments of sleep deficiency but, as we suggest, could potentially be utilized to this end. This first foray into computing sleep deficiency in epidemiological studies makes clear that laboratory, field and epidemiological collaboration is pre-requisite to elucidating potential (co-)causal roles of sleep deficiency in disease endpoints.
Collapse
Affiliation(s)
- Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany
| | - J Valerie Groß
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany
| | - Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Erren TC, Lewis P. Can yesterday's smoking research inform today's shiftwork research? Epistemological consequences for exposures and doses due to circadian disruption at and off work. J Occup Med Toxicol 2017; 12:29. [PMID: 28912826 PMCID: PMC5594443 DOI: 10.1186/s12995-017-0175-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
In 1950, landmark epidemiology studies by Wynder & Graham and Doll & Hill contributed to identifying smoking as a potent carcinogen. In 2007, IARC classified shiftwork involving circadian disruption (CD) as probably carcinogenic; however, epidemiological evidence in regards to the carcinogenicity of shiftwork that involves nightwork is conflicting. We hypothesize that shiftwork research is lacking chronobiological and methodological rigor and that lessons can be learned from comparison with smoking research. Herein, we provide a factual view at, and a fictional case study of, 1940s smoking research which serves as an analogy for current shiftwork research dilemmas. This analogy takes the form of limiting counting cigarettes to a particular time window (i.e. at work) rather than assessing exposures to, and doses of, accumulated smoking over 24 h, highlighting the importance of exposure and dose. Simply put, smoking insights could have been delayed or even disallowed. In conclusion, CD may be similar to smoking insofar as for quantitative measures of cumulative doses, exposures both at and off work may have to be considered. Future work must explore whether such similarity factually exists and whether CD is a cancer hazard in IARC terms.
Collapse
Affiliation(s)
- Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany
| | - Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Light color importance for circadian entrainment in a diurnal (Octodon degus) and a nocturnal (Rattus norvegicus) rodent. Sci Rep 2017; 7:8846. [PMID: 28821732 PMCID: PMC5562902 DOI: 10.1038/s41598-017-08691-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
The central circadian pacemaker (Suprachiasmatic Nuclei, SCN) maintains the phase relationship with the external world thanks to the light/dark cycle. Light intensity, spectra, and timing are important for SCN synchronisation. Exposure to blue-light at night leads to circadian misalignment that could be avoided by using less circadian-disruptive wavelengths. This study tests the capacity of a diurnal Octodon degus and nocturnal Rattus norvegicus to synchronise to different nocturnal lights. Animals were subjected to combined red-green-blue lights (RGB) during the day and to: darkness; red light (R); combined red-green LED (RG) lights; and combined red-green-violet LED (RGV) lights during the night. Activity rhythms free-ran in rats under a RGB:RG cycle and became arrhythmic under RGB:RGV. Degus remained synchronised, despite the fact that day and night-time lighting systems differed only in spectra, but not in intensity. For degus SCN c-Fos activation by light was stronger with RGB-light than with RGV. This could be relevant for developing lighting that reduces the disruptive effects of nocturnal light in humans, without compromising chromaticity.
Collapse
|
28
|
Lewis P, Erren TC. Perinatal light imprinting of circadian clocks and systems (PLICCS): A signature of photoperiod around birth on circadian system stability and association with cancer. Chronobiol Int 2017; 34:782-801. [PMID: 28430521 DOI: 10.1080/07420528.2017.1315125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent findings from animal models suggest that plasticity of human circadian clocks and systems may be differentially affected by different paradigms of perinatal photoperiod exposure to the detriment of health in later life, including cancer development. Focusing on the example of cancer, we carry out a series of systematic literature reviews concerning perinatal light imprinting of circadian clocks and systems (PLICCS) in animal models, and concerning the risk of cancer development with the primary determinants of the perinatal photoperiod, namely season of birth or latitude of birth. The results from these systematic reviews provide supporting evidence of the PLICCS and cancer rationale and highlight that investigations of PLICCS in humans are warranted. Overall, we discuss findings from experimental research and insights from epidemiological studies. Considerations as to how to "test" PLICCS in epidemiological studies and as to the potential for non-invasive preventative measures during perinatal periods close our synthesis. If the PLICCS rationale holds true, it opens the exciting prospect for amenable, early-life, preventative measures against cancer development (and other disorders) in later life. Indeed, non-invasive anthropogenic light exposure may have enormous potential to alleviate the public health and economic burden of circadian-related diseases.
Collapse
Affiliation(s)
- Philip Lewis
- a Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research , University Hospital of Cologne , Cologne , Germany
| | - Thomas C Erren
- a Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research , University Hospital of Cologne , Cologne , Germany
| |
Collapse
|
29
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
30
|
Groß JV, Fritschi L, Erren TC. Hypothesis: A perfect day conveys internal time. Med Hypotheses 2017; 101:85-89. [PMID: 28351501 DOI: 10.1016/j.mehy.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/26/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
Abstract
In 2007 the International Agency for Research on Cancer [IARC] concluded "shift work that involves circadian disruption is probably carcinogenic to humans" (Group 2A). To investigate the "probable" causal link, information on individual chronobiology is needed to specify exposures to circadian disruption associated with shift work. In epidemiological studies this information is usually assessed by questionnaire. The most widely used Morningness-Eveningness-Questionnaire (MEQ) and MunichChronoTypeQuestionnaire (MCTQ) reveal information on circadian type (MEQ) and actual sleep behaviour (MCTQ). As a further option we suggest to obtain preferred sleep times by using what we call the perfect day (PD) approach. We hypothesize that a PD - as a day of completely preferred sleep behaviour - captures pristine internal time. We argue that the PD approach may measure internal time more accurately than the MEQ and MCTQ which convey influences by work and social time pressures. The PD approach may therefore reduce misclassifications of internal time and reveal circadian disruption caused by different shift systems.
Collapse
Affiliation(s)
- J V Groß
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, D-50938 Cologne, Germany.
| | - L Fritschi
- School of Public Health, Curtin University, Perth, Australia
| | - T C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, D-50938 Cologne, Germany
| |
Collapse
|
31
|
Erren T, Morfeld P, Foster R, Reiter R, Groß J, Westermann I. Sleep and cancer: Synthesis of experimental data and meta-analyses of cancer incidence among some 1,500,000 study individuals in 13 countries. Chronobiol Int 2016; 33:325-50. [DOI: 10.3109/07420528.2016.1149486] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Erren TC, Morfeld P, Groß VJ. Night shift work, chronotype, and prostate cancer risk: Incentives for additional analyses and prevention. Int J Cancer 2015; 137:1784-5. [PMID: 25809688 DOI: 10.1002/ijc.29524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/03/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University of Cologne, Lindenthal, Germany
| | - Peter Morfeld
- Institute for Occupational Epidemiology and Risk Assessment (IERA), Evonik Industries AG, Essen, Germany
| | - Valérie J Groß
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University of Cologne, Lindenthal, Germany
| |
Collapse
|
33
|
Erren TC, Groβ JV. Civil time ≠ biological time: Recent options for empirically testing possible effects of chronodisruption. Chronobiol Int 2015; 32:697-8. [DOI: 10.3109/07420528.2015.1006731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 2014; 15:23448-500. [PMID: 25526564 PMCID: PMC4284776 DOI: 10.3390/ijms151223448] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Collapse
Affiliation(s)
| | | | | | - Russel Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Maria Angeles Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Juan Antonio Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
35
|
Harb F, Hidalgo MP, Martau B. Lack of exposure to natural light in the workspace is associated with physiological, sleep and depressive symptoms. Chronobiol Int 2014; 32:368-75. [DOI: 10.3109/07420528.2014.982757] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
de Souza CM, Hidalgo MPL. The midpoint of sleep on working days: a measure for chronodisruption and its association to individuals' well-being. Chronobiol Int 2014; 32:341-8. [PMID: 25392279 DOI: 10.3109/07420528.2014.979941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is consistent evidence suggesting a relationship between individuals' sleep-wake rhythms and well-being. The indiscriminate demands from daily working routines, which do not respect this individual physiological rhythm, might be mediating this phenomenon. The aim of the present study was to evaluate the relationship between the characteristics of sleep routines during working days and psychological well-being. This was a cross-sectional study on 825 individuals from rural communities from southern Brazil. The study protocol included a questionnaire on demographic characteristics, working routines, health complaints, and habits; the Munich Chronotype Questionnaire for sleep-wake rhythm and; the WHO-Five well-being index. Since sex has been shown to affect sleep circadian rhythm and well-being, analysis was performed on men and women separately. In the proposed hierarchical regression models, different factors contributed to well-being according to sex. Among men, sleep-wake and work-related variables did not predict well-being scores. Among women, later midpoints of sleep on working days (B = -1.243, SE B = 0.315, β = -0.220), working more days per week (B = -1.507, SE B = 0.494, β = 0.150), having longer working journeys (B = -0.293, SE B = 0.105, β = -0.166), earlier working journey midpoints (B = 0.465, SE B = 0.222, β = 0.115), and being exposed to less sunlight (B = 0.140, SE B = 0.064, β = 0.103) predicted worse well-being. For the subgroup of women with days free from work, we have found a correlation between later midpoints of sleep during the week with worse well-being (Pearson's r = -0.159, p = 0.045) while the same relationship was not significantly observed with the midpoint of sleep on non-working days (Pearson's r = -0.153, p = 0.054). Considering WHO-Five as categorical, based on proposed clinical cut-offs, among women working 7-d/week, those with worst well-being (WHO-Five < 13) had the latest midpoint of sleep (F = 4.514, p = 0.012). Thus, the midpoint of sleep on working days represents the interaction between individuals' sleep-wake behavior and working routines. It plays an important role as a stress factor and may be a useful alternative variable related to chronodisruption.
Collapse
|
37
|
When time stands still: an integrative review on the role of chronodisruption in posttraumatic stress disorder. Curr Opin Psychiatry 2014; 27:385-92. [PMID: 25023884 DOI: 10.1097/yco.0000000000000079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The human circadian system creates and maintains cellular and systemic rhythmicity essential to homeostasis. Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune and autonomic system, similar to chronic stress and, thus, may play a central role in the development of stress-related disorders. This article focuses on the role of circadian misalignment in the pathophysiology of posttraumatic stress disorder (PTSD). RECENT FINDINGS Sleep disruption is a core feature of PTSD supporting the important supraordinate pathophysiological role of circadian system in PTSD. Furthermore, direct and indirect human and animal PTSD research suggests circadian system linked neuroendocrine, immune, metabolic and autonomic dysregulation with blunted diurnal rhythms, specific sleep pattern pathologies and cognitive deficits, as well as endocannabinoid and neuropeptide Y system alterations and altered circadian gene expression, linking circadian misalignment to PTSD pathophysiology. SUMMARY PTSD development is associated with chronodisruption findings. Evaluation and treatment of sleep and circadian disruption should be the first steps in PTSD management. State-of-the-art methods of circadian rhythm assessment should be applied to bridge the gap between clinical significance and limited understanding of the relationship between traumatic stress, sleep and circadian system.
Collapse
|
38
|
Amaral FG, Turati AO, Barone M, Scialfa JH, do Carmo Buonfiglio D, Peres R, Peliciari-Garcia RA, Afeche SC, Lima L, Scavone C, Bordin S, Reiter RJ, Menna-Barreto L, Cipolla-Neto J. Melatonin synthesis impairment as a new deleterious outcome of diabetes-derived hyperglycemia. J Pineal Res 2014; 57:67-79. [PMID: 24819547 DOI: 10.1111/jpi.12144] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/09/2014] [Indexed: 01/13/2023]
Abstract
Melatonin is a neurohormone that works as a nighttime signal for circadian integrity and health maintenance. It is crucial for energy metabolism regulation, and the diabetes effects on its synthesis are unresolved. Using diverse techniques that included pineal microdialysis and ultrahigh-performance liquid chromatography, the present data show a clear acute and sustained melatonin synthesis reduction in diabetic rats as a result of pineal metabolism impairment that is unrelated to cell death. Hyperglycemia is the main cause of several diabetic complications, and its consequences in terms of melatonin production were assessed. Here, we show that local high glucose (HG) concentration is acutely detrimental to pineal melatonin synthesis in rats both in vivo and in vitro. The clinically depressive action of high blood glucose concentration in melatonin levels was also observed in type 1 diabetes patients who presented a negative correlation between hyperglycemia and 6-sulfatoxymelatonin excretion. Additionally, high-mean-glycemia type 1 diabetes patients presented lower 6-sulfatoxymelatonin levels when compared to control subjects. Although further studies are needed to fully clarify the mechanisms, the present results provide evidence that high circulating glucose levels interfere with pineal melatonin production. Given the essential role played by melatonin as a powerful antioxidant and in the control of energy homeostasis, sleep and biological rhythms and knowing that optimal glycemic control is usually an issue for patients with diabetes, melatonin supplementation may be considered as an additional tool to the current treatment.
Collapse
Affiliation(s)
- Fernanda G Amaral
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Erren TC, Groß JV, Kantermann T, Kuffer L. Chronobiology and competitive sports: recent studies and future perspectives. Chronobiol Int 2014; 31:746-7. [PMID: 24666353 DOI: 10.3109/07420528.2014.899603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University of Cologne , Köln , Germany
| | | | | | | |
Collapse
|
40
|
Erren TC, Morfeld P. Computing chronodisruption: How to avoid potential chronobiological errors in epidemiological studies of shift work and cancer. Chronobiol Int 2014; 31:589-99. [DOI: 10.3109/07420528.2013.877921] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update 2013; 20:293-307. [DOI: 10.1093/humupd/dmt054] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
42
|
Newborn intensive care units and perinatal healthcare: on light's imprinting role on circadian system stability for research and prevention. J Perinatol 2013; 33:824-5. [PMID: 24071966 DOI: 10.1038/jp.2013.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Erren TC. Research into ‘night shift work’ and cancer: on the evolution of ‘exposure’ classification. Occup Environ Med 2013; 71:78. [DOI: 10.1136/oemed-2013-101747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|