1
|
Liaqat S, Ali Z, Saddique MAB, Ikram RM, Ali I. Comparative transcript abundance of gibberellin oxidases genes in two barley ( Hordeum vulgare) genotypes with contrasting lodging resistance under different regimes of water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23246. [PMID: 38252957 DOI: 10.1071/fp23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Barley (Hordeum vulgare ) is the world's fourth most important cereal crop, and is particularly well adapted to harsh environments. However, lodging is a major productivity constraint causing 13-65% yield losses. Gibberellic acid (GA) homeostatic genes such as HvGA20ox, HvGA3ox and HvGA2ox are responsible for changes in plant phenotype for height and internodal length that contribute towards lodging resistance. This study explored the expression of different HvGAox transcripts in two contrasting barley genotypes (5-GSBON-18, lodging resistant; and 5-GSBON-70, lodging sensitive), which were sown both under controlled (hydroponic, completely randomised factorial design) and field conditions (split-plot, completely randomised block design) with two irrigation treatments (normal with three irrigation events; and water deficit with one irrigation event). In the hydroponic experiment, expression analysis was performed on seedlings at 0, ¾, 1½, 3 and 6h after application of treatment. In the field experiment, leaf, shoot nodes and internodes were sampled. Downregulation of HvGA20ox.1 transcript and 2-fold upregulation of HvGA2ox.2 transcript were observed in 5-GSBON-18 under water deficit conditions. This genotype also showed a significant reduction in plant height (18-20%), lodging (<10%), and increased grain yield (15-18%) under stress. Utilisation of these transcripts in barley breeding has the potential to reduce plant height, lodging and increased grain yield.
Collapse
Affiliation(s)
- Shoaib Liaqat
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan; and Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan; and Programs and Projects Department, Islamic Organization for Food Security, Astana, Kazakhstan
| | | | - Rao Muhammad Ikram
- Department of Agronomy, MNS University of Agriculture, Multan 60000, Pakistan
| | - Imtiaz Ali
- Regional Agricultural Research Institute, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Chen Y, Ling Q, Li X, Ma Q, Tang S, Yuanzhi P, Liu QL, Jia Y, Yong X, Jiang B. Transcriptome analysis during axillary bud growth in chrysanthemum ( chrysanthemum× morifolium). PeerJ 2023; 11:e16436. [PMID: 38111658 PMCID: PMC10726743 DOI: 10.7717/peerj.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/19/2023] [Indexed: 12/20/2023] Open
Abstract
The chrysanthemum DgLsL gene, homologous with tomato Ls, is one of the earliest expressed genes controlling axillary meristem initiation. In this study, the wild-type chrysanthemum (CW) and DgLsL-overexpressed line 15 (C15) were used to investigate the regulatory mechanism of axillary bud development in chrysanthemum. Transcriptome sequencing was carried out to detect the differentially expressed genes of the axillary buds 0 h, 24 h and 48 h after decapitation. The phenotypic results showed that the number of axillary buds of C15 was significantly higher than CW. A total of 9,224 DEGs were identified in C15-0 vs. CW-0, 10,622 DEGs in C15-24 vs. CW-24, and 8,929 DEGs in C15-48 vs. CW-48.GO and KEGG pathway enrichment analyses showed that the genes of the flavonoid, phenylpropanoids and plant hormone pathways appeared to be differentially expressed, indicating their important roles in axillary bud germination. DgLsL reduces GA content in axillary buds by promoting GA2ox expression.These results confirmed previous studies on axillary bud germination and growth, and revealed the important roles of genes involved in plant hormone biosynthesis and signal transduction, aiding in the study of the gene patterns involved in axillary bud germination and growth.
Collapse
Affiliation(s)
- Yijun Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qin Ling
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qiqi Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - ShaoKang Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Pan Yuanzhi
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Qing-lin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chendu, Sichuan, China
| |
Collapse
|
3
|
Baraibar S, Iriarte W, de León W, Bonnecarrère V. Validation of SNP markers for selection of semi-dwarf and peduncle extrusion in barley. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:30. [PMID: 37313525 PMCID: PMC10248594 DOI: 10.1007/s11032-023-01371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/16/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to validate the use of two SNP markers associated to a sdw1 allele identified previously in a short barley genotype (ND23049) with an adequate peduncle extrusion which reduces predisposition to fungal disease development. First, the GBS SNP were converted in a KASP marker but only one of them, named TP4712, correctly amplified all allelic variations and had a Mendelian segregation in a F2 population. To corroborate the association between TP4712 allele with plant height and peduncle extrusion, a total of 1221 genotypes were genotyped and evaluated for both traits. Out of the 1221 genotypes, 199 were F4 lines, 79 were a diverse panel, and 943 were two complete breeding cohorts of stage 1 yield trials. To corroborate the association between the sdw1 allele and the short plant height with adequate peduncle extrusion, contingency tables were created, grouping the 2427 data points into categories. Based on the contingency analysis, it was demonstrated that the higher proportion of short plants with adequate peduncle extrusion were present in genotypes carrying the SNP allele of ND23049 regardless the population and the sowing date. This study develops a marker-assisted selection tool to accelerate the introgression of favourable alleles for plant height and peduncle extrusion in adapted germplasm. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01371-7.
Collapse
Affiliation(s)
- Silvina Baraibar
- Instituto Nacional de Investigación Agropecuaria (INIA), Sistema Agricola Ganadero-Area Mejoramiento Genetico y Biotecnologia Vegetal, Estación Experimental INIA La Estanzuela, Ruta 50 km 11, CP39173 Colonia, Uruguay
| | - Wanda Iriarte
- Instituto Nacional de Investigación Agropecuaria (INIA), Area Mejoramiento Genetico y Biotecnologia Vegetal, Estación Experimental INIA Las Brujas, Ruta 48 km 10, Canelones, Uruguay
| | - Wilmar de León
- Instituto Nacional de Investigación Agropecuaria (INIA), Sistema Agricola Ganadero-Area Mejoramiento Genetico y Biotecnologia Vegetal, Estación Experimental INIA La Estanzuela, Ruta 50 km 11, CP39173 Colonia, Uruguay
| | - Victoria Bonnecarrère
- Instituto Nacional de Investigación Agropecuaria (INIA), Area Mejoramiento Genetico y Biotecnologia Vegetal, Estación Experimental INIA Las Brujas, Ruta 48 km 10, Canelones, Uruguay
| |
Collapse
|
4
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
5
|
Hudzenko VM, Polishchuk TP, Lysenko AA, Fedorenko IV, Fedorenko MV, Khudolii LV, Ishchenko VA, Kozelets HM, Babenko AI, Tanchyk SP, Mandrovska SM. Elucidation of gene action and combining ability for productive tillering in spring barley. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement.
Collapse
|
6
|
Mikołajczak K, Kuczyńska A, Ogrodowicz P, Kiełbowicz-Matuk A, Ćwiek-Kupczyńska H, Daszkowska-Golec A, Szarejko I, Surma M, Krajewski P. High-throughput sequencing data revealed genotype-specific changes evoked by heat stress in crown tissue of barley sdw1 near-isogenic lines. BMC Genomics 2022; 23:177. [PMID: 35246029 PMCID: PMC8897901 DOI: 10.1186/s12864-022-08410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High temperature shock is becoming increasingly common in our climate, affecting plant growth and productivity. The ability of a plant to survive stress is a complex phenomenon. One of the essential tissues for plant performance under various environmental stimuli is the crown. However, the molecular characterization of this region remains poorly investigated. Gibberellins play a fundamental role in whole-plant stature formation. This study identified plant stature modifications and crown-specific transcriptome re-modeling in gibberellin-deficient barley sdw1.a (BW827) and sdw1.d (BW828) mutants exposed to increased temperature. RESULTS The deletion around the sdw1 gene in BW827 was found to encompass at least 13 genes with primarily regulatory functions. A bigger genetic polymorphism of BW828 than of BW827 in relation to wild type was revealed. Transcriptome-wide sequencing (RNA-seq) revealed several differentially expressed genes involved in gibberellin metabolism and heat response located outside of introgression regions. It was found that HvGA20ox4, a paralogue of the HvGA20ox2 gene, was upregulated in BW828 relative to other genotypes, which manifested as basal internode elongation. The transcriptome response to elevated temperature differed in the crown of sdw1.a and sdw1.d mutants; it was most contrasting for HvHsf genes upregulated under elevated temperature in BW828, whereas those specific to BW827 were downregulated. In-depth examination of sdw1 mutants revealed also some differences in their phenotypes and physiology. CONCLUSIONS We concluded that despite the studied sdw1 mutants being genetically related, their heat response seemed to be genotype-specific and observed differences resulted from genetic background diversity rather than single gene mutation, multiple gene deletion, or allele-specific expression of the HvGA20ox2 gene. Differences in the expressional reaction of genes to heat in different sdw1 mutants, found to be independent of the polymorphism, could be further explained by in-depth studies of the regulatory factors acting in the studied system. Our findings are particularly important in genetic research area since molecular response of crown tissue has been marginally investigated, and can be useful for wide genetic research of crops since barley has become a model plant for them.
Collapse
Affiliation(s)
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.
| |
Collapse
|
7
|
Muszynska A, Guendel A, Melzer M, Tandron Moya YA, Röder MS, Rolletschek H, Rutten T, Munz E, Melz G, Ortleb S, Borisjuk L, Börner A. A mechanistic view on lodging resistance in rye and wheat: a multiscale comparative study. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2646-2661. [PMID: 34449959 PMCID: PMC8633492 DOI: 10.1111/pbi.13689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/10/2021] [Accepted: 08/22/2021] [Indexed: 05/12/2023]
Abstract
The development of crop varieties that are resistant to lodging is a top priority for breeding programmes. Herein, we characterize the rye mutant ´Stabilstroh' ('stable straw') possessing an exceptional combination of high lodging resistance, tall posture and high biomass production. Nuclear magnetic resonance imaging displayed the 3-dimensional assembly of vascular bundles in stem. A higher number of vascular bundles and a higher degree of their incline were the features of lodging-resistant versus lodging-prone lines. Histology and electron microscopy revealed that stems are fortified by a higher proportion of sclerenchyma and thickened cell walls, as well as some epidermal invaginations. Biochemical analysis using Fourier-transform infrared spectroscopy and inductively coupled plasma-optical emission spectrometry further identified elevated levels of lignin, xylan, zinc and silicon as features associated with high lodging resistance. Combined effects of above features caused superior culm stability. A simplistic mathematical model showed how mechanical forces distribute within the stem under stress. Main traits of the lodging-resistant parental line were heritable and could be traced back to the genetic structure of the mutant. Evaluation of lodging-resistant wheat 'Babax' ('Baviacora') versus contrasting, lodging-prone, genotype ´Pastor´ agreed with above findings on rye. Our findings on mechanical stability and extraordinary culm properties may be important for breeders for the improvement of lodging resistance of tall posture cereal crops.
Collapse
Affiliation(s)
- Aleksandra Muszynska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Andre Guendel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | | | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
- Institute of Experimental Physics 5University of WürzburgWürzburgGermany
| | | | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
| |
Collapse
|
8
|
Stockinger EJ. The Breeding of Winter-Hardy Malting Barley. PLANTS 2021; 10:plants10071415. [PMID: 34371618 PMCID: PMC8309344 DOI: 10.3390/plants10071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
In breeding winter malting barley, one recurring strategy is to cross a current preferred spring malting barley to a winter barley. This is because spring malting barleys have the greatest amalgamation of trait qualities desirable for malting and brewing. Spring barley breeding programs can also cycle their material through numerous generations each year-some managing even six-which greatly accelerates combining desirable alleles to generate new lines. In a winter barley breeding program, a single generation per year is the limit when the field environment is used and about two generations per year if vernalization and greenhouse facilities are used. However, crossing the current favored spring malting barley to a winter barley may have its downsides, as winter-hardiness too may be an amalgamation of desirable alleles assembled together that confers the capacity for prolonged cold temperature conditions. In this review I touch on some general criteria that give a variety the distinction of being a malting barley and some of the general trends made in the breeding of spring malting barleys. But the main objective of this review is to pull together different aspects of what we know about winter-hardiness from the seemingly most essential aspect, which is survival in the field, to molecular genetics and gene regulation, and then finish with ideas that might help further our insight for predictability purposes.
Collapse
Affiliation(s)
- Eric J Stockinger
- Ohio Agricultural Research and Development Center (OARDC), Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
9
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
10
|
Vitale P, Fania F, Esposito S, Pecorella I, Pecchioni N, Palombieri S, Sestili F, Lafiandra D, Taranto F, De Vita P. QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents. Genes (Basel) 2021; 12:genes12040604. [PMID: 33923933 PMCID: PMC8074140 DOI: 10.3390/genes12040604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/20/2023] Open
Abstract
Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.
Collapse
Affiliation(s)
- Paolo Vitale
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (P.V.); (F.F.)
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Fabio Fania
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (P.V.); (F.F.)
| | - Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Francesca Taranto
- Institute of Biosciences and Bioresources (CNR-IBBR), 80055 Portici, Italy
- Correspondence: (F.T.); (P.D.V.)
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, 71122 Foggia, Italy; (S.E.); (I.P.); (N.P.)
- Correspondence: (F.T.); (P.D.V.)
| |
Collapse
|
11
|
Marone D, Rodriguez M, Saia S, Papa R, Rau D, Pecorella I, Laidò G, Pecchioni N, Lafferty J, Rapp M, Longin FH, De Vita P. Genome-Wide Association Mapping of Prostrate/Erect Growth Habit in Winter Durum Wheat. Int J Mol Sci 2020; 21:ijms21020394. [PMID: 31936286 PMCID: PMC7014441 DOI: 10.3390/ijms21020394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
By selecting for prostrate growth habit of the juvenile phase of the cycle, durum wheat cultivars could be developed with improved competitive ability against weeds, and better soil coverage to reduce the soil water lost by evaporation. A panel of 184 durum wheat (Triticum turgidum subsp. durum) genotypes, previously genotyped with DArT-seq markers, was used to perform association mapping analysis of prostrate/erect growth habit trait and to identify candidate genes. Phenotypic data of plant growth habit were recorded during three consecutive growing seasons (2014–2016), two different growth conditions (field trial and greenhouse) and two sowing periods (autumn and spring). Genome-wide association study revealed significant marker-trait associations, twelve of which were specific for a single environment/year, 4 consistent in two environments, and two MTAs for the LSmeans were identified across all environments, on chromosomes 2B and 5A. The co-localization of some MTAs identified in this study with known vernalization and photoperiod genes demonstrated that the sensitivity to vernalization and photoperiod response are actually not only key components of spring/winter growth habit, but they play also an important role in defining the magnitude of the tiller angle during the tillering stage. Many zinc-finger transcription factors, such as C2H2 or CCCH-domain zinc finger proteins, known to be involved in plant growth habit and in leaf angle regulation were found as among the most likely candidate genes. The highest numbers of candidate genes putatively related to the trait were found on chromosomes 3A, 4B, 5A and 6A. Moreover, a bioinformatic approach has been considered to search for functional ortholog genes in wheat by using the sequence of rice and barley tiller angle-related genes. The information generated could be used to improve the understanding of the mechanisms that regulate the prostrate/erect growth habit in wheat and the adaptive potential of durum wheat under resource-limited environmental conditions.
Collapse
Affiliation(s)
- Daniela Marone
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Via E. de Nicola, 14, 07100 Sassari, Italy; (M.R.); (D.R.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, SS 127bis, km 28.500 Surigheddu, 07041 Alghero, Italy
| | - Sergio Saia
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
- Research Centre for Cereal and Industrial Crops, CREA, SS 11, km 2.500, 13100 Vercelli, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Domenico Rau
- Department of Agriculture, University of Sassari, Via E. de Nicola, 14, 07100 Sassari, Italy; (M.R.); (D.R.)
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Giovanni Laidò
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Julia Lafferty
- Saatzucht Donau GesmbH & CoKG, Saatzuchtstrasse 11, A-2301 Probstdorf, Austria;
| | - Matthias Rapp
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstraße 21, 70593 Stuttgart, Germany; (M.R.); (F.H.L.)
| | - Friedrich H. Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstraße 21, 70593 Stuttgart, Germany; (M.R.); (F.H.L.)
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
- Correspondence: ; Tel.: +39-0881-714911
| |
Collapse
|
12
|
Mapping dynamic QTL dissects the genetic architecture of grain size and grain filling rate at different grain-filling stages in barley. Sci Rep 2019; 9:18823. [PMID: 31827117 PMCID: PMC6906516 DOI: 10.1038/s41598-019-53620-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Grain filling is an important growth process in formation of yield and quality for barley final yield determination. To explore the grain development behavior during grain filling period in barley, a high-density genetic map with 1962 markers deriving from a doubled haploid (DH) population of 122 lines was used to identify dynamic quantitative trait locus (QTL) for grain filling rate (GFR) and five grain size traits: grain area (GA), grain perimeter (GP), grain length (GL), grain width (GW) and grain diameter (GD). Unconditional QTL mapping is to detect the cumulative effect of genetic factors on a phenotype from development to a certain stage. Conditional QTL mapping is to detect a net effect of genetic factors on the phenotype at adjacent time intervals. Using unconditional, conditional and covariate QTL mapping methods, we successfully detected 34 major consensus QTLs. Moreover, certain candidate genes related to grain size, plant height, yield, and starch synthesis were identified in six QTL clusters, and individual gene was specifically expressed in different grain filling stages. These findings provide useful information for understanding the genetic basis of the grain filling dynamic process and will be useful for molecular marker-assisted selection in barley breeding.
Collapse
|
13
|
Herzig P, Backhaus A, Seiffert U, von Wirén N, Pillen K, Maurer A. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:151-164. [PMID: 31203880 DOI: 10.1016/j.plantsci.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 05/05/2023]
Abstract
Enhancing the accumulation of essential mineral elements in cereal grains is of prime importance for combating human malnutrition. Biofortification by breeding holds great potential for improving nutrient accumulation in grains. However, conventional breeding approaches require element analysis of many grain samples, which causes high costs. Here we applied hyperspectral imaging to estimate the concentration of 15 grain elements (C, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Zn) in high-throughput in the wild barley nested association mapping (NAM) population HEB-25, comprising 1,420 BC1S3 lines derived from crossing 25 wild barley accessions with the cultivar 'Barke'. Nutrient concentrations varied largely with a multitude of lines having higher micronutrient concentration than 'Barke'. In a genome-wide association study (GWAS), we located 75 quantitative trait locus (QTL) hotspots, whereof many could be explained by major genes such as NO APICAL MERISTEM-1 (NAM-1) and PHOTOPERIOD 1 (Ppd-H1). The GWAS approach revealed exotic alleles that were able to increase grain element concentrations. Remarkably, a QTL linked to GIBBERELLIN 20 OXIDASE 2 (HvGA20ox2) significantly increased several grain elements without yield loss. We conclude that introgressing promising exotic alleles into elite breeding material can assist in improving the nutritional value of barley grains.
Collapse
Affiliation(s)
- Paul Herzig
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
14
|
Wiegmann M, Maurer A, Pham A, March TJ, Al-Abdallat A, Thomas WTB, Bull HJ, Shahid M, Eglinton J, Baum M, Flavell AJ, Tester M, Pillen K. Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues. Sci Rep 2019; 9:6397. [PMID: 31024028 PMCID: PMC6484077 DOI: 10.1038/s41598-019-42673-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/05/2019] [Indexed: 01/28/2023] Open
Abstract
Since the dawn of agriculture, crop yield has always been impaired through abiotic stresses. In a field trial across five locations worldwide, we tested three abiotic stresses, nitrogen deficiency, drought and salinity, using HEB-YIELD, a selected subset of the wild barley nested association mapping population HEB-25. We show that barley flowering time genes Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3 exert pleiotropic effects on plant development and grain yield. Under field conditions, these effects are strongly influenced by environmental cues like day length and temperature. For example, in Al-Karak, Jordan, the day length-sensitive wild barley allele of Ppd-H1 was associated with an increase of grain yield by up to 30% compared to the insensitive elite barley allele. The observed yield increase is accompanied by pleiotropic effects of Ppd-H1 resulting in shorter life cycle, extended grain filling period and increased grain size. Our study indicates that the adequate timing of plant development is crucial to maximize yield formation under harsh environmental conditions. We provide evidence that wild barley alleles, introgressed into elite barley cultivars, can be utilized to support grain yield formation. The presented knowledge may be transferred to related crop species like wheat and rice securing the rising global food demand for cereals.
Collapse
Affiliation(s)
- Mathias Wiegmann
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Anh Pham
- The University of Adelaide, School of Agriculture, Food and Wine, Adelaide, SA, 5064, Australia
| | - Timothy J March
- The University of Adelaide, School of Agriculture, Food and Wine, Adelaide, SA, 5064, Australia
- Rijk Zwaan Australia Pty. Ltd., PO Box 284, Daylesford, 3460, Australia
| | - Ayed Al-Abdallat
- The University of Jordan, Faculty of Agriculture, Department of Horticulture and Crop Science, Amman, Jordan
| | | | - Hazel J Bull
- The James Hutton Institute, Invergrowie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd, Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - Mohammed Shahid
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Jason Eglinton
- The University of Adelaide, School of Agriculture, Food and Wine, Adelaide, SA, 5064, Australia
- Sugar Research Australia, 71378 Bruce Highway, Gordonvale, Queensland, Australia
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Dalia Building 2nd Floor, Bashir El Kassar Street, Verdun, Beirut, Lebanon
| | - Andrew J Flavell
- University of Dundee at JHI, School of Life Sciences, Invergrowie, Dundee, DD2 5DA, Scotland, UK
| | - Mark Tester
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
15
|
Shaaf S, Bretani G, Biswas A, Fontana IM, Rossini L. Genetics of barley tiller and leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:226-256. [PMID: 30548413 DOI: 10.1111/jipb.12757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
In cereals, tillering and leaf development are key factors in the concept of crop ideotype, introduced in the 1960s to enhance crop yield, via manipulation of plant architecture. In the present review, we discuss advances in genetic analysis of barley shoot architecture, focusing on tillering, leaf size and angle. We also discuss novel phenotyping techniques, such as 2D and 3D imaging, that have been introduced in the era of phenomics, facilitating reliable trait measurement. We discuss the identification of genes and pathways that are involved in barley tillering and leaf development, highlighting key hormones involved in the control of plant architecture in barley and rice. Knowledge on genetic control of traits related to plant architecture provides useful resources for designing ideotypes for enhanced barley yield and performance.
Collapse
Affiliation(s)
- Salar Shaaf
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Abhisek Biswas
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| | | | - Laura Rossini
- University of Milan, DiSAA, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
16
|
Boden SA, Østergaard L. How can developmental biology help feed a growing population? Development 2019; 146:146/3/dev172965. [PMID: 30709913 DOI: 10.1242/dev.172965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Agriculture is challenged globally from a variety of fronts, including a steady increase in world population, changes in climate and a requirement to reduce fertiliser inputs. In the production of crops that are able to overcome these challenges, developmental biology can play a crucial role. The process of domesticating wild progenitors into edible crops is closely linked to modification of developmental processes, and the steps that are needed to face the current challenges will equally require developmental modifications. In this Spotlight, we describe the achievements by developmental biologists in identifying the genes responsible for domestication of some of the most important crops, and highlight that developmental biology is in a unique position to remain centre stage in improving crop performance to meet current and future demands. We propose that the explosive technological advances in sequencing, genome editing and advanced data processing provide an excellent opportunity for researchers to combine scientific disciplines and realise the continued potential of plants as the primary food source for generations to come.
Collapse
Affiliation(s)
- Scott A Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
17
|
Bélanger S, Paquet-Marceau S, Díaz Lago JE, Belzile F. QTL mapping uncovers a semi-dwarf 1 (sdw1) allele in the barley (Hordeum vulgare) ND23049 line. Genome 2018; 61:429-436. [DOI: 10.1139/gen-2017-0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In barley, semi-dwarf varieties are attractive for their superior harvest index and lodging resistance, but many semi-dwarf barley genotypes suffer from poor spike emergence. We performed a genetic characterization of a semi-dwarf line (ND23049) that combines short stature, strong stiff culms, and adequate spike emergence. We developed a doubled haploid (DH) population derived by crossing ND23049 and the cultivar CLE253. A subset of 88 DH lines and parents were characterized for plant height in 2013 and 2014 and genotyped. In total, 1984 SNPs (345 unique loci) were used to produce a linkage map of 1127.1 cM. Three QTLs for plant height were detected in this population and coincided with the HvGA20ox2/Sdw1, HvBRI1/Uzu1, and HvPRR95 gene loci. The phenotypic variation explained by each QTL was 75.8%, 7.7%, and 4.1%, respectively, and jointly explained 83.3% (2013) and 87.7% (2014) of plant height. Our results suggest that ND23049 contributed the “short” allele at the HvGA20ox2/sdw1 locus while CLE253 provided “short” alleles at the HvBRI1/uzu1 and HvPRR95 loci. We identified a large deletion (at least 92.7 Kb), including HvGA20ox2 (Sdw1), as the causal mutation in ND23049. A set of tightly flanked SNP markers will help breeders to develop improved semi-dwarf varieties.
Collapse
Affiliation(s)
- Sébastien Bélanger
- Département de phytologie and Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Stéphanie Paquet-Marceau
- Département de phytologie and Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | | | - François Belzile
- Département de phytologie and Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
18
|
Abstract
The development and growth of plant organs is regulated by phytohormones, which constitute an important area of plant science. The last decade has seen a rapid increase in the unravelling of the pathways by which phytohormones exert their influence. Phytohormones function as signalling molecules that interact through a complex network to control development traits. They integrate metabolic and developmental events and regulate plant responses to biotic and abiotic stress factors. As such, they influence the yield and quality of crops. Recent studies on barley have emphasised the importance of phytohormones in promoting agronomically important traits such as tillering, plant height, leaf blade area and spike/spikelet development. Understanding the mechanisms of how phytohormones interact may help to modify barley architecture and thereby improve its adaptation and yield. To achieve this goal, extensive functional validation analyses are necessary to better understand the complex dynamics of phytohormone interactions and phytohormone networks that underlie the biological processes. The present review summarises the current knowledge on the crosstalk between phytohormones and their roles in barley development. Furthermore, an overview of how phytohormone modulation may help to improve barley plant architecture is also provided.
Collapse
|
19
|
Dong W, Wu D, Li G, Wu D, Wang Z. Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 2018; 8:2908. [PMID: 29440685 PMCID: PMC5811605 DOI: 10.1038/s41598-018-21293-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/01/2018] [Indexed: 01/03/2023] Open
Abstract
Dwarfism is one of the most valuable traits in watermelon breeding mainly because of its contribution to yield as well as the decreased labor required to cultivate and harvest smaller plants. However, the underlying genetic mechanism is unknown. In this study, a candidate dwarfism gene was identified by applying next-generation sequencing technology to analyze watermelon plants. We completed a whole-genome re-sequencing of two DNA bulks (dwarf pool and vine pool) generated from plants in an F2 population. A genome-wide analysis of single nucleotide polymorphisms resulted in the detection of a genomic region harboring the candidate dwarfism gene Cla010726. The encoded protein was predicted to be a gibberellin 20-oxidase-like protein, which is a well-known “green revolution” protein in other crops. A quantitative real-time PCR investigation revealed that the Cla010726 expression level was significantly lower in the dwarf plants than in the normal-sized plants. The SNP analysis resulted in two SNP locating in the Cla010726 gene promoter of dsh F2 individuals. The results presented herein provide preliminary evidence that Cla010726 is a possible dwarfism gene.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Henan University, Plant Genetics Laboratory, Kaifeng, Henan, 475004, People's Republic of China
| | - Defeng Wu
- School of Physical Education, Henan University, Kaifeng, Henan, 475001, People's Republic of China
| | - Guoshen Li
- School of Life Science, Henan University, Plant Genetics Laboratory, Kaifeng, Henan, 475004, People's Republic of China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zicheng Wang
- School of Life Science, Henan University, Plant Genetics Laboratory, Kaifeng, Henan, 475004, People's Republic of China.
| |
Collapse
|
20
|
Teplyakova S, Lebedeva M, Ivanova N, Horeva V, Voytsutskaya N, Kovaleva O, Potokina E. Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2017; 17:181. [PMID: 29143605 PMCID: PMC5688404 DOI: 10.1186/s12870-017-1121-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Alike to Reduced height-1 (Rht-1) genes in wheat and the semi dwarfing (sd-1) gene in rice, the sdw1/denso locus involved in the metabolism of the GA, was designated as the 'Green Revolution' gene in barley. The recent molecular characterization of the candidate gene HvGA20ox2 for sdw1/denso locus allows to estimate the impact of the functional polymorphism of this gene on the variation of agronomically important traits in barley. RESULTS We investigated the effect of the 7-bp deletion in exon 1 of HvGA20ox2 gene (sdw1.d mutation) on the variation of yield-related and malting quality traits in the population of DHLs derived from cross of medium tall barley Morex and semi-dwarf barley Barke. Segregation of plant height, flowering time, thousand grain weight, grain protein content and grain starch was evaluated in two diverse environments separated from one another by 15° of latitude. The 7-bp deletion in HvGA20ox2 gene reduced plant height by approximately 13 cm and delayed flowering time by 3-5 days in the barley segregating DHLs population independently on environmental cue. On other hand, the sdw1.d mutation did not affect significantly either grain quality traits (protein and starch content) or thousand grain weight. CONCLUSIONS The beneficial effect of the sdw1.d allele could be associated in barley with lodging resistance and extended period of vegetative growth allowing to accumulate additional biomass that supports higher yield in certain environments. However, no direct effect of the sdw1.d mutation on thousand grain weight or grain quality traits in barley was detected.
Collapse
Affiliation(s)
- Serafima Teplyakova
- Saint Petersburg State University, Universitetskaya emb.7/9, St. Petersburg, 199034, Russia
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya, 42-44, 190000, St. Petersburg, Russia
| | - Marina Lebedeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya, 42-44, 190000, St. Petersburg, Russia
- Saint Petersburg State Forest Technical University, Institutskiy per, 5, 194021, St. Petersburg, Russia
| | - Nadezhda Ivanova
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya, 42-44, 190000, St. Petersburg, Russia
| | - Valentina Horeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya, 42-44, 190000, St. Petersburg, Russia
| | - Nina Voytsutskaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya, 42-44, 190000, St. Petersburg, Russia
| | - Olga Kovaleva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya, 42-44, 190000, St. Petersburg, Russia
| | - Elena Potokina
- Saint Petersburg State University, Universitetskaya emb.7/9, St. Petersburg, 199034, Russia.
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya, 42-44, 190000, St. Petersburg, Russia.
- Saint Petersburg State Forest Technical University, Institutskiy per, 5, 194021, St. Petersburg, Russia.
| |
Collapse
|
21
|
Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci Rep 2017; 7:126. [PMID: 28273925 PMCID: PMC5428356 DOI: 10.1038/s41598-017-00096-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Semi-dwarf traits have been widely introgressed into cereal crops to improve lodging resistance. In sorghum (Sorghum bicolor L. Moench), four major unlinked dwarfing genes, Dw1-Dw4, have been introduced to reduce plant height, and among them, Dw3 and Dw1 have been cloned. Dw3 encodes a gene involved in auxin transport, whereas, Dw1 was recently isolated and identified as a gene encoding a protein of unknown function. In this study, we show that DW1 is a novel component of brassinosteroid (BR) signaling. Sorghum possessing the mutated allele of Dw1 (dw1), showed similar phenotypes to rice BR-deficient mutants, such as reduced lamina joint bending, attenuated skotomorphogenesis, and insensitivity against feedback regulation of BR-related genes. Furthermore, DW1 interacted with a negative regulator of BR signaling, BRASSINOSTEROID INSENSITIVE 2 (BIN2), and inhibited its nuclear localization, indicating that DW1 positively regulates BR signaling by inhibiting the function of BIN2. In contrast to rice and wheat breeding which used gibberellin (GA) deficiency to reduce plant height, sorghum breeding modified auxin and BR signaling. This difference may result from GA deficiency in rice and wheat does not cause deleterious side effects on plant morphology, whereas in sorghum it leads to abnormal culm bending.
Collapse
|
22
|
Xu Y, Jia Q, Zhou G, Zhang XQ, Angessa T, Broughton S, Yan G, Zhang W, Li C. Characterization of the sdw1 semi-dwarf gene in barley. BMC PLANT BIOLOGY 2017; 17:11. [PMID: 28086794 PMCID: PMC5237212 DOI: 10.1186/s12870-016-0964-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/23/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND The dwarfing gene sdw1 has been widely used throughout the world to develop commercial barley varieties. There are at least four different alleles at the sdw1 locus. RESULTS Mutations in the gibberellin 20-oxidase gene (HvGA20ox2) resulted in multiple alleles at the sdw1 locus. The sdw1.d allele from Diamant is due to a 7-bp deletion in exon 1, while the sdw1.c allele from Abed Denso has 1-bp deletion and a 4-bp insertion in the 5' untranslated region. The sdw1.a allele from Jotun resulted from a total deletion of the HvGA20ox2 gene. The structural changes result in lower gene expression in sdw1.d and lack of expression in sdw1.a. There are three HvGA20ox genes in the barley genome. The partial or total loss of function of the HvGA20ox2 gene could be compensated by enhanced expression of its homolog HvGA20ox1and HvGA20ox3. A diagnostic molecular marker was developed to differentiate between the wild-type, sdw1.d and sdw1.a alleles and another molecular marker for differentiation of sdw1.c and sdw1.a. The markers were further tested in 197 barley varieties, out of which 28 had the sdw1.d allele and two varieties the sdw1.a allele. To date, the sdw1.d and sdw1.a alleles have only been detected in the modern barley varieties and lines. CONCLUSIONS The results provided further proof that the gibberellin 20-oxidase gene (HvGA20ox2) is the functional gene of the barley sdw1 mutants. Different deletions resulted in different functional alleles for different breeding purposes. Truncated protein could maintain partial function. Partial or total loss of function of the HvGA20ox2 gene could be compensated by enhanced expression of its homolog HvGA20ox1 and HvGA20ox3.
Collapse
Affiliation(s)
- Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, 434000, China
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA6150, Australia
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province /College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA6150, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA6150, Australia
| | - Tefera Angessa
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA6150, Australia
| | - Sue Broughton
- Department of Agriculture and Food Government of Western Australia, South Perth, WA6150, Australia
| | - George Yan
- College of Horticultural and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, 434000, China.
| | - Chengdao Li
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei, 434000, China.
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA6150, Australia.
- Department of Agriculture and Food Government of Western Australia, South Perth, WA6150, Australia.
| |
Collapse
|
23
|
Jia Q, Tan C, Wang J, Zhang XQ, Zhu J, Luo H, Yang J, Westcott S, Broughton S, Moody D, Li C. Marker development using SLAF-seq and whole-genome shotgun strategy to fine-map the semi-dwarf gene ari-e in barley. BMC Genomics 2016; 17:911. [PMID: 27835941 PMCID: PMC5106812 DOI: 10.1186/s12864-016-3247-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/02/2016] [Indexed: 12/04/2022] Open
Abstract
Background Barley semi-dwarf genes have been extensively explored and widely used in barley breeding programs. The semi-dwarf gene ari-e from Golden Promise is an important gene associated with some agronomic traits and salt tolerance. While ari-e has been mapped on barley chromosome 5H using traditional markers and next-generation sequencing technologies, it has not yet been finely located on this chromosome. Results We integrated two methods to develop molecular markers for fine-mapping the semi-dwarf gene ari-e: (1) specific-length amplified fragment sequencing (SLAF-seq) with bulked segregant analysis (BSA) to develop SNP markers, and (2) the whole-genome shotgun sequence to develop InDels. Both SNP and InDel markers were developed in the target region and used for fine-mapping the ari-e gene. Linkage analysis showed that ari-e co-segregated with marker InDel-17 and was delimited by two markers (InDel-16 and DGSNP21) spanning 6.8 cM in the doubled haploid (DH) Dash × VB9104 population. The genetic position of ari-e was further confirmed in the Hindmarsh × W1 DH population which was located between InDel-7 and InDel-17. As a result, the overlapping region of the two mapping populations flanked by InDel-16 and InDel-17 was defined as the candidate region spanning 0.58 Mb on the POPSEQ physical map. Conclusions The current study demonstrated the SLAF-seq for SNP discovery and whole-genome shotgun sequencing for InDel development as an efficient approach to map complex genomic region for isolation of functional gene. The ari-e gene was fine mapped from 10 Mb to 0.58 Mb interval. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3247-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiaojun Jia
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou, 310018, China.
| | - Cong Tan
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia
| | - Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jinghuan Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Luo
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jianming Yang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Sharon Westcott
- Department of Agriculture and Food Government of Western Australia, South Perth, WA, 6155, Australia
| | - Sue Broughton
- Department of Agriculture and Food Government of Western Australia, South Perth, WA, 6155, Australia
| | - David Moody
- InterGrain Pty Ltd, 19 Ambitious Link, Bibra Lake, WA, 6163, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
24
|
Mikołajczak K, Ogrodowicz P, Surma M, Adamski T, Kuczyńska A. Introgression of LTP2 gene through marker assisted backcross in barley ( Hordeum vulgare L.). ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
Mikołajczak K, Kuczyńska A, Krajewski P, Sawikowska A, Surma M, Ogrodowicz P, Adamski T, Krystkowiak K, Górny AG, Kempa M, Szarejko I, Guzy-Wróbelska J, Gudyś K. Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes. J Appl Genet 2016; 58:23-35. [PMID: 27447461 PMCID: PMC5243891 DOI: 10.1007/s13353-016-0358-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Abstract
High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to 'response to stress' were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Andrzej G Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
26
|
Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci Rep 2016; 6:28366. [PMID: 27329702 PMCID: PMC4916599 DOI: 10.1038/srep28366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/02/2016] [Indexed: 11/22/2022] Open
Abstract
Semi-dwarfing genes have contributed to enhanced lodging resistance, resulting in increased crop productivity. In the history of grain sorghum breeding, the spontaneous mutation, dw1 found in Memphis in 1905, was the first widely used semi-dwarfing gene. Here, we report the identification and characterization of Dw1. We performed quantitative trait locus (QTL) analysis and cloning, and revealed that Dw1 encodes a novel uncharacterized protein. Knockdown or T-DNA insertion lines of orthologous genes in rice and Arabidopsis also showed semi-dwarfism similar to that of a nearly isogenic line (NIL) carrying dw1 (NIL-dw1) of sorghum. A histological analysis of the NIL-dw1 revealed that the longitudinal parenchymal cell lengths of the internode were almost the same between NIL-dw1 and wildtype, while the number of cells per internode was significantly reduced in NIL-dw1. NIL-dw1dw3, carrying both dw1 and dw3 (involved in auxin transport), showed a synergistic phenotype. These observations demonstrate that the dw1 reduced the cell proliferation activity in the internodes, and the synergistic effect of dw1 and dw3 contributes to improved lodging resistance and mechanical harvesting.
Collapse
|
27
|
Mikołajczak K, Ogrodowicz P, Gudyś K, Krystkowiak K, Sawikowska A, Frohmberg W, Górny A, Kędziora A, Jankowiak J, Józefczyk D, Karg G, Andrusiak J, Krajewski P, Szarejko I, Surma M, Adamski T, Guzy-Wróbelska J, Kuczyńska A. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars. PLoS One 2016; 11:e0155938. [PMID: 27227880 PMCID: PMC4881963 DOI: 10.1371/journal.pone.0155938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi).
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Wojciech Frohmberg
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Andrzej Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Andrzej Kędziora
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Janusz Jankowiak
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Damian Józefczyk
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Grzegorz Karg
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Joanna Andrusiak
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
- * E-mail: (AK); (JGW)
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- * E-mail: (AK); (JGW)
| |
Collapse
|
28
|
Maurer A, Draba V, Pillen K. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2507-18. [PMID: 26936829 PMCID: PMC4809299 DOI: 10.1093/jxb/erw070] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowering time is a key agronomic trait that plays an important role in crop yield. There is growing interest in dissecting the developmental subphases of flowering to better understand and fine-tune plant development and maximize yield. To do this, we used the wild barley nested association mapping (NAM) population HEB-25, comprising 1420 BC1S3 lines, to map quantitative trait loci (QTLs) controlling five developmental traits, plant height, and thousand grain weight. Genome-wide association studies (GWAS) enabled us to locate a total of 89 QTLs that genetically regulate the seven investigated traits. Several exotic QTL alleles proved to be highly effective and potentially useful in barley breeding. For instance, thousand grain weight was increased by 4.5 g and flowering time was reduced by 9.3 days by substituting Barke elite QTL alleles for exotic QTL alleles at the denso/sdw1 and the Ppd-H1 loci, respectively. We showed that the exotic allele at the semi-dwarf locus denso/sdw1 can be used to increase grain weight since it uncouples the negative correlation between shoot elongation and the ripening phase. Our study demonstrates that nested association mapping of HEB-25 can help unravel the genetic regulation of plant development and yield formation in barley. Moreover, since we detected numerous useful exotic QTL alleles in HEB-25, we conclude that the introgression of these wild barley alleles into the elite barley gene pool may enable developmental phases to be specifically fine-tuned in order to maximize thousand grain weight and, potentially, yield in the long term.
Collapse
Affiliation(s)
- Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Vera Draba
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany. Interdisciplinary Center for Crop Plant Research (IZN), Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
29
|
Hua W, Zhang XQ, Zhu J, Shang Y, Wang J, Jia Q, Zhang Q, Yang J, Li C. Identification and Fine Mapping of a White Husk Gene in Barley (Hordeum vulgare L.). PLoS One 2016; 11:e0152128. [PMID: 27028408 PMCID: PMC4814061 DOI: 10.1371/journal.pone.0152128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 11/21/2022] Open
Abstract
Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence.
Collapse
Affiliation(s)
- Wei Hua
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA 6150, Australia
| | - Jinghuan Zhu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yi Shang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junmei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiaojun Jia
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qisen Zhang
- Australian Export Grain Innovation Centre, South Perth, WA 6151, Australia
| | - Jianming Yang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- * E-mail: ;
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA 6150, Australia
- * E-mail: ;
| |
Collapse
|
30
|
Hill CB, Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1906. [PMID: 28066466 PMCID: PMC5165254 DOI: 10.3389/fpls.2016.01906] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
Collapse
Affiliation(s)
- Camilla B. Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| |
Collapse
|
31
|
Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, Yang J, Zhang G. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics 2015; 16:927. [PMID: 26573602 PMCID: PMC4647591 DOI: 10.1186/s12864-015-2116-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/20/2015] [Indexed: 12/02/2022] Open
Abstract
Background sdw1/denso is one of the most important and useful semi-dwarf genes in barley breeding. At least four sdw1/denso alleles have been reported and HvGA20ox2 is considered as the candidate gene. Up to date, results of studies have not univocally proven the genetic relationship between sdw1/denso and HvGA20ox2. Results In the present study, a complete deletion of Morex_contig_40861 including both HvGA20ox2 and Mloc_56463 genes was identified at the sdw1 locus from a semi-dwarf mutant Riso no. 9265. Expression of the genes encoding gibberellin biosynthesis (HvGA20ox1 and HvGA3ox2) were increased in the mutant compared to the wild type Bomi, while the expression of GA catabolic gene HvGA2ox3 was decreased. Over-expression of HvGA20ox2 could rescue the semi-dwarf phenotype and increase GAs concentration. Conclusions We confirmed that a GA biosynthetic enzyme HvGA20ox2, acted as GA 20-oxidase, is the functional gene for the sdw1/denso semi-dwarfism. Lose of HvGA20ox2 is partially compensated by HvGA20ox1 and further feedback is regulated by gibberellin. We also deduced that the sdw1/denso allele itself affects later heading owing to its reduced endogenous GAs concentration. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2116-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiaojun Jia
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.,Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA6150, Australia
| | - Yi Shang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinghuan Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianming Yang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Barboza-Barquero L, Nagel KA, Jansen M, Klasen JR, Kastenholz B, Braun S, Bleise B, Brehm T, Koornneef M, Fiorani F. Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles. ANNALS OF BOTANY 2015; 116:321-31. [PMID: 26162399 PMCID: PMC4549960 DOI: 10.1093/aob/mcv099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The occurrence of Arabidopsis thaliana semi-dwarf accessions carrying inactive alleles at the gibberellin (GA) biosynthesis GA5 locus has raised the question whether there are pleiotropic effects on other traits at the root level, such as rooting depth. In addition, it is unknown whether semi-dwarfism in arabidopsis confers a growth advantage under water-limiting conditions compared with wild-type plants. The aim of this research was therefore to investigate whether semi-dwarfism has a pleiotropic effect in the root system and also whether semi-dwarfs might be more tolerant of water-limiting conditions. METHODS The root systems of different arabidopsis semi-dwarfs and GA biosynthesis mutants were phenotyped in vitro using the GROWSCREEN-ROOT image-based software. Semi-dwarfs were phenotyped together with tall, near-related accessions. In addition, root phenotypes were investigated in soil-filled rhizotrons. Rosette growth trajectories were analysed with the GROWSCREEN-FLUORO setup based on non-invasive imaging. KEY RESULTS Mutations in the early steps of the GA biosynthesis pathway led to a reduction in shoot as well as root size. Depending on the genetic background, mutations at the GA5 locus yielded phenotypes characterized by decreased root length in comparison with related wild-type ones. The semi-dwarf accession Pak-3 showed the deepest root system both in vitro and in soil cultivation experiments; this comparatively deep root system, however, was independent of the ga5 loss-of-function allele, as shown by co-segregation analysis. When the accessions were grown under water-limiting conditions, semi-dwarf accessions with high growth rates were identified. CONCLUSIONS The observed diversity in root system growth and architecture occurs independently of semi-dwarf phenotypes, and is probably linked to a genetic background effect. The results show that there are no clear advantages of semi-dwarfism at low water availability in arabidopsis.
Collapse
Affiliation(s)
- Luis Barboza-Barquero
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany, CIGRAS, Universidad de Costa Rica, San José, Costa Rica and
| | - Kerstin A Nagel
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marcus Jansen
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jonas R Klasen
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bernd Kastenholz
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Silvia Braun
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Birgit Bleise
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thorsten Brehm
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Maarten Koornneef
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fabio Fiorani
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
33
|
Ni J, Gao C, Chen MS, Pan BZ, Ye K, Xu ZF. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas. PLANT & CELL PHYSIOLOGY 2015; 56:1655-66. [PMID: 26076970 PMCID: PMC4523387 DOI: 10.1093/pcp/pcv089] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants.
Collapse
Affiliation(s)
- Jun Ni
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Congcong Gao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Mao-Sheng Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Bang-Zhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Kaiqin Ye
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| |
Collapse
|
34
|
Zhou G, Zhang Q, Zhang XQ, Tan C, Li C. Construction of High-Density Genetic Map in Barley through Restriction-Site Associated DNA Sequencing. PLoS One 2015; 10:e0133161. [PMID: 26182149 PMCID: PMC4504713 DOI: 10.1371/journal.pone.0133161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Genetic maps in barley are usually constructed from a limited number of molecular markers such as SSR (simple sequence repeat) and DarT (diversity arrays technology). These markers must be first developed before being used for genotyping. Here, we introduce a new strategy based on sequencing progeny of a doubled haploid population from Baudin × AC Metcalfe to construct a genetic map in barley. About 13,547 polymorphic SNP tags with >93% calling rate were selected to construct the genetic map. A total of 12,998 SNP tags were anchored to seven linkage groups which spanned a cumulative 967.6 cM genetic distance. The high-density genetic map can be used for QTL mapping and the assembly of WGS and BAC contigs. The genetic map was evaluated for its effectiveness and efficiency in QTL mapping and candidate gene identification. A major QTL for plant height was mapped at 105.5 cM on chromosome 3H. This QTL with LOD value of 13.01 explained 44.5% of phenotypic variation. This strategy will enable rapid and efficient establishment of high-density genetic maps in other species.
Collapse
Affiliation(s)
- Gaofeng Zhou
- Department of Agriculture and Food, South Perth, WA, Australia
| | - Qisen Zhang
- Australian Export Grains Innovation Centre, South Perth, WA, Australia
| | - Xiao-qi Zhang
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Cong Tan
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Chengdao Li
- Department of Agriculture and Food, South Perth, WA, Australia
- Australian Export Grains Innovation Centre, South Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
- * E-mail:
| |
Collapse
|
35
|
Körber N, Bus A, Li J, Higgins J, Bancroft I, Higgins EE, Parkin IAP, Salazar-Colqui B, Snowdon RJ, Stich B. Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. BMC PLANT BIOLOGY 2015; 15:136. [PMID: 26055390 PMCID: PMC4459455 DOI: 10.1186/s12870-015-0496-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/20/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND An optimal seedling development of Brassica napus plants leads to a higher yield stability even under suboptimal growing conditions and has therefore a high importance for plant breeders. The objectives of our study were to (i) examine the expression levels of candidate genes in seedling leaves of B. napus and correlate these with seedling development as well as (ii) detect genome regions associated with gene expression levels and seedling development traits in B. napus by genome-wide association mapping. RESULTS The expression levels of the 15 candidate genes examined in the 509 B. napus inbreds showed an averaged standard deviation of 5.6 across all inbreds and ranged from 3.2 to 8.8. The gene expression differences between the 509 B. napus inbreds were more than adequate for the correlation with phenotypic variation of seedling development. The average of the absolute value correlations of the correlation coefficients of 0.11 were observed with a range from 0.00 to 0.39. The candidate genes GER1, AILP1, PECT, and FBP were strongly correlated with the seedling development traits. In a genome-wide association study, we detected a total of 63 associations between single nucleotide polymorphisms (SNPs) and the seedling development traits and 31 SNP-gene associations for the candidate genes with a P-value < 0.0001. For the projected leaf area traits we identified five different association hot spots on the chromosomes A2, A7, C3, C6, and C7. CONCLUSION A total of 99.4% of the adjacent SNPs on the A genome and 93.0% of the adjacent SNPs on the C genome had a distance smaller than the average range of linkage disequilibrium. Therefore, this genome-wide association study is expected to result on average in 14.7% of the possible power. Compared to previous studies in B. napus, the SNP marker density of our study is expected to provide a higher power to detect SNP-trait/-gene associations in the B. napus diversity set. The large number of associations detected for the examined 14 seedling development traits indicated that these are genetically complex inherited. The results of our analyses suggested that the studied genes ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit (RBC) on the chromosomes A4 and C4 and fructose-1,6-bisphosphatase precursor (FBP) on the chromosomes A9 and C8 are cis-regulated.
Collapse
Affiliation(s)
- Niklas Körber
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
- Institute of Crop Science and Resource Conservation, Plant Breeding and Biotechnology, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| | - Anja Bus
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
- Institute of Crop Science and Resource Conservation, Plant Breeding and Biotechnology, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
| | - Janet Higgins
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK.
- Department of Biology, Wentworth Way, University of York, Heslington, York, YO41 5DD, UK.
| | - Erin Eileen Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada.
| | | | - Bertha Salazar-Colqui
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| | - Rod John Snowdon
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| | - Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
| |
Collapse
|
36
|
Dockter C, Hansson M. Improving barley culm robustness for secured crop yield in a changing climate. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3499-509. [PMID: 25614659 DOI: 10.1093/jxb/eru521] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation.
Collapse
Affiliation(s)
- Christoph Dockter
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK- Copenhagen V, Denmark.
| | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden
| |
Collapse
|
37
|
Withanage SP, Hossain MA, Kumar M. S, Roslan HAB, Abdullah MP, Napis SB, Shukor NAA. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGA20ox) gene enhance the vegetative growth and fiber quality in kenaf (Hibiscus cannabinus L.) plants. BREEDING SCIENCE 2015; 65:177-91. [PMID: 26175614 PMCID: PMC4482167 DOI: 10.1270/jsbbs.65.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/28/2014] [Indexed: 05/11/2023]
Abstract
Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3-1.52 ng g(-1) fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants.
Collapse
Affiliation(s)
- Samanthi Priyanka Withanage
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
| | - Md Aktar Hossain
- Faculty of Forestry, Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
| | - Sures Kumar M.
- Faculty of Forestry, Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
| | - Hairul Azman B Roslan
- Faculty of Resource Science and Technology, University Malaysia Sarawak,
Kota Samarahan, Sarawak,
Malaysia
| | - Mohammad Puad Abdullah
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
| | - Suhaimi B. Napis
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
| | - Nor Aini Ab. Shukor
- Faculty of Forestry, Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
- Corresponding author (e-mail: )
| |
Collapse
|
38
|
Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann K, Ganal MW, Röder MS. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS One 2014; 9:e113287. [PMID: 25405621 PMCID: PMC4236181 DOI: 10.1371/journal.pone.0113287] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/21/2014] [Indexed: 11/17/2022] Open
Abstract
The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (-log10 (P-value) ≥ 4.82) and 280 (-log10 (P-value) ≥ 5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.
Collapse
Affiliation(s)
- Christine D. Zanke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jie Ling
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
39
|
Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proc Natl Acad Sci U S A 2013; 110:15818-23. [PMID: 24023067 DOI: 10.1073/pnas.1314979110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Understanding the genetic bases of natural variation for developmental and stress-related traits is a major goal of current plant biology. Variation in plant hormone levels and signaling might underlie such phenotypic variation occurring even within the same species. Here we report the genetic and molecular basis of semidwarf individuals found in natural Arabidopsis thaliana populations. Allelism tests demonstrate that independent loss-of-function mutations at GA locus 5 (GA5), which encodes gibberellin 20-oxidase 1 (GA20ox1) involved in the last steps of gibberellin biosynthesis, are found in different populations from southern, western, and northern Europe; central Asia; and Japan. Sequencing of GA5 identified 21 different loss-of-function alleles causing semidwarfness without any obvious general tradeoff affecting plant performance traits. GA5 shows signatures of purifying selection, whereas GA5 loss-of-function alleles can also exhibit patterns of positive selection in specific populations as shown by Fay and Wu's H statistics. These results suggest that antagonistic pleiotropy might underlie the occurrence of GA5 loss-of-function mutations in nature. Furthermore, because GA5 is the ortholog of rice SD1 and barley Sdw1/Denso green revolution genes, this study illustrates the occurrence of conserved adaptive evolution between wild A.thaliana and domesticated plants.
Collapse
|
40
|
Kuczyńska A, Surma M, Adamski T, Mikołajczak K, Krystkowiak K, Ogrodowicz P. Effects of the semi-dwarfing sdw1/denso gene in barley. J Appl Genet 2013; 54:381-90. [PMID: 23975516 PMCID: PMC3825292 DOI: 10.1007/s13353-013-0165-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/01/2023]
Abstract
Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of those genes that are associated with the key agronomical traits. Presently, use of a dwarfing gene in breeding process is crucial for the development of modern cultivars. In barley, more than 30 types of dwarfs or semi-dwarfs have been hitherto described. However, only a few of them have been successfully used in barley breeding programs. Both breeding and molecular mapping experiments were undertaken to enhance and evaluate the performance of semi-dwarf barley lines. The semi-dwarfing cultivars had improved lodging resistance and a higher harvest index. There have been a lot of investigations that have contributed new information to our basic understanding of the mechanisms underlying growth regulations in barley. This paper reviews semi-dwarfing genes in barley in general and special attention is paid to mapping of the sdw1/denso locus, changes in protein abundance and associations of the semi-dwarfness with gibberellins.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland,
| | | | | | | | | | | |
Collapse
|
41
|
Fine-mapping and identification of a candidate gene underlying the d2 dwarfing phenotype in pearl millet, Cenchrus americanus (L.) Morrone. G3-GENES GENOMES GENETICS 2013; 3:563-72. [PMID: 23450459 PMCID: PMC3583462 DOI: 10.1534/g3.113.005587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
Abstract
Pearl millet is one of the most important subsistence crops grown in India and sub-Saharan Africa. In many cereal crops, reduced height is a key trait for enhancing yield, and dwarf mutants have been extensively used in breeding to reduce yield loss due to lodging under intense management. In pearl millet, the recessive d2 dwarfing gene has been deployed widely in commercial germplasm grown in India, the United States, and Australia. Despite its importance, very little research has gone into determining the identity of the d2 gene. We used comparative information, genetic mapping in two F2 populations representing a total of some 1500 progeny, and haplotype analysis of three tall and three dwarf inbred lines to delineate the d2 region by two genetic markers that, in sorghum, define a region of 410 kb with 40 annotated genes. One of the sorghum genes annotated within this region is ABCB1, which encodes a P-glycoprotein involved in auxin transport. This gene had previously been shown to underlie the economically important dw3 dwarf mutation in sorghum. The cosegregation of ABCB1 with the d2 phenotype, its differential expression in the tall inbred ICMP 451 and the dwarf inbred Tift 23DB, and the similar phenotype of stacked lower internodes in the sorghum dw3 and pearl millet d2 mutants suggest that ABCB1 is a likely candidate for d2.
Collapse
|
42
|
Kuczyńska A, Kosmala A, Surma M, Adamski T. Identification of tillering node proteins differentially accumulated in barley recombinant inbred lines with different juvenile growth habits. Int J Mol Sci 2012; 13:10410-10423. [PMID: 22949870 PMCID: PMC3431868 DOI: 10.3390/ijms130810410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/03/2022] Open
Abstract
Barley (Hordeum vulgare L.) is an important cereal crop grown for both the feed and malting industries. The allelic dwarfing gene sdw1/denso has been used throughout the world to develop commercial barley varieties. Proteomic analysis offers a new approach to identify a broad spectrum of genes that are expressed in the living system. Two-dimensional electrophoresis and mass spectrometry were applied to investigate changes in protein abundance associated with different juvenile growth habit as effect of the denso locus in barley homozygous lines derived from a Maresi × Pomo cross combination. A total of 31 protein spots were revealed that demonstrate quantitative differences in protein abundance between the analyzed plants with different juvenile growth habit, and these protein spots were selected to be identified by mass spectrometry. Identification was successful for 27 spots, and functional annotations of proteins revealed that most of them are involved in metabolism and disease/defense-related processes. Functions of the identified proteins and their probable influence on the growth habit in barley are discussed.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-61-65-50-224; Fax: +48-61-65-50-301
| | | | | | | |
Collapse
|
43
|
Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC PLANT BIOLOGY 2012; 12:16. [PMID: 22284310 PMCID: PMC3349577 DOI: 10.1186/1471-2229-12-16] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 01/27/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) provide a promising tool for the detection and fine mapping of quantitative trait loci (QTL) underlying complex agronomic traits. In this study we explored the genetic basis of variation for the traits heading date, plant height, thousand grain weight, starch content and crude protein content in a diverse collection of 224 spring barleys of worldwide origin. The whole panel was genotyped with a customized oligonucleotide pool assay containing 1536 SNPs using Illumina's GoldenGate technology resulting in 957 successful SNPs covering all chromosomes. The morphological trait "row type" (two-rowed spike vs. six-rowed spike) was used to confirm the high level of selectivity and sensitivity of the approach. This study describes the detection of QTL for the above mentioned agronomic traits by GWAS. RESULTS Population structure in the panel was investigated by various methods and six subgroups that are mainly based on their spike morphology and region of origin. We explored the patterns of linkage disequilibrium (LD) among the whole panel for all seven barley chromosomes. Average LD was observed to decay below a critical level (r2-value 0.2) within a map distance of 5-10 cM. Phenotypic variation within the panel was reasonably large for all the traits. The heritabilities calculated for each trait over multi-environment experiments ranged between 0.90-0.95. Different statistical models were tested to control spurious LD caused by population structure and to calculate the P-value of marker-trait associations. Using a mixed linear model with kinship for controlling spurious LD effects, we found a total of 171 significant marker trait associations, which delineate into 107 QTL regions. Across all traits these can be grouped into 57 novel QTL and 50 QTL that are congruent with previously mapped QTL positions. CONCLUSIONS Our results demonstrate that the described diverse barley panel can be efficiently used for GWAS of various quantitative traits, provided that population structure is appropriately taken into account. The observed significant marker trait associations provide a refined insight into the genetic architecture of important agronomic traits in barley. However, individual QTL account only for a small portion of phenotypic variation, which may be due to insufficient marker coverage and/or the elimination of rare alleles prior to analysis. The fact that the combined SNP effects fall short of explaining the complete phenotypic variance may support the hypothesis that the expression of a quantitative trait is caused by a large number of very small effects that escape detection. Notwithstanding these limitations, the integration of GWAS with biparental linkage mapping and an ever increasing body of genomic sequence information will facilitate the systematic isolation of agronomically important genes and subsequent analysis of their allelic diversity.
Collapse
Affiliation(s)
- Raj K Pasam
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Rajiv Sharma
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Marcos Malosetti
- Biometris, Wageningen UR, P.O.Box 100, Wageningen, The Netherlands
| | | | - Grit Haseneyer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
- Plant Breeding, Centre of Life and Food Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Benjamin Kilian
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Andreas Graner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| |
Collapse
|