1
|
Zhao J, Song W, Zhang X. Genetic and molecular regulation of fruit development in cucumber. THE NEW PHYTOLOGIST 2024; 244:1742-1749. [PMID: 39400327 DOI: 10.1111/nph.20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fruit development can be generally classified into a set of biologically sequential stages including fruit initiation, growth, and ripening. Cucumber, a globally important vegetable crop, displays two important features during fruit development: parthenocarpy at fruit initiation and prematurity at harvest for consumption. Therefore, fruit growth plays essential role for cucumber yield and quality formation, and has become the research hot spot in cucumber fruit development. Here, we describe recent advances in molecular mechanisms underlying fruit growth in cucumber, include key players and regulatory networks controlling fruit length variation, fruit neck elongation, and locule development. We also provide insights into future directions for scientific research and breeding strategies in cucumber.
Collapse
Affiliation(s)
- Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Liu C, Du S, Wei A, Cheng Z, Meng H, Han Y. Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:2790. [PMID: 39409660 PMCID: PMC11479247 DOI: 10.3390/plants13192790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
In the context of rapidly increasing population and diversified market demands, the steady improvement of yield and quality in horticultural crops has become an urgent challenge that modern breeding efforts must tackle. Heterosis, a pivotal theoretical foundation for plant breeding, facilitates the creation of superior hybrids through crossbreeding and selection among a variety of parents. However, the vast number of potential hybrids presents a significant challenge for breeders in efficiently predicting and selecting the most promising candidates. The development and refinement of effective hybrid prediction methods have long been central to research in this field. This article systematically reviews the advancements in hybrid prediction for horticultural crops, including the roles of marker-assisted breeding and genomic prediction in phenotypic forecasting. It also underscores the limitations of some predictors, like genetic distance, which do not consistently offer reliable hybrid predictions. Looking ahead, it explores the integration of phenomics with genomic prediction technologies as a means to elevate prediction accuracy within actual breeding programs.
Collapse
Affiliation(s)
- Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Shengli Du
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| |
Collapse
|
3
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
4
|
Zhang Z, Zhang H, Liu J, Chen K, Wang Y, Zhang G, Li L, Yue H, Weng Y, Li Y, Chen P. The mutation of CsSUN, an IQD family protein, is responsible for the short and fat fruit (sff) in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112177. [PMID: 38964612 DOI: 10.1016/j.plantsci.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
The fruit shape of cucumber is an important agronomic trait, and mining regulatory genes, especially dominant ones, is vital for cucumber breeding. In this study, we identified a short and fat fruit mutant, named sff, from an EMS mutagenized population. Compared to the CCMC (WT), sff (MT) exhibited reduced fruit length and increased dimeter. Segregation analysis revealed that the sff phenotype is controlled by a semi-dominant single gene with dosage effects. Through map-based cloning, the SFF locus was narrowed down to a 52.6 kb interval with two SNPs (G651A and C1072T) in the second and third exons of CsaV3_1G039870, which encodes an IQD family protein, CsSUN. The G651A within the IQ domain of CsSUN was identified as the unique SNP among 114 cucumber accessions, and it was the primary cause of the functional alteration in CsSUN. By generating CsSUN knockout lines in cucumber, we confirmed that CsSUN was responsible for sff mutant phenotype. The CsSUN is localized to the plasma membrane. CsSUN exhibited the highest expression in the fruit with lower expression in sff compared to WT. Histological observations suggest that the sff mutant phenotype is due to increased transverse cell division and inhibited longitudinal cell division. Transcriptome analysis revealed that CsSUN significantly affected the expression of genes related to cell division, expansion, and auxin signal transduction. This study unveils CsSUN's crucial role in shaping cucumber fruit and offers novel insights for cucumber breeding.
Collapse
Affiliation(s)
- Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI 53706, USA
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Dong Y, Huang L, Liu J, Nong H, Li H, Zhang W, Zheng H, Tao J. Genome-wide identified VvOFP genes family and VvOFP4 functional characterization provide insight into fruit shape in grape. Int J Biol Macromol 2024; 276:133880. [PMID: 39025176 DOI: 10.1016/j.ijbiomac.2024.133880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Ovate Family Proteins (OFPs) are emerging as novel transcriptional regulators of fruit shape. Despite their established role in various species, their involvement in regulating grape fruit shape remains understudied. This study encompassed a comprehensive evaluation of 16 grape OFP genes in total at the whole genome level. Phylogenetic and synteny analyses established a close relationship between grape VvOFP genes and their tomato counterparts. Expression profiling post-treatment with gibberellic acid (GA3) and thidiazuron (TDZ) revealed that certain OFP genes responded to these regulators, with VvOFP4 showing peak expression three days post-anthesis. Functional assays via overexpression of VvOFP4 in tobacco and tomato altered the morphology of both vegetative and reproductive organs, including leaves, stamens, and fruits/pods. Paraffin sections of transgenic tobacco stems and tomato fruits demonstrated that VvOFP4 overexpression modifies cell dimensions, leading to changes in organ morphology. Additionally, treatments with GA3 and TDZ similarly influenced the shape of grape pulp cells and thereby the overall fruit morphology. These findings suggest that the VvOFP4 gene plays a crucial role in fruit shape determination by modulating cell shape and presents a potential target for future grape breeding programs aimed at diversifying fruit shapes.
Collapse
Affiliation(s)
- Yang Dong
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyuan Huang
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Liu
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilan Nong
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Li
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China
| | - Huan Zheng
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Tao
- Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi 830001, Xinjiang, China.
| |
Collapse
|
6
|
Fang H, Huang S, Li R, Wang P, Jiang Q, Zhong C, Yang Y, Yu W. Combined BSA-Seq and RNA-Seq to Identify Potential Genes Regulating Fruit Size in Bottle Gourd ( Lagenaria siceraria L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2154. [PMID: 39124272 PMCID: PMC11314176 DOI: 10.3390/plants13152154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Fruit size is a crucial agronomic trait in bottle gourd, impacting both yield and utility. Despite its significance, the regulatory mechanism governing fruit size in bottle gourd remains largely unknown. In this study, we used bottle gourd (small-fruited H28 and large-fruited H17) parent plants to measure the width and length of fruits at various developmental stages, revealing a single 'S' growth curve for fruit expansion. Paraffin section observations indicated that both cell number and size significantly influence bottle gourd fruit size. Through bulked segregant analysis and combined genotype-phenotype analysis, the candidate interval regulating fruit size was pinpointed to 17,747,353 bp-18,185,825 bp on chromosome 9, encompassing 0.44 Mb and including 44 genes. Parental fruits in the rapid expansion stage were subjected to RNA-seq, highlighting that differentially expressed genes were mainly enriched in pathways related to cell wall biosynthesis, sugar metabolism, and hormone signaling. Transcriptome and resequencing analysis, combined with gene function annotation, identified six genes within the localized region as potential regulators of fruit size. This study not only maps the candidate interval of genes influencing fruit size in bottle gourd through forward genetics, but also offers new insights into the potential molecular mechanisms underlying this trait through transcriptome analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China; (H.F.); (S.H.); (R.L.); (P.W.); (Q.J.); (C.Z.); (Y.Y.)
| |
Collapse
|
7
|
Guo S, Tian M, Du H, Liu S, Yu R, Shen H. Quantitative Trait Loci Mapping and Comparative Transcriptome Analysis of Fruit Weight (FW) in Watermelon ( Citrullus lanatus L.). Genes (Basel) 2024; 15:933. [PMID: 39062712 PMCID: PMC11276344 DOI: 10.3390/genes15070933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The watermelon (Citrullus lanatus L.) holds substantial economic value as a globally cultivated horticultural crop. However, the genetic architecture of watermelon fruit weight (FW) remains poorly understood. In this study, we used sh14-11 with small fruit and N14 with big fruit to construct 100 recombinant inbred lines (RILs). Based on whole-genome resequencing (WGR), 218,127 single nucleotide polymorphisms (SNPs) were detected to construct a high-quality genetic map. After quantitative trait loci (QTL) mapping, a candidate interval of 31-38 Mb on chromosome 2 was identified for FW. Simultaneously, the bulked segregant analysis (BSA) in the F2 population corroborated the identification of the same interval, encompassing the homologous gene linked to the known FW-related gene fas. Additionally, RNA-seq was carried out across 11 tissues from sh14-11 and N14, revealing expression profiles that identified 1695 new genes and corrected the annotation of 2941 genes. Subsequent differential expression analysis unveiled 8969 differentially expressed genes (DEGs), with 354 of these genes exhibiting significant differences across four key developmental stages. The integration of QTL mapping and differential expression analysis facilitated the identification of 14 FW-related genes, including annotated TGA and NAC transcription factors implicated in fruit development. This combined approach offers valuable insights into the genetic basis of FW, providing crucial resources for enhancing watermelon cultivation.
Collapse
Affiliation(s)
- Song Guo
- Horticulture College, China Agricultural University, Beijing 100193, China;
| | - Mei Tian
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Huiying Du
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Shengfeng Liu
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Rong Yu
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Huolin Shen
- Horticulture College, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
8
|
Zhou Y, Zhao M, Shen Q, Zhang M, Wang C, Zhang Y, Yang Q, Bo Y, Hu Z, Yang J, Zhang M, Lyu X. Genetic mapping reveals a candidate gene CmoFL1 controlling fruit length in pumpkin. FRONTIERS IN PLANT SCIENCE 2024; 15:1408602. [PMID: 38867882 PMCID: PMC11168575 DOI: 10.3389/fpls.2024.1408602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
Fruit length (FL) is an important economical trait that affects fruit yield and appearance. Pumpkin (Cucurbita moschata Duch) contains a wealth genetic variation in fruit length. However, the natural variation underlying differences in pumpkin fruit length remains unclear. In this study, we constructed a F2 segregate population using KG1 producing long fruit and MBF producing short fruit as parents to identify the candidate gene for fruit length. By bulked segregant analysis (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) approach of fine mapping, we obtained a 50.77 kb candidate region on chromosome 14 associated with the fruit length. Then, based on sequence variation, gene expression and promoter activity analyses, we identified a candidate gene (CmoFL1) encoding E3 ubiquitin ligase in this region may account for the variation of fruit length. One SNP variation in promoter of CmoFL1 changed the GT1CONSENSUS, and DUAL-LUC assay revealed that this variation significantly affected the promoter activity of CmoFL1. RNA-seq analysis indicated that CmoFL1 might associated with the cell division process and negatively regulate fruit length. Collectively, our work identifies an important allelic affecting fruit length, and provides a target gene manipulating fruit length in future pumpkin breeding.
Collapse
Affiliation(s)
- Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinghui Shen
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyi Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Chenhao Wang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yutong Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinrong Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Vega A, Brainard SH, Goldman IL. Linkage mapping of root shape traits in two carrot populations. G3 (BETHESDA, MD.) 2024; 14:jkae041. [PMID: 38412554 PMCID: PMC10989876 DOI: 10.1093/g3journal/jkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
This study investigated the genetic basis of carrot root shape traits using composite interval mapping in two biparental populations (n = 119 and n = 128). The roots of carrot F2:3 progenies were grown over 2 years and analyzed using a digital imaging pipeline to extract root phenotypes that compose market class. Broad-sense heritability on an entry-mean basis ranged from 0.46 to 0.80 for root traits. Reproducible quantitative trait loci (QTL) were identified on chromosomes 2 and 6 on both populations. Colocalization of QTLs for phenotypically correlated root traits was also observed and coincided with previously identified QTLs in published association and linkage mapping studies. Individual QTLs explained between 14 and 27% of total phenotypic variance across traits, while four QTLs for length-to-width ratio collectively accounted for up to 73% of variation. Predicted genes associated with the OFP-TRM (OVATE Family Proteins-TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathway were identified within QTL support intervals. This observation raises the possibility of extending the current regulon model of fruit shape to include carrot storage roots. Nevertheless, the precise molecular mechanisms through which this pathway operates in roots characterized by secondary growth originating from cambium layers remain unknown.
Collapse
Affiliation(s)
- Andrey Vega
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott H Brainard
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irwin L Goldman
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Liu L, Chen J, Gu C, Wang S, Xue Y, Wang Z, Han L, Song W, Liu X, Zhang J, Li M, Li C, Wang L, Zhang X, Zhou Z. The exocyst subunit CsExo70B promotes both fruit length and disease resistance via regulating receptor kinase abundance at plasma membrane in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:347-362. [PMID: 37795910 PMCID: PMC10826989 DOI: 10.1111/pbi.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Plant defence against pathogens generally occurs at the expense of growth and yield. Uncoupling the inverse relationship between growth and defence is of great importance for crop breeding, while the underlying genes and regulatory mechanisms remain largely elusive. The exocytosis complex was shown to play an important role in the trafficking of receptor kinases (RKs) to the plasma membrane (PM). Here, we found a Cucumis sativus exocytosis subunit Exo70B (CsExo70B) regulates the abundance of both development and defence RKs at the PM to promote fruit elongation and disease resistance in cucumber. Knockout of CsExo70B resulted in shorter fruit and susceptibility to pathogens. Mechanistically, CsExo70B associates with the developmental RK CsERECTA, which promotes fruit longitudinal growth in cucumber, and contributes to its accumulation at the PM. On the other side, CsExo70B confers to the spectrum resistance to pathogens in cucumber via a similar regulatory module of defence RKs. Moreover, CsExo70B overexpression lines showed an increased fruit yield as well as disease resistance. Collectively, our work reveals a regulatory mechanism that CsExo70B promotes both fruit elongation and disease resistance by maintaining appropriate RK levels at the PM and thus provides a possible strategy for superior cucumber breeding with high yield and robust pathogen resistance.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chaoheng Gu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Shaoyun Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Yufan Xue
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Jiahao Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Min Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Chuang Li
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Liming Wang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
- Sanya lnstitute of China Agricultural UniversitySanyaChina
| |
Collapse
|
11
|
Bao Z, Guo Y, Deng Y, Zang J, Zhang J, Deng Y, Ouyang B, Qu X, Bürstenbinder K, Wang P. Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato. THE PLANT CELL 2023; 35:4266-4283. [PMID: 37668409 PMCID: PMC10689142 DOI: 10.1093/plcell/koad231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1-3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70-SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Collapse
Affiliation(s)
- Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaling Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
12
|
Goldman IL, Wang Y, Alfaro AV, Brainard S, Oravec MW, McGregor CE, van der Knaap E. Form and contour: breeding and genetics of organ shape from wild relatives to modern vegetable crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1257707. [PMID: 37841632 PMCID: PMC10568141 DOI: 10.3389/fpls.2023.1257707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Shape is a primary determinant of consumer preference for many horticultural crops and it is also associated with many aspects of marketing, harvest mechanics, and postharvest handling. Perceptions of quality and preference often map to specific shapes of fruits, tubers, leaves, flowers, roots, and other plant organs. As a result, humans have greatly expanded the palette of shapes available for horticultural crops, in many cases creating a series of market classes where particular shapes predominate. Crop wild relatives possess organs shaped by natural selection, while domesticated species possess organs shaped by human desires. Selection for visually-pleasing shapes in vegetable crops resulted from a number of opportunistic factors, including modification of supernumerary cambia, allelic variation at loci that control fundamental processes such as cell division, cell elongation, transposon-mediated variation, and partitioning of photosynthate. Genes that control cell division patterning may be universal shape regulators in horticultural crops, influencing the form of fruits, tubers, and grains in disparate species. Crop wild relatives are often considered less relevant for modern breeding efforts when it comes to characteristics such as shape, however this view may be unnecessarily limiting. Useful allelic variation in wild species may not have been examined or exploited with respect to shape modifications, and newly emergent information on key genes and proteins may provide additional opportunities to regulate the form and contour of vegetable crops.
Collapse
Affiliation(s)
- Irwin L. Goldman
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanbing Wang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Andrey Vega Alfaro
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Scott Brainard
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Madeline W. Oravec
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Cecilia Elizabeth McGregor
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Xing Y, Cao Y, Ma Y, Wang F, Xin S, Zhu W. QTL mapping and transcriptomic analysis of fruit length in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1208675. [PMID: 37670860 PMCID: PMC10475832 DOI: 10.3389/fpls.2023.1208675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
A total of 151 recombinant inbred lines (RILs) were derived from the cross between 'Cucumis sativus L. hardwickii' (HW) and a cultivated Northern Chinese inbred line 'XinTaiMiCi' (XTMC). We used resequencing to construct the genetic map and analyze the genetic background of RIL population, and combined with the phenotypes of RIL population and the analysis of RNA-seq data, we located the major loci controlling the fruit length of cucumber and related analysis. A genetic map containing 600 bin markers was constructed via re-sequencing. Based on the phenotype data collected in two different seasons (spring 2021 and autumn 2022), the major quantitative trait loci (QTLs) controlling cucumber fruit length were located and their transcriptomic analysis carried out. The results revealed three QTLs (Fl2.1, Fl4.1, and Fl6.1) detected repeatedly in the two seasons, of which Fl4.1 was the dominant QTL. From the functional annotation of corresponding genes there, we discovered the gene Csa4G337340 encoding an auxin efflux carrier family protein. The expression of that gene was significantly lower in XTMC and the long-fruit RIL lines than in HW and the short-fruit RIL lines; hence, we speculated the gene could be negatively correlated with the fruit length of cucumber. Transcriptomic analysis showed that 259 differentially expressed genes (DEGs) were enriched in the plant hormone signal transduction pathway. In addition, among those DEGs, 509 transcription factors were detected, these distributed in several transcription factor gene families, such as bHLH, AP2/ErF -ERF, C2H2, and NAC. Therefore, we concluded that the major gene controlling the fruit length of cucumber is located in the interval of Fl4.1, whose gene Csa4G337340 may be involved in the negative regulation of fruit length. Further, genes related to plant hormone signal transduction and several transcription factors were also found involved in the regulation of cucumber fruit length. Our results provide a reference for the fine mapping of major genes and analyzing the mechanism of cucumber fruit length.
Collapse
Affiliation(s)
- Yanan Xing
- Qingdao Agricultural University, Qingdao, China
| | - Yilin Cao
- Qingdao Agricultural University, Qingdao, China
| | - Yanan Ma
- Qingdao Agricultural University, Qingdao, China
| | - Fu Wang
- Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shijie Xin
- Yantai Yeda Investment Development Group Co., Ltd, Yantai, China
| | - Wenying Zhu
- Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| |
Collapse
|
14
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
15
|
Wang Y, Fang Y, Ning S, Xia L, Zhan J, Yang Z, Cheng C, Lou Q, Li J, Chen J. QTL Mapping for Ovary- and Fruit-Related Traits in Cucumis sativus-C. hystrix Introgression Line IL52. Genes (Basel) 2023; 14:1133. [PMID: 37372313 DOI: 10.3390/genes14061133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
IL52 is a valuable introgression line obtained from interspecific hybridization between cultivated cucumber (Cucumis sativus L., 2n = 14) and the wild relative species C. hystrix Chakr. (2n = 24). IL52 exhibits high resistance to a number of diseases, including downy mildew, powdery mildew, and angular leaf spot. However, the ovary- and fruit-related traits of IL52 have not been thoroughly investigated. Here, we conducted quantitative trait loci (QTL) mapping for 11 traits related to ovary size, fruit size, and flowering time using a previously developed 155 F7:8 RIL population derived from a cross between CCMC and IL52. In total, 27 QTL associated with the 11 traits were detected, distributed on seven chromosomes. These QTL explained 3.61% to 43.98% of the phenotypic variance. Notably, we identified a major-effect QTL (qOHN4.1) on chromosome 4 associated with the ovary hypanthium neck width and further delimited it into a 114-kb candidate region harboring 13 candidate genes. Furthermore, the QTL qOHN4.1 is co-localized with the QTL detected for ovary length, mature fruit length, and fruit neck length, all residing within the consensus QTL FS4.1, suggesting a plausible pleiotropic effect.
Collapse
Affiliation(s)
- Yuhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Yu Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Shixiong Ning
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Lei Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jinyi Zhan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Zhilong Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| |
Collapse
|
16
|
Zhang K, Yao D, Chen Y, Wen H, Pan J, Xiao T, Lv D, He H, Pan J, Cai R, Wang G. Mapping and identification of CsSF4, a gene encoding a UDP-N-acetyl glucosamine-peptide N-acetylglucosaminyltransferase required for fruit elongation in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:54. [PMID: 36912991 DOI: 10.1007/s00122-023-04246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
The short fruit length phenotype in sf4 is caused by a SNP in Csa1G665390, which encodes an O-linked N-acetylglucosamine (GlcNAc) transferase in cucumber. Cucumber fruit is an excellent resource for studying fruit morphology due to its fast growth rate and naturally abundant morphological variations. The regulatory mechanisms underlying plant organ size and shape are important and fundamental biological questions. In this study, a short-fruit length mutant, sf4, was identified from an ethyl methanesulfonate (EMS) mutagenesis population derived from the North China-type cucumber inbred line WD1. Genetic analysis indicated that the short fruit length phenotype of sf4 was controlled by a recessive nuclear gene. The SF4 locus was located in a 116.7-kb genomic region between the SNP markers GCSNP75 and GCSNP82 on chromosome 1. Genomic and cDNA sequences analysis indicated that a single G to A transition at the last nucleotide of Csa1G665390 intron 21 in sf4 changed the splice site from GT-AG to GT-AA, resulting in a 42-bp deletion in exon 22. Csa1G665390 is presumed to be a candidate gene, CsSF4 that encodes an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT). CsSF4 was highly expressed in the leaves and male flowers of wild-type cucumbers. Transcriptome analysis indicated that sf4 had alterations in expression of many genes involved in hormone response pathways, cell cycle regulation, DNA replication, and cell division, suggesting that cell proliferation-associated gene networks regulate fruit development in cucumber. Identification of CsSF4 will contribute to elucidating the function of OGT in cell proliferation and to understanding fruit elongation mechanisms in cucumber.
Collapse
Affiliation(s)
- Keyan Zhang
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Danqing Yao
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, 201103, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Tingting Xiao
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Duo Lv
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
17
|
Xie Y, Liu X, Sun C, Song X, Li X, Cui H, Guo J, Liu L, Ying A, Zhang Z, Zhu X, Yan L, Zhang X. CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. HORTICULTURE RESEARCH 2023; 10:uhad007. [PMID: 36960430 PMCID: PMC10028494 DOI: 10.1093/hr/uhad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fruit shape and size are important appearance and yield traits in cucumber, but the underlying genes and their regulatory mechanisms remain poorly understood. Here we identified a mutant with spherical fruits from an Ethyl Methane Sulfonate (EMS)-mutagenized library, named the qiu mutant. Compared with the cylindrical fruit shape in 32X (wild type), the fruit shape in qiu was round due to reduced fruit length and increased fruit diameter. MutMap analysis narrowed the candidate gene in the 6.47 MB range on Chr2, harboring the FS2.1 locus reported previously. A single-nucleotide polymorphism (SNP) (11359603) causing a truncated protein of CsaV3_2G013800, the homolog of tomato fruit shape gene SlTRM5, may underlie the fruit shape variation in the qiu mutant. Knockout of CsTRM5 by the CRISPR-Cas9 system confirmed that CsaV3_2G013800/CsTRM5 was the causal gene responsible for qiu. Sectioning analysis showed that the spherical fruit in qiu resulted mainly from increased and reduced cell division along the transverse and longitudinal directions, respectively. Meanwhile, the repressed cell expansion contributed to the decreased fruit length in qiu. Transcriptome profiling showed that the expression levels of cell-wall-related genes and abscisic acid (ABA) pathway genes were significantly upregulated in qiu. Hormone measurements indicated that ABA content was greatly increased in the qiu mutant. Exogenous ABA application reduced fruit elongation by inhibiting cell expansion in cucumber. Taken together, these data suggest that CsTRM5 regulates fruit shape by affecting cell division direction and cell expansion, and that ABA participates in the CsTRM5-mediated cell expansion during fruit elongation in cucumber.
Collapse
Affiliation(s)
| | | | | | - Xiaofei Song
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Xiaoli Li
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haonan Cui
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jingyu Guo
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Ao Ying
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zeqin Zhang
- State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyun Zhu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | | | | |
Collapse
|
18
|
Che G, Pan Y, Liu X, Li M, Zhao J, Yan S, He Y, Wang Z, Cheng Z, Song W, Zhou Z, Wu T, Weng Y, Zhang X. Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber. THE PLANT CELL 2023; 35:738-755. [PMID: 36427253 PMCID: PMC9940877 DOI: 10.1093/plcell/koac335] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Fruit length is a key domestication trait that affects crop yield and appearance. Cucumber (Cucumis sativus) fruits vary from 5 to 60 cm in length. Despite the identification of several regulators and multiple quantitative trait loci (QTLs) underlying fruit length, the natural variation, and molecular mechanisms underlying differences in fruit length are poorly understood. Through map-based cloning, we identified a nonsynonymous polymorphism (G to A) in CRABS CLAW (CsCRC) as underlying the major-effect fruit size/shape QTL FS5.2 in cucumber. The short-fruit allele CsCRCA is a rare allele that has only been found in round-fruited semi-wild Xishuangbanna cucumbers. A near-isogenic line (NIL) homozygous for CsCRCA exhibited a 34∼39% reduction in fruit length. Introducing CsCRCG into this NIL rescued the short-fruit phenotype, and knockdown of CsCRCG resulted in shorter fruit and smaller cells. In natural cucumber populations, CsCRCG expression was positively correlated with fruit length. Further, CsCRCG, but not CsCRCA, targets the downstream auxin-responsive protein gene CsARP1 to regulate its expression. Knockout of CsARP1 produced shorter fruit with smaller cells. Hence, our work suggests that CsCRCG positively regulates fruit elongation through transcriptional activation of CsARP1 and thus enhances cell expansion. Using different CsCRC alleles provides a strategy to manipulate fruit length in cucumber breeding.
Collapse
Affiliation(s)
- Gen Che
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- School of Life Science, Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Min Li
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yuting He
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Chen J, Pan B, Li Z, Xu Y, Cao X, Jia J, Shen H, Sun L. Fruit shape loci sun, ovate, fs8.1 and their interactions affect seed size and shape in tomato. FRONTIERS IN PLANT SCIENCE 2023; 13:1091639. [PMID: 36714752 PMCID: PMC9879704 DOI: 10.3389/fpls.2022.1091639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Seed size and shape are not only critical for plant reproduction and dispersal, but also important agronomic traits. Tomato fruit shape loci sun, ovate and fs8.1 regulate the morphology of fruit, flower, leaf and stem, and recently their functions in seed morphogenesis have also been noticed. However, mechanism underlying seed morphology variation has not been systematically investigated yet. Thus, using the near isogenic lines (NILs) harboring one, two or three of the fruit shape loci, histological, physiological and transcriptional bases of seed morphology change have been studied. sun and ovate showed potential abilities in decreasing seed size, whereas, fs8.1 had a potential ability in increasing this parameter. Interactions between two loci and the interaction among three loci all led to significant decrease of seed size. All the loci significantly down-regulated seed shape index (SSI), except for sun/fs8.1 double NIL, which resulted in the reductions in both seed length and width and finally led to a decreased trend of SSI. Histologically, seed morphological changes were mainly attributed to the cell number variations. Transcriptional and physiological analyses discovered that phytohormone-, cytoskeleton- as well as sugar transportation- and degradation-related genes were involved in the regulation of seed morphology by the fruit shape loci.
Collapse
Affiliation(s)
- Jie Chen
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Bingqing Pan
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Zixiong Li
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yue Xu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaomeng Cao
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Jingjing Jia
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Huolin Shen
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Feng Z, Wu X, Wang J, Wu X, Wang B, Lu Z, Ye Z, Li G, Wang Y. Identification of Bottle Gourd ( Lagenaria siceraria) OVATE Family Genes and Functional Characterization of LsOVATE1. Biomolecules 2022; 13:biom13010085. [PMID: 36671470 PMCID: PMC9855390 DOI: 10.3390/biom13010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The OVATE gene family is a class of conserved transcription factors that play significant roles in plant growth, development, and abiotic stress, and also affect fruit shape in vegetable crops. Bottle gourd (Lagenaria siceraria), commonly known as calabash or gourd, is an annual climber belonging to the Cucurbitaceae family. Studies on bottle gourd OVATE genes are limited. In this study, we performed genome-wide identification of the OVATE gene family in bottle gourd, and identified a total of 20 OVATE family genes. The identified genes were unevenly distributed across 11 bottle gourd chromosomes. We also analyzed the gene homology, amino acid sequence conservation, and three-dimensional protein structure (via prediction) of the 20 OVATE family genes. We used RNA-seq data to perform expression analysis, which found 20 OVATE family genes to be differentially expressed based on spatial and temporal characteristics, suggesting that they have varying functions in the growth and development of bottle gourd. In situ hybridization and subcellular localization analysis showed that the expression characteristics of the LsOVATE1 gene, located on chromosome 7 homologous to OVATE, is a candidate gene for affecting the fruit shape of bottle gourd. In addition, RT-qPCR data from bottle gourd roots, stems, leaves, and flowers showed different spatial expression of the LsOVATE1 gene. The ectopic expression of LsOVATE1 in tomato generated a phenotype with a distinct fruit shape and development. Transgenic-positive plants that overexpressed LsOVATE1 had cone-shaped fruit, calyx hypertrophy, petal degeneration, and petal retention after flowering. Our results indicate that LsOVATE1 could serve important roles in bottle gourd development and fruit shape determination, and provide a basis for future research into the function of LsOVATE1.
Collapse
Affiliation(s)
- Zishan Feng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zihong Ye
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-0571-8640-3050
| |
Collapse
|
21
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
22
|
Ma M, Liu S, Wang Z, Shao R, Ye J, Yan W, Lv H, Hasi A, Che G. Genome-Wide Identification of the SUN Gene Family in Melon ( Cucumis melo) and Functional Characterization of Two CmSUN Genes in Regulating Fruit Shape Variation. Int J Mol Sci 2022; 23:16047. [PMID: 36555689 PMCID: PMC9785357 DOI: 10.3390/ijms232416047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Melon (Cucumis melo) is an important economic crop cultivated worldwide. A unique SUN gene family plays a crucial role in regulating plant growth and fruit development, but many SUN family genes and their function have not been well-characterized in melon. In the present study, we performed genome-wide identification and bioinformatics analysis and identified 24 CmSUN family genes that contain integrated and conserved IQ67 domain in the melon genome. Transcriptome data analysis and qRT-PCR results showed that most CmSUNs are specifically enriched in melon reproductive organs, such as young flowers and ovaries. Through genetic transformation in melons, we found that overexpression of CmSUN23-24 and CmSUN25-26-27c led to an increased fruit shape index, suggesting that they act as essential regulators in melon fruit shape variation. Subcellular localization revealed that the CmSUN23-24 protein is located in the cytoplasmic membrane. A direct interaction between CmSUN23-24 and a Calmodulin protein CmCaM5 was found by yeast two-hybrid assay, which indicated their participation in the calcium signal transduction pathway in regulating plant growth. These findings revealed the molecular characteristics, expression profile, and functional pattern of the CmSUN genes, and may provide the theoretical basis for the genetic improvement of melon fruit breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
23
|
Zheng Q, Takei-Hoshi R, Okumura H, Ito M, Kawaguchi K, Otagaki S, Matsumoto S, Luo Z, Zhang Q, Shiratake K. Genome editing of SlMYB3R3, a cell cycle transcription factor gene of tomato, induces elongated fruit shape. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7312-7325. [PMID: 36070755 PMCID: PMC9730800 DOI: 10.1093/jxb/erac352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fruit shape is an important trait that attracts consumers, and the regulation of genes related to cell division is crucial for shaping multicellular organs. In Arabidopsis, MYB3R transcription factors, which harbor three imperfect repeats in the N-terminus, control organ growth by regulating cell division. However, the function of MYB3Rs in tomato remains unknown. Here, we characterized tomato SlMYB3R3, which was preferentially expressed in flowers and placed in a subclade with two Arabidopsis cell cycle suppressors (MYB3R3/5). slmyb3r3 knockout mutants were generated using the CRISPR/Cas9 system. Morphological observation of the slmyb3r3 mutants showed that fruits that were elongated and occasionally peanut-like in shape were formed, which was caused by significantly increased cell numbers in the longitudinal direction. Transcriptome and yeast one-hybrid assay results suggested that SlMYB3R3 acted as a suppressor of cell-cycle-related genes by binding to the mitosis-specific activator (MSA) motifs in their promoters. Taken together, knock out of the suppressor SlMYB3R3 leads to elongated fruit, which results from the altered cell division pattern at the ovary stage, by regulating cell-cycle-related genes in an MSA-dependent manner. Our results suggest that SlMYB3R3 and its orthologs have the potential to change fruit shape as part of the molecular breeding of fruit crops.
Collapse
Affiliation(s)
- Qingyou Zheng
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rie Takei-Hoshi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitomi Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
24
|
Zhang T, Hong Y, Zhang X, Yuan X, Chen S. Relationship between Key Environmental Factors and the Architecture of Fruit Shape and Size in Near-Isogenic Lines of Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms232214033. [PMID: 36430508 PMCID: PMC9697376 DOI: 10.3390/ijms232214033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit shape and size are complex traits influenced by numerous factors, especially genetics and environment factors. To explore the mechanism of fruit shape and size development in cucumber, a pair of near-isogenic lines (NIL) Ln35 and Ln37 were used. The fruit length and diameter, cell length and diameter, and related gene expression were measured. Both the fruit length, diameter, and cell length and diameter showed sigmate curves in the two lines. The cell length and diameter were significantly positively correlated with fruit length and diameter both in two lines. The expression of CsACS2 and CsLNG showed significant positive correlations with fruit length and diameter increment in Ln35, and there was no correlation in Ln37. Furthermore, there were significant positive correlations between fruit size and thermal effectiveness (TE), as well as between fruit size and photosynthetic active radiation (PAR), both in two lines. Two models using logistic regression were formulated to assess the relationships among fruit length and diameter in Ln35 and Ln37, respectively, based on thermal effectiveness and photosynthetic active radiation (TEP). The coefficient R2 values of the models were 0.977 and 0.976 in Ln35, and 0.987 and 0.981 in Ln37, respectively. The root mean square error (RMSE) was 12.012 mm and 4.338 mm in Ln35, and 5.17 mm and 7.082 mm in Ln37, respectively, which illustrated the accurate and efficient of these models. These biologically interpreted parameters will provide precision management for monitoring fruit growth and forecasting the time of harvesting under different temperatures and light conditions.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Yuanyuan Hong
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Xuan Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Xin Yuan
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Shaanxi Engineering Research Center for Vegetables, Xianyang 712100, China
- Correspondence: ; Tel./Fax: +86-29-8708-2613
| |
Collapse
|
25
|
Phenotypic Characterization and Fine Mapping of a Major-Effect Fruit Shape QTL FS5.2 in Cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. Int J Mol Sci 2022; 23:ijms232113384. [DOI: 10.3390/ijms232113384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Cucumber (Cucumis sativus L.) fruit size/shape (FS) is an important yield and quality trait that is quantitatively inherited. Many quantitative trait loci (QTLs) for fruit size/shape have been identified, but very few have been fine-mapped or cloned. In this study, through marker-assisted foreground and background selections, we developed near-isogenic lines (NILs) for a major-effect fruit size/shape QTL FS5.2 in cucumber. Morphological and microscopic characterization of NILs suggests that the allele of fs5.2 from the semi-wild Xishuangbanna (XIS) cucumber (C. s. var. xishuangbannesis) reduces fruit elongation but promotes radial growth resulting in shorter but wider fruit, which seems to be due to reduced cell length, but increased cellular layers. Consistent with this, the NIL carrying the homozygous XIS allele (fs5.2) had lower auxin/IAA contents in both the ovary and the developing fruit. Fine genetic mapping with NIL-derived segregating populations placed FS5.2 into a 95.5 kb region with 15 predicted genes, and a homolog of the Arabidopsis CRABS CLAW (CsCRC) appeared to be the most possible candidate for FS5.2. Transcriptome profiling of NIL fruits at anthesis identified differentially expressed genes enriched in the auxin biosynthesis and signaling pathways, as well as genes involved in cell cycle, division, and cell wall processes. We conclude that the major-effect QTL FS5.2 controls cucumber fruit size/shape through regulating auxin-mediated cell division and expansion for the lateral and longitudinal fruit growth, respectively. The gibberellic acid (GA) signaling pathway also plays a role in FS5.2-mediated fruit elongation.
Collapse
|
26
|
Dou J, Duan S, Umer MJ, Xie K, Wang Y, Kang Q, Yang S, Yang L, Liu D, Liu L, Zhao F. Genome-wide analysis of IQD proteins and ectopic expression of watermelon ClIQD24 in tomato suggests its important role in regulating fruit shape. Front Genet 2022; 13:993218. [PMID: 36186419 PMCID: PMC9515400 DOI: 10.3389/fgene.2022.993218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
The plant-specific IQ67 domain (IQD) is the largest class of calmodulin targets found in plants, and plays an important role in many biological processes, especially fruit development processes. However, the functional role of IQD proteins in the development of watermelon (Citrullus lanatus) shape remains unknown, as the IQD protein family in watermelon has not been systematically characterized. Herein, we elucidated the gene structures, chromosomal locations, evolutionary divergence, and functions of 35 IQD genes in the watermelon genome. The transcript profiles and quantitative real-time PCR analysis at different stages of fruit development showed that the ClIQD24 gene was highly expressed on 0 days after pollination. Furthermore, we found that the ectopic overexpression of ClIQD24 promoted tomato fruit elongation, thereby revealing the significance of ClIQD24 in the progression of watermelon shape. Our study will serve as a reference for further investigations on the molecular mechanisms underlying watermelon fruit shape formation.
Collapse
Affiliation(s)
- Junling Dou
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shixiang Duan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kuixi Xie
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yinping Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Qishuai Kang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Dongming Liu, ; Lifeng Liu, ; Fengli Zhao,
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Dongming Liu, ; Lifeng Liu, ; Fengli Zhao,
| | - Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Dongming Liu, ; Lifeng Liu, ; Fengli Zhao,
| |
Collapse
|
27
|
Zheng H, Dong Y, Nong H, Huang L, Liu J, Yu X, Zhang Y, Yang L, Hong B, Wang W, Tao J. VvSUN may act in the auxin pathway to regulate fruit shape in grape. HORTICULTURE RESEARCH 2022; 9:uhac200. [PMID: 36382226 PMCID: PMC9647697 DOI: 10.1093/hr/uhac200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Fruit shape is an essential agronomic feature in many crops. We identified and functionally characterized an auxin pathway-related gene, VvSUN. VvSUN, which belongs to the SUN/IQ67-DOMAIN (IQD) family, localizes to the plasma membrane and chloroplast and may be involved in controlling fruit shape through auxin. It is highly expressed in the ovary, and the expression level 1 week before the anthesis stage is positively correlated with the fruit shape index. Functional analyses illustrated that VvSUN gene overexpression in tomato and tobacco plants changed fruit/pod shape. The VvSUN promoter directly bound to VvARF6 in yeast and activated ß-glucuronidase (GUS) activity by indole-3-acetic acid (IAA) treatments in grapevine leaves, indicating that VvSUN functions are in coordination with auxin. Further analysis of 35S::VvSUN transgenic tomato ovaries showed that the fruit shape changes caused by VvSUN were predominantly caused by variations in cell number in longitudinal directions by regulating endogenous auxin levels via polar transport and/or auxin signal transduction process variations. Moreover, enrichment of the 35S::VvSUN transgenic tomato differentially expressed genes was found in a variety of biological processes, including primary metabolic process, transmembrane transport, calcium ion binding, cytoskeletal protein binding, tubulin binding, and microtubule-based movement. Using weighted gene co-expression network analysis (WGCNA), we confirmed that this plant hormone signal transduction may play a crucial role in controlling fruit shape. As a consequence, it is possible that VvSUN acts as a hub gene, altering cellular auxin levels and the plant hormone signal transduction pathway, which plays a role in cell division patterns, leading to anisotropic growth of the ovary and, ultimately, an elongated fruit shape.
Collapse
Affiliation(s)
- Huan Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilan Nong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyuan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaguan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lina Yang
- Charles River Laboratories International, Inc., Michigan, 49071, USA
| | - Ben Hong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | | |
Collapse
|
28
|
Ectopic Expression of CsSUN in Tomato Results in Elongated Fruit Shape via Regulation of Longitudinal Cell Division. Int J Mol Sci 2022; 23:ijms23179973. [PMID: 36077369 PMCID: PMC9456224 DOI: 10.3390/ijms23179973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Fruit shape, an important agronomic trait of cucumber (Cucumis sativus L.), is tightly controlled by a series of genes such as CsSUN, a homologue of SlSUN that is responsible for the tomato (Solanum lycopersicum) fruit shape via the modulation of cell division. However, the direct genetic evidence about the CsSUN-mediated regulation of fruit shape is still scarce, limiting our mechanistic understanding of the biological functions of CsSUN. Here, we introduced CsSUN into the round-fruited tomato inbred line ‘SN1′ (wild type, WT) via the Agrobacterium tumefaciens-mediated method. The high and constitutive expression of CsSUN was revealed by real-time PCR in all the tested tissues of the transgenic plants, especially in the fruits and ovaries. Phenotypic analyses showed that the ectopic expression of CsSUN increased fruit length while it decreased fruit diameter, thus leading to the enhanced fruit shape index in the transgenic tomato lines relative to the WT. Additionally, the reduction in the seed size and seed-setting rate and the stimulation of seed germination were observed in the CsSUN-expressed tomato. A histological survey demonstrated that the elongated fruits were mainly derived from the significant increasing of the longitudinal cell number, which compensated for the negative effects of decreased cell area in the central columellae. These observations are different from action mode of SlSUN, thus shedding new insights into the SUN-mediated regulation of fruit shape.
Collapse
|
29
|
Huang X, Wu W, Su L, Lv H, Cheng Z, Yang W, Nong L, Liu T, Chen Y, Wang P, Liu Z. Development and Application of InDel Markers Linked to Fruit-Shape and Peel-Colour Genes in Wax Gourd. Genes (Basel) 2022; 13:genes13091567. [PMID: 36140735 PMCID: PMC9498789 DOI: 10.3390/genes13091567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
The wax gourd is commonly grown in many countries because of its high nutritional and economic value. While the genes for the fruit shape and peel colour of wax gourd have been reported, the InDel markers linked to these genes remain undeveloped. In this study, the InDel markers linked to fruit-shape (Bch02G016830) and peel-colour (Bch05G003950) genes were developed from resequenced data. We used 120 inbred lines, 536 isolated populations, and 4 commercial hybrids to evaluate the validity and application value of the InDel markers. The accuracy rates of nine pairs of fruit-shape InDel markers (GX1-GX9) were 84.16–91.66% in 120 inbred lines. The accuracy rates of 27 pairs of peel-colour InDel markers (PS1-PS27) within approximately 3.0 Mb upstream and 3.0 Mb downstream of the peel-colour gene were 100% and those of 6 pairs of peel-colour InDel markers (PS28-PS33) within 3.0–20 Mb upstream and downstream of the peel-colour gene were 55.83–90% in 120 inbred lines. The purity of four commercial hybrids determined using GX1, GX2, PS13, and PS14 was highly consistent with the field results for purity determination. Our results provide important information for genetic linkage map construction, molecular-marker-assisted selective breeding, and purity determination of wax gourd hybrids.
Collapse
Affiliation(s)
- Xiaochun Huang
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Wenting Wu
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Liwen Su
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Haixuan Lv
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Zhikui Cheng
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Wenrui Yang
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Lifeng Nong
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Ting Liu
- College of Agricultural, Guangxi University, Nanning 530004, China
| | - Yong Chen
- Institute for New Rural Development, Guangxi University, Nanning 530004, China
| | - Peng Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530004, China
| | - Zhengguo Liu
- College of Agricultural, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
30
|
Research Progress on the Leaf Morphology, Fruit Development and Plant Architecture of the Cucumber. PLANTS 2022; 11:plants11162128. [PMID: 36015432 PMCID: PMC9415855 DOI: 10.3390/plants11162128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cucumber (Cucumis sativus L.) is an annual climbing herb that belongs to the Cucurbitaceae family and is one of the most important economic crops in the world. The breeding of cucumber varieties with excellent agronomic characteristics has gained more attention in recent years. The size and shape of the leaves or fruit and the plant architecture are important agronomic traits that influence crop management and productivity, thus determining the crop yields and consumer preferences. The growth of the plant is precisely regulated by both environmental stimuli and internal signals. Although significant progress has been made in understanding the plant morphological regulation of Arabidopsis, rice, and maize, our understanding of the control mechanisms of the growth and development of cucumber is still limited. This paper reviews the regulation of phytohormones in plant growth and expounds the latest progress in research regarding the genetic regulation pathways in leaf development, fruit size and shape, branching, and plant type in cucumber, so as to provide a theoretical basis for improving cucumber productivity and cultivation efficiency.
Collapse
|
31
|
Gao L, Hao N, Wu T, Cao J. Advances in Understanding and Harnessing the Molecular Regulatory Mechanisms of Vegetable Quality. FRONTIERS IN PLANT SCIENCE 2022; 13:836515. [PMID: 35371173 PMCID: PMC8964363 DOI: 10.3389/fpls.2022.836515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The quality of vegetables is facing new demands in terms of diversity and nutritional health. Given the improvements in living standards and the quality of consumed products, consumers are looking for vegetable products that maintain their nutrition, taste, and visual qualities. These requirements are directing scientists to focus on vegetable quality in breeding research. Thus, in recent years, research on vegetable quality has been widely carried out, and many applications have been developed via gene manipulation. In general, vegetable quality traits can be divided into three parts. First, commodity quality, which is most related to the commerciality of plants, refers to the appearance of the product. The second is flavor quality, which usually represents the texture and flavor of vegetables. Third, nutritional quality mainly refers to the contents of nutrients and health ingredients such as soluble solids (sugar), vitamin C, and minerals needed by humans. With biotechnological development, researchers can use gene manipulation technologies, such as molecular markers, transgenes and gene editing to improve the quality of vegetables. This review attempts to summarize recent studies on major vegetable crops species, with Brassicaceae, Solanaceae, and Cucurbitaceae as examples, to analyze the present situation of vegetable quality with the development of modern agriculture.
Collapse
Affiliation(s)
- Luyao Gao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ning Hao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
32
|
Ma J, Li C, Zong M, Qiu Y, Liu Y, Huang Y, Xie Y, Zhang H, Wang J. CmFSI8/CmOFP13 encoding an OVATE family protein controls fruit shape in melon. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1370-1384. [PMID: 34849737 DOI: 10.1093/jxb/erab510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Fruit shape is an important quality and yield trait in melon (Cucumis melo). Although some quantitative trait loci for fruit shape have been reported in in this species, the genes responsible and the underlying mechanisms remain poorly understood. Here, we identified and characterized a gene controlling fruit shape from two melon inbred lines, B8 with long-horn fruit and HP22 with flat-round fruit. Genetic analysis suggested that the shape was controlled by a single and incompletely dominant locus, which we designate as CmFSI8/CmOFP13. This gene was finely mapped to a 53.7-kb interval on chromosome 8 based on bulked-segregant analysis sequencing and map-based cloning strategies. CmFSI8/CmOFP13 encodes an OVATE family protein (OFP) and is orthologous to AtOFP1 and SlOFP20. The transcription level of CmFSI8/CmOFP13 in the ovary of HP22 was significantly higher than that in B8, and sequence analysis showed that a 12.5-kb genomic variation with a retrotransposon insertion identified in the promoter was responsible for elevating the expression, and this ultimately caused the differences in fruit shape. Ectopic overexpression of CmFSI8/CmOFP13 in Arabidopsis led to multiple phenotypic changes, including kidney-shaped leaves and shortened siliques. Taken together, our results demonstrate the involvement of an OFP in regulating fruit shape in melon, and our improved understanding of the molecular mechanisms will enable us to better manipulate fruit shape in breeding.
Collapse
Affiliation(s)
- Jian Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Congcong Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Zong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhong Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuemin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yating Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuli Xie
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Jianshe Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
33
|
Genetic and Molecular Regulation Mechanisms in the Formation and Development of Vegetable Fruit Shape. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vegetable crops have a long history of cultivation worldwide and rich germplasm resources. With its continuous development and progress, molecular biology technology has been applied to various fields of vegetable crop research. Fruit is an important organ in vegetable crops, and fruit shape can affect the yield and commercialization of vegetables. In nature, fruits show differences in size and shape. Based on fruit shape diversity, the growth direction and coordination mechanism of fruits remain unclear. In this review, we discuss the latest research on fruit shape. In addition, we compare the current theories on the molecular mechanisms that regulate fruit growth, size, and shape in different vegetable families.
Collapse
|
34
|
Ma L, Wang Q, Zheng Y, Guo J, Yuan S, Fu A, Bai C, Zhao X, Zheng S, Wen C, Guo S, Gao L, Grierson D, Zuo J, Xu Y. Cucurbitaceae genome evolution, gene function and molecular breeding. HORTICULTURE RESEARCH 2022; 9:uhab057. [PMID: 35043161 PMCID: PMC8969062 DOI: 10.1093/hr/uhab057] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.
Collapse
Affiliation(s)
- Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanyan Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunmei Bai
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shufang Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaogui Guo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
35
|
Borovsky Y, Raz A, Doron-Faigenboim A, Zemach H, Karavani E, Paran I. Pepper Fruit Elongation Is Controlled by Capsicum annuum Ovate Family Protein 20. FRONTIERS IN PLANT SCIENCE 2022; 12:815589. [PMID: 35058962 PMCID: PMC8763684 DOI: 10.3389/fpls.2021.815589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/28/2023]
Abstract
Fruit shape is one of the most important quality traits of pepper (Capsicum spp.) and is used as a major attribute for the classification of fruit types. Wide natural variation in fruit shape exists among the major cultivated species Capsicum annuum, allowing the identification of several QTLs controlling the trait. However, to date, no genes underlying fruit shape QTLs have been conclusively identified, nor has their function been verified in pepper. We constructed a mapping population from a cross of round- and elongated-fruited C. annuum parents and identified a single major QTL on chromosome 10, termed fs10, explaining 68 and 70% of the phenotypic variation for fruit shape index and for distal fruit end angle, respectively. The QTL was mapped in several generations and was localized to a 5 Mbp region containing the ortholog of SlOFP20 that suppresses fruit elongation in tomato. Virus-induced gene silencing of the pepper ortholog CaOFP20 resulted in increased fruit elongation on two independent backgrounds. Furthermore, CaOFP20 exhibited differential expression in fs10 near-isogenic lines, as well as in an association panel of elongated- and round-fruited accessions. A 42-bp deletion in the upstream region of CaOFP20 was most strongly associated with fruit shape variation within the locus. Histological observations in ovaries and fruit pericarps indicated that fs10 exerts its effect on fruit elongation by controlling cell expansion and replication. Our results indicate that CaOFP20 functions as a suppressor of fruit elongation in C. annuum and is the most likely candidate gene underlying fs10.
Collapse
|
36
|
Cheng Z, Liu Z, Xu Y, Ma L, Chen J, Gou J, Su L, Wu W, Chen Y, Yu W, Wang P. Fine mapping and identification of the candidate gene BFS for fruit shape in wax gourd (Benincasa hispida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3983-3995. [PMID: 34480584 DOI: 10.1007/s00122-021-03942-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/18/2021] [Indexed: 05/18/2023]
Abstract
Non-synonymous mutations in the BFS gene, which encodes the IQD protein, are responsible for the shape of wax gourd fruits. Fruit shape is an important agronomic trait in wax gourds. Therefore, in this study, we employed bulked segregant analysis (BSA) to identify a candidate gene for fruit shape in wax gourds within F2 populations derived by crossing GX-71 (long cylindrical fruit, fruit shape index = 4.56) and MY-1 (round fruit, fruit shape index = 1.06) genotypes. According to BSA, the candidate gene is located in the 17.18 Mb region on chromosome 2. Meanwhile, kompetitive allele-specific PCR (KASP) markers were used to reduce it to a 19.6 Kb region. Only one gene was present within the corresponding region of the reference genome, namely Bch02G016830 (designated BFS). Subsequently, BFS was sequenced in six wax gourd varieties with different fruit shapes. Sequence analysis revealed two non-synonymous mutations in the round wax gourd and one non-synonymous mutation in the cylindrical wax gourd. Quantitative real‑time PCR (qRT-PCR) analysis further showed that the expression of BFS in round fruits was significantly higher than in long cylindrical fruits at the ovary formation stage. Therefore, BFS is a candidate gene for determination wax gourd shape. The predicted protein encoded by the BFS gene belongs to the IQ67-domain protein family, which have the structural characteristics of scaffold proteins and coordinate Ca2+ CaM signaling from the membrane to the nucleus. Ultimately, two derived cleaved amplified polymorphic sequence (dCAPS) markers were developed to facilitate marker-assisted selection for wax gourds breeding.
Collapse
Affiliation(s)
- Zhikui Cheng
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Zhengguo Liu
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Yuanchao Xu
- SinoDutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lianlian Ma
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Jieying Chen
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Jiquan Gou
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Liwen Su
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Wenting Wu
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Yong Chen
- Institute for New Rural Development, Guangxi University, Guangxi, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Guangxi, 530004, China.
- Institute of Vegetables, Guangxi Academy of Agricultural Sciences, Guangxi, 530004, China.
| |
Collapse
|
37
|
Mauxion JP, Chevalier C, Gonzalez N. Complex cellular and molecular events determining fruit size. TRENDS IN PLANT SCIENCE 2021; 26:1023-1038. [PMID: 34158228 DOI: 10.1016/j.tplants.2021.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The understanding of plant organ-size determination represents an important challenge, especially because of the significant role of plants as food and renewable energy sources and the increasing need for plant-derived products. Most of the knowledge on the regulation of organ growth and the molecular network controlling cell division and cell expansion, the main drivers of growth, is derived from arabidopsis. The increasing use of crops such as tomato for research is now bringing essential information on the mechanisms underlying size control in agronomically important organs. This review describes our current knowledge, still very scarce, of the cellular and molecular mechanisms governing tomato fruit size and proposes future research to better understand the regulation of growth in this important crop.
Collapse
Affiliation(s)
- Jean-Philippe Mauxion
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France
| | - Christian Chevalier
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- INRAE, Univ. Bordeaux, UMR1332 Biologie du fruit et Pathologie, F33882 Villenave d'Ornon, France. @inrae.fr
| |
Collapse
|
38
|
Xu P, Wang Y, Sun F, Wu R, Du H, Wang Y, Jiang L, Wu X, Wu X, Yang L, Xing N, Hu Y, Wang B, Huang Y, Tao Y, Gao Q, Liang C, Li Y, Lu Z, Li G. Long-read genome assembly and genetic architecture of fruit shape in the bottle gourd. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:956-968. [PMID: 34043857 DOI: 10.1111/tpj.15358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The bottle gourd (Lagenaria siceraria, Cucurbitaceae) is an important horticultural crop exhibiting tremendous diversity in fruit shape. The genetic architecture of fruit shape variation in this species remains unknown. We assembled a long-read-based, high-quality reference genome (ZAAS_Lsic_2.0) with a contig N50 value over 390-fold greater than the existing reference genomes. We then focused on dissection of fruit shape using a one-step geometric morphometrics-based functional mapping approach. We identified 11 quantitative trait loci (QTLs) responsible for fruit shape (fsQTLs), reconstructed their visible effects and revealed syntenic relationships of bottle gourd fsQTLs with 12 fsQTLs previously reported in cucumber, melon or watermelon. Homologs of several well-known and newly identified fruit shape genes, including SUN, OFP, AP2 and auxin transporters, were comapped with bottle gourd QTLs.
Collapse
Affiliation(s)
- Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Fengshuo Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, USA
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Wang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Nailin Xing
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yaowen Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yunping Huang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ye Tao
- Biozeron Biotechnology Co., Ltd, Shanghai, China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanwei Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Wang H, Sun J, Yang F, Weng Y, Chen P, Du S, Wei A, Li Y. CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2429-2441. [PMID: 34043036 DOI: 10.1007/s00122-021-03833-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
We identified a short fruit3 (sf3) mutant in cucumber. Map-based cloning revealed that CsKTN1 gene encodes a katanin p60 subunit, which is associated with the regulation of fruit elongation. Fruit length is an important horticultural trait for both fruit yield and quality of cucumber (Cucumis sativus L.). Knowledge on the molecular regulation of fruit elongation in cucumber is very limited. In this study, we identified and characterized a cucumber short fruit3 (sf3) mutant. Histological examination indicated that the shorter fruit in the mutant was due to reduced cell numbers. Genetic analysis revealed that the phenotype of the sf3 mutant was controlled by a single gene with semi-dominant inheritance. By map-based cloning and Arabidopsis genetic transformation, we showed that Sf3 was a homolog of KTN1 (CsKTN1) encoding a katanin p60 subunit. A non-synonymous mutation in the fifth exon of CsKTN1 resulted in an amino acid substitution from Serine in the wild type to Phenylalanine in the sf3 mutant. CsKTN1 expressed in all tissues of both the wild type and the sf3 mutant. However, there was no significant difference in CsKTN1 expression levels between the wild type and the sf3 mutant. The hormone quantitation and RNA-seq analysis suggested that auxin and gibberellin contents are decreased in sf3 by changing the expression levels of genes related with auxin and gibberellin metabolism and signaling. This work helps understand the function of the katanin and the molecular mechanisms of fruit growth regulation in cucumber.
Collapse
Affiliation(s)
- Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
40
|
Zhao J, Li H, Xu Y, Yin Y, Huang T, Zhang B, Wang Y, Li Y, Cao Y, An W. A consensus and saturated genetic map provides insight into genome anchoring, synteny of Solanaceae and leaf- and fruit-related QTLs in wolfberry (Lycium Linn.). BMC PLANT BIOLOGY 2021; 21:350. [PMID: 34303361 PMCID: PMC8306383 DOI: 10.1186/s12870-021-03115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Lycium Linn. (Solanaceae) is a genus of economically important plants producing fruits and leaves with high nutritional value and medicinal benefits. However, genetic analysis of this plant and molecular breeding for quality improvement are limited by the lack of sufficient molecular markers. RESULTS In this study, two parental strains, 'Ningqi No. 1' (Lycium barbarum L.) and 'Yunnan Gouqi' (Lycium yunnanense Kuang et A.M. Lu), and 200 F1 hybrid individuals were resequenced for genetic analysis. In total, 8,507 well-selected SNPs were developed, and a high-density genetic map (NY map) was constructed with a total genetic distance of 2,122.24 cM. A consensus genetic map was established by integrating the NY map and a previously published genetic map (NC map) containing 15,240 SNPs, with a total genetic distance of 3,058.19 cM and an average map distance of 0.21 cM. The 12 pseudochromosomes of the Lycium reference genome were anchored using this consensus genetic map, with an anchoring rate of 64.3%. Moreover, weak collinearities between the consensus map and the pepper, potato, and tomato genomes were observed. Twenty-five stable QTLs were identified for leaf- and fruit-related phenotypes, including fruit weight, fruit longitude, leaf length, the fruit index, and the leaf index; these stable QTLs were mapped to four different linkage groups, with LOD scores ranging from 2.51 to 19.37 and amounts of phenotypic variance explained from 6.2% to 51.9%. Finally, 82 out of 188 predicted genes underlying stable QTLs for fruit-related traits were differentially expressed according to RNA-seq analysis. CONCLUSIONS A chromosome-level assembly can provide a foundation for further functional genomics research for wolfberry. The genomic regions of these stably expressed QTLs could be used as targets for further fine mapping and development of molecular markers for marker-assisted selection (MAS). The present study provided valuable information on saturated SNP markers and reliable QTLs for map-based cloning of functional genes related to yield and morphological traits in Lycium spp.
Collapse
Affiliation(s)
- Jianhua Zhao
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002 China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd, Urumchi, 830022 China
| | - Yue Yin
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Ting Huang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Bo Zhang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Yajun Wang
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Yanlong Li
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Youlong Cao
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| | - Wei An
- Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences/National Wolfberry Engineering Research Center, Yinchuan, 750002 China
| |
Collapse
|
41
|
Bao Z, Xu Z, Zang J, Bürstenbinder K, Wang P. The Morphological Diversity of Plant Organs: Manipulating the Organization of Microtubules May Do the Trick. Front Cell Dev Biol 2021; 9:649626. [PMID: 33842476 PMCID: PMC8033015 DOI: 10.3389/fcell.2021.649626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Zhiru Bao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Zhijing Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Jingze Zang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Han N, Tang R, Chen X, Xu Z, Ren Z, Wang L. Genome-wide identification and characterization of WOX genes in Cucumis sativus. Genome 2021; 64:761-776. [PMID: 33493082 DOI: 10.1139/gen-2020-0029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
WUSCHEL-related homeobox (WOX) proteins are plant-specific transcription factors that are profoundly involved in regulation of plant development and stress responses. In this study, we totally identified 11 WOX transcription factor family members in cucumber (Cucumis sativus, CsWOX) genome and classified them into three clades with nine subclades based on phylogenetic analysis results. Alignment of amino acid sequences revealed that all WOX members in cucumber contained the typical homeodomain, which consists of 60-66 amino acids and is folded into a helix-turn-helix structure. Gene duplication event analysis indicated that CsWOX1a and CsWOX1b were a segment duplication pair, which might affect the number of WOX members in cucumber genome. The expression profiles of CsWOX genes in different tissues demonstrated that the members sorted into the ancient clade (CsWOX13a and CsWOX13b) were constitutively expressed at higher levels in comparison to the others. Cis-element analysis in promoter regions suggested that the expression of CsWOX genes was associated with phytohormone pathways and stress responses, which was further supported by RNA-seq data. Taken together, our results provide new insights into the evolution of cucumber WOX genes and improve our understanding about the biological functions of the CsWOX gene family.
Collapse
Affiliation(s)
- Ni Han
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Rui Tang
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueqian Chen
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhixuan Xu
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lina Wang
- State Key Laboratory of Crop Biology, Tai'an, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, China.,College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
43
|
Wang Y, Jiang B, Dymerski R, Xu X, Weng Y. Quantitative trait loci for horticulturally important traits defining the Sikkim cucumber, Cucumis sativus var. sikkimensis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:229-247. [PMID: 32997165 DOI: 10.1007/s00122-020-03693-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
QTL mapping identified simply inherited genes and quantitative trait loci underlying morphologically characteristic traits of the Sikkim cucumber, which reveals their genetic basis during crop evolution. The data suggest the Sikkim cucumber as an ecotype of cultivated cucumber not worthy of formal taxonomic recognition. The Sikkim cucumber, Cucumis sativus var. sikkimensis, is featured with some morphological traits like black spine, brown fruit with fine and heavy netting, as well as large hollow in mature fruit. Despite its establishment as a botanical variety ~ 150 years ago, and its wide use as an important source of disease resistances in cucumber breeding, little is known about its taxonomic status and genetic basis of those characteristic traits. Here we reported QTL mapping with segregating populations derived from two Sikkim-type inbred lines, WI7088D and WI7120, and identification of 48 QTL underlying phenotypic variation for 18 horticulturally important traits. We found that the fruit spine and skin colors in the two populations were controlled by the previously cloned pleiotropic B (black spine) locus. The fruit netting in WI7088D and WI7120 was controlled by the well-known H (Heavy netting) and a novel Rs (Russet skin) locus, which was delimited to a 271-kb region on Chr5 and ~ 736-kb region on Chr1, respectively. A single major-effect QTL was detected for flowering time in each population (ft1.1 for WI7088D and ft6.2 for WI7120). Fifteen, six and five QTL were identified for fruit size, hollow size and flesh thickness variation in the two populations, respectively. No major structural changes were found between the Sikkim and cultivated cucumbers. Except for the rare allele at the Rs locus, there seem no private QTL/alleles identified from this study supporting the Sikkim cucumber as an ecotype of C. sativus, not worthy of formal taxonomic recognition.
Collapse
Affiliation(s)
- Yuhui Wang
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Biao Jiang
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ronald Dymerski
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Xuewen Xu
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| |
Collapse
|
44
|
Wang X, Li H, Gao Z, Wang L, Ren Z. Localization of quantitative trait loci for cucumber fruit shape by a population of chromosome segment substitution lines. Sci Rep 2020; 10:11030. [PMID: 32620915 PMCID: PMC7334212 DOI: 10.1038/s41598-020-68312-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 12/04/2022] Open
Abstract
Cucumber fruit shape, a significant agronomic trait, is controlled by quantitative trait loci (QTLs). Feasibility of chromosome segment substitution lines (CSSLs) is well demonstrated to map QTLs, especially the minor-effect ones. To detect and identify QTLs with CSSLs can provide new insights into the underlying mechanisms regarding cucumber fruit shape. In the present study, 71 CSSLs were built from a population of backcross progeny (BC4F2) by using RNS7 (a round-fruit cucumber) as the recurrent parent and CNS21 (a long-stick-fruit cucumber) as the donor parent in order to globally detect QTLs for cucumber fruit shape. With the aid of 114 InDel markers covering the whole cucumber genome, 21 QTLs were detected for fruit shape-related traits including ovary length, ovary diameter, ovary shape index, immature fruit length, immature fruit diameter, immature fruit shape index, mature fruit length, mature fruit diameter and mature fruit shape index, and 4 QTLs for other traits including fruit ground and flesh color, and seed size were detected as well. Together our results provide important resources for the subsequent theoretical and applied researches on cucumber fruit shape and other traits.
Collapse
Affiliation(s)
- Xiangfei Wang
- State Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hao Li
- State Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhihui Gao
- State Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Lina Wang
- State Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
45
|
Pan Y, Wen C, Han Y, Wang Y, Li Y, Li S, Cheng X, Weng Y. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2271-2290. [PMID: 32306094 DOI: 10.1007/s00122-020-03596-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The legendary cucumber inbred line WI2757 possesses a rare combination of resistances against nine pathogens, which is an important germplasm for cucumber breeding. However, WI2757 flowers late and does not perform well under field conditions. The genetic basis for horticulturally important traits other than disease resistances in WI2757 is largely unknown. In this study, we conducted QTL mapping using F2 and recombinant inbred line (RIL) populations from the WI2757 × True Lemon cross that were segregating for multiple traits. Phenotypic data were collected in replicated field trials across multiple years for seven traits including fruit carpel number (CN) and sex expression. A high-density SNP-based genetic map was developed with genotyping by sequencing of the RIL population, which revealed a region on chromosome 1 with strong recombination suppression. The reduced recombination in this region was due to a ~ 10-Mbp paracentric inversion in WI2757 that was confirmed with additional segregation and cytological (FISH) analyses. Thirty-six QTL were detected for flowering time, fruit length (FL), fruit diameter (FD), fruit shape (LD), fruit number (FN), CN, and powdery mildew resistance. Five moderate- or major-effect QTL for FL, FD, LD, and FN inside the inversion are likely the pleiotropic effects of the andromonoecy (m), or the cn locus. The major-effect flowering time QTL ft1.1 was also mapped inside the inversion, which seems to be different from the previously assigned delayed flowering in WI2757. Implications of these findings on the use of WI2757 in cucumber breeding are discussed.
Collapse
Affiliation(s)
- Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Changlong Wen
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Yonghua Han
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sen Li
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Horticulture College, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaomao Cheng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI, 53706, USA.
| |
Collapse
|
46
|
Xu X, Wei C, Liu Q, Qu W, Qi X, Xu Q, Chen X. The major-effect quantitative trait locus Fnl7.1 encodes a late embryogenesis abundant protein associated with fruit neck length in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1598-1609. [PMID: 31916321 PMCID: PMC7292543 DOI: 10.1111/pbi.13326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/06/2019] [Indexed: 06/03/2023]
Abstract
Fruit neck length (FNL) is an important quality trait in cucumber because it directly affects its market value. However, its genetic basis remains largely unknown. We identified a candidate gene for FNL in cucumber using a next-generation sequencing-based bulked segregant analysis in F2 populations, derived from a cross between Jin5-508 (long necked) and YN (short necked). A quantitative trait locus (QTL) on chromosome 7, Fnl7.1, was identified through a genome-wide comparison of single nucleotide polymorphisms between long and short FNL F2 pools, and it was confirmed by traditional QTL mapping in multiple environments. Fine genetic mapping, sequences alignment and gene expression analysis revealed that CsFnl7.1 was the most likely candidate Fnl7.1 locus, which encodes a late embryogenesis abundant protein. The increased expression of CsFnl7.1 in long-necked Jin5-508 may be attributed to mutations in the promoter region upstream of the gene body. The function of CsFnl7.1 in FNL control was confirmed by its overexpression in transgenic cucumbers. CsFnl7.1 regulates fruit neck development by modulating cell expansion. Probably, this is achieved through the direct protein-protein interactions between CsFnl7.1 and a dynamin-related protein CsDRP6 and a germin-like protein CsGLP1. Geographical distribution differences of the FNL phenotype were found among the different cucumber types. The East Asian and Eurasian cucumber accessions were highly enriched with the long-necked and short-necked phenotypes, respectively. A further phylogenetic analysis revealed that the Fnl7.1 locus might have originated from India. Thus, these data support that the CsFnl7.1 has an important role in increasing cucumber FNL.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| | - Chenxi Wei
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qianya Liu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Wenqing Qu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xiaohua Qi
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qiang Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xuehao Chen
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
47
|
Cucumber Fruit Size and Shape Variations Explored from the Aspects of Morphology, Histology, and Endogenous Hormones. PLANTS 2020; 9:plants9060772. [PMID: 32575654 PMCID: PMC7356835 DOI: 10.3390/plants9060772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
Fruit size and shape are important qualities and yield traits in cucumber (Cucumis sativus L.), but the factors that influence fruit size and shape remain to be explored. In this study, we investigated the dynamic changes of fruit size and shape from the aspects of morphology, cellular levels and endogenous hormones for nine typical cucumber inbred lines. The results show that fruit length had a strong positive correlation to the cell number in the longitudinal section of fruit throughout the four stages of 0, 6, 12, and 30 DAA (days after anthesis). However, the significant negative correlations were found between fruit length and the fruit cell size at 12 and 30 DAA. Furthermore, fruit diameter was positively correlated to the cell number in the cross section at all the investigated fruit growth stages. The indole-3-acetic acid (IAA) content showed significant positive correlations to the fruit length at all fruit growth stages of −6, −3, 0, 3, 6, 9 and 12 DAA, but IAA content and fruit diameter showed significant negative correlations for all the stages except for at −6 DAA. The trans-zeatin riboside (tZR), zeatin (ZT), gibberellic acid (GA3) and jasmonic acid (JA) content had a positive or negative correlation with fruit length or diameter only at certain stages. Neither fruit length nor diameter had significant correlations to abscisic acid (ABA) content. These results indicate that variations in fruit size and shape of different cucumber inbred lines mainly result from the differences in fruit cell number and endogenous IAA content. The present work is the first to propose cucumber fruit size and shape changes from the combined aspects of morphology, cellular levels, and endogenous hormones.
Collapse
|
48
|
Yang B, Wendrich JR, De Rybel B, Weijers D, Xue H. Rice microtubule-associated protein IQ67-DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1141-1152. [PMID: 31622529 PMCID: PMC7152617 DOI: 10.1111/pbi.13279] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 05/07/2023]
Abstract
Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever-changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin-inducible and MT-localized protein OsIQ67-DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14-mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and in hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait.
Collapse
Affiliation(s)
- BaoJun Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jos R. Wendrich
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Bert De Rybel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
49
|
Feng S, Zhang J, Mu Z, Wang Y, Wen C, Wu T, Yu C, Li Z, Wang H. Recent progress on the molecular breeding of Cucumis sativus L. in China. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1777-1790. [PMID: 31754760 DOI: 10.1007/s00122-019-03484-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular breeding of Cucumis sativus L. is based on traditional breeding techniques and modern biological breeding in China. There are opportunities for further breeding improvement by molecular design breeding and the automation of phenotyping technology using untapped sources of genetic diversity. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide. It bears fruits of light fragrance, and crisp texture with high nutrition. China is the largest producer and consumer of cucumber, accounting for 70% of the world's total production. With increasing consumption demand, the production of Cucurbitaceae crops has been increasing yearly. Thus, new cultivars that can produce high-quality cucumber with high yield and easy cultivation are in need. Conventional genetic breeding has played an essential role in cucumber cultivar innovation over the past decades. However, its progress is slow due to the long breeding period, and difficulty in selecting stable genetic characters or genotypes, prompting researchers to apply molecular biotechnologies in cucumber breeding. Here, we first summarize the achievements of conventional cucumber breeding such as crossing and mutagenesis, and then focus on the current status of molecular breeding of cucumber in China, including the progress and achievements on cucumber genomics, molecular mechanism underlying important agronomic traits, and also on the creation of high-quality multi-resistant germplasm resources, new variety breeding and ecological breeding. Future development trends and prospects of cucumber molecular breeding in China are also discussed.
Collapse
Affiliation(s)
- Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Juping Zhang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zihan Mu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuji Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Yu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Huasen Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
50
|
Kaźmińska K, Hallmann E, Korzeniewska A, Niemirowicz-Szczytt K, Bartoszewski G. Identification of Fruit-Associated QTLs in Winter Squash ( Cucurbita maxima Duchesne) Using Recombinant Inbred Lines. Genes (Basel) 2020; 11:genes11040419. [PMID: 32295204 PMCID: PMC7230694 DOI: 10.3390/genes11040419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023] Open
Abstract
Cucurbita maxima Duchesne squash and pumpkins are cultivated world-wide. Cucurbita maxima fruits are produced for fresh market and are valuable for food processing. Therefore, fruit characteristics and yield are the traits of high economic importance for breeders. To date, the genetic basis of fruit-associated traits in C. maxima have been poorly understood. In the present study, we evaluated fruit-associated traits and conducted quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs) derived from a cross of two inbred lines with different fruit morphotypes. Phenotypic data for nine fruit traits (earliness, weight, number per plant, yield per plant, length and diameter, shape index, flesh thickness, sucrose content and dry matter content) were collected for RILs in two open-field experiments. Pairwise analysis of the phenotypic data revealed correlations among the fruit and yield-associated traits. Using a previously developed genetic map, we identified 26 QTLs for eight traits. The QTLs were found in 10 locations on eight chromosomes of C. maxima. The QTLs were detected across experiments and explained up to 41.4% of the observed phenotypic variations. Major-effect QTLs for multiple fruit-associated traits were clustered on chromosome 4, suggesting that this genomic region has been under selection during diversification and/or domestication of C. maxima.
Collapse
Affiliation(s)
- Karolina Kaźmińska
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Aleksandra Korzeniewska
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Katarzyna Niemirowicz-Szczytt
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|