1
|
Li W, Chen L, Zhao W, Li Y, Chen Y, Wen T, Liu Z, Huang C, Zhang L, Zhao L. Mutation of YFT3, an isomerase in the isoprenoid biosynthetic pathway, impairs its catalytic activity and carotenoid accumulation in tomato fruit. HORTICULTURE RESEARCH 2024; 11:uhae202. [PMID: 39308791 PMCID: PMC11415240 DOI: 10.1093/hr/uhae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024]
Abstract
Tomato fruit colors are directly associated with their appearance quality and nutritional value. However, tomato fruit color formation is an intricate biological process that remains elusive. In this work we characterized a tomato yellow fruited tomato 3 (yft3, e9292, Solanum lycopersicum) mutant with yellow fruits. By the map-based cloning approach, we identified a transversion mutation (A2117C) in the YFT3 gene encoding a putative isopentenyl diphosphate isomerase (SlIDI1) enzyme, which may function in the isoprenoid biosynthetic pathway by catalyzing conversion between isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The mutated YFT3 (A2117C) (designated YFT3 allele) and the YFT3 genes did not show expression difference at protein level, and their encoded YFT3 allelic (S126R) and YFT3 proteins were both localized in plastids. However, the transcript levels of eight genes (DXR, DXS, HDR, PSY1, CRTISO, CYCB, CYP97A, and NCED) associated with carotenoid synthesis were upregulated in fruits of both yft3 and YFT3 knockout (YFT3-KO) lines at 35 and 47 days post-anthesis compared with the red-fruit tomato cultivar (M82). In vitro and in vivo biochemical analyses indicated that YFT3 (S126R) possessed much lower enzymatic activities than the YFT3 protein, indicating that the S126R mutation can impair YFT3 activity. Molecular docking analysis showed that the YFT3 allele has higher ability to recruit isopentenyl pyrophosphate (IPP), but abolishes attachment of the Mg2+ cofactor to IPP, suggesting that Ser126 is a critical residue for YTF3 biochemical and physiological functions. As a result, the yft3 mutant tomato line has low carotenoid accumulation and abnormal chromoplast development, which results in yellow ripe fruits. This study provides new insights into molecular mechanisms of tomato fruit color formation and development.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lulu Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, 2 South Xiwang Avenue, Yancheng 224002, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Chen
- Youlaigu Science and Technology Innovation Center, 588 West Chenfeng, Yushan town, Agriculture Service Center, Kunshan 215300, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhengjun Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 2708 South Huaxi Avenue, Guiyang 550025, China
| | - Chao Huang
- Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Kumar P, Irfan M. Green ripe fruit in tomato: unraveling the genetic tapestry from cultivated to wild varieties. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3203-3205. [PMID: 38845353 PMCID: PMC11156801 DOI: 10.1093/jxb/erae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
This article comments on:
Cui L, Zheng F, Li C, Li G, Ye J, Zhang Y, Wang T, Hong Z, Ye Z, Zhang J. 2024. Defective mutations in STAY-GREEN 1, PHYTOENE SYNTHASE 1, and MYB12 genes lead to formation of green ripe fruit in tomato. Journal of Experimental Botany 75, 3322–3336.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Cui L, Zheng F, Li C, Li G, Ye J, Zhang Y, Wang T, Hong Z, Ye Z, Zhang J. Defective mutations in STAY-GREEN 1, PHYTOENE SYNTHASE 1, and MYB12 genes lead to formation of green ripe fruit in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3322-3336. [PMID: 38506421 DOI: 10.1093/jxb/erae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Modern tomatoes produce colorful mature fruits, but many wild tomato ancestors form green or gray green ripe fruits. Here, tomato cultivar 'Lvbaoshi' (LBS) that produces green ripe fruits was found to contain three recessive loci responsible for fruit development. The colorless peel of LBS fruits was caused by a 603 bp deletion in the promoter of SlMYB12. The candidate genes of the remaining two loci were identified as STAY-GREEN 1 (SlSGR1) and PHYTOENE SYNTHASE 1 (SlPSY1). SGR1 and PSY1 co-suppression by RNAi converted the pink fruits into green ripe fruits in transgenic plants. An amino acid change in PSY1 and a deletion in the promoter of SGR1 were also identified in several wild tomatoes bearing green or gray ripe fruits. Overexpression of PSY1 from green ripe fruit wild tomatoes in LBS plants could only partially rescue the green ripe fruit phenotype of LBS, and transgenic lines expressing ProSGR1::SGR1 from Solanum pennellii also failed to convert purple-flesh into red-flesh fruits. This work uncovers a novel regulatory mechanism by which SlMYB12, SlPSY1, and SlSGR1 control fruit color in cultivated and some wild tomato species.
Collapse
Affiliation(s)
- Long Cui
- Ganzhou Key Laboratory of Greenhouse Vegetables, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangyan Zheng
- Ganzhou Key Laboratory of Greenhouse Vegetables, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guobin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Molitor C, Kurowski TJ, Fidalgo de Almeida PM, Kevei Z, Spindlow DJ, Chacko Kaitholil SR, Iheanyichi JU, Prasanna HC, Thompson AJ, Mohareb FR. A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1342739. [PMID: 38525148 PMCID: PMC10957597 DOI: 10.3389/fpls.2024.1342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
Introduction Solanum chilense is a wild relative of tomato reported to exhibit resistance to biotic and abiotic stresses. There is potential to improve tomato cultivars via breeding with wild relatives, a process greatly accelerated by suitable genomic and genetic resources. Methods In this study we generated a high-quality, chromosome-level, de novo assembly for the S. chilense accession LA1972 using a hybrid assembly strategy with ~180 Gbp of Illumina short reads and ~50 Gbp long PacBio reads. Further scaffolding was performed using Bionano optical maps and 10x Chromium reads. Results The resulting sequences were arranged into 12 pseudomolecules using Hi-C sequencing. This resulted in a 901 Mbp assembly, with a completeness of 95%, as determined by Benchmarking with Universal Single-Copy Orthologs (BUSCO). Sequencing of RNA from multiple tissues resulting in ~219 Gbp of reads was used to annotate the genome assembly with an RNA-Seq guided gene prediction, and for a de novo transcriptome assembly. This chromosome-level, high-quality reference genome for S. chilense accession LA1972 will support future breeding efforts for more sustainable tomato production. Discussion Gene sequences related to drought and salt resistance were compared between S. chilense and S. lycopersicum to identify amino acid variations with high potential for functional impact. These variants were subsequently analysed in 84 resequenced tomato lines across 12 different related species to explore the variant distributions. We identified a set of 7 putative impactful amino acid variants some of which may also impact on fruit development for example the ethylene-responsive transcription factor WIN1 and ethylene-insensitive protein 2. These variants could be tested for their ability to confer functional phenotypes to cultivars that have lost these variants.
Collapse
Affiliation(s)
- Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Tomasz J. Kurowski
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | | | - Zoltan Kevei
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Daniel J. Spindlow
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Steffimol R. Chacko Kaitholil
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Justice U. Iheanyichi
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - H. C. Prasanna
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bangalore, India
| | - Andrew J. Thompson
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Fady R. Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| |
Collapse
|
5
|
Zhao W, Wang S, Li W, Shan X, Naeem M, Zhang L, Zhao L. The transcription factor EMB1444-like affects tomato fruit ripening by regulating YELLOW-FRUITED TOMATO 1, a core component of ethylene signaling transduction. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6563-6574. [PMID: 37555619 DOI: 10.1093/jxb/erad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
The fleshy fruit of tomato (Solanum lycopersicum) are climacteric and, as such, ethylene plays a pivotal role in their ripening and quality traits. In this study, a basic helix-loop-helix transcription factor, EMB1444-like, was found to induce the expression of YELLOW-FRUITED TOMATO 1 (YFT1), which encodes the SlEIN2 protein, a key element in the ethylene signaling pathway. Yeast one-hybrid and EMSA analyses revealed that EMB1444-like binds to the E-box motif (CACTTG, -1295 bp to -1290 bp upstream of the ATG start codon) of the YFT1 promoter (pYFT1). Suppression of EMB1444-like expression in tomato lines (sledl) using RNAi reduced ethylene production by lowering the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2/4 (ACS2/4) and ACC OXIDASE1 (ACO1) in a positive feedback loop. sledl tomato also showed differences in numerous quality traits related to fruit ripening, compared with the wild type, such as delayed chromoplast differentiation, a decrease in carotenoid accumulation, and delayed fruit ripening in an ethylene-independent manner, or at least upstream of ripening mediated by YFT1/SlEIN2. This study elucidates the regulatory framework of fruit ripening in tomato, providing information that may be used to breed tomato hybrid cultivars with an optimal balance of shelf-life, durability, and high quality.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shan Wang
- Agriculture Service Center, Kunshan 215300, China
| | - Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xuemeng Shan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Pons C, Casals J, Brower M, Sacco A, Riccini A, Hendrickx P, Figás MDR, Fisher J, Grandillo S, Mazzucato A, Soler S, Zamir D, Causse M, Díez MJ, Finkers R, Prohens J, Monforte AJ, Granell A. Diversity and genetic architecture of agro-morphological traits in a core collection of European traditional tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5896-5916. [PMID: 37527560 PMCID: PMC10540738 DOI: 10.1093/jxb/erad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
European traditional tomato varieties have been selected by farmers given their consistent performance and adaptation to local growing conditions. Here we developed a multipurpose core collection, comprising 226 accessions representative of the genotypic, phenotypic, and geographical diversity present in European traditional tomatoes, to investigate the basis of their phenotypic variation, gene×environment interactions, and stability for 33 agro-morphological traits. Comparison of the traditional varieties with a modern reference panel revealed that some traditional varieties displayed excellent agronomic performance and high trait stability, as good as or better than that of their modern counterparts. We conducted genome-wide association and genome-wide environment interaction studies and detected 141 quantitative trait loci (QTLs). Out of those, 47 QTLs were associated with the phenotype mean (meanQTLs), 41 with stability (stbQTLs), and 53 QTL-by-environment interactions (QTIs). Most QTLs displayed additive gene actions, with the exception of stbQTLs, which were mostly recessive and overdominant QTLs. Both common and specific loci controlled the phenotype mean and stability variation in traditional tomato; however, a larger proportion of specific QTLs was observed, indicating that the stability gene regulatory model is the predominant one. Developmental genes tended to map close to meanQTLs, while genes involved in stress response, hormone metabolism, and signalling were found within regions affecting stability. A total of 137 marker-trait associations for phenotypic means and stability were novel, and therefore our study enhances the understanding of the genetic basis of valuable agronomic traits and opens up a new avenue for an exploitation of the allelic diversity available within European traditional tomato germplasm.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Matthijs Brower
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Adriana Sacco
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Patrick Hendrickx
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Maria del Rosario Figás
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Josef Fisher
- Hebrew University of Jerusalem, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Dani Zamir
- Hebrew University of Jerusalem, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Richard Finkers
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| |
Collapse
|
7
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Vegetable biology and breeding in the genomics era. SCIENCE CHINA. LIFE SCIENCES 2023; 66:226-250. [PMID: 36508122 DOI: 10.1007/s11427-022-2248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.
Collapse
|
9
|
Gao L, Wang W, Li H, Li H, Yang Y, Zheng H, Tao J. Anthocyanin accumulation in grape berry flesh is associated with an alternative splicing variant of VvMYBA1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:1-13. [PMID: 36584628 DOI: 10.1016/j.plaphy.2022.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anthocyanins are flavonoids that contribute to the color of grape berries and are an essential component of grape berry and wine quality. Anthocyanin accumulation in grape berries is dependent on the coordinated expression of genes encoding enzymes in the anthocyanin pathway that are principally regulated at the transcriptional level, with VvMYBA1 as the main transcriptional regulator in grapes. Alternative splicing (AS) events in VvMYBA1, however, have not been examined. In the present study, VvMYBA1-L, an AS variant of VvMYBA1, was identified in 'ZhongShan-Hong' (ZS-H) and its offspring. The AS variant is characterized by a deletion in the third exon of the open reading frame (ORF) of VvMYBA1-L, resulting in the early termination of the encoded protein. Overexpression of VvMYBA1-L in grape berries resulted in delayed flesh coloration and ectopic overexpression of VvMYBA1-L in tobacco inhibited the coloration of petals. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays revealed that VvMYBA1-L interacts with VvMYBA1. Dual luciferase assays indicated that co-infiltration of VvMYC1 and VvMYBA1 significantly activated the promoter regulated expression of VvCHS3, VvDFR, VvUFGT, and VvF3H. In the presence of VvMYBA1-L, however, the induction effect of VvMYBA1 on the indicated promoters was significantly inhibited. Our findings provide insight into the essential role of VvMYBA1 and its variant, VvMYBA1-L, in regulating anthocyanin accumulation in grape berry flesh.
Collapse
Affiliation(s)
- Lei Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Haoran Li
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hui Li
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yaxin Yang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huan Zheng
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Tao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Koukounaras A, Mellidou I, Patelou E, Kostas S, Shukla V, Engineer C, Papaefthimiou D, Amari F, Chatzopoulos D, Mattoo AK, Kanellis AK. Over-expression of GGP1 and GPP genes enhances ascorbate content and nutritional quality of tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:124-138. [PMID: 36356544 DOI: 10.1016/j.plaphy.2022.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
L-Ascorbic acid (AsA), a strong antioxidant, serves as an enzyme cofactor and redox status marker, modulating a plethora of biological processes. As tomato commercial varieties and hybrids possess relatively low amounts of AsA, the improvement of fruit AsA represents a strategic goal for enhanced human health. Previously, we have suggested that GDP-L-Galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP) can serve as possible targets for AsA manipulation in tomato (Solanum lycopersicon L.) fruit. To this end, we produced and evaluated T3 transgenic tomato plants carrying these two genes under the control of CaMV-35S and two fruit specific promoters, PPC2 and PG-GGPI. The transgenic lines had elevated levels of AsA, with the PG-GGP1 line containing 3-fold more AsA than WT, without affecting fruit characteristics. Following RNA-Seq analysis, 164 and 13 DEGs were up- or down-regulated, respectively, between PG-GGP1 and WT pink fruits. PG-GGP1 fruit had a distinct number of up-regulated transcripts associated with cell wall modification, ethylene biosynthesis and signaling, pollen fertility and carotenoid metabolism. The elevated AsA accumulation resulted in the up regulation of AsA associated transcripts and alternative biosynthetic pathways suggesting that the entire metabolic pathway was influenced, probably via master regulation. We show here that AsA-fortification of tomato ripe fruit via GGP1 overexpression under the action of a fruit specific promoter PG affects fruit development and ripening, reduces ethylene production, and increased the levels of sugars, and carotenoids, supporting a robust database to further explore the role of AsA induced genes for agronomically important traits, breeding programs and precision gene editing approaches.
Collapse
Affiliation(s)
- Athanasios Koukounaras
- Department of Horticulture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, HAO ELGO-Demeter, 57001, Thessaloniki, Greece
| | - Efstathia Patelou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Stefanos Kostas
- Department of Horticulture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Vijaya Shukla
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Cawas Engineer
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; University of California San Diego, Division of Biological Sciences - Cell and Developmental Biology, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Laboratory of Botany, Department of Biological Sciences and Applications, University of Ioannina, Ioannina, Greece
| | - Foued Amari
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Wexner Medical Center/GEMMC, Comprehensive Cancer Center, 970 BRT, 460 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Dimitris Chatzopoulos
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
11
|
Li Y, Wang X, Zhang Q, Shen Y, Wang J, Qi S, Zhao P, Muhammad T, Islam MM, Zhan X, Liang Y. A mutation in SlCHLH encoding a magnesium chelatase H subunit is involved in the formation of yellow stigma in tomato (Solanum lycopersicum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111466. [PMID: 36174799 DOI: 10.1016/j.plantsci.2022.111466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Chlorophylls are ubiquitous pigments responsible for the green color in plants. Changes in the chlorophyll content have a significant impact on photosynthesis, plant growth and development. In this study, we used a yellow stigma mutant (ys) generated from a green stigma tomato WT by using ethylmethylsulfone (EMS)-induced mutagenesis. Compared with WT, the stigma of ys shows low chlorophyll content and impaired chloroplast ultrastructure. Through map-based cloning, the ys gene is localized to a 100 kb region on chromosome 4 between dCAPS596 and dCAPS606. Gene expression analysis and nonsynonymous SNP determination identified the Solyc04g015750, as the potential candidate gene, which encodes a magnesium chelatase H subunit (CHLH). In ys mutant, a single base C to T substitution in the SlCHLH gene results in the conversion of Serine into Leucine (Ser92Leu) at the N-terminal region. The functional complementation test shows that the SlCHLH from WT can rescue the green stigma phenotype of ys. In contrast, knockdown of SlCHLH in green stigma tomato AC, observed the yellow stigma phenotype at the stigma development stage. Overexpression of the mutant gene Slys in green stigma tomato AC results in the light green stigma. These results indicate that the mutation of the N-terminal S92 to Leu in SlCHLH is the main reason for the formation of the yellow stigma phenotype. Characterization of the ys mutant enriches the current knowledge of the tomato chlorophyll mutant library and provides a novel and effective tool for understanding the function of CHLH in tomato.
Collapse
Affiliation(s)
- Yushun Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Qinghua Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Shiming Qi
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Pan Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China; Directorate of Agriculture Extension, Merged Areas, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Md Monirul Islam
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China.
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
12
|
Cheng M, Meng F, Mo F, Qi H, Wang P, Chen X, Liu J, Ghanizadeh H, Zhang H, Wang A. Slym1 control the color etiolation of leaves by facilitating the decomposition of chlorophyll in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111457. [PMID: 36089196 DOI: 10.1016/j.plantsci.2022.111457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis, as an important biological process of plants, produces organic substances for plant growth and development. Although the molecular mechanisms of photosynthesis had been well investigated, the relationship between chlorophyll synthesis and photosynthesis remains largely unknown. The leaf-color mutant was an ideal material for studying photosynthesis and chlorophyll synthesis, which had been seldom investigated in tomato. Here, we obtained a yellow leaf tomato mutant ym (The mutant plants from the line of zs4) in field. Transmission electron microscopy (TEM) and photosynthetic parameters results demonstrated that chloroplast's structure was obviously destroyed and photosynthetic capacity gets weak. The mutant was hybridized with the control to construct the F2 segregation population for sequencing. Slym1 gene, controlling yellow mutant trait, was identified using Bulked Segregation Analysis. Slym1 was up-regulated in the mutant and Slym1 was located in the nucleus. The genes associated with photosynthesis and chlorophyll synthesis were down-regulated in Slym1-OE transgenic tomato plants. The results suggested that Slym1 negatively regulate photosynthesis. Photosynthetic pigment synthesis related genes HEMA, HEMB1, CHLG and CAO were up-regulated in Slym1 silencing plants. The redundant Slym1 binding the intermediate proteins MP resulting in hindering the interaction between MP and HY5 due to the Slym1 with a high expression level in ym mutant, lead to lots of the HY5 with unbound state accumulates in cells, that could accelerate the decomposition of chlorophyll. Therefore, the yellow leaf-color mutant ym could be used as an ideal material for further exploring the relationship between leaf color mutant and photosynthesis and the specific mechanism.
Collapse
Affiliation(s)
- Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Fanyue Meng
- College of Life Sciences, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Fulei Mo
- College of Life Sciences, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Haonan Qi
- College of Life Sciences, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, China.
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand.
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| |
Collapse
|
13
|
Huang W, Hu N, Xiao Z, Qiu Y, Yang Y, Yang J, Mao X, Wang Y, Li Z, Guo H. A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato. THE PLANT CELL 2022; 34:3280-3300. [PMID: 35604102 PMCID: PMC9421474 DOI: 10.1093/plcell/koac146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 05/08/2023]
Abstract
Although the role of ethylene in tomato (Solanum lycopersicum) fruit ripening has been intensively studied, its role in tomato fruit growth remains poorly understood. In addition, the relationship between ethylene and the developmental factors NON-RIPENING (NOR) and RIPENING INHIBITOR (RIN) during ripening is under debate. Here, we carried out comprehensive genetic analyses of genome-edited mutants of tomato ETHYLENE INSENSITIVE 2 (SlEIN2), four EIN3-like genes (SlEIL1-4), and three EIN3 BINDING F-box protein genes (SlEBF1-3). Both slein2-1 and the high-order sleil mutant (sleil1 sleil2 sleil3/SlEIL3 sleil4) showed reduced fruit size, mainly due to decreased auxin biosynthesis. During fruit maturation, slein2 mutants displayed the complete cessation of ripening, which was partially rescued by slebf1 but not slebf2 or slebf3. We also discovered that ethylene directly activates the expression of the developmental genes NOR, RIN, and FRUITFULL1 (FUL1) via SlEIL proteins. Indeed, overexpressing these genes partially rescued the ripening defects of slein2-1. Finally, the signal intensity of the ethylene burst during fruit maturation was intimately connected with the progression of full ripeness. Collectively, our work uncovers a critical role of ethylene in fruit growth and supports a molecular framework of ripening control in which the developmental factors NOR, RIN, and FUL1 act downstream of ethylene signaling.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Nan Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhina Xiao
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuping Qiu
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yan Yang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jie Yang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Mao
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yichuan Wang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | | |
Collapse
|
14
|
Jia M, Li X, Wang W, Li T, Dai Z, Chen Y, Zhang K, Zhu H, Mao W, Feng Q, Liu L, Yan J, Zhong S, Li B, Jia W. SnRK2 subfamily I protein kinases regulate ethylene biosynthesis by phosphorylating HB transcription factors to induce ACO1 expression in apple. THE NEW PHYTOLOGIST 2022; 234:1262-1277. [PMID: 35182082 PMCID: PMC9314909 DOI: 10.1111/nph.18040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 05/20/2023]
Abstract
Ethylene (ETH) controls climacteric fruit ripening and can be triggered by osmotic stress. However, the mechanism regulating ETH biosynthesis during fruit ripening and under osmotic stress is largely unknown in apple (Malus domestica). Here, we explored the roles of SnRK2 protein kinases in ETH biosynthesis related to fruit ripening and osmoregulation. We identified the substrates of MdSnRK2-I using phosphorylation analysis techniques. Finally, we identified the MdSnRK2-I-mediated signaling pathway for ETH biosynthesis related to fruit ripening and osmoregulation. The activity of two MdSnRK2-I members, MdSnRK2.4 and MdSnRK2.9, was significantly upregulated during ripening or following mannitol treatment. Overexpression of MdSnRK2-I increased ETH biosynthesis under normal and osmotic conditions in apple fruit. MdSnRK2-I phosphorylated the transcription factors MdHB1 and MdHB2 to enhance their protein stability and transcriptional activity on MdACO1. MdSnRK2-I also interacted with MdACS1 and increased its protein stability through two phosphorylation sites. The increased MdACO1 expression and MdACS1 protein stability resulted in higher ETH production in apple fruit. In addition, heterologous expression of MdSnRK2-I or manipulation of SlSnRK2-I expression in tomato (Solanum lycopersicum) fruit altered fruit ripening and ETH biosynthesis. We established that MdSnRK2-I functions in fruit ripening and osmoregulation, and identified the MdSnRK2-I-mediated signaling pathway controlling ETH biosynthesis.
Collapse
Affiliation(s)
- Meiru Jia
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Xingliang Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wei Wang
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Tianyu Li
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Zhengrong Dai
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Yating Chen
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Kaikai Zhang
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Haocheng Zhu
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wenwen Mao
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Qianqian Feng
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Liping Liu
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Jiaqi Yan
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Silin Zhong
- School of Life SciencesState Key Laboratory of AgrobiotechnologyChinese University of Hong KongEG12 Science Centre EastHong Kong999077China
| | - Bingbing Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wensuo Jia
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| |
Collapse
|
15
|
Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int J Mol Sci 2021; 22:ijms22126516. [PMID: 34204559 PMCID: PMC8234013 DOI: 10.3390/ijms22126516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.
Collapse
|
16
|
Zhao W, Li Y, Fan S, Wen T, Wang M, Zhang L, Zhao L. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4269-4282. [PMID: 33773493 DOI: 10.1093/jxb/erab113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Fruit quality in most fleshy fruit crops is fundamentally linked to ripening-associated traits, including changes in colour. In many climacteric fruits, including tomato (Solanum lycopersicum), the phytohormone ethylene plays a key role in regulating ripening. Previous map-based cloning of YELLOW FRUITED-TOMATO 1 (YFT1) revealed that it encodes the EIN2 protein, a core component in ethylene signal transduction. A YFT1 allele with a genetic lesion was found to be down-regulated in the yft1 tomato mutant that has a yellow fruit phenotype and perturbed ethylene signalling. Based on bioinformatic analysis, yeast one hybrid assays and electrophoretic mobility shift assays, we report that transcription factor WRKY32 regulates tomato fruit colour formation. WRKY32 binds to W-box and W-box-like motifs in the regulatory region of the YFT1 promoter and induces its expression. In tomato fruits of WRKY32-RNAi generated lines, ethylene signalling was reduced, leading to a suppression in ethylene emission, a delay in chromoplast development, decreased carotenoid accumulation, and a yellow fruit phenotype. These results provide new insights into the regulatory networks that govern tomato fruit colour formation via ethylene signal transduction.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaozhu Fan
- Branch Institute of Horticulture, Harbin Academy of Agricultural Science, Harbin, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Ye J, Chen W, Feng L, Liu G, Wang Y, Li H, Ye Z, Zhang Y. The chaperonin 60 protein SlCpn60α1 modulates photosynthesis and photorespiration in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7224-7240. [PMID: 32915204 DOI: 10.1093/jxb/eraa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis, an indispensable biological process of plants, produces organic substances for plant growth, during which photorespiration occurs to oxidize carbohydrates to achieve homeostasis. Although the molecular mechanism underlying photosynthesis and photorespiration has been widely explored, the crosstalk between the two processes remains largely unknown. In this study, we isolated and characterized a T-DNA insertion mutant of tomato (Solanum lycopersicum) named yellow leaf (yl) with yellowish leaves, retarded growth, and chloroplast collapse that hampered both photosynthesis and photorespiration. Genetic and expression analyses demonstrated that the phenotype of yl was caused by a loss-of-function mutation resulting from a single-copy T-DNA insertion in chaperonin 60α1 (SlCPN60α1). SlCPN60α1 showed high expression levels in leaves and was located in both chloroplasts and mitochondria. Silencing of SlCPN60α1using virus-induced gene silencing and RNA interference mimicked the phenotype of yl. Results of two-dimensional electrophoresis and yeast two-hybrid assays suggest that SlCPN60α1 potentially interacts with proteins that are involved in chlorophyll synthesis, photosynthetic electron transport, and the Calvin cycle, and further affect photosynthesis. Moreover, SlCPN60α1 directly interacted with serine hydroxymethyltransferase (SlSHMT1) in mitochondria, thereby regulating photorespiration in tomato. This study outlines the importance of SlCPN60α1 for both photosynthesis and photorespiration, and provides molecular insights towards plant genetic improvement.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Longwei Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Zhao W, Gao L, Li Y, Wang M, Zhang L, Zhao L. Yellow-fruited phenotype is caused by 573 bp insertion at 5' UTR of YFT1 allele in yft1 mutant tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110637. [PMID: 33180715 DOI: 10.1016/j.plantsci.2020.110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/26/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The yft1 tomato mutant has a yellow-fruited phenotype controlled by a recessive gene of YFT1 allele, which has been shown by map-based cloning to be a homolog of ETHYLENE INSENSITIVE 2 (EIN2). Genetic lesion of YFT1 allele in yft1 is attributed to a 573 bp DNA fragment (IF573) insertion at 1,200 bp downstream of the transcription start site. Transcriptomic analysis revealed that YFT1 lesion resulted in 5,053 differentially expressed genes (DEGs) in yft1 pericarp compared with the M82 wild type cultivar. These were annotated as being involved in ethylene synthesis, chromoplast development, and carotenoid synthesis. The YFT1 lesion caused a reduction in its own transcript levels in yft1 and impaired ethylene emission and signal transduction, delayed chromoplast development and decreased carotenoid accumulation. The molecular mechanism underlying the downregulated YFT1 allele in yft1 was examined at both RNA and DNA levels. The IF573 event appeared to introduce two negative regulatory sequences located at -272 to -173 bp and -172 to -73 bp in the YFT1 allele promoter, causing alterative splicing due to introduction of aberrant splicing sites, and breaking upstream open reading frames (uORF) structure in the 5'-UTR. Those results a new provided insight into molecular regulation of color formation in tomato fruit.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
19
|
Efremov GI, Slugina MA, Shchennikova AV, Kochieva EZ. Differential Regulation of Phytoene Synthase PSY1 During Fruit Carotenogenesis in Cultivated and Wild Tomato Species ( Solanum section Lycopersicon). PLANTS 2020; 9:plants9091169. [PMID: 32916928 PMCID: PMC7569967 DOI: 10.3390/plants9091169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
In plants, carotenoids define fruit pigmentation and are involved in the processes of photo-oxidative stress defense and phytohormone production; a key enzyme responsible for carotene synthesis in fruit is phytoene synthase 1 (PSY1). Tomatoes (Solanum section Lycopersicon) comprise cultivated (Solanum lycopersicum) as well as wild species with different fruit color and are a good model to study carotenogenesis in fleshy fruit. In this study, we identified homologous PSY1 genes in five Solanum section Lycopersicon species, including domesticated red-fruited S. lycopersicum and wild yellow-fruited S. cheesmaniae and green-fruited S. chilense, S. habrochaites and S. pennellii. PSY1 homologs had a highly conserved structure, including key motifs in the active and catalytic sites, suggesting that PSY1 enzymatic function is similar in green-fruited wild tomato species and preserved in red-fruited S. lycopersicum. PSY1 mRNA expression directly correlated with carotenoid content in ripe fruit of the analyzed tomato species, indicating differential transcriptional regulation. Analysis of the PSY1 promoter and 5′-UTR sequence revealed over 30 regulatory elements involved in response to light, abiotic stresses, plant hormones, and parasites, suggesting that the regulation of PSY1 expression may affect the processes of fruit senescence, seed maturation and dormancy, and pathogen resistance. The revealed differences between green-fruited and red-fruited Solanum species in the structure of the PSY1 promoter/5′-UTR, such as the acquisition of ethylene-responsive element by S. lycopersicum, could reflect the effects of domestication on the transcriptional mechanisms regulating PSY1 expression, including induction of carotenogenesis during fruit ripening, which would contribute to red coloration in mature fruit.
Collapse
|
20
|
Xiao Y, Kang B, Li M, Xiao L, Xiao H, Shen H, Yang W. Transcription of lncRNA ACoS-AS1 is essential to trans-splicing between SlPsy1 and ACoS-AS1 that causes yellow fruit in tomato. RNA Biol 2020; 17:596-607. [PMID: 31983318 PMCID: PMC7237131 DOI: 10.1080/15476286.2020.1721095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022] Open
Abstract
Phytoene synthase (PSY) has been considered as an important regulatory enzyme in carotenoids biosynthesis pathway. Previous study finds that the yellow fruit in Solanum lycopersicum var. cerasiforme accession PI 114490 is caused by loss-of-function of SlPSY1 due to trans-splicing between SlPsy1 and an unknown gene transcribed from neighbour opposite strand DNA of SlPsy1. The genomic DNA sequences of SlPsy1 between red and yellow-fruited tomato lines have one single-nucleotide polymorphism (SNP) in the fourth intron and one SSR in the intergenic region. In the current study, the cause of trans-splicing event was further investigated. The data showed that the previously defined unknown gene was a putative long non-coding RNA ACoS-AS1 with three variants in many yellow-fruited tomato lines. The intronic SNP and intergenic SSR were tightly associated with trans-splicing event SlPsy1-ACoS-AS1. However, transgenic tomato lines carrying the genomic DNA of SlPsy1 from PI 114490 did not generate transcripts of ACoS-AS1and SlPsy1-ACoS-AS1 suggesting that only the intronic SNP could not cause the trans-splicing event. Over-expression of SlPsy1-ACoS-AS1 in red-fruited tomato line M82 did not have any phenotype change while over-expression of wild type SlPsy1 resulted in altered leaf colour. Sub-cellular localization analysis showed that SlPSY1-ACoS-AS1 could not enter plastids where SlPSY1 has its enzyme activity. Mutation of ACoS-AS1 in PI 114490 generated by CRISPR/Cas9 techniques resulted in red fruits implying that ACoS-AS1 was essential to trans-splicing event SlPsy1-ACoS-AS1. The results obtained here will extend knowledge to understand the mechanism of trans-splicing event SlPsy1-ACoS-AS1 and provide additional information for the regulation of carotenoids biosynthesis.
Collapse
Affiliation(s)
- Yao Xiao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People’s Republic of China, Beijing, China
| | - Baoshan Kang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Meng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Liangjun Xiao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People’s Republic of China, Beijing, China
| |
Collapse
|
21
|
Chen L, Li W, Li Y, Feng X, Du K, Wang G, Zhao L. Identified trans-splicing of YELLOW-FRUITED TOMATO 2 encoding the PHYTOENE SYNTHASE 1 protein alters fruit color by map-based cloning, functional complementation and RACE. PLANT MOLECULAR BIOLOGY 2019; 100:647-658. [PMID: 31154655 DOI: 10.1007/s11103-019-00886-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 05/28/2023]
Abstract
Found a trans-splicing of PHYTOENE SYNTHASE 1 alters tomato fruit color by map-based cloning, functional complementation and RACE providing an insight into fruit color development. Color is an important fruit quality trait and a major determinant of the economic value of tomato (Solanum lycopersicum). Fruit color inheritance in a yellow-fruited cherry tomato (cv. No. 22), named yellow-fruited tomato 2 (yft2), was shown to be controlled by a single recessive gene, YFT2. The YFT2 gene was mapped in a 95.7 kb region on chromosome 3, and the candidate gene, PHYTOENE SYNTHASE 1 (PSY1), was confirmed by functional complementation analysis. Constitutive over expression of PSY1 in yft2 increased the accumulation of carotenoids and resulted in a red fruit color, while no causal mutation was detected in the YFT2 allele of yft2, compared with red-fruited SL1995 cherry tomato or cultivated variety (cv. M82). Expression of YFT2 3' region in yft2 was significantly lower than in SL1995, and further studies revealed a difference in YFT2 post-transcriptional processing in yft2 compared with SL1995 and cv. M82, resulting in a longer YFT2 transcript. The alternatively trans-spliced allele of YFT2 in yft2 is predicted to encode a novel LT-YFT2 protein of 432 amino acid (AA) residues, compared to the 412 AA YFT2 protein of SL1995. The trans-spliced event also resulted in significantly down regulated expression of YFT2 in yft2 tomato, and the YFT2 allele suppressed expression of the downstream genes involved in the carotenoid biosynthesis pathway and carotenoids synthesis by a mechanism of the feed-forward regulation. In conclusion, we found that trans-splicing of YFT2 alters tomato fruit color, providing new insights into fruit color development.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechao Feng
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Keyu Du
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ge Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
22
|
Li L, Zhao W, Feng X, Chen L, Zhang L, Zhao L. Changes in Fruit Firmness, Cell Wall Composition, and Transcriptional Profile in the yellow fruit tomato 1 ( yft1) Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:463-472. [PMID: 30545217 DOI: 10.1021/acs.jafc.8b04611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fruit firmness is an important trait in tomato ( Solanum lycopersicum), associated with shelf life and economic value; however, the precise mechanism determining fruit softening remains elusive. A yellow fruit tomato 1 ( yft1) mutant harbors a genetic lesion in the YFT1 gene and has significantly firmer fruit than those of the cv. M82 wild type at a red ripe stage, 54 days post-anthesis (dpa). When softening was further dissected, it was found that the yft1 firm fruit phenotype correlated with a difference in cellulose, hemicellulose, and pectin deposition in the primary cell wall (PCW) compared to cv. M82. Alterations in the structure of the pericarp cells, chemical components, hydrolase activities, and expression of genes encoding these hydrolases were all hypothesized to be a result of the loss of YFT1 function. This was further affirmed by RNA-seq analysis, where a total of 183 differentially expressed genes (DEGs, 50/133 down-/upregulated) were identified between yft1 and cv. M82. These DEGs were mainly annotated as participating in ethylene- and auxin-related signal transduction, sugar metabolism, and photosynthesis. This study provides new insights into the mechanism underlying the control of fruit softening.
Collapse
|
23
|
Wang C, Qiao A, Fang X, Sun L, Gao P, Davis AR, Liu S, Luan F. Fine Mapping of Lycopene Content and Flesh Color Related Gene and Development of Molecular Marker-Assisted Selection for Flesh Color in Watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2019; 10:1240. [PMID: 31649702 PMCID: PMC6791925 DOI: 10.3389/fpls.2019.01240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/05/2019] [Indexed: 05/06/2023]
Abstract
Lycopene content and flesh color are important traits determined by a network of carotenoid metabolic pathways in watermelon. Based on our previous study of genetic inheritance and initial mapping using F2 populations of LSW-177 (red flesh) × cream of Saskatchewan (pale yellow flesh), red flesh color was controlled by one recessive gene regulating red and pale yellow pigmentation, and a candidate region related to lycopene content was detected spanning a 392,077-bp region on chromosome 4. To obtain a more precise result for further study, three genetic populations and a natural panel of 81 watermelon accessions with different flesh colors were used in this research. Herein, we narrowed the preliminary mapping region to 41,233 bp with the linkage map generated from F2 populations of LSW-177 (red flesh) × cream of Saskatchewan (pale yellow flesh) with 1,202 individuals. Two candidate genes, Cla005011 and Cla005012, were found in the fine mapping region; therein Cla005011 was a key locus annotated as a lycopene β-cyclase gene. Phylogenetic tree analysis showed that Cla005011 was the closest relative gene in gourd. LSW-177 × PI 186490 (white flesh) and another BC1 population derived from garden female (red flesh) × PI 186490 were generated to verify the accuracy of the red flesh candidate gene region. By analyzing the expression levels of candidate genes in different developmental stages of different color watermelon varieties, Cla005011 for the expression differences was not the main reason for the flesh color variation between COS and LSW-177. This indicated that the LCYB gene might regulate fruit color changes at the protein level. A new marker-assisted selection system to identify red and yellow flesh colors in watermelon was developed with flesh color-specific CAPS markers and tested in 81 watermelon accessions.
Collapse
Affiliation(s)
- Chaonan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Aohan Qiao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xufeng Fang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Angela R. Davis
- Woodland Research Station, Sakata Seed America, Inc.Woodland, CA, United States
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- *Correspondence: Shi Liu, ; Feishi Luan,
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- *Correspondence: Shi Liu, ; Feishi Luan,
| |
Collapse
|
24
|
Mubarok S, Hoshikawa K, Okabe Y, Yano R, Tri MD, Ariizumi T, Ezura H. Evidence of the functional role of the ethylene receptor genes SlETR4 and SlETR5 in ethylene signal transduction in tomato. Mol Genet Genomics 2018; 294:301-313. [PMID: 30382349 DOI: 10.1007/s00438-018-1505-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022]
Abstract
Ethylene receptors are key factors for ethylene signal transduction. In tomato, six ethylene receptor genes (SlETR1-SlETR6) have been identified. Mutations in different ethylene receptor genes result in different phenotypes that are useful for elucidating the roles of each gene. In this study, we screened mutants of two ethylene receptor genes, SLETR4 and SLETR5, from a Micro-Tom mutant library generated by TILLING. We identified two ethylene receptor mutants with altered phenotypes and named them Sletr4-1 and Sletr5-1. Sletr4-1 has a mutation between the transmembrane and GAF domains, while Sletr5-1 has a mutation within the GAF domain. Sletr4-1 showed increased hypocotyl and root lengths, compared to those of wild type plants, under ethylene exposure. Moreover, the fruit shelf life of this mutant was extended, titratable acidity was increased and total soluble solids were decreased, suggesting a reduced ethylene sensitivity. In contrast, in the absence of exogenous ethylene, the hypocotyl and root lengths of Sletr5-1 were shorter than those of the wild type, and the fruit shelf life was shorter, suggesting that these mutants have increased ethylene sensitivity. Gene expression analysis showed that SlNR was up-regulated in the Sletr5-1 mutant line, in contrast to the down-regulation observed in the Sletr4-1 mutant line, while the down-regulation of SlCTR1, SlEIN2, SlEIL1, SlEIL3, and SlERF.E4 was observed in Sletr4-1 mutant allele, suggesting that these two ethylene receptors have functional roles in ethylene signalling and demonstrating, for the first time, a function of the GAF domain of ethylene receptors. These results suggest that the Sletr4-1 and Sletr5-1 mutants are useful for elucidating the complex mechanisms of ethylene signalling through the analysis of ethylene receptors in tomato.
Collapse
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Padjadjaran University, Bandung, 45363, Indonesia.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ryoichi Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | | | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan. .,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
25
|
Wang RH, Yuan XY, Meng LH, Zhu BZ, Zhu HL, Luo YB, Fu DQ. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening. PLoS One 2016; 11:e0168287. [PMID: 27973616 PMCID: PMC5156437 DOI: 10.1371/journal.pone.0168287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level.
Collapse
Affiliation(s)
- Rui-Heng Wang
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Xin-Yu Yuan
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Lan-Huan Meng
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Ben-Zhong Zhu
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Hong-liang Zhu
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Yun-Bo Luo
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Da-Qi Fu
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Yuan XY, Wang RH, Zhao XD, Luo YB, Fu DQ. Role of the Tomato Non-Ripening Mutation in Regulating Fruit Quality Elucidated Using iTRAQ Protein Profile Analysis. PLoS One 2016; 11:e0164335. [PMID: 27732677 PMCID: PMC5061430 DOI: 10.1371/journal.pone.0164335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/25/2016] [Indexed: 01/08/2023] Open
Abstract
Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit’s resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato.
Collapse
Affiliation(s)
- Xin-Yu Yuan
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, PR China
| | - Rui-Heng Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, PR China
| | - Xiao-Dan Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, People’s Republic of China
| | - Yun-Bo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, PR China
| | - Da-Qi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, PR China
- * E-mail:
| |
Collapse
|
27
|
Zhao P, Wang M, Zhao L. Dissecting stylar responses to self-pollination in wild tomato self-compatible and self-incompatible species using comparative proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:177-186. [PMID: 27163628 DOI: 10.1016/j.plaphy.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/30/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Self-incompatibility (SI), a phenomenon that is widespread among flowering plants (angiosperms), promotes outbreeding, resulting in increased genetic diversity and species survival. SI is also important in establishing intra- or interspecies reproductive barriers, such as those that are evident in the tomato clade, Solanum section Lycopersicon, where they limit the use of wild species inbreeding programs to improve cultivated tomato. However, the molecular mechanisms underlying SI are poorly understood in the tomato clade. In this study, an SI (Solanum chilense, LA0130) and a self-compatible (SC, Solanum pimpinellifolium, LA1585) tomato species were chosen to dissect the mechanism of SI formation using a comparative proteomics approach. A total of 635 and 627 protein spots were detected in two-dimensional electrophoresis (2-DE) maps of proteins from the SI and SC species, respectively. In the SC species, 22 differently expressed proteins (DEPs) were detected in SCP versus SCUP (self-pollination versus non-pollination in SC species). Of these, 3 and 18 showed an up-or down-regulated expression in the SCP protein sample, respectively, while only one DEP (MSRA, Solyc03g111720) was exclusively expressed in the SCP sample. In the SI species, 14 DEPs were found between SIP/SIUP, and 5 of these showed higher expression in SIP, whereas two DEPs (MLP-like protein 423-like, gene ID, 460386008 and (ATP synthase subunit alpha, gene ID, Solyc00g042130) were exclusively expressed in SIP or SIUP, respectively. Finally, two S-RNases (gene IDs, 313247946 and 157377662) were exclusively expressed in the SI species. Sequence homology analysis and a gene ontology tool were used to assign the DEPs to the 'metabolism', 'energy', 'cytoskeleton dynamics', 'protein degradation', 'signal transduction', 'defence/stress responses', 'self-incompatibility' and 'unknown' protein categories. We discuss the putative functions of the DEPs in different biological processes and how these might be associated with the regulation of SI formation in the tomato clade.
Collapse
Affiliation(s)
- Panfeng Zhao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Wang
- Department of Environment Resource, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingxia Zhao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|