1
|
Wu X, Yang Z, Zhu Y, Zhan Y, Li Y, Teng W, Han Y, Zhao X. Bioinformatics Identification and Expression Analysis of Acetyl-CoA Carboxylase Reveal Its Role in Isoflavone Accumulation during Soybean Seed Development. Int J Mol Sci 2024; 25:10221. [PMID: 39337707 PMCID: PMC11432495 DOI: 10.3390/ijms251810221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Isoflavones belong to the class of flavonoid compounds, which are important secondary metabolites that play a crucial role in plant development and defense. Acetyl-CoA carboxylase (ACCase) is a biotin-dependent enzyme that catalyzes the conversion of Acetyl-CoA into Malonyl-CoA in plants. It is a key enzyme in fatty acid synthesis and also catalyzes the production of various secondary metabolites. However, information on the ACC gene family in the soybean (Glycine max L. Merr.) genome and the specific members involved in isoflavone biosynthesis is still lacking. In this study, we identified 20 ACC family genes (GmACCs) from the soybean genome and further characterized their evolutionary relationships and expression patterns. Phylogenetic analysis showed that the GmACCs could be divided into five groups, and the gene structures within the same groups were highly conserved, indicating that they had similar functions. The GmACCs were randomly distributed across 12 chromosomes, and collinearity analysis suggested that many GmACCs originated from tandem and segmental duplications, with these genes being under purifying selection. In addition, gene expression pattern analysis indicated that there was functional divergence among GmACCs in different tissues. The GmACCs reached their peak expression levels during the early or middle stages of seed development. Based on the transcriptome and isoflavone content data, a weighted gene co-expression network was constructed, and three candidate genes (Glyma.06G105900, Glyma.13G363500, and Glyma.13G057400) that may positively regulate isoflavone content were identified. These results provide valuable information for the further functional characterization and application of GmACCs in isoflavone biosynthesis in soybean.
Collapse
Affiliation(s)
- Xu Wu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Yang Z, Wu X, Zhu Y, Qu Y, Zhou C, Yuan M, Zhan Y, Li Y, Teng W, Zhao X, Han Y. Joint GWAS and WGCNA Identify Genes Regulating the Isoflavone Content in Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18573-18584. [PMID: 39105709 DOI: 10.1021/acs.jafc.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Isoflavone is a secondary metabolite of the soybean phenylpropyl biosynthesis pathway with physiological activity and is beneficial to human health. In this study, the isoflavone content of 205 soybean germplasm resources from 3 locations in 2020 showed wide phenotypic variation. A joint genome-wide association study (GWAS) and weighted gene coexpression network analysis (WGCNA) identified 33 single-nucleotide polymorphisms and 11 key genes associated with soybean isoflavone content. Gene ontology enrichment analysis, gene coexpression, and haplotype analysis revealed natural variations in the Glyma.12G109800 (GmOMT7) gene and promoter region, with Hap1 being the elite haplotype. Transient overexpression and knockout of GmOMT7 increased and decreased the isoflavone content, respectively, in hairy roots. The combination of GWAS and WGCNA effectively revealed the genetic basis of soybean isoflavone and identified potential genes affecting isoflavone synthesis and accumulation in soybean, providing a valuable basis for the functional study of soybean isoflavone.
Collapse
Affiliation(s)
- Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Xu Wu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yuewen Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing 163711, China
| | - Ming Yuan
- Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar 161006, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Lin P, Chai J, Wang A, Zhong H, Wang K. High-Density Genetic Map Construction and Quantitative Trait Locus Analysis of Fruit- and Oil-Related Traits in Camellia oleifera Based on Double Digest Restriction Site-Associated DNA Sequencing. Int J Mol Sci 2024; 25:8840. [PMID: 39201527 PMCID: PMC11354348 DOI: 10.3390/ijms25168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Camellia oleifera, an important tree species and source of edible oil in China, has received significant attention owing to the oil's high unsaturated fatty acid content, which has benefits for human health. However, the mechanisms underlying C. oleifera yield and oil quality are largely unknown. In this study, 180 F1 progenies were obtained from two parents with obvious differences in fruit- and oil-related traits. We constructed a high-density genetic map using a double digest restriction site-associated DNA sequencing (ddRAD-Seq) strategy in C. oleifera. This map spanned 3327 cM and anchored 2780 markers in 15 linkage groups (LGs), with an average marker interval of 1.20 cM. A total of 221 quantitative trait loci (QTLs) associated with fruit- and oil-related traits were identified across three years' worth of phenotypic data. Nine QTLs were detected simultaneously in at least two different years, located on LG02, LG04, LG05, LG06, and LG11, and explained 8.5-16.6% of the phenotypic variation in the corresponding traits, respectively. Seventeen major QTLs were obtained that explained 13.0-16.6% of the phenotypic variance. Eleven and five flanking SNPs of major QTLs for fruit- and oil-related traits were detected which could be used for marker-assisted selection in C. oleifera breeding programs. Furthermore, 202 potential candidate genes in QTL regions were identified based on the collinearity of the genetic map and the C. oleifera "CON" genome. A potential regulatory network controlling fruit development and oil biosynthesis was constructed to dissect the complex mechanism of oil accumulation. The dissection of these QTLs will facilitate the gene cloning underlying lipid synthesis and increase our understanding in order to enhance C. oleifera oil yield and quality.
Collapse
Affiliation(s)
- Ping Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (P.L.); (J.C.); (A.W.); (H.Z.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jingyu Chai
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (P.L.); (J.C.); (A.W.); (H.Z.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Anni Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (P.L.); (J.C.); (A.W.); (H.Z.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huiqi Zhong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (P.L.); (J.C.); (A.W.); (H.Z.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Kailiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (P.L.); (J.C.); (A.W.); (H.Z.)
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
4
|
Nawaz MA, Khalil HK, Azeem F, Ali MA, Pamirsky IE, Golokhvast KS, Yang SH, Atif RM, Chung G. In Silico Comparison of WRKY Transcription Factors in Wild and Cultivated Soybean and Their Co-expression Network Arbitrating Disease Resistance. Biochem Genet 2024:10.1007/s10528-024-10701-z. [PMID: 38411942 DOI: 10.1007/s10528-024-10701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
WRKY Transcription factors (TFs) play critical roles in plant defence mechanisms that are activated in response to biotic and abiotic stresses. However, information on the Glycine soja WRKYs (GsoWRKYs) is scarce. Owing to its importance in soybean breeding, here we identified putative WRKY TFs in wild soybean, and compared the results with Glycine max WRKYs (GmaWRKYs) by phylogenetic, conserved motif, and duplication analyses. Moreover, we explored the expression trends of WRKYs in G. max (oomycete, fungi, virus, bacteria, and soybean cyst nematode) and G. soja (soybean cyst nematode), and identified commonly expressed WRKYs and their co-expressed genes. We identified, 181 and 180 putative WRKYs in G. max and G. soja, respectively. Though the number of WRKYs in both studied species is almost the same, they differ in many ways, i.e., the number of WRKYs on corresponding chromosomes, conserved domain structures, WRKYGQK motif variants, and zinc-finger motifs. WRKYs in both species grouped in three major clads, i.e., I-III, where group-II had sub-clads IIa-IIe. We found that GsoWRKYs expanded mostly through segmental duplication. A large number of WRKYs were expressed in response to biotic stresses, i.e., Phakospora pachyrhizi, Phytoplasma, Heterodera glycines, Macrophomina phaseolina, and Soybean mosaic virus; 56 GmaWRKYs were commonly expressed in soybean plants infected with these diseases. Finally, 30 and 63 GmaWRKYs and GsoWRKYs co-expressed with 205 and 123 non-WRKY genes, respectively, indicating that WRKYs play essential roles in biotic stress tolerance in Glycine species.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Russia, 634050.
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia.
| | - Hafiz Kashif Khalil
- Department of Plant Breeding and Genetics / CAS-AFS, University of Agriculture, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Igor Eduardovich Pamirsky
- Siberian Federal Scientific Centre of AgrobiotechnologyCentralnaya, Presidium, Krasnoobsk, Russia, 633501
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Russia, 634050
- Siberian Federal Scientific Centre of AgrobiotechnologyCentralnaya, Presidium, Krasnoobsk, Russia, 633501
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, Lenin Str. 36, Tomsk, Russia, 634050
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Yeosu-si, 59626, South Korea
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics / CAS-AFS, University of Agriculture, Faisalabad, Pakistan.
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Yeosu-si, 59626, South Korea.
| |
Collapse
|
5
|
Yang Q, Wang G. Isoflavonoid metabolism in leguminous plants: an update and perspectives. FRONTIERS IN PLANT SCIENCE 2024; 15:1368870. [PMID: 38405585 PMCID: PMC10884283 DOI: 10.3389/fpls.2024.1368870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Isoflavonoids constitute a well-investigated category of phenylpropanoid-derived specialized metabolites primarily found in leguminous plants. They play a crucial role in legume development and interactions with the environment. Isoflavonoids usually function as phytoalexins, acting against pathogenic microbes in nature. Additionally, they serve as signaling molecules in rhizobial symbiosis. Notably, owing to their molecular structure resembling human estrogen, they are recognized as phytoestrogens, imparting positive effects on human health. This review comprehensively outlines recent advancements in research pertaining to isoflavonoid biosynthesis, transcriptional regulation, transport, and physiological functions, with a particular emphasis on soybean plants. Additionally, we pose several questions to encourage exploration into novel contributors to isoflavonoid metabolism and their potential roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Qilin Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Horitani M, Yamada R, Taroura K, Maeda A, Anai T, Watanabe S. Identification of Genes Responsible for the Synthesis of Glycitein Isoflavones in Soybean Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:156. [PMID: 38256710 PMCID: PMC10818676 DOI: 10.3390/plants13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Soybean (Glycine max (L.) Merrill) isoflavones are among the most important secondary metabolites, with functional benefits for human health. Soybeans accumulate three aglycone forms of isoflavones: genistein, daidzein, and glycitein. Soybean landrace Kumachi-1 does not accumulate malonylglycitin at all. Gene structure analysis indicated that Glyma.11G108300 (F6H4) of Kumachi-1 has a 3.8-kbp insertion, resulting in a truncated flavonoid 6-hydroxylase (F6H) sequence compared to the wild-type sequence in Fukuyutaka. Mapping experiments using a mutant line (MUT1246) with a phenotype similar to that of Kumachi-1, with a single-nucleotide polymorphism (SNP) in F6H4, revealed co-segregation of this mutation and the absence of glycitein isoflavones. We also identified a mutant line (K01) that exhibited a change in the HPLC retention time of glycitein isoflavones, accumulating glycoside and malonylglycoside forms of 6-hydroxydaidzein. K01 contains an SNP that produces a premature stop codon in Glyma.01G004200 (IOMT3), a novel soybean isoflavone O-methyltransferase (IOMT) gene. We further analyzed transgenic hairy roots of soybeans expressing Glyma.11G108300 (F6H4) and Glyma.01G004200 (IOMT3). Those overexpressing F6H4 accumulated malonylglycoside forms of 6-hydroxydaidzein (M_6HD), and co-expression of F6H4 and IOMT3 increased the level of malonylglycitin but not of M_6HD. These results indicate that F6H4 and IOMT3 are responsible for glycitein biosynthesis in soybean seed hypocotyl.
Collapse
Affiliation(s)
- Masaki Horitani
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Risa Yamada
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Kanami Taroura
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Akari Maeda
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Toyoaki Anai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Satoshi Watanabe
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| |
Collapse
|
7
|
Kim JM, Seo JS, Lee JW, Lyu JI, Ryu J, Eom SH, Ha BK, Kwon SJ. QTL mapping reveals key factors related to the isoflavone contents and agronomic traits of soybean (Glycine max). BMC PLANT BIOLOGY 2023; 23:517. [PMID: 37880577 PMCID: PMC10601131 DOI: 10.1186/s12870-023-04519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Soybean is a valuable source of edible protein and oil, as well as secondary metabolites that can be used in food products, cosmetics, and medicines. However, because soybean isoflavone content is a quantitative trait influenced by polygenes and environmental interactions, its genetic basis remains unclear. RESULTS This study was conducted to identify causal quantitative trait loci (QTLs) associated with soybean isoflavone contents. A mutant-based F2 population (190 individuals) was created by crossing the Korean cultivar Hwanggeum with low isoflavone contents (1,558 µg g-1) and the soybean mutant DB-088 with high isoflavone contents (6,393 µg g-1). A linkage map (3,049 cM) with an average chromosome length of 152 cM was constructed using the 180K AXIOM® SoyaSNP array. Thirteen QTLs related to agronomic traits were mapped to chromosomes 2, 3, 11, 13, 19, and 20, whereas 29 QTLs associated with isoflavone contents were mapped to chromosomes 1, 3, 8, 11, 14, 15, and 17. Notably, the qMGLI11, qMGNI11, qADZI11, and qTI11, which located Gm11_9877690 to Gm11_9955924 interval on chromosome 11, contributed to the high isoflavone contents and explained 11.9% to 20.1% of the phenotypic variation. This QTL region included four candidate genes, encoding β-glucosidases 13, 14, 17-1, and 17-2. We observed significant differences in the expression levels of these genes at various seed developmental stages. Candidate genes within the causal QTLs were functionally characterized based on enriched GO terms and KEGG pathways, as well as the results of a co-expression network analysis. A correlation analysis indicated that certain agronomic traits (e.g., days to flowering, days to maturity, and plant height) are positively correlated with isoflavone content. CONCLUSIONS Herein, we reported that the major QTL associated with isoflavone contents was located in the interval from Gm11_9877690 to Gm11_9955924 (78 kb) on chromosome 11. Four β-glucosidase genes were identified that may be involved in high isoflavone contents of soybean DB-088. Thus, the mutant alleles from soybean DB-088 may be useful for marker-assisted selection in developing soybean lines with high isoflavone contents and superior agronomic traits.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong Woo Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae Il Lyu
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Seok Hyun Eom
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
8
|
Wang L, Jiao Y, Bi Y, Hu Y, Jiang Y, Wang S, Wang S. Nodulation number tempers the relative importance of stochastic processes in the assembly of soybean root-associated communities. ISME COMMUNICATIONS 2023; 3:89. [PMID: 37640896 PMCID: PMC10462722 DOI: 10.1038/s43705-023-00296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Identifying the ecological forces that structure root-associated microbial communities is an essential step toward more sustainable agriculture. Legumes are widely utilized as model plants to study selective forces and their functioning in plant-microbial interactions owing to their ability to establish mutualism with rhizobia. Root nodules act as symbiotic organs to optimize the cost-benefit balance in this mutualistic relationship by modulating the number of nodules. However, it is not known whether the number of nodules is related to the structure of root-associated bacterial communities. Here, the root-associated bacterial communities of soybean grown in native soil by means of soybean cultivars with super- or normal nodulation were investigated across four developmental stages. We compared ecological processes between communities and found decreased relative importance of neutral processes for super-nodulating soybean, although the overall structures resembled those of normal-nodulating soybean. We identified the generalist core bacterial populations in each root-associated compartment, that are shared across root-associated niches, and persist through developmental stages. Within core bacterial species, the relative abundances of bacterial species in the rhizosphere microbiome were linked to host-plant functional traits and can be used to predict these traits from microbes using machine learning algorithms. These findings broaden the comprehensive understanding of the ecological forces and associations of microbiotas in various root-associated compartments and provide novel insights to integrate beneficial plant microbiomes into agricultural production to enhance plant performance.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China
- School of Resources and Environment, Northeast Agricultural University, 150030, Harbin, PR China
| | - Yan Jiao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China
| | - Yingdong Bi
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 150028, Harbin, PR China
| | - Yanli Hu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China
| | - Yan Jiang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China
| | - Shaodong Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China.
| | - Sui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China.
| |
Collapse
|
9
|
Luo S, Jia J, Liu R, Wei R, Guo Z, Cai Z, Chen B, Liang F, Xia Q, Nian H, Cheng Y. Identification of major QTLs for soybean seed size and seed weight traits using a RIL population in different environments. FRONTIERS IN PLANT SCIENCE 2023; 13:1094112. [PMID: 36714756 PMCID: PMC9874164 DOI: 10.3389/fpls.2022.1094112] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The seed weight of soybean [Glycine max (L.) Merr.] is one of the major traits that determine soybean yield and is closely related to seed size. However, the genetic basis of the synergistic regulation of traits related to soybean yield is unclear. METHODS To understand the molecular genetic basis for the formation of soybean yield traits, the present study focused on QTLs mapping for seed size and weight traits in different environments and target genes mining. RESULTS A total of 85 QTLs associated with seed size and weight traits were identified using a recombinant inbred line (RIL) population developed from Guizao1×B13 (GB13). We also detected 18 environmentally stable QTLs. Of these, qSL-3-1 was a novel QTL with a stable main effect associated with seed length. It was detected in all environments, three of which explained more than 10% of phenotypic variance (PV), with a maximum of 15.91%. In addition, qSW-20-3 was a novel QTL with a stable main effect associated with seed width, which was identified in four environments. And the amount of phenotypic variance explained (PVE) varied from 9.22 to 21.93%. Five QTL clusters associated with both seed size and seed weight were summarized by QTL cluster identification. Fifteen candidate genes that may be involved in regulating soybean seed size and weight were also screened based on gene function annotation and GO enrichment analysis. DISCUSSION The results provide a biologically basic reference for understanding the formation of soybean seed size and weight traits.
Collapse
Affiliation(s)
- Shilin Luo
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Jia Jia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Riqian Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ruqian Wei
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Zhibin Guo
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Bo Chen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Fuwei Liang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Qiuju Xia
- Rice Molecular Breeding Institute, Granlux Associated Grains, Shenzhen, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Zhong Y, Wen K, Li X, Wang S, Li S, Zeng Y, Cheng Y, Ma Q, Nian H. Identification and Mapping of QTLs for Sulfur-Containing Amino Acids in Soybean ( Glycine max L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:398-410. [PMID: 36574335 DOI: 10.1021/acs.jafc.2c05896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soybean is a major source of high-quality protein for humans and animals. The content of sulfur-containing amino acids (SAA) in soybean is insufficient, which has become the main factor limiting soybean nutrition. In this study, we used the high-density genetic maps derived from Guizao 1 and Brazil 13 to evaluate the quantitative trait loci of cysteine (Cys), methionine (Met), SAA, glycinin (7S), β-conglycinin (11S), ratio of glycinin to β-conglycinin (RGC), and protein content (PC). In genetic map linkage analysis, the major and stable 44 QTLs were detected, which shared nine bin intervals. Among them, the bin interval (bin157-bin160) on chromosome 5 was detected in multiple environments as a stable QTL, which was linked to 11S, 7S, RGC, and SSA. Based on the analysis of bioinformatics and RNA-sequencing data, 16 differentially expressed genes (DEGs) within these QTLs were selected as candidate genes. These results will help to elucidate the genetic mechanism of soybean SAA-related traits and provide the basis for the gene mining of sulfur-containing amino acids.
Collapse
Affiliation(s)
- Yiwang Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Key Laboratory of Vegetable Biology of Hainan Province, Vegetable Research Institute of Hainan Academy of Agricultural Sciences, Haikou 570228, Hainan, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Sanya 572025, Hainan, People's Republic of China
| | - Xingang Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shasha Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Sansan Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yuhong Zeng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, Hainan, People's Republic of China
| |
Collapse
|
11
|
Xue Y, Gao H, Liu X, Tang X, Cao D, Luan X, Zhao L, Qiu L. QTL Mapping of Palmitic Acid Content Using Specific-Locus Amplified Fragment Sequencing (SLAF-Seq) Genotyping in Soybeans (Glycine max L.). Int J Mol Sci 2022; 23:ijms231911273. [PMID: 36232577 PMCID: PMC9569734 DOI: 10.3390/ijms231911273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/27/2022] Open
Abstract
Soybeans are essential crops that supply protein and oil. The composition and contents of soybean fatty acids are relevant to human health and have a significant relationship with soybean oil processing and applications. Identifying quantitative trait locus (QTL) genes related to palmitic acid could facilitate the development of a range of nutritive soybean cultivars using molecular marker-assisted selection. In this study, we used a cultivar with higher palmitic acid content, ‘Dongnong42’, and a lower palmitic acid content cultivar, ‘Hobbit’, to establish F2:6 recombinant inbred lines. A high-density genetic map containing 9980 SLAF markers was constructed and distributed across 20 soybean chromosomes. The genetic map contained a total genetic distance of 2602.58 cM and an average genetic distance of 0.39 cM between adjacent markers. Two QTLs related to palmitic acid content were mapped using inclusive composite interval mapping, explaining 4.2–10.1% of the phenotypic variance in three different years and environments, including the QTL included in seed palmitic 7-3, which was validated by developing SSR markers. Based on the SNP/Indel and significant differential expression analyses of Dongnong42 and Hobbit, two genes, Glyma.15g119700 and Glyma.15g119800, were selected as candidate genes. The high-density genetic map, QTLs, and molecular markers will be helpful for the map-based cloning of palmitic acid content genes. These could be used to accelerate breeding for high nutritive value cultivars via molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Huawei Gao
- National Key Facility for Crop Gene Resources and Genetic Improvemen, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaofei Tang
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Dan Cao
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (L.Z.); (L.Q.)
| | - Lijuan Qiu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
- National Key Facility for Crop Gene Resources and Genetic Improvemen, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (L.Z.); (L.Q.)
| |
Collapse
|
12
|
Kim JM, Lyu JI, Kim DG, Hung NN, Seo JS, Ahn JW, Lim YJ, Eom SH, Ha BK, Kwon SJ. Genome wide association study to detect genetic regions related to isoflavone content in a mutant soybean population derived from radiation breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:968466. [PMID: 36061785 PMCID: PMC9433930 DOI: 10.3389/fpls.2022.968466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Isoflavones are major secondary metabolites that are exclusively produced by legumes, including soybean. Soy isoflavones play important roles in human health as well as in the plant defense system. The isoflavone content is influenced by minor-effect quantitative trait loci, which interact with polygenetic and environmental factors. It has been difficult to clarify the regulation of isoflavone biosynthesis because of its complex heritability and the influence of external factors. Here, using a genotype-by-sequencing-based genome-wide association mapping study, 189 mutant soybean genotypes (the mutant diversity pool, MDP) were genotyped on the basis of 25,646 high-quality single nucleotide polymorphisms (SNPs) with minor allele frequency of >0.01 except for missing data. All the accessions were phenotyped by determining the contents of 12 isoflavones in the soybean seeds in two consecutive years (2020 and 2021). Then, quantitative trait nucleotides (QTNs) related to isoflavone contents were identified and validated using multi-locus GWAS models. A total of 112 and 46 QTNs related to isoflavone contents were detected by multiple MLM-based models in 2020 and 2021, respectively. Of these, 12 and 5 QTNs were related to more than two types of isoflavones in 2020 and 2021, respectively. Forty-four QTNs were detected within the 441-Kb physical interval surrounding Gm05:38940662. Of them, four QTNs (Gm05:38936166, Gm05:38936167, Gm05:38940662, and Gm05:38940717) were located at Glyma.05g206900 and Glyma.05g207000, which encode glutathione S-transferase THETA 1 (GmGSTT1), as determined from previous quantitative trait loci annotations and the literature. We detected substantial differences in the transcript levels of GmGSTT1 and two other core genes (IFS1 and IFS2) in the isoflavone biosynthetic pathway between the original cultivar and its mutant. The results of this study provide new information about the factors affecting isoflavone contents in soybean seeds and will be useful for breeding soybean lines with high and stable concentrations of isoflavones.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jae Il Lyu
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Nguyen Ngoc Hung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin, South Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin, South Korea
| | - Bo-Keun Ha
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
13
|
Yuan B, Yuan C, Wang Y, Liu X, Qi G, Wang Y, Dong L, Zhao H, Li Y, Dong Y. Identification of genetic loci conferring seed coat color based on a high-density map in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:968618. [PMID: 35979081 PMCID: PMC9376438 DOI: 10.3389/fpls.2022.968618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 05/26/2023]
Abstract
Seed coat color is a typical evolutionary trait. Identification of the genetic loci that control seed coat color during the domestication of wild soybean could clarify the genetic variations between cultivated and wild soybean. We used 276 F10 recombinant inbred lines (RILs) from the cross between a cultivated soybean (JY47) and a wild soybean (ZYD00321) as the materials to identify the quantitative trait loci (QTLs) for seed coat color. We constructed a high-density genetic map using re-sequencing technology. The average distance between adjacent markers was 0.31 cM on this map, comprising 9,083 bin markers. We identified two stable QTLs (qSC08 and qSC11) for seed coat color using this map, which, respectively, explained 21.933 and 26.934% of the phenotypic variation. Two candidate genes (CHS3C and CHS4A) in qSC08 were identified according to the parental re-sequencing data and gene function annotations. Five genes (LOC100786658, LOC100801691, LOC100806824, LOC100795475, and LOC100787559) were predicted in the novel QTL qSC11, which, according to gene function annotations, might control seed coat color. This result could facilitate the identification of beneficial genes from wild soybean and provide useful information to clarify the genetic variations for seed coat color in cultivated and wild soybean.
Collapse
Affiliation(s)
- Baoqi Yuan
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Cuiping Yuan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yumin Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Xiaodong Liu
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangxun Qi
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yingnan Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Lingchao Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yuqiu Li
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| | - Yingshan Dong
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, China
| |
Collapse
|
14
|
Li R, Zou J, Sun D, Jing Y, Wu D, Lian M, Teng W, Zhan Y, Li W, Zhao X, Han Y. Fine-Mapping and Functional Analyses of a Candidate Gene Controlling Isoflavone Content in Soybeans Seed. FRONTIERS IN PLANT SCIENCE 2022; 13:865584. [PMID: 35548294 PMCID: PMC9084227 DOI: 10.3389/fpls.2022.865584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Isoflavones, one of the most important secondary metabolites produced by soybeans (Glycine max (L.) Merr.), are important for a variety of biological processes, and are beneficial for human health. To identify genetic loci underlying soybean isoflavone content, a mapping population containing 119 F5:18 recombinant inbred lines, derived by crossing soybean cultivar "Zhongdou27" with "Dongong8004," was used. We identified 15 QTLs associated with isoflavone contents. A novel loci, qISO19-1, was mapped onto soybean chromosome 19 and was fine-mapped to a 62.8 kb region using a BC2F2 population. We considered GmMT1 as a candidate gene for the qISO19-1 locus due to the significant positive correlation recovered between its expression level and isoflavone content in the seeds of 43 soybean germplasms. Overexpression of GmMT1 in Arabidopsis and soybean cultivars increased isoflavone contents. Transgenic soybeans overexpressing GmMT1 also exhibited improved resistance to pathogenic infection, while transgenic Arabidopsis resisted salt and drought stress.
Collapse
Affiliation(s)
- Ruiqiong Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Jianan Zou
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Dongming Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yan Jing
- College of Tropical Crops, Hainan University, Haikou, China
| | - Depeng Wu
- College of Life Science, Huaiyin Normal University, Huaiyin, China
| | - Ming Lian
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Wang H, Jia J, Cai Z, Duan M, Jiang Z, Xia Q, Ma Q, Lian T, Nian H. Identification of quantitative trait loci (QTLs) and candidate genes of seed Iron and zinc content in soybean [Glycine max (L.) Merr.]. BMC Genomics 2022; 23:146. [PMID: 35183125 PMCID: PMC8857819 DOI: 10.1186/s12864-022-08313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/13/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Deciphering the hereditary mechanism of seed iron (Fe) and zinc (Zn) content in soybean is important and sustainable to address the "hidden hunger" that presently affects approximately 2 billion people worldwide. Therefore, in order to detect genomic regions related to soybean seed Fe and Zn content, a recombinant inbred line (RIL) population with 248 lines was assessed in four environments to detect Quantitative Trait Loci (QTLs) related to soybean seed Fe and Zn content. RESULT Wide variation was found in seed Fe and Zn content in four environments, and genotype, environment, and genotype × environment interactions had significant influences on both the seed Fe and Zn content. A positive correlation was observed between seed Fe content and seed Zn content, and broad-sense heritability (H2) of seed Fe and Zn content were 0.73 and 0.75, respectively. In this study, five QTLs for seed Fe content were detected with 4.57 - 32.71% of phenotypic variation explained (PVE) and logarithm of odds (LOD) scores ranging from 3.60 to 33.79. Five QTLs controlling the seed Zn content were detected, and they individually explained 3.35 to 26.48% of the phenotypic variation, with LOD scores ranging from 3.64 to 20.4. Meanwhile, 409,541 high-quality single-nucleotide variants (SNVs) and 85,102 InDels (except intergenic regions) between two bi-parental lines were identified by whole genome resequencing. A total of 12 candidate genes were reported in one major QTL for seed Fe content and two major QTLs for seed Zn content, with the help of RNA-Seq analysis, gene ontology (GO) enrichment, gene annotation, and bi-parental whole genome sequencing (WGS) data. CONCLUSIONS Limited studies were performed about microelement of soybean, so these results may play an important role in the biofortification of Fe and Zn and accelerate the development of marker-assisted selection (MAS) for breeding soybeans fortified with iron and zinc.
Collapse
Affiliation(s)
- Huan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| | - Jia Jia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| | - Mingming Duan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| | - Ze Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| | - Qiuju Xia
- Rice Molecular Breeding Institute, GRANLUX ASSOCIATED GRAINS, 518024 Shenzhen, Guangdong, People’s Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, 510642 Guangzhou, Guangdong People’s Republic of China
| |
Collapse
|
16
|
Song Z, Li X. Recent Advances in Molecular Marker-Assisted Breeding for Quality Improvement of Traditional Chinese Medicine. Curr Pharm Biotechnol 2021; 22:867-875. [PMID: 32351179 DOI: 10.2174/1389201021666200430121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The quality of Traditional Chinese Medicine (TCM), reflected by its bioactive compounds and associated contents, is directly linked to its clinical efficacy. Therefore, it is of great importance to improve the quality of TCM by increasing the bioactive compound content. METHODS Mapping the active component content-associated QTLs in TCM and further markerassisted breeding has enabled us to rapidly and effectively cultivate new varieties with high bioactive compound contents, which has opened the door for genetic breeding studies on medicinal plants. RESULTS In this paper, a strategy and technical molecular breeding method for TCM are discussed. The development of four methods and progress in functional marker development, as well as the applications of such markers in TCM, are reviewed. CONCLUSION The progress in, challenges of, and future of marker-assisted breeding for quality improvement of TCM are discussed, which provide valuable scientific references for future molecular breeding.
Collapse
Affiliation(s)
- Zhenqiao Song
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
17
|
Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK, Yadav R. Enhancing the Nutritional Quality of Major Food Crops Through Conventional and Genomics-Assisted Breeding. Front Nutr 2020; 7:533453. [PMID: 33324668 PMCID: PMC7725794 DOI: 10.3389/fnut.2020.533453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Nutritional stress is making over two billion world population malnourished. Either our commercially cultivated varieties of cereals, pulses, and oilseed crops are deficient in essential nutrients or the soils in which these crops grow are becoming devoid of minerals. Unfortunately, our major food crops are poor sources of micronutrients required for normal human growth. To overcome the problem of nutritional deficiency, greater emphasis should be laid on the identification of genes/quantitative trait loci (QTLs) pertaining to essential nutrients and their successful deployment in elite breeding lines through marker-assisted breeding. The manuscript deals with information on identified QTLs for protein content, vitamins, macronutrients, micro-nutrients, minerals, oil content, and essential amino acids in major food crops. These QTLs can be utilized in the development of nutrient-rich crop varieties. Genome editing technologies that can rapidly modify genomes in a precise way and will directly enrich the nutritional status of elite varieties could hold a bright future to address the challenge of malnutrition.
Collapse
Affiliation(s)
- Kiran B. Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sushma Rani
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Manjeet Kumar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vikas Gupta
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prashanth H. Babu
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Wu D, Li D, Zhao X, Zhan Y, Teng W, Qiu L, Zheng H, Li W, Han Y. Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:950-963. [PMID: 32862479 DOI: 10.1111/tpj.14972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 05/11/2023]
Abstract
Isoflavone, a secondary metabolite produced by Glycine max (L.) Merr. (soybean), is valuable for human and plant health. The genetic architecture of soybean isoflavone content remains unclear, however, despite several mapping studies. We generated genomic data for 200 soybean cultivars and 150 recombinant inbred lines (RILs) to localize putative loci associated with soybean seed isoflavone content. Using a genome-wide association study (GWAS), we identified 87 single-nucleotide polymorphisms (SNPs) that were significantly associated with isoflavone concentration. Using linkage mapping, we identified 37 quantitative trait loci (QTLs) underlying the content of four isoflavones found in the RILs. A major locus on chromosome 8 (qISO8-1) was co-located by both the GWAS and linkage mapping. qISO8-1 was fine mapped to a 99.5-kb region, flanked by SSR_08_1651 and SSR_08_1656, in a BC2 F5 population. GmMPK1, encoding a mitogen-activated protein kinase, was identified as the causal gene in qISO8-1, and two natural GmMPK1 polymorphisms were significantly associated with isoflavone content. Overexpression of GmMPK1 in soybean hairy roots resulted in increased isoflavone concentrations. Overexpressing GmMPK1 in transgenic soybeans had greater resistance to Phytophthora root rot, suggesting that GmMPK1 might increase soybean resistance to biotic stress by influencing isoflavone content. Our results not only increase our understanding of the genetic architecture of soybean seed isoflavone content, but also provide a framework for the future marker-assisted breeding of high isoflavone content in soybean cultivars.
Collapse
Affiliation(s)
- Depeng Wu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Dongmei Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, 101300, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
19
|
Sarkar MAR, Otsu W, Suzuki A, Hashimoto F, Anai T, Watanabe S. Single-base deletion in GmCHR5 increases the genistein-to-daidzein ratio in soybean seed. BREEDING SCIENCE 2020; 70:265-276. [PMID: 32714048 PMCID: PMC7372027 DOI: 10.1270/jsbbs.19134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 06/11/2023]
Abstract
Novel mutant alleles related to isoflavone content are useful for breeding programs to improve the disease resistance and nutritional content of soybean. However, identification of mutant alleles from high-density mutant libraries is expensive and time-consuming because soybean has a large, complicated genome. Here, we identified the gene responsible for increased genistein-to-daidzein ratio in seed of the mutant line F333ES017D9. For this purpose, we used a time- and cost-effective approach based on selective genotyping of a small number of F2 plants showing the mutant phenotype with nearest-neighboring-nucleotide substitution-high-resolution melting analysis markers, followed by alignment of short reads obtained by next-generation sequencing analysis with the identified locus. In the mutant line, GmCHR5 harbored a single-base deletion that caused a change in the substrate flow in the isoflavone biosynthetic pathway towards genistein. Mutated GmCHR5 was expressed at a lower level during seed development than wild-type GmCHR5. Ectopic overexpression of GmCHR5 increased the production of daidzein derivatives in both the wild-type and mutant plants. The present strategy will be useful for accelerating identification of mutant alleles responsible for traits of interest in agronomically important crops.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Wakana Otsu
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Akihiro Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Fumio Hashimoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toyoaki Anai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Satoshi Watanabe
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| |
Collapse
|
20
|
Li MW, Wang Z, Jiang B, Kaga A, Wong FL, Zhang G, Han T, Chung G, Nguyen H, Lam HM. Impacts of genomic research on soybean improvement in East Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1655-1678. [PMID: 31646364 PMCID: PMC7214498 DOI: 10.1007/s00122-019-03462-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 05/10/2023]
Abstract
It has been commonly accepted that soybean domestication originated in East Asia. Although East Asia has the historical merit in soybean production, the USA has become the top soybean producer in the world since 1950s. Following that, Brazil and Argentina have been the major soybean producers since 1970s and 1990s, respectively. China has once been the exporter of soybean to Japan before 1990s, yet she became a net soybean importer as Japan and the Republic of Korea do. Furthermore, the soybean yield per unit area in East Asia has stagnated during the past decade. To improve soybean production and enhance food security in these East Asian countries, much investment has been made, especially in the breeding of better performing soybean germplasms. As a result, China, Japan, and the Republic of Korea have become three important centers for soybean genomic research. With new technologies, the rate and precision of the identification of important genomic loci associated with desired traits from germplasm collections or mutants have increased significantly. Genome editing on soybean is also becoming more established. The year 2019 marked a new era for crop genome editing in the commercialization of the first genome-edited plant product, which is a high-oleic-acid soybean oil. In this review, we have summarized the latest developments in soybean breeding technologies and the remarkable progress in soybean breeding-related research in China, Japan, and the Republic of Korea.
Collapse
Affiliation(s)
- Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Guohong Zhang
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Key Laboratory of Northwest Drought Crop Cultivation of Chinese Ministry of Agriculture, Lanzhou, 730070 China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626 Korea
| | - Henry Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO USA
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| |
Collapse
|
21
|
Construction of a High-Density Genetic Map and Mapping of Firmness in Grapes ( Vitis vinifera L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2020; 21:ijms21030797. [PMID: 31991832 PMCID: PMC7037167 DOI: 10.3390/ijms21030797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.
Collapse
|
22
|
Watanabe S, Yamada R, Kanetake H, Kaga A, Anai T. Identification and characterization of a major QTL underlying soybean isoflavone malonylglycitin content. BREEDING SCIENCE 2019; 69:564-572. [PMID: 31988620 PMCID: PMC6977442 DOI: 10.1270/jsbbs.19027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/20/2019] [Indexed: 05/27/2023]
Abstract
Isoflavones in soybean seeds are responsible for plant-microbe interactions and defend against pathogens, and are also beneficial to human health. We used two biparental populations and mini core collection of soybean germplasm to identify and validate QTLs underlying the content of isoflavone components. We identified a major QTL, qMGly_11, which regulates the content of malonylglycitin, on chromosome Gm11, in populations bred from parents with high, low, and null glycitein contents. qMGly_11 explained 44.5% of phenotypic variance in a population derived from a cross between 'Aokimame' (high) and 'Fukuyutaka' (low) and 79.9% of that in a population between 'Kumaji-1' (null) and 'Fukuyutaka' (low). The effect was observed only in the hypocotyl. We further confirmed the effect of qMGly_11 in a mini-core collection, where it explained 57.1% of the genetic diversity of glycitin production and 56.5% of malonylglycitin production. qMGly_11 increased the contents of glycitin and malonylglycitin at the expense of daidzin and malonyldaidzin in all analyzed populations. We discuss the gene responsible for this QTL and the availability of the null allele for metabolic engineering of soybean seed isoflavones.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Faculty of Agriculture, Saga University,
1 Honjo-machi, Saga, Saga 840-8502,
Japan
| | - Risa Yamada
- Faculty of Agriculture, Saga University,
1 Honjo-machi, Saga, Saga 840-8502,
Japan
| | - Hazuki Kanetake
- Faculty of Agriculture, Saga University,
1 Honjo-machi, Saga, Saga 840-8502,
Japan
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, NARO (National Agriculture and Food Research Organization),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University,
1 Honjo-machi, Saga, Saga 840-8502,
Japan
| |
Collapse
|
23
|
Wang X, Cheng Y, Yang C, Yang C, Mu Y, Xia Q, Ma Q. QTL mapping for aluminum tolerance in RIL population of soybean (Glycine max L.) by RAD sequencing. PLoS One 2019; 14:e0223674. [PMID: 31661499 PMCID: PMC6818782 DOI: 10.1371/journal.pone.0223674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022] Open
Abstract
Aluminum (Al3+) toxicity is a typical abiotic stress that severely limits crop production in acidic soils. In this study, an RIL (recombinant inbred line, F12) population derived from the cross of Zhonghuang 24 (ZH 24) and Huaxia 3 (HX 3) (160 lines) was tested using hydroponic cultivation. Relative root elongation (RRE) and apical Al3+ content (AAC) were evaluated for each line, and a significant negative correlation was detected between the two indicators. Based on a high-density genetic linkage map, the phenotypic data were used to identify quantitative trait loci (QTLs) associated with these traits. With composite interval mapping (CIM) of the linkage map, five QTLs that explained 39.65% of RRE and AAC variation were detected on chromosomes (Chrs) Gm04, Gm16, Gm17 and Gm19. Two new QTLs, qRRE_04 and qAAC_04, were located on the same region of bin93-bin94 on Chr Gm04, which explained 7.09% and 8.98% phenotypic variation, respectively. Furthermore, the results of the expression analysis of candidate genes in the five genetic regions of the QTLs showed that six genes (Glyma.04g218700, Glyma.04g212800, Glyma.04g213300, Glyma.04g217400, Glyma.04g216100 and Glyma.04g220600) exhibited significant differential expression between the Al3+ treatment and the control of two parents. The results of qRT-PCR analysis indicated that Glyma.04g218700 was upregulated by Al3+ treatment with the hundreds-fold increased expression level and may be a candidate gene with potential roles in the response to aluminum stress. Therefore, our efforts will enable future functional analysis of candidate genes and will contribute to the strategies for improvement of aluminum tolerance in soybean.
Collapse
Affiliation(s)
- Xinxin Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cunyi Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiuju Xia
- The Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Zhong Y, Yang Y, Liu P, Xu R, Rensing C, Fu X, Liao H. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. PLANT, CELL & ENVIRONMENT 2019; 42:2028-2044. [PMID: 30646427 DOI: 10.1111/pce.13519] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Rhizosphere bacterial communities are vital for plants, yet the composition of rhizobacterial communities and the complex interactions between roots and microbiota, or between microbiota, are largely unknown. In this study, we investigated the structure and composition of rhizobacterial communities in two soybean cultivars and their recombinant inbred lines contrasting in nodulation through 16S rRNA amplicon sequencing in two years of field trials. Our results demonstrate that soybean plants are able to select microbes from bulk soils at the taxonomic and functional level. Soybean genotype significantly influenced the structure of rhizobacterial communities and resulted in dramatically different co-occurrence networks of rhizobacterial communities between different genotypes of soybean plants. Furthermore, the introduction of exogenous rhizobia through inoculation altered soybean rhizobacterial communities in genotype-dependent manner. Rhizobium inoculation not only stimulated the proliferation of potential beneficial microbes but also increased connections in rhizobacterial networks and changed the hub microbes, all of which led to the association of distinctive bacterial communities. Taken together, we demonstrated that the assembly of soybean rhizobacterial communities was determined by both genotype and the introduction of exogenous rhizobia. These findings bolster the feasibility of root microbiome engineering through inoculation of specific microbial constituents.
Collapse
Affiliation(s)
- Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Peng Liu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruineng Xu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
de Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, de la Rosa LA, Geraldi MV, Maróstica Júnior MR, Shahidi F, Schwember AR. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci 2019; 20:E2644. [PMID: 31146372 PMCID: PMC6600242 DOI: 10.3390/ijms20112644] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Bruno Trevenzoli Favero
- University of Copenhagen, Department of Plant and Environmental Sciences, 2630 Taastrup, Denmark.
| | - Maressa Caldeira Morzelle
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Fernando Correa Avenue, P.O. box 2367, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Marina Vilar Geraldi
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas, SP 13083-862, Brazil.
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| |
Collapse
|
26
|
Wang L, Cheng Y, Ma Q, Mu Y, Huang Z, Xia Q, Zhang G, Nian H. QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations. BMC Genomics 2019; 20:260. [PMID: 30940069 PMCID: PMC6444683 DOI: 10.1186/s12864-019-5610-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The different leaf type associated traits of soybean (Glycine max L.) including leaf area, leaf length, leaf width, leaf shape and petiole length are considered to be associated with seed yield. In order to identify quantitative trait loci (QTLs) affecting leaf type traits, two advanced recombinant inbred line (RIL, ZH, Zhonghuang 24 × Huaxia 3; GB, Guizao 1 × Brazil 13) populations were introduced to score phenotypic values in plants across nine different environments (years, seasons, locations and soybean growth stages). Two restriction site-associated DNA sequencing (RAD-seq) based high-density genetic linkage maps with an average distance of 1.00 centimorgan (cM) between adjacent bin markers were utilized for QTL fine mapping. RESULTS Correlation analysis showed that most of the traits were correlated with each other and regulated both by hereditary and environmental factors. A total of 190 QTLs were identified for leaf type associated traits in the two populations, of which 14 loci were found to be environmentally stable. Moreover, these detected QTLs were categorized into 34 QTL hotspots, and four important QTL hotspots with phenotypic variance ranging from 3.89-23.13% were highlighted. Furthermore, Glyma04g05840, Glyma19g37820, Glyma14g07140 and Glyma19g39340 were predicted in the intervals of the stable loci and important QTL hotspots for leaf type traits by adopting Gene Ontology (GO) enrichment analysis. CONCLUSIONS Our findings of the QTLs and the putative genes will be beneficial to gain new insights into the genetic basis for soybean leaf type traits and may further accelerate the breeding process for reasonable leaf type soybean.
Collapse
Affiliation(s)
- Liang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Zhifeng Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086 People’s Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| |
Collapse
|
27
|
Yang Y, Lv H, Liao H. Identification and mapping of two independent recessive loci for the root hairless mutant phenotype in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:301-312. [PMID: 30382310 DOI: 10.1007/s00122-018-3217-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE Two functional complementation QTLs were identified for root hairless formation in soybean. Root hairs play critical roles not only in nutrient/water uptake from soils, but also in plant-microorganism interactions. However, genetic information about root hair development remains fragmented. We previously identified a soybean natural mutant (RBC-HL) with the root hairless (HL) phenotype. In order to reveal the genetic basis for this phenotype, a polymorphic population was constructed using RBC-HL and a genotype (RBC-NH) with normal root hairs (NH). Three representative phenotypes of root hair formation were observed in the progeny, including NH, medium (MH) and HL. All F1 plants were of the NH type, and the respective segregation ratios in F2, F2:3 and RIL (F5:7) plants fit the theoretical ratio of 15:1, 7:8:1 and 3:1, indicating that the HL mutation is controlled by two independent recessive loci. In order to map HL-associated loci, a high-density genetic map was constructed using 8784 bin markers covering a total genetic distance of 3108.2 cM, and an average distance between adjacent markers of 0.4 cM. Two major QTLs, qRHLa and qRHLb, were identified and mapped on chromosome 01 and 11, and further delimited to interval regions of ~ 289 kb and ~ 1120 kb, respectively. Phylogenetic analysis suggested that the two candidate regions originated from soybean duplication events, where seven pairs of homologous genes shared 86-97% sequence identify. In conclusion, we partially uncovered the genetic mechanism underlying root hair formation in soybean. Namely, two independent recessive loci, qRHLa and qRHLb, containing several candidate genes were predicted to control the root hairless mutant RBC-HL.
Collapse
Affiliation(s)
- Yongqing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyong Lv
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
28
|
Cai Z, Cheng Y, Xian P, Ma Q, Wen K, Xia Q, Zhang G, Nian H. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1715-1728. [PMID: 29754326 DOI: 10.1007/s00122-018-3109-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Map-based cloning identified GmHAD1, a gene which encodes a HAD-like acid phosphatase, associated with soybean tolerance to low phosphorus stress. Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Plants may adapt to low phosphorus (LP) conditions via changes to root morphology, including the number, length, orientation, and branching of the principal root classes. To elucidate the genetic mechanisms for LP tolerance in soybean, quantitative trait loci (QTL) related to root morphology responses to LP were identified via hydroponic experiments. In total, we identified 14 major loci associated with these traits in a RIL population. The log-likelihood scores ranged from 2.81 to 7.43, explaining 4.23-13.98% of phenotypic variance. A major locus on chromosome 08, named qP8-2, was co-localized with an important P efficiency QTL (qPE8), containing phosphatase genes GmACP1 and GmACP2. Another major locus on chromosome 10 named qP10-2 explained 4.80-13.98% of the total phenotypic variance in root morphology. The qP10-2 contains GmHAD1, a gene which encodes an acid phosphatase. In the transgenic soybean hairy roots, GmHAD1 overexpression increased P efficiency by 8.4-16.5% relative to the control. Transgenic Arabidopsis plants had higher biomass than wild-type plants across both short- and long-term P reduction. These results suggest that GmHAD1, an acid phosphatase gene, improved the utilization of organic phosphate by soybean and Arabidopsis plants.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|