1
|
Laidig F, Feike T, Lichthardt C, Schierholt A, Piepho HP. Breeding progress of nitrogen use efficiency of cereal crops, winter oilseed rape and peas in long-term variety trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:45. [PMID: 38329519 PMCID: PMC10853085 DOI: 10.1007/s00122-023-04521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
KEY MESSAGE Grain yield and NUE increased over time while nitrogen yield did not drop significantly despite reduced nitrogen input. Selection for grain and nitrogen yield is equivalent to selection for NUE. Breeding and registration of improved varieties with high yield, processing quality, disease resistance and nitrogen use efficiency (NUE) are of utmost importance for sustainable crop production to minimize adverse environmental impact and contribute to food security. Based on long-term variety trials of cereals, winter oilseed rape and grain peas tested across a wide range of environmental conditions in Germany, we quantified long-term breeding progress for NUE and related traits. We estimated the genotypic, environmental and genotype-by-environment interaction variation and correlation between traits and derived heritability coefficients. Nitrogen fertilizer application was considerably reduced between 1995 and 2021 in the range of 5.4% for winter wheat and 28.9% for spring wheat while for spring barley it was increased by 20.9%. Despite the apparent nitrogen reduction for most crops, grain yield (GYLD) and nitrogen accumulation in grain (NYLD) was increased or did not significantly decrease. NUE for GYLD increased significantly for all crops between 12.8% and 35.2% and for NYLD between 8% and 20.7%. We further showed that the genotypic rank of varieties for GYLD and NYLD was about equivalent to the genotypic rank of the corresponding traits of NUE, if all varieties in a trial were treated with the same nitrogen rate. Heritability of nitrogen yield was about the same as that of grain yield, suggesting that nitrogen yield should be considered as an additional criterion for variety testing to increase NUE and reduce negative environmental impact.
Collapse
Affiliation(s)
- F Laidig
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany.
| | - T Feike
- Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - C Lichthardt
- Bundessortenamt, Osterfelddamm 60, 30627, Hannover, Germany
| | - A Schierholt
- Plant Breeding Methodology, Georg-August-University Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - H P Piepho
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany
| |
Collapse
|
2
|
Khanna A, Anumalla M, Ramos J, Cruz MTS, Catolos M, Sajise AG, Gregorio G, Dixit S, Ali J, Islam MR, Singh VK, Rahman MA, Khatun H, Pisano DJ, Bhosale S, Hussain W. Genetic gains in IRRI's rice salinity breeding and elite panel development as a future breeding resource. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:37. [PMID: 38294550 PMCID: PMC10830834 DOI: 10.1007/s00122-024-04545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE Estimating genetic gains and formulating a future salinity elite breeding panel for rice pave the way for developing better high-yielding salinity tolerant lines with enhanced genetic gains. Genetic gain is a crucial parameter to check the breeding program's success and help optimize future breeding strategies for enhanced genetic gains. To estimate the genetic gains in IRRI's salinity breeding program and identify the best genotypes based on high breeding values for grain yield (kg/ha), we analyzed the historical data from the trials conducted in the IRRI, Philippines and Bangladesh. A two-stage mixed-model approach accounting for experimental design factors and a relationship matrix was fitted to obtain the breeding values for grain yield and estimate genetic trends. A positive genetic trend of 0.1% per annum with a yield advantage of 1.52 kg/ha was observed in IRRI, Philippines. In Bangladesh, we observed a genetic gain of 0.31% per annum with a yield advantage of 14.02 kg/ha. In the released varieties, we observed a genetic gain of 0.12% per annum with a 2.2 kg/ha/year yield advantage in the IRRI, Philippines. For the Bangladesh dataset, a genetic gain of 0.14% per annum with a yield advantage of 5.9 kg/ha/year was observed in the released varieties. Based on breeding values for grain yield, a core set of the top 145 genotypes with higher breeding values of > 2400 kg/ha in the IRRI, Philippines, and > 3500 kg/ha in Bangladesh with a reliability of > 0.4 were selected to develop the elite breeding panel. Conclusively, a recurrent selection breeding strategy integrated with novel technologies like genomic selection and speed breeding is highly required to achieve higher genetic gains in IRRI's salinity breeding programs.
Collapse
Affiliation(s)
- Apurva Khanna
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Mahender Anumalla
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Joie Ramos
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Ma Teresa Sta Cruz
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Margaret Catolos
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Andres Godwin Sajise
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Glenn Gregorio
- Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) and University of Philippines, 4031, Los Baños, Laguna, Philippines
| | - Shalabh Dixit
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Jauhar Ali
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Md Rafiqul Islam
- IRRI South Asia Regional Center (IRRI-SA Hub), Hyderabad, Telangana, 502324, India
| | - Vikas Kumar Singh
- IRRI South Asia Regional Center (IRRI-SA Hub), Hyderabad, Telangana, 502324, India
| | - Md Akhlasur Rahman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Hasina Khatun
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Daniel Joseph Pisano
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Sankalp Bhosale
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines.
| |
Collapse
|
3
|
Wonneberger R, Schreiber M, Haaning A, Muehlbauer GJ, Waugh R, Stein N. Major chromosome 5H haplotype switch structures the European two-rowed spring barley germplasm of the past 190 years. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:174. [PMID: 37477711 PMCID: PMC10361897 DOI: 10.1007/s00122-023-04418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
KEY MESSAGE Selection over 70 years has led to almost complete fixation of a haplotype spanning ~ 250 Mbp of chomosome 5H in European two-rowed spring barleys, possibly originating from North Africa. Plant breeding and selection have shaped the genetic composition of modern crops over the past decades and centuries and have led to great improvements in agronomic and quality traits. Knowledge of the genetic composition of breeding germplasm is essential to make informed decisions in breeding programs. In this study, we characterized the structure and composition of 209 barley cultivars representative of the European two-rowed spring barley germplasm of the past 190 years. Utilizing high-density SNP marker data, we identified a distinct centromeric haplotype spanning a ~ 250 Mbp large region on chromosome 5H which likely was first introduced into the European breeding germplasm in the early to mid-twentieth century and has been non-recombining and under strong positive selection over the past 70 years. Almost all cultivars in our panel that were released after 2000 carry this new haplotype, suggesting that this region carries one or several genes conferring highly beneficial traits. Using the global barley collection of the German Federal ex situ gene bank at IPK Gatersleben, we found the new haplotype at high frequencies in six-rowed spring-type landraces from Northern Africa, from which it may have been introduced into modern European barley germplasm via southern European landraces. The presence of a 250 Mbp genomic region characterized by lack of recombination and high levels of fixation in modern barley germplasm has substantial implications for the genetic diversity of the modern barley germplasm and for barley breeding.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Miriam Schreiber
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allison Haaning
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Robbie Waugh
- Division of Plant Sciences, University of Dundee, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany.
| |
Collapse
|
4
|
Polishchuk TP, Hudzenko VM. Inheritance of kernel number per spike in F1 of spring barley obtained from crossings of cultivars of different origin, purpose of use and botanical varieties. PLANT VARIETIES STUDYING AND PROTECTION 2022. [DOI: 10.21498/2518-1017.18.3.2022.269023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose. To reveal the peculiarities of inheritance of kernel number per spike in crosses of spring barley cultivars of different origin, purpose of use and botanical varieties, as well as to distinguish effective genetic sources for improving the trait.
Methods. The study was carried out at the M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine in 2019 and 2020. In F1 of spring barley in two diallel crossing schemes the degree of phenotypic dominance, parameters of genetic variation, and combining ability for kernel number per spike were determined. Results. According to the indicator of the degree of phenotypic dominance, all possible types of inheritance of kernel number per spike were identified. In a number of crossing compositions, a change in the type of inheritance depending on the conditions of the year was revealed. Most combinations with overdominance in both years were noted in crossings of the covered awned cultivar ‘Avgur’, as well as the covered awnless cultivar ‘Kozyr’. According to the parameters of genetic variation in crosses of malting varieties (covered awned), correspondence of the additive-dominant model, overdominance and dominance in loci, as well as unidirectional dominance to increasing of the trait caused by dominant effects were revealed. When crossing cultivars of different varieties, a change in gene action in different years was found. In particular, additive-dominant system changed to complementary epistasis, incomplete dominance to overdominance, unidirectional dominance to increasing of the trait to multidirectional dominance. The genetic sources of increased general combining ability were identified, as follows: covered awned malting cultivars ‘Quench’ and ‘Avgur’, the naked awned cultivar ‘CDC Rattan’, as well as the covered awnless cultivar ‘Kozyr’. Based on the constants of specific combining ability, the most promising crossing combinations for further breeding efforts were determined.
Conclusions. The identified peculiarities of the inheritance of kernel number per spike make it possible to optimally combine parental components of crossings and carry out directional selection to increase the trait when developing spring barley cultivars for different use and different botanical varieties.
Collapse
Affiliation(s)
- T. P. Polishchuk
- The V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine, Ukraine
| | - V. M. Hudzenko
- The V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine, Ukraine
| |
Collapse
|
5
|
Nagel M, Arc E, Rajjou L, Cueff G, Bailly M, Clément G, Sanchez-Vicente I, Bailly C, Seal CE, Roach T, Rolletschek H, Lorenzo O, Börner A, Kranner I. Impacts of drought and elevated temperature on the seeds of malting barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1049323. [PMID: 36570960 PMCID: PMC9773840 DOI: 10.3389/fpls.2022.1049323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
High seed quality is key to agricultural production, which is increasingly affected by climate change. We studied the effects of drought and elevated temperature during seed production on key seed quality traits of two genotypes of malting barley (Hordeum sativum L.). Plants of a "Hana-type" landrace (B1) were taller, flowered earlier and produced heavier, larger and more vigorous seeds that resisted ageing longer compared to a semi-dwarf breeding line (B2). Accordingly, a NAC domain-containing transcription factor (TF) associated with rapid response to environmental stimuli, and the TF ABI5, a key regulator of seed dormancy and vigour, were more abundant in B1 seeds. Drought significantly reduced seed yield in both genotypes, and elevated temperature reduced seed size. Genotype B2 showed partial thermodormancy that was alleviated by drought and elevated temperature. Metabolite profiling revealed clear differences between the embryos of B1 and B2. Drought, but not elevated temperature, affected the metabolism of amino acids, organic acids, osmolytes and nitrogen assimilation, in the seeds of both genotypes. Our study may support future breeding efforts to produce new lodging and drought resistant malting barleys without trade-offs that can occur in semi-dwarf varieties such as lower stress resistance and higher dormancy.
Collapse
Affiliation(s)
- Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
| | - Erwann Arc
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlene Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Inmaculada Sanchez-Vicente
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| | - Christophe Bailly
- Unité Mixte de Recherche (UMR) 7622 Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, Paris, France
| | - Charlotte E. Seal
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, Haywards Heath, United Kingdom
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hardy Rolletschek
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Kumar D, Sharma AK, Narwal S, Sheoran S, Verma RPS, Singh GP. Utilization of Grain Physical and Biochemical Traits to Predict Malting Quality of Barley ( Hordeum vulgare L.) under Sub-Tropical Climate. Foods 2022; 11:3403. [PMID: 36360015 PMCID: PMC9657330 DOI: 10.3390/foods11213403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Barley is the most popular raw material for malting, and recently, the demand for malt-based products has increased several folds in India and other South Asian countries. The barley growing season is peculiar in the sub-tropical plains region compared to European or Northern American conditions, characterized by a total crop duration of 130-145 days with a maximum grain filling duration of around only 35-40 days. A total of 19 barley genotypes were grown for three years to assess the comparative performance in relation to different quality traits, including grain physical traits and biochemical and malt quality parameters. Analysis of variance, Pearson correlation, and principal component analysis were performed to determine the correlation among different traits. The results showed significant genotypic variation among genotypes for individual grain and malt traits. Despite the shorter window for grain filling, several good malting genotypes have been developed for the sub-tropical climates. The genotypes DWRUB52, DWRB101, RD2849, DWRUB64, and DWRB91 were found suitable for malting. Based on correlation studies, a few grain parameters have been identified which can be used to predict the malting potential of a barley genotype. The hot water extract was found to be positively correlated with the grain test weight, thousand-grain weight, and malt friability but was negatively correlated with the husk content. Beta-glucan content varied from 3.4 to 6.1% (dwb); reducing the grain beta-glucan content and increasing the amylase could be priorities to address in future malt barley improvement programs under sub-tropical climatic conditions.
Collapse
Affiliation(s)
- Dinesh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Amit Kumar Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sneh Narwal
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | | | | |
Collapse
|
7
|
Bahmani M, Juhász A, Broadbent J, Bose U, Nye-Wood MG, Edwards IB, Colgrave ML. Proteome Phenotypes Discriminate the Growing Location and Malting Traits in Field-Grown Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10680-10691. [PMID: 35981222 PMCID: PMC9449971 DOI: 10.1021/acs.jafc.2c03816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Barley is one of the key cereal grains for malting and brewing industries. However, climate variability and unprecedented weather events can impact barley yield and end-product quality. The genetic background and environmental conditions are key factors in defining the barley proteome content and malting characteristics. Here, we measure the barley proteome and malting characteristics of three barley lines grown in Western Australia, differing in genetic background and growing location, by applying liquid chromatography-mass spectrometry (LC-MS). Using data-dependent acquisition LC-MS, 1571 proteins were detected with high confidence. Quantitative data acquired using sequential window acquisition of all theoretical (SWATH) MS on barley samples resulted in quantitation of 920 proteins. Multivariate analyses revealed that the barley lines' genetics and their growing locations are strongly correlated between proteins and desired traits such as the malt yield. Linking meteorological data with proteomic measurements revealed how high-temperature stress in northern regions affects seed temperature tolerance during malting, resulting in a higher malt yield. Our results show the impact of environmental conditions on the barley proteome and malt characteristics; these findings have the potential to expedite breeding programs and malt quality prediction.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University,
School of Science, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University,
School of Science, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - James Broadbent
- CSIRO
Agriculture and Food, 306 Carmody Rd, St. Lucia, QLD 4067, Australia
| | - Utpal Bose
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University,
School of Science, 270 Joondalup Dr, Joondalup, WA 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Rd, St. Lucia, QLD 4067, Australia
| | - Mitchell G. Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University,
School of Science, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Ian B. Edwards
- Edstar
Genetics Pty Ltd., SABC, Loneragan Building, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University,
School of Science, 270 Joondalup Dr, Joondalup, WA 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Rd, St. Lucia, QLD 4067, Australia
| |
Collapse
|
8
|
Hudzenko VM, Polishchuk TP, Lysenko AA, Fedorenko IV, Fedorenko MV, Khudolii LV, Ishchenko VA, Kozelets HM, Babenko AI, Tanchyk SP, Mandrovska SM. Elucidation of gene action and combining ability for productive tillering in spring barley. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement.
Collapse
|
9
|
Laidig F, Feike T, Klocke B, Macholdt J, Miedaner T, Rentel D, Piepho HP. Long-term breeding progress of yield, yield-related, and disease resistance traits in five cereal crops of German variety trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3805-3827. [PMID: 34652455 PMCID: PMC8580907 DOI: 10.1007/s00122-021-03929-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Considerable breeding progress in cereal and disease resistances, but not in stem stability was found. Ageing effects decreased yield and increased disease susceptibility indicating that new varieties are constantly needed. Plant breeding and improved crop management generated considerable progress in cereal performance over the last decades. Climate change, as well as the political and social demand for more environmentally friendly production, require ongoing breeding progress. This study quantified long-term trends for breeding progress and ageing effects of yield, yield-related traits, and disease resistance traits from German variety trials for five cereal crops with a broad spectrum of genotypes. The varieties were grown over a wide range of environmental conditions during 1988-2019 under two intensity levels, without (I1) and with (I2) fungicides and growth regulators. Breeding progress regarding yield increase was the highest in winter barley followed by winter rye hybrid and the lowest in winter rye population varieties. Yield gaps between I2 and I1 widened for barleys, while they shrank for the other crops. A notable decrease in stem stability became apparent in I1 in most crops, while for diseases generally a decrasing susceptibility was found, especially for mildew, brown rust, scald, and dwarf leaf rust. The reduction in disease susceptibility in I2 (treated) was considerably higher than in I1. Our results revealed that yield performance and disease resistance of varieties were subject to considerable ageing effects, reducing yield and increasing disease susceptibility. Nevertheless, we quantified notable achievements in breeding progress for most disease resistances. This study indicated an urgent and continues need for new improved varieties, not only to combat ageing effects and generate higher yield potential, but also to offset future reduction in plant protection intensity.
Collapse
Affiliation(s)
- F Laidig
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany.
| | - T Feike
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - B Klocke
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - J Macholdt
- Institute of Plant Breeding I and Agronomy, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
- Department of Plant and Environmental Sciences, Section of Environmental Chemistry and Physics, University of Copenhagen, 1871, Frederiksberg, Copenhagen, Denmark
| | - T Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, 70599, Stuttgart, Germany
| | - D Rentel
- Bundessortenamt, Osterfelddamm 60, 30627, Hannover, Germany
| | - H P Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany
| |
Collapse
|
10
|
Barmeier G, Hu Y, Schmidhalter U. Partitioning and Translocation of Dry Matter and Nitrogen During Grain Filling in Spring Barley Varieties and Their Roles in Determining Malting Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:722871. [PMID: 34497628 PMCID: PMC8419453 DOI: 10.3389/fpls.2021.722871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
To meet the strict requirements for the malting quality of both grain size and protein content for malting barley, a better understanding of the partitioning and remobilization of dry matter (DM) and nitrogen (N) from individual vegetative organs during grain filling may contribute to adjusting a balance in both quality parameters to satisfy the malting criteria of the brewing industry. A 2-year experiment that included 23 spring malting barley varieties was carried out to determine the DM and N partitioning in different organs at anthesis and maturity and to estimate their remobilization to grains. In contrast to the genetic variation of the 23 barley varieties, year effect was the most important single factor influencing the DM and N accumulation at pre-anthesis, and the DM and N translocation from their reserves at pre-anthesis. Post-anthesis assimilates accounted for 71-94% of the total grain yield among the barley varieties in 2014 and 53-81% in 2015. In contrast, the N reserved in vegetative tissues at anthesis contributed to barley grain N from 67% in the variety Union to 91% in the variety Marthe in 2014, and 71% in the variety Grace to 97% in the variety Shakira in 2015. The results concluded that photosynthetically derived assimilates at post-anthesis played an important role in determining grain size, whereas N reserves at pre-anthesis and N remobilization at post-anthesis probably determined the grain protein content of the malting barley. To achieve a high quality of malting barley grains in both grain size and protein content simultaneously, balancing photosynthetic assimilates at post-anthesis and N reserves at pre-anthesis and N remobilization should be considered as strategies for the combination of the selection of spring malting barley varieties together with agronomic N management.
Collapse
|
11
|
Snowdon RJ, Wittkop B, Chen TW, Stahl A. Crop adaptation to climate change as a consequence of long-term breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1613-1623. [PMID: 33221941 PMCID: PMC8205907 DOI: 10.1007/s00122-020-03729-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 05/09/2023]
Abstract
Major global crops in high-yielding, temperate cropping regions are facing increasing threats from the impact of climate change, particularly from drought and heat at critical developmental timepoints during the crop lifecycle. Research to address this concern is frequently focused on attempts to identify exotic genetic diversity showing pronounced stress tolerance or avoidance, to elucidate and introgress the responsible genetic factors or to discover underlying genes as a basis for targeted genetic modification. Although such approaches are occasionally successful in imparting a positive effect on performance in specific stress environments, for example through modulation of root depth, major-gene modifications of plant architecture or function tend to be highly context-dependent. In contrast, long-term genetic gain through conventional breeding has incrementally increased yields of modern crops through accumulation of beneficial, small-effect variants which also confer yield stability via stress adaptation. Here we reflect on retrospective breeding progress in major crops and the impact of long-term, conventional breeding on climate adaptation and yield stability under abiotic stress constraints. Looking forward, we outline how new approaches might complement conventional breeding to maintain and accelerate breeding progress, despite the challenges of climate change, as a prerequisite to sustainable future crop productivity.
Collapse
Affiliation(s)
- Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Benjamin Wittkop
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Tsu-Wei Chen
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Lentzeallee 75, 14195, Berlin, Germany
| | - Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut (JKI), Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| |
Collapse
|
12
|
Grant KR, Brennan M, Hoad SP. The Structure of the Barley Husk Influences Its Resistance to Mechanical Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:614334. [PMID: 33574825 PMCID: PMC7871009 DOI: 10.3389/fpls.2020.614334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This paper explores the links between genotype, plant development, plant structure and plant material properties. The barley husk has two organs, the lemma and the palea, which protect the grain. When the husk is exposed to mechanical stress, such as during harvesting, it can be damaged or detached. This is known as grain skinning, which is detrimental to grain quality and has a significant economic impact on industry. This study focused on the lemma, the husk organ which is most susceptible to grain skinning. This study tested three hypotheses: (1) genotype and plant development determine lemma structure, (2) lemma structure influences the material properties of the lemma, and (3) the material properties of the lemma determine grain skinning risk. The effect of genotype was investigated by using plant material from four malting barley varieties: two with a high risk of grain skinning, two with a low risk. Plant material was assessed at two stages of plant development (anthesis, GS 65; grain filling, GS 77). Structure was assessed using light microscopy to measure three physiological features: thickness, vasculature and cell area. Material properties were approximated using a controlled impact assay and by analyzing fragmentation behavior. Genotype had a significant effect on lemma structure and material properties from anthesis. This indicates that differences between genotypes were established during floral development. The lemma was significantly thinner in high risk genotypes, compared to low risk genotypes. Consequently, in high risk genotypes, the lemma was significantly more likely to fragment. This indicates a relationship between reduced lemma thickness and increased fragmentation. Traditionally, a thin husk has been considered beneficial for malting quality, due to an association with malt extract. However, this study finds a thin lemma is less resistant to mechanical stress. This may explain the differences in grain skinning risk in the genotypes studied.
Collapse
Affiliation(s)
- Kathryn R. Grant
- School of Biological Sciences, College of Science and Engineering, Institute of Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Maree Brennan
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Stephen P. Hoad
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Twomey AJ, Cromie AR, McHugh N, Berry DP. Validation of a beef cattle maternal breeding objective based on a cross-sectional analysis of a large national cattle database. J Anim Sci 2020; 98:skaa322. [PMID: 33011772 PMCID: PMC7751150 DOI: 10.1093/jas/skaa322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the importance of validating any technology prior to recommendation for use, few studies exist in the scientific literature which have demonstrated the superior performance of high-ranking animals in a given total merit index; this is especially true for maternal cattle selection indexes. The objective of the present study was to demonstrate the impact of the Irish total merit maternal-based index and provide the benefits of using the Irish total merit maternal-based beef index as part of a breeding policy. The validation exercise was undertaken using 269,407 records (which included the cow's own records and her progeny records) from 92,300 females differing in a total merit index for maternal value; a comparison was also made with the Irish terminal index. Association analyses were undertaken within the framework of linear and threshold mixed models; the traits analyzed were fertility (e.g., calving interval), slaughter (e.g., harvest weight), live weight (e.g., weaning weight), and producer-recorded traits (e.g., docility). All traits were analyzed with the maternal index and terminal index fitted as covariate(s) separately. Depending on the independent variable analyzed, the other fixed effects included: parity of cow, heterosis and recombination loss of cow and/or progeny, gender of progeny, and the estimated breeding value of the sire; contemporary group was included as a random effect. The results demonstrate the effectiveness of using total merit indexes to improve performance in a whole range of different traits, despite the often antagonistic genetic correlations among traits that underpin the index. Cows excelling on the maternal index had less calving difficulty, superior fertility performance, lighter carcasses, and live weight, as well as being more easily managed. Additionally, progeny of higher maternal index cows were lighter at birth and more docile albeit with a small impact on slaughter traits. In contrast, higher terminal index cows had more calving difficulty, compromised fertility and had heavier carcasses themselves as well as their progeny. While the differences in phenotypic performance between groups on maternal index was, in most instances, relatively small, the benefits are: (1) expected to be greater when more genetically extreme groups of animals are evaluated and (2) expected to accumulate over time given the cumulative and permanent properties of breeding schemes.
Collapse
Affiliation(s)
- Alan J Twomey
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co., Cork, Ireland
| | - Andrew R Cromie
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co., Cork, Ireland
| | - Noirin McHugh
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co., Cork, Ireland
| | - Donagh P Berry
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
14
|
Looseley ME, Ramsay L, Bull H, Swanston JS, Shaw PD, Macaulay M, Booth A, Russell JR, Waugh R, Thomas WTB. Association mapping of malting quality traits in UK spring and winter barley cultivar collections. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2567-2582. [PMID: 32506274 PMCID: PMC7419451 DOI: 10.1007/s00122-020-03618-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Historical malting quality data was collated from UK national and recommended list trial data and used in a GWAS. 25 QTL were identified, with the majority from spring barley cultivar sets. In Europe, the most economically significant use of barley is the production of malt for use in the brewing and distilling industries. As such, selection for traits related to malting quality is of great commercial interest. In order to study the genetic basis of variation for malting quality traits in UK cultivars, a historical set of trial data was collated from national and recommended list trials from the period 1988 to 2016. This data was used to estimate variety means for 20 quality related traits in 451 spring barley cultivars, and 407 winter cultivars. Genotypes for these cultivars were generated using iSelect 9k and 50k genotyping platforms, and a genome wide association scan performed to identify malting quality quantitative trait loci (QTL). 24 QTL were identified in spring barley cultivars, and 2 from the winter set. A number of these correspond to known malting quality related genes but the remainder represents novel genetic variation that is accessible to breeders for the genetic improvement of new cultivars.
Collapse
Affiliation(s)
- Mark E Looseley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Xelect Ltd, Horizon House, Abbey Walk, St Andrews, Fife, KY16 9LB, Scotland, UK
| | - Luke Ramsay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Hazel Bull
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd., Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - J Stuart Swanston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Paul D Shaw
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Malcolm Macaulay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Joanne R Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | |
Collapse
|
15
|
Würschum T, Leiser WL, Langer SM, Tucker MR, Longin CFH. Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2071-2084. [PMID: 29959471 DOI: 10.1007/s00122-018-3133-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 05/24/2023]
Abstract
Phenotypic and genetic analysis of six spike and kernel characteristics in wheat revealed geographic patterns as well as long-term trends arising from breeding progress, particularly in regard to spikelet fertility, i.e. the number of kernels per spikelet, a grain yield component that appears to underlie the increase in the number of kernels per spike. Wheat is a staple crop of global relevance that faces continuous demands for improved grain yield. In this study, we evaluated a panel of 407 winter wheat cultivars for six characteristics of spike and kernel development. All traits showed a large genotypic variation and had high heritabilities. We observed geographic patterns for some traits in addition to long-term trends showing a continuous increase in the number of kernels per spike. This breeding progress is likely due to the increase in spikelet fertility, i.e. the number of kernels per spikelet. While the number of kernels per spike and spikelet fertility were significantly positively correlated, both traits showed a significant negative correlation with thousand-kernel weight. Genome-wide association mapping identified only small- and moderate-effect QTL and an effect of the phenology loci Rht-D1 and Ppd-D1 on some of the traits. The allele frequencies of some QTL matched the observed geographic patterns. The quantitative inheritance of all traits with contributions of additional small-effect QTL was substantiated by genomic prediction. Taken together, our results suggest that some of the examined traits were already the basis of grain yield progress in wheat in the past decades. A more targeted exploitation of the available variation, potentially coupled with genomic approaches, may assist wheat breeding in continuing to increase yield levels globally.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- Bayer AG, European Wheat Breeding Center, Am Schwabeplan 8, 06466, Gatersleben, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|