1
|
Lu XM, Yu XF, Li GQ, Qu MH, Wang H, Liu C, Man YP, Jiang XH, Li MZ, Wang J, Chen QQ, Lei R, Zhao CC, Zhou YQ, Jiang ZW, Li ZZ, Zheng S, Dong C, Wang BL, Sun YX, Zhang HQ, Li JW, Mo QH, Zhang Y, Lou X, Peng HX, Yi YT, Wang HX, Zhang XJ, Wang YB, Wang D, Li L, Zhang Q, Wang WX, Liu Y, Gao L, Wu JH, Wang YC. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits. PLANT COMMUNICATIONS 2024; 5:100856. [PMID: 38431772 PMCID: PMC11211551 DOI: 10.1016/j.xplc.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.
Collapse
Affiliation(s)
- Xue-Mei Lu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Fen Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guo-Qiang Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Hao Qu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chuang Liu
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu-Ping Man
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Han Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Zi Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qi-Qi Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Rui Lei
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cheng-Cheng Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun-Qiu Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Wang Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zuo-Zhou Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shang Zheng
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, Hubei, China
| | - Chang Dong
- College of Agricultural Sciences, Xichang University, Xichang, Sichuan, China
| | - Bai-Lin Wang
- Department of Horticulture, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-Xiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Hui-Qin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jie-Wei Li
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Quan-Hui Mo
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Ying Zhang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xin Lou
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Hai-Xu Peng
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Ting Yi
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - He-Xin Wang
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning, China
| | - Xiu-Jun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi-Bo Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Wang
- College of Agriculture, Eastern Liaoning University, Dandong, Liaoning, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen-Xia Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| | - Jin-Hu Wu
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.
| | - Yan-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
3
|
Mertten D, Baldwin S, Cheng CH, McCallum J, Thomson S, Ashton DT, McKenzie CM, Lenhard M, Datson PM. Implementation of different relationship estimate methodologies in breeding value prediction in kiwiberry ( Actinidia arguta). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:75. [PMID: 37868140 PMCID: PMC10584781 DOI: 10.1007/s11032-023-01419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
In dioecious crops such as Actinidia arguta (kiwiberries), some of the main challenges when breeding for fruit characteristics are the selection of potential male parents and the long juvenile period. Currently, breeding values of male parents are estimated through progeny tests, which makes the breeding of new kiwiberry cultivars time-consuming and costly. The application of best linear unbiased prediction (BLUP) would allow direct estimation of sex-related traits and speed up kiwiberry breeding. In this study, we used a linear mixed model approach to estimate narrow sense heritability for one vine-related trait and five fruit-related traits for two incomplete factorial crossing designs. We obtained BLUPs for all genotypes, taking into consideration whether the relationship was pedigree-based or marker-based. Owing to the high cost of genome sequencing, it is important to understand the effects of different sources of relationship matrices on estimating breeding values across a breeding population. Because of the increasing implementation of genomic selection in crop breeding, we compared the effects of incorporating different sources of information in building relationship matrices and ploidy levels on the accuracy of BLUPs' heritability and predictive ability. As kiwiberries are autotetraploids, multivalent chromosome formation and occasionally double reduction can occur during meiosis, and this can affect the accuracy of prediction. This study innovates the breeding programme of autotetraploid kiwiberries. We demonstrate that the accuracy of BLUPs of male siblings, without phenotypic observations, strongly improved when a tetraploid marker-based relationship matrix was used rather than parental BLUPs and female siblings with phenotypic observations. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01419-8.
Collapse
Affiliation(s)
- Daniel Mertten
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland, 1142 New Zealand
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
4
|
Sun J, Su D, Ma R, Chen L, Cao Q, Li Z, Han Y. Chromosome painting reveals genomic structure of three polyploid species of Ipomoea. Genome 2022; 65:331-339. [PMID: 35254885 DOI: 10.1139/gen-2021-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cultivated sweetpotato (Ipomoea batatas (L.) Lam.) from the family Convolvulaceae is a hexaploid species with 2n = 6x = 90, and has been controversial regarding its nature as an autopolyploid arising within a species or allopolyploid forming between species. Here, we developed oligonucleotide-based painting probes for two chromosomes of I.nil, a model diploid Ipomoea species. Using these probes, we revealed pairing behavior of homoeologous chromosomes in I. batatas and its two possible polyploid ancestral species, tetraploid I. tabascana (2n = 4x = 60) and hexaploid I. trifida (2n = 6x = 90). Chromosome painting analysis revealed a high percentage of quadrivalent formation in zygotene-pachytene cells of I. tabascana, which supported that I. tabascana was an autotetraploid likely derived by doubling of structurally similar and homologous genomes rather than a hybrid between I. batatas and I. trifida (2x). The high frequency of hexavalent/bivalent and tetravalent pairing was observed in I. trifida (6x) and I. batatas. However, the percentage of hexavalent pairing in I. trifida (6x) was far higher than that in I. batatas. Thus, present results tended to support that I. trifida (6x) was an autohexaploid, while I. batatas was more likely to be a segmental allohexaploid.
Collapse
Affiliation(s)
- Jianying Sun
- Jiangsu Normal University, 12675, Xuzhou, Jiangsu, China;
| | - Dan Su
- Jiangsu Normal University, 12675, Xuzhou, Jiangsu, China;
| | - Rengang Ma
- Jiangsu Normal University, 12675, Xuzhou, Jiangsu, China;
| | - Lei Chen
- Jiangsu Normal University, 12675, Xuzhou, Jiangsu, China;
| | - Qinghe Cao
- Chinese Academy of Agricultural Sciences, 12661, xuzhou, Jiangsu, China;
| | - Zongyun Li
- Jiangsu Normal University, 12675, Xuzhou, Jiangsu, China;
| | - Yonghua Han
- Jiangsu Normal University, 12675, Xuzhou, Jiangsu, China;
| |
Collapse
|
5
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
6
|
Chen J, Leach L, Yang J, Zhang F, Tao Q, Dang Z, Chen Y, Luo Z. A tetrasomic inheritance model and likelihood-based method for mapping quantitative trait loci in autotetraploid species. THE NEW PHYTOLOGIST 2021; 230:387-398. [PMID: 31913501 PMCID: PMC7984458 DOI: 10.1111/nph.16413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Dissecting the genetic architecture of quantitative traits in autotetraploid species is a methodologically challenging task, but a pivotally important goal for breeding globally important food crops, including potato and blueberry, and ornamental species such as rose. Mapping quantitative trait loci (QTLs) is now a routine practice in diploid species but is far less advanced in autotetraploids, largely due to a lack of analytical methods that account for the complexities of tetrasomic inheritance. We present a novel likelihood-based method for QTL mapping in outbred segregating populations of autotetraploid species. The method accounts properly for sophisticated features of gene segregation and recombination in an autotetraploid meiosis. It may model and analyse molecular marker data with or without allele dosage information, such as that from microarray or sequencing experiments. The method developed outperforms existing bivalent-based methods, which may fail to model and analyse the full spectrum of experimental data, in the statistical power of QTL detection, and accuracy of QTL location, as demonstrated by an intensive simulation study and analysis of data sets collected from a segregating population of potato (Solanum tuberosum). The study enables QTL mapping analysis to be conducted in autotetraploid species under a rigorous tetrasomic inheritance model.
Collapse
Affiliation(s)
- Jing Chen
- School of BiosciencesThe University of BirminghamBirminghamB15 2TTUK
| | - Lindsey Leach
- School of BiosciencesThe University of BirminghamBirminghamB15 2TTUK
| | - Jixuan Yang
- Institute of BiostatisticsFudan UniversityShanghai200433China
| | - Fengjun Zhang
- Institute of BiostatisticsFudan UniversityShanghai200433China
- Qinghai Academy of Agricultural and Forestry SciencesXiningQinghai810016China
| | - Qin Tao
- Institute of BiostatisticsFudan UniversityShanghai200433China
| | - Zhenyu Dang
- Institute of BiostatisticsFudan UniversityShanghai200433China
| | - Yue Chen
- Institute of BiostatisticsFudan UniversityShanghai200433China
| | - Zewei Luo
- School of BiosciencesThe University of BirminghamBirminghamB15 2TTUK
- Institute of BiostatisticsFudan UniversityShanghai200433China
| |
Collapse
|
7
|
Gao S, Sun Y, Zhou Y. Colchicine induction of 'Old Blush' 2n pollen for the hybridization and breeding of tetraploid rose. PeerJ 2021; 9:e11043. [PMID: 33854842 PMCID: PMC7953881 DOI: 10.7717/peerj.11043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Obtaining 2n pollen from the diploid Chinese old rose ‘Old Blush’ through artificial induction is one important means of hybridizing and breeding modern tetraploid roses. We used colchicine-induced 2n pollen to assess normal viability during hybridization and fructification. The results showed that the pollen mother cell had lagging chromosomes and parallel spindles at meiosis I stage, following which the 2n pollen was produced from dyads and triads with doubled chromosomes. We obtained 4.30% viable 2n pollen, which was significantly higher than the yield of the spontaneous 2n pollen (1.00%) using an optimal treatment combination of induction for 24 h with 0.50% colchicine. There was no significant difference between the external morphology of the induced 2n pollen and the spontaneous 2n pollen, whereas both types of 2n pollen possessed finer furrows, and fewer and smaller pores than the 1n pollen, and the external morphology of 2n pollen was more evolved. In terms of in vitro germination rate and pollen tube length, the induced 2n pollen did not differ significantly from the spontaneous 2n pollen. The survival rate of the floral buds was significantly decreased with increased colchicine concentration and treatment time.
Collapse
Affiliation(s)
- Shumin Gao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yahong Sun
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Yan Zhou
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| |
Collapse
|
8
|
Braz GT, Yu F, Zhao H, Deng Z, Birchler JA, Jiang J. Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. THE NEW PHYTOLOGIST 2021; 229:3294-3302. [PMID: 33222183 DOI: 10.1111/nph.17098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Meiotic chromosome pairing between homoeologous chromosomes was reported in many nascent allopolyploids. Homoeologous pairing is gradually eliminated and replaced by exclusive homologous pairing in well-established allopolyploids, an evolutionary process referred to as the diploidization of allopolyploids. A fundamental question of the diploidization of allopolyploids is whether and to what extent the DNA sequence variation among homoeologous chromosomes contribute to the establishment of exclusive homologous chromosome pairing. We developed aneuploid tetraploid maize lines that contain three copies of chromosome 10 derived from inbred lines B73 and H99. We were able to identify the parental origin of each copy of chromosome 10 in the materials using oligonucleotide-based haplotype-specific chromosome painting. We demonstrate that the two identical copies of chromosome 10 from H99 pair preferentially over chromosome 10 from B73 in different stages of prophase I and metaphase I during meiosis. Thus, homologous chromosome pairing is favored to partners with the most similar DNA sequences and can be discriminated based on cryptic sequence variation. We propose that innate preference of homologous chromosome pairing exists in nascent allopolyploids and serves as the first layer that would eventually block all homoeologous chromosome pairing in allopolyploids.
Collapse
Affiliation(s)
- Guilherme T Braz
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fan Yu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Tahir J, Brendolise C, Hoyte S, Lucas M, Thomson S, Hoeata K, McKenzie C, Wotton A, Funnell K, Morgan E, Hedderley D, Chagné D, Bourke PM, McCallum J, Gardiner SE, Gea L. QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population. Pathogens 2020; 9:E967. [PMID: 33233616 PMCID: PMC7709049 DOI: 10.3390/pathogens9110967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid Actinidia chinensis var. chinensis population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland 1025, New Zealand; (J.T.); (C.B.)
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland 1025, New Zealand; (J.T.); (C.B.)
| | - Stephen Hoyte
- The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand;
| | - Marielle Lucas
- Breeding Department, Enza Zaden, 1602 DB Enkhuizen, The Netherlands;
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand;
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| | - Catherine McKenzie
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| | - Andrew Wotton
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Keith Funnell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Ed Morgan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Duncan Hedderley
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Peter M. Bourke
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand;
| | - Susan E. Gardiner
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| |
Collapse
|
10
|
Jiao F, Luo R, Dai X, Liu H, Yu G, Han S, Lu X, Su C, Chen Q, Song Q, Meng C, Li F, Sun H, Zhang R, Hui T, Qian Y, Zhao A, Jiang Y. Chromosome-Level Reference Genome and Population Genomic Analysis Provide Insights into the Evolution and Improvement of Domesticated Mulberry (Morus alba). MOLECULAR PLANT 2020; 13:1001-1012. [PMID: 32422187 DOI: 10.1016/j.molp.2020.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 05/16/2023]
Abstract
Mulberry (Morus spp.) is the sole plant consumed by the domesticated silkworm. However, the genome of domesticated mulberry has not yet been sequenced, and the ploidy level of this species remains unclear. Here, we report a high-quality, chromosome-level domesticated mulberry (Morus alba) genome. Analysis of genomic data and karyotype analyses confirmed that M. alba is a diploid with 28 chromosomes (2n = 2x = 28). Population genomic analysis based on resequencing of 134 mulberry accessions classified domesticated mulberry into three geographical groups, namely, Taihu Basin of southeastern China (Hu mulberry), northern and southwestern China, and Japan. Hu mulberry had the lowest nucleotide diversity among these accessions and demonstrated obvious signatures of selection associated with environmental adaptation. Further phylogenetic analysis supports a previous proposal that multiple domesticated mulberry accessions previously classified as different species actually belong to one species. This study expands our understanding of genome evolution of the genus Morus and population structure of domesticated mulberry, which would facilitate mulberry breeding and improvement.
Collapse
Affiliation(s)
- Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rongsong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Liu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gang Yu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shuhua Han
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Lu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qi Chen
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qinxia Song
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Caiting Meng
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fanghong Li
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongmei Sun
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chong Qing 400716, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum. Heredity (Edinb) 2020; 125:212-226. [PMID: 32523055 PMCID: PMC7490355 DOI: 10.1038/s41437-020-0328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.
Collapse
|
12
|
Prieto P, Naranjo T. Analytical Methodology of Meiosis in Autopolyploid and Allopolyploid Plants. Methods Mol Biol 2020; 2061:141-168. [PMID: 31583658 DOI: 10.1007/978-1-4939-9818-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiosis is the cellular process responsible for producing gametes with half the genetic content of the parent cells. Integral parts of the process in most diploid organisms include the recognition, pairing, synapsis, and recombination of homologous chromosomes, which are prerequisites for balanced segregation of half-bivalents during meiosis I. In polyploids, the presence of more than two sets of chromosomes adds to the basic meiotic program of their diploid progenitors the possibility of interactions between more than two chromosomes and the formation of multivalents, which has implications on chromosome segregations and fertility. The mode of how chromosomes behave in meiosis in competitive situations has been the aim of many studies in polyploid species, some of which are considered here. But polyploids are also of interest in the study of meiosis because some of them tolerate the loss of chromosome segments or complete chromosomes as well as the addition of chromosomes from related species. Deletions allow to assess the effect of specific chromosome segments on meiotic behavior. Introgression lines are excellent materials to monitor the behavior of a given chromosome in the genetic background of the recipient species. We focus on this approach here as based on studies carried out in bread wheat, which is commonly used as a model species for meiosis studies. In addition to highlighting the relevance of the use of materials derived from polyploids in the study of meiosis, cytogenetics tools such as fluorescence in situ hybridization and the immunolabeling of proteins interacting with DNA are also emphasized.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
13
|
Münzbergová Z. Colchicine application significantly affects plant performance in the second generation of synthetic polyploids and its effects vary between populations. ANNALS OF BOTANY 2017; 120:329-339. [PMID: 28633349 PMCID: PMC5737759 DOI: 10.1093/aob/mcx070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/12/2017] [Indexed: 05/05/2023]
Abstract
Background and Aims Understanding the direct consequences of polyploidization is necessary for assessing the evolutionary significance of this mode of speciation. Previous studies have not studied the degree of between-population variation that occurs due to these effects. Although it is assumed that the effects of the substances that create synthetic polyploids disappear in second-generation synthetic polyploids, this has not been tested. Methods The direct consequences of polyploidization were assessed and separated from the effects of subsequent evolution in Vicia cracca , a naturally occurring species with diploid and autotetraploid cytotypes. Synthetic tetraploids were created from diploids of four mixed-ploidy populations. Performance of natural diploids and tetraploids was compared with that of synthetic tetraploids. Diploid offspring of the synthetic tetraploid mothers were also included in the comparison. In this way, the effects of colchicine application in the maternal generation on offspring performance could be compared independently of the effects of polyploidization. Key Results The sizes of seeds and stomata were primarily affected by cytotype, while plant performance differed between natural and synthetic polyploids. Most performance traits were also determined by colchicine application to the mothers, and most of these results were largely population specific. Conclusions Because the consequences of colchicine application are still apparent in the second generation of the plants, at least the third-generation polyploids should be considered in future comparisons. The specificities of the colchicine-treated plants may also be caused by strong selection pressures during the creation of synthetic polyploids. This could be tested by comparing the initial sizes of plants that survived the colchicine treatments with those of plants that did not. High variation between populations also suggests that different polyploids follow different evolutionary trajectories, and this should be considered when studying the effects of polyploidization.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| |
Collapse
|
14
|
Nguepjop JR, Tossim HA, Bell JM, Rami JF, Sharma S, Courtois B, Mallikarjuna N, Sane D, Fonceka D. Evidence of Genomic Exchanges between Homeologous Chromosomes in a Cross of Peanut with Newly Synthetized Allotetraploid Hybrids. FRONTIERS IN PLANT SCIENCE 2016; 7:1635. [PMID: 27847512 PMCID: PMC5088615 DOI: 10.3389/fpls.2016.01635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/17/2016] [Indexed: 05/02/2023]
Abstract
Cultivated peanut and synthetics are allotetraploids (2n = 4x = 40) with two homeologous sets of chromosomes. Meiosis in allotetraploid peanut is generally thought to show diploid-like behavior. However, a recent study pointed out the occurrence of recombination between homeologous chromosomes, especially when synthetic allotetraploids are used, challenging the view of disomic inheritance in peanut. In this study, we investigated the meiotic behavior of allotetraploid peanut using 380 SSR markers and 90 F2 progeny derived from the cross between Arachis hypogaea cv Fleur 11 (AABB) and ISATGR278-18 (AAKK), a synthetic allotetraploid that harbors a K-genome that was reported to pair with the cultivated B-genome during meiosis. Segregation analysis of SSR markers showed 42 codominant SSRs with unexpected null bands among some progeny. Chi-square tests for these loci deviate from the expected 1:2:1 Mendelian ratio under disomic inheritance. A linkage map of 357 codominant loci aligned on 20 linkage groups (LGs) with a total length of 1728 cM, averaging 5.1 cM between markers, was developed. Among the 10 homeologous sets of LGs, one set consisted of markers that all segregated in a polysomic-like pattern, six in a likely disomic pattern and the three remaining in a mixed pattern with disomic and polysomic loci clustered on the same LG. Moreover, we reported a substitution of homeologous chromosomes in some progeny. Our results suggest that the homeologous recombination events occurred between the A and K genomes in the newly synthesized allotetraploid and have been highlighted in the progeny. Homeologous exchanges are rarely observed in tetraploid peanut and have not yet been reported for AAKK and AABB genomes. The implications of these results on peanut breeding are discussed.
Collapse
Affiliation(s)
- Joel R. Nguepjop
- Centre d’Etudes Régional pour I’Amélioration de I’Adaptation à la SécheresseThies, Senegal
| | - Hodo-Abalo Tossim
- Centre d’Etudes Régional pour I’Amélioration de I’Adaptation à la SécheresseThies, Senegal
| | - Joseph M. Bell
- Département de Biologie et Physiologie Végétales, Université de Yaoundé IYaoundé, Cameroon
| | - Jean-François Rami
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Brigitte Courtois
- Centre d’Etudes Régional pour I’Amélioration de I’Adaptation à la SécheresseThies, Senegal
| | - Nalini Mallikarjuna
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Djibril Sane
- Département de Biologie Végétale, Université Cheikh Anta DiopDakar, Senegal
| | - Daniel Fonceka
- Centre d’Etudes Régional pour I’Amélioration de I’Adaptation à la SécheresseThies, Senegal
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| |
Collapse
|
15
|
Lloyd A, Bomblies K. Meiosis in autopolyploid and allopolyploid Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:116-22. [PMID: 26950252 DOI: 10.1016/j.pbi.2016.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 05/20/2023]
Abstract
All newly formed polyploids face a challenge in meiotic chromosome segregation due to the presence of an additional set of chromosomes. Nevertheless, naturally occurring auto and allopolyploids are common and generally show high fertility, showing that evolution can find solutions. Exactly how meiosis is adapted in these cases, however, remains a mystery. The rise of Arabidopsis as a model genus for polyploid and meiosis research has seen several new studies begin to shed light on this long standing question.
Collapse
Affiliation(s)
- Andrew Lloyd
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France.
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; John Innes Centre, Department of Cell & Developmental Biology, Norwich, UK
| |
Collapse
|
16
|
Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. The challenge of evolving stable polyploidy: could an increase in "crossover interference distance" play a central role? Chromosoma 2016; 125:287-300. [PMID: 26753761 PMCID: PMC4830878 DOI: 10.1007/s00412-015-0571-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 11/24/2022]
Abstract
Whole genome duplication is a prominent feature of many highly evolved organisms, especially plants. When duplications occur within species, they yield genomes comprising multiple identical or very similar copies of each chromosome (“autopolyploids”). Such genomes face special challenges during meiosis, the specialized cellular program that underlies gamete formation for sexual reproduction. Comparisons between newly formed (neo)-autotetraploids and fully evolved autotetraploids suggest that these challenges are solved by specific restrictions on the positions of crossover recombination events and, thus, the positions of chiasmata, which govern the segregation of homologs at the first meiotic division. We propose that a critical feature in the evolution of these more effective chiasma patterns is an increase in the effective distance of meiotic crossover interference, which plays a central role in crossover positioning. We discuss the findings in several organisms, including the recent identification of relevant genes in Arabidopsis arenosa, that support this hypothesis.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Gareth Jones
- The Red House, St. David's Street, Presteigne, Powys (Wales), LD8 2BP, UK
| | - Chris Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Denise Zickler
- Institut de Génétique et Microbiologie, I2BC, Université Paris-Sud, Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
De Silva NH, Gea L, Lowe R. Genetic analysis of resistance to Pseudomonas syringae pv. actinidiae (Psa) in a kiwifruit progeny test: an application of generalised linear mixed models (GLMMs). SPRINGERPLUS 2014; 3:547. [PMID: 26034671 PMCID: PMC4447754 DOI: 10.1186/2193-1801-3-547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
Linear Mixed models (LMMs) that incorporate genetic and spatial covariance structures have been used for many years to estimate genetic parameters and to predict breeding values in animal and plant breeding. Although the theoretical aspects for extending LMM to generalised linear mixed models (GLMMs) have been around for some time, suitable software has been developed only within the last decade or so. The GLIMMIX procedure in SAS® is becoming popular for fitting GLMMs in various disciplines. Applications of GLMMs to genetic analysis have been limited, probably because of the complexity of the models used. This is particularly so for Proc GLIMMIX because, unlike ASReml software, it is not specifically tailored for analysis of breeding data and some pre-procedure coding is necessary. Binary data that fits the GLMM framework is commonly encountered in breeding experiments, such as when evaluating individuals for resistance by observing the presence or absence of disease. Bacterial canker (Psa) caused by Pseudomonas syringae pv. actinidiae is a serious disease of kiwifruit in New Zealand and other kiwifruit-producing countries. Data from a progeny test trial was available to identify parents with high breeding values for resistance. We successfully applied the GLIMMIX procedure for this purpose. Heritability for resistance was moderate, and we identified two parents and their family as having high potential for Psa resistance breeding. There are several potential pitfalls when using GLMMs with binary data and these are briefly discussed.
Collapse
Affiliation(s)
- Nihal H De Silva
- The New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert Research Centre, 120 Mt Albert Road, Auckland, 1142 New Zealand
| | - Luis Gea
- PFR, Te Puke Research Centre, 412 No. 1 Road, RD 2, Te Puke, 3182 New Zealand
| | - Russell Lowe
- PFR, Te Puke Research Centre, 412 No. 1 Road, RD 2, Te Puke, 3182 New Zealand
| |
Collapse
|