1
|
Yao X, Zhang Q, Chen H, Ge X, Guo Y, Chen D. Study on the changes of miRNAs and their target genes in regulating anthocyanin synthesis during purple discoloration of cauliflower curd under low temperature stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1460914. [PMID: 39691485 PMCID: PMC11649399 DOI: 10.3389/fpls.2024.1460914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Introduction Cauliflower is widely cultivated all over the world is attributed to its palatable flavor, high levels of anti-cancer compounds, and diverse array of nutrients. Exposure to extremely cold stress during production can result in a more frequent occurrence of purple discoloration in cauliflower curds. In response to cold stress, plants naturally produce anthocyanins to eliminate reactive oxygen species (ROS) generated as a defense mechanism. Methods This research involved conducting mRNA sequencing analysis on cauliflower curds both before and after exposure to cold stress treatment. Results It was determined that the up-regulation of anthocyanin biosynthesis-related genes CHS, CHI, DFR, ANS, UGFT, PAP1/2, and MYBL2 occurred significantly in response to cold stress, resulting in a significant increase in total anthocyanin content. Subsequently, miRNA sequencing was employed to identify miRNAs in cauliflower curds, followed by differential expression analysis. The results showed that Bna-miR289 and Ath-miR157a may play a key role in regulating the accumulation of anthocyanin in cauliflower curds. Furthermore, we utilized degradome sequencing data to predict the target genes of the identified miRNAs, resulting in the identification of BolK_3g48940.1, BolK_9g11680.1, BolK_7g41780.1, BolK_3g68050.1, and BolK_3g729700.1 as targets. Subsequently, the expression patterns of the miRNAs and their target genes were validated using qRT-PCR, the results showed that Ath-miR157a and its target genes BolK_3g68050.1 and BolK_3g72970.1 may be the key to the purple of cauliflower curds under cold stress. Discussion Our preliminary findings identified key miRNAs and their target genes that may be involved in regulating anthocyanin synthesis, thereby enhancing the cold tolerance of cauliflower through mRNA, miRNA, and degradome sequencing. Overall, our study sheds light on the activation of anthocyanin synthesis in flower curds under cold stress conditions as a mechanism to enhance resilience to adverse environmental conditions.
Collapse
Affiliation(s)
- Xingwei Yao
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qi Zhang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangdong Guo
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| |
Collapse
|
2
|
Xiong X, Li X, Zhang S, Hu Z, Liu T, Qiu Z, Cao J, Huang L, Yan C. Identification and fine mapping of Brmmd1 gene controlling recessive genic male sterility in Brassica rapa L. Gene 2024; 924:148558. [PMID: 38740353 DOI: 10.1016/j.gene.2024.148558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Recessive genic male sterility (RGMS) provides an effective approach for the commercial exploitation of heterosis, especially in Brassica crops. Although some artificial RGMS mutants have been reported in B. rapa, no causal genes derived from these natural mutants have been identified so far. In this study, a spontaneous RGMS mutant Bcajh97-01A derived from the 'Aijiaohuang' line traced back to the 1980 s was identified. Genetic analysis revealed that the RGMS trait was controlled by a single locus in the Bcajh97-01A/B system. Bulk segregant analysis (BSA) in combination with linkage analysis was employed to delimit the causal gene to an approximate 129 kb interval on chromosome A02. The integrated information of transcriptional levels and the predicted genes in the target region indicated that the Brmmd1 (BraA02g017420) encoding a PHD-containing nuclear protein was the most likely candidate gene. A 374 bp miniature inverted-repeat transposable element (MITE) was inserted into the first exon to prematurely stop the Brmmd1 gene translation, thus blocking the normal expression of this gene at the tetrad stage in the Bcajh97-01A. Additionally, a co-segregating structure variation (SV) marker was developed to rapidly screen the RGMS progenies from Bcajh97-01A/B system. Our findings reveal that BraA02g017420 is the causal gene responsible for the RGMS trait. This study lays a foundation for marker-assisted selection and further molecular mechanism exploration of pollen development in B. rapa.
Collapse
Affiliation(s)
- Xingpeng Xiong
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, People's Republic of China
| | - Xiaoyao Li
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Shuting Zhang
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Zhen Hu
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Tingting Liu
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, People's Republic of China
| | - Zhengming Qiu
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Li Huang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China.
| |
Collapse
|
3
|
Yang Y, Guo Y, Wang J, Cheng W, Lyu M, Wang Q, Wu J, Hua M, Zhang W, Sun D, Ge X, Yao X, Chen R. Genome-wide association study and selective sweep analysis uncover candidate genes controlling curd branch length in cauliflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:209. [PMID: 39196430 DOI: 10.1007/s00122-024-04719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Cauliflower is a distinct subspecies of the Brassica oleracea plants due to its specialized and edible floral organ. Cauliflower curd is composed of enlarged inflorescence meristems that developed by a series of precise molecular regulations. Based solely on the curd solidity, cauliflower is generally classified into two groups (compact-curd and loose-curd), where curd branch length acts as a crucial parameter to determine the curd morphological difference. Herein, to understand the genetic basis of curd branch development, we utilized a total of 298 inbred lines representing two groups of cauliflower to comprehensively investigate the causal genes and regulatory mechanisms. Phylogenetic and population structure analyses revealed that two subgroups could be further categorized into the compact-curd and the loose-curd groups, respectively. Integrating the genotype and phenotype data, we conducted a genome-wide association study for the length of the outermost branch (LOB) and secondary branch (LSB) of the curd. Sixty-four significant loci were identified that are highly associated with curd branch development. Evidence from genome-wide selective sweep analysis (FST and XP-EHH) narrowed down the major signal on chromosome 8 into an approximately 79 kb region which encodes eleven protein-coding genes. After further analysis of haplotypes, transcriptome profiling, and gene expression validation, we finally inferred that BOB08G028680, as a homologous counterpart of AtARR9, might be the causal gene for simultaneously regulating LOB and LSB traits in cauliflower. This result provides valuable information for improving curd solidity in future cauliflower breeding.
Collapse
Affiliation(s)
- Yingxia Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutong Guo
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Qian Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jianjin Wu
- Tianjin Agricultural Development Service Center, Tianjin, 300061, China
| | - Mingyan Hua
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Weihua Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
4
|
Zhang D, Zhou H, Zhou D, Wu J, Liu L, Guo Y, Wang T, Tan C, Chen D, Ge X, Yan M. The introgression of BjMYB113 from Brassica juncea leads to purple leaf trait in Brassica napus. BMC PLANT BIOLOGY 2024; 24:735. [PMID: 39090544 PMCID: PMC11295638 DOI: 10.1186/s12870-024-05418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
The purple leaves of Brassica napus are abundant in anthocyanins, which are renowned for their role in conferring distinct colors, stress tolerance, and health benefits, however the genetic basis of this trait in B. napus remains largely unelucidated. Herein, the purple leaf B. napus (PL) exhibited purple pigments in the upper epidermis and a substantial increase in anthocyanin accumulation, particularly of cyanidin, compared to green leaf B. napus (GL). The genetic control of the purple leaf trait was attributed to a semi-dominant gene, pl, which was mapped to the end of chromosome A03. However, sequencing of the fragments amplified by the markers linked to pl indicated that they were all mapped to chromosome B05 from B. juncea. Within this B05 chromosomal segment, the BjMYB113 gene-specific marker showed perfect co-segregation with the purple leaf trait in the F2 population, suggesting that the BjMYB113 introgression from B. juncea was the candidate gene for the purple leaf trait in B. napus. To further verify the function of candidate gene, CRISPR/Cas9 was performed to knock out the BjMYB113 gene in PL. The three myb113 mutants exhibited evident green leaf phenotype, absence of purple pigments in the adaxial epidermis, and a significantly reduced accumulation of anthocyanin compared to PL. Additionally, the genes involved in positive regulatory (TT8), late anthocyanin biosynthesis (DFR, ANS, UFGT), as well as transport genes (TT19) were significantly suppressed in the myb113 mutants, further confirming that BjMYB113 was response for the anthocyanin accumulation in purple leaf B. napus. This study contributes to an advanced understanding of the regulation mechanism of anthocyanin accumulation in B. napus.
Collapse
Affiliation(s)
- Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Hongfeng Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dinggang Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jinfeng Wu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lili Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Yiming Guo
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Tonghua Wang
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Xianhong Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingli Yan
- Yuelushan Laboratory, Changsha, 410128, China.
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
5
|
Tang K, Karamat U, Li G, Guo J, Jiang S, Fu M, Yang X. Integrated metabolome and transcriptome analyses reveal the role of BoGSTF12 in anthocyanin accumulation in Chinese kale (Brassica oleracea var. alboglabra). BMC PLANT BIOLOGY 2024; 24:335. [PMID: 38664614 PMCID: PMC11044404 DOI: 10.1186/s12870-024-05016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.
Collapse
Affiliation(s)
- Kang Tang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Umer Karamat
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Shizheng Jiang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Pandey B, Grover A. Mechanistic and structural insight into R2R3-MYB transcription factor in plants: molecular dynamics based binding free energy analysis. J Biomol Struct Dyn 2024; 42:2632-2642. [PMID: 37154800 DOI: 10.1080/07391102.2023.2206911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
The MYB transcription factor (TF) family is essential for various plant growth and development processes, including responses to biotic and abiotic stresses. This study investigated the R2R3-MYB protein structure from five plants, including cereal crops. The R2R3-MYB protein structure was docked with the DNA structure, and the best complexes were selected for two runs of molecular dynamics (MD) simulations to investigate the key interacting residues and conformational changes in the R2R3-MYB proteins caused by DNA binding. The MM/PBSA method calculated the binding free energy for each R2R3-MYB protein-DNA complex, showing strong interaction. Hydrophobic and hydrogen bonds significantly stabilized the R2R3-MYB protein-DNA complexes. The principal component analysis showed high restrictions on the movement of protein atoms in the phase space. A similar MD simulation analysis was performed using the crystal structure of the R2R3-MYB protein-DNA complex from Arabidopsis thaliana, and the generated complexes resembled the X-ray crystal structure. This is the first detailed study on the R2R3-MYB protein-DNA complex in cereal crops, providing a cost-effective solution to identify the key interacting residues and analyze the conformational changes in the MYB domain before and after DNA binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharati Pandey
- ICAR - Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Li X, Wang Y, Cai C, Ji J, Han F, Zhang L, Chen S, Zhang L, Yang Y, Tang Q, Bucher J, Wang X, Yang L, Zhuang M, Zhang K, Lv H, Bonnema G, Zhang Y, Cheng F. Large-scale gene expression alterations introduced by structural variation drive morphotype diversification in Brassica oleracea. Nat Genet 2024; 56:517-529. [PMID: 38351383 PMCID: PMC10937405 DOI: 10.1038/s41588-024-01655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
Brassica oleracea, globally cultivated for its vegetable crops, consists of very diverse morphotypes, characterized by specialized enlarged organs as harvested products. This makes B. oleracea an ideal model for studying rapid evolution and domestication. We constructed a B. oleracea pan-genome from 27 high-quality genomes representing all morphotypes and their wild relatives. We identified structural variations (SVs) among these genomes and characterized these in 704 B. oleracea accessions using graph-based genome tools. We show that SVs exert bidirectional effects on the expression of numerous genes, either suppressing through DNA methylation or promoting probably by harboring transcription factor-binding elements. The following examples illustrate the role of SVs modulating gene expression: SVs promoting BoPNY and suppressing BoCKX3 in cauliflower/broccoli, suppressing BoKAN1 and BoACS4 in cabbage and promoting BoMYBtf in ornamental kale. These results provide solid evidence for the role of SVs as dosage regulators of gene expression, driving B. oleracea domestication and diversification.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengcheng Cai
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinqing Yang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Tang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xuelin Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Yuan K, Zhao X, Sun W, Yang L, Zhang Y, Wang Y, Ji J, Han F, Fang Z, Lv H. Map-based cloning and CRISPR/Cas9-based editing uncover BoNA1 as the causal gene for the no-anthocyanin-accumulation phenotype in curly kale ( Brassica oleracea var. sabellica). HORTICULTURE RESEARCH 2023; 10:uhad133. [PMID: 37564271 PMCID: PMC10410298 DOI: 10.1093/hr/uhad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
Brassica oleracea comprises several important vegetable and ornamental crops, including curly kale, ornamental kale, cabbage, broccoli, and others. The accumulation of anthocyanins, important secondary metabolites valuable to human health, in these plants varies widely and is responsible for their pink to dark purple colors. Some curly kale varieties lack anthocyanins, making these plants completely green. The genetic basis of this trait is still unknown. We crossed the curly kale inbred line BK2019 (without anthocyanins) with the cabbage inbred line YL1 (with anthocyanins) and the Chinese kale inbred line TO1000 (with anthocyanins) to generate segregating populations. The no-anthocyanin trait was genetically controlled by a recessive gene, bona1. We generated a linkage map and mapped bona1 to a 256-kb interval on C09. We identified one candidate gene, Bo9g058630, in the target genomic region; this gene is homologous to AT5G42800, which encodes a dihydroflavonol-4-reductase-like (DFR-like) protein in Arabidopsis. In BK2019, a 1-bp insertion was observed in the second exon of Bo9g058630 and directly produced a stop codon. To verify the candidate gene function, CRISPR/Cas9 gene editing technology was applied to knock out Bo9g058630. We generated three bona1 mutants, two of which were completely green with no anthocyanins, confirming that Bo9g058630 corresponds to BoNA1. Different insertion/deletion mutations in BoNA1 exons were found in all six of the other no-anthocyanin kale varieties examined, supporting that independent disruption of BoNA1 resulted in no-anthocyanin varieties of B. oleracea. This study improves the understanding of the regulation mechanism of anthocyanin accumulation in B. oleracea subspecies.
Collapse
Affiliation(s)
- Kaiwen Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenru Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyuan Fang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
9
|
Yu H, Wang J, Shen Y, Sheng X, Shaw RK, Branca F, Gu H. A 43 Bp-Deletion in the F3'H Gene Reducing Anthocyanins Is Responsible for Keeping Buds Green at Low Temperatures in Broccoli. Int J Mol Sci 2023; 24:11391. [PMID: 37511150 PMCID: PMC10380335 DOI: 10.3390/ijms241411391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Most broccoli cultivars or accessions exhibit green buds under appropriate growth conditions, which turn purple at cold temperatures. However, certain cultivars consistently maintain green buds both during normal growth and at cold temperatures. In this study, we used BSA-seq (bulked segregation analysis-sequencing), along with fine mapping and transcriptome analysis to identify a candidate gene (flavonoid 3'-hydroxylase, F3'H) responsible for reducing anthocyanin accumulation in the mutant GS and HX-16 broccoli (Brassica oleracea L. var. italica), which could retain green buds even at low temperatures. A 43-bp deletion was detected in the coding sequence (CDS) of the F3'H gene in HX-16 and the mutant GS, which significantly decreased F3'H expression and the accumulation of cyanidin and delphinidin in the mutant GS. Furthermore, the expression of F3'H was upregulated at low temperatures in the wild line PS. Our results demonstrated the efficacy of utilizing the 43-bp InDel (Insertion-Deletion) in predicting whether buds in B. oleracea L. will turn purple or remain green at cold temperatures across forty-two germplasm materials. This study provides critical genetic and molecular insights for the molecular breeding of B. oleracea and sheds light on the molecular mechanisms underlying the effect of low temperatures on bud color in broccoli.
Collapse
Affiliation(s)
- Huifang Yu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiansheng Wang
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yusen Shen
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ranjan Kumar Shaw
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Honghui Gu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
10
|
Tan C, Chen H, Dai G, Liu Y, Shen W, Wang C, Liu D, Liu S, Xu S, Zhu B, Chen D, Cui C. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis). PLANTA 2023; 258:19. [PMID: 37314587 DOI: 10.1007/s00425-023-04171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B. rapa L. ssp. chinensis) is an influential and important vegetable with green, yellow, or purple leaves that is cultivated worldwide. The purple leaves are rich in anthocyanins, but the underlying genetics and evolution have yet to be extensively studied. Free-hand sections of the purple leaves indicated that anthocyanins mainly accumulate throughout the adaxial and abaxial epidermal leaf cells. Segregation analyses of an F2 population of a B. rapa ssp. chinensis L. purple leaf mutant ZBC indicated that the purple trait is controlled by an incompletely dominant nuclear gene. Bulked segregant analysis (BSA) showed that the key genes controlling the trait were between 24.25 and 38.10 Mb on chromosome A03 of B. rapa. From the annotated genes, only BraA03g050560.3C, homologous to Arabidopsis AtANS, was related to the anthocyanin synthesis pathway. Genome annotation results and transcriptional sequencing analyses revealed that the BraANS.A3 gene was involved in the purple leaf trait. qRT-PCR analyses showed that BraANS.A3 was highly upregulated in ZBC but hardly expressed in the leaves of an inbred homozygous line of B. campestris ssp. chinensis L. green leaf mutant WTC, indicating that BraANS.A3 played a key role catalyzing anthocyanin synthesis in ZBC. Full-length sequence alignment of BraANS.A3 in WTC and ZBC showed that it was highly conserved in the gene region, with significant variation in the promoter region. In particular, the insertion of two short fragments of the promoter region in WTC may interfere with its normal expression. The promoter regions of ANS in six Brassica species all had multiple cis-elements involved in responses to abscisic acid, light, and stress, suggesting that ANS may be involved in multiple metabolic pathways or biological processes. Protein-protein interactions predicted that BraANS.A3 interacts with virtually all catalytic proteins in the anthocyanin synthesis pathway and has a strong relationship with Transparent Testa 8 (TT8). These results suggest that BraANS.A3 promotes anthocyanin accumulation in purple pak choi and provide new insights into the functional analysis of anthocyanin-related genes in Chinese cabbage and transcriptional regulatory networks.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Duannv Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Sijia Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Shuqi Xu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|
11
|
Chen D, Chen H, Dai G, Zhang H, Liu Y, Shen W, Zhu B, Cui C, Tan C. Genome-wide identification and expression analysis of the anthocyanin-related genes during seed coat development in six Brassica species. BMC Genomics 2023; 24:103. [PMID: 36894869 PMCID: PMC9999611 DOI: 10.1186/s12864-023-09170-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Yellow seed is one favorite trait for the breeding of Brassica oilseed crops, but the performance of seed coat color is very complicated due to the involvement of various pigments. The change of seed coat color of Brassica crops is related to the specific synthesis and accumulation of anthocyanin, and the expression level of structural genes in anthocyanin synthesis pathway is specifically regulated by transcription factors. Despite some previous reports on the regulations of seed coat color from linkage marker development, gene fine-mapping and multi-omics association analysis, the trait of Brassica crops is affected by the evolutionary events such as genome triploidization, the regulatory mechanism is still largely unknown. In this study, we identified genes related to anthocyanin synthesis in six Brassica crops in U-triangle at the genome-wide level and performed collinearity analysis. A total of 1119 anthocyanin-related genes were identified, the collinear relationship of anthocyanin-related genes on subgenomic chromosomes was the best in B. napus (AACC) and the worst in B. carinata (BBCC). The comparisons of gene expressions for anthocyanin metabolic pathways in seed coats during seed development revealed differences in its metabolism among these species. Interestingly, the R2R3-MYB transcription factors MYB5 and TT2 were differentially expressed at all eight stages of seed coat development, indicating that they might be the key genes that caused the variation of the seed coat color. The expression curve and trend analyses of the seed coat development period showed that the main reason for the unexpressed copies of MYB5 and TT2 was likely gene silencing caused by gene structural variation. These results were valuable for the genetic improvement of Brassica seed coat color, and also provided new insights into gene multicopy evolution in Brassica polyploids.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haimei Zhang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chendu, 610066, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
12
|
Chen D, Jin Q, Pan J, Liu Y, Tang Y, E Y, Xu L, Yang T, Qiu J, Chen X, Wang J, Gong D, Ge X, Li Z, Cui C. Fine mapping of genes controlling pigment accumulation in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:19. [PMID: 37313299 PMCID: PMC10248657 DOI: 10.1007/s11032-023-01365-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Purple/red appearance is one of the common phenotypic variations in leaves, stems, and siliques of oilseed rape (Brassica napus L.) but very rare in flowers. In this study, the causal genes for the purple/red traits in stems and flowers in two accessions of oilseed rape (DH_PR and DH_GC001, respectively) derived from the wide hybridization were fine mapped, and candidate genes were determined by methods combined with bulked segregant analysis (BSA) and RNA-seq analysis. Both traits of purple stem and red flowers were mapped to the locus as AtPAP2 homologous genes (BnaPAP2.C6a and BnaPAP2.A7b, respectively) belonging to the R2R3-MYB family. Sequence comparisons of full-length allelic genes revealed several InDels and SNPs in intron 1 as well as exons, and completely different promoter region of BnaPAP2.C6a and a 211 bp insertion was identified in the promoter region of BnaPAP2.A7b of DH_GC001. Our results not only contribute to a better understanding of anthocyanin inheritance in B. napus, but also provide a useful toolbox for future breeding of cultivars with purple/red traits through the combination of different functional alleles and homologs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01365-5.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000 China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jianming Pan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000 China
| | - Yijia Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Yanrong E
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Linshan Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Taihua Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jie Qiu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Xiaodi Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Deping Gong
- Jingzhou Academy of Agricultural Science, Jingzhou, 434007 China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
| |
Collapse
|
13
|
Zou J, Gong Z, Liu Z, Ren J, Feng H. Investigation of the Key Genes Associated with Anthocyanin Accumulation during Inner Leaf Reddening in Ornamental Kale ( Brassica oleracea L. var. acephala). Int J Mol Sci 2023; 24:ijms24032837. [PMID: 36769159 PMCID: PMC9917897 DOI: 10.3390/ijms24032837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Ornamental kale (Brassica oleracea L. var. acephala) is a popular decorative plant in late autumn and winter. However, only during low-temperature color-changed periods below rough 15 °C can the plant accumulate anthocyanins and exhibit a diverse array of foliar color patterns. In this study, we probed into the potential mechanism of inner leaf reddening in a red-leaf pure line of ornamental kale by physiological, metabolic, and transcriptomic analyses. Determination of anthocyanin contents in the uncolored new white leaves (S0), the light red leaves (S1) in the reddening period and the red leaves (S2) completing color change, and analysis of anthocyanin metabolites at stage S2, revealed that the coloring of red leaves was mainly attributed to the accumulation of cyanidins. We further used transcriptomic sequencing between the pairwise S0, S1, and S2 stages to identify 21 differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, among which the expression level of 14 DEGs was positively correlated with anthocyanin accumulation, and 6 DEGs were negatively correlated with anthocyanin accumulation. A total of 89 co-expressed genes were screened out, from which three DEGs (BoCHI, Bo4CL3, and BoF3H) were identified as hub genes in co-expression DEGs network. BoDFR and BoCHI were the DEGs with the highest expressions at S2. Moreover, two co-expressed DEGs related to stress response (BoBBX17 and BoCOR47) also exhibited upregulated expressions and positive correlations with anthocyanin accumulation. A deep dive into the underlying regulatory network of anthocyanin accumulation comprising these six upregulated DEGs from S0 to S2 was performed via trend, correlation, and differentially co-expression analysis. This study uncovered the DEGs expression profiles associated with anthocyanin accumulation during ornamental kale inner leaf reddening, which provided a basis for further dissecting the molecular mechanisms of leaf color characteristic change in ornamental kale at low temperatures.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- Correspondence: (J.R.); (H.F.)
| | | |
Collapse
|
14
|
Ren J, Zou J, Zou X, Song G, Gong Z, Liu Z, Ji R, Feng H. Fine Mapping of BoVl Conferring the Variegated Leaf in Ornamental Kale (Brassica oleracea var. acephala). Int J Mol Sci 2022; 23:14853. [PMID: 36499179 PMCID: PMC9739133 DOI: 10.3390/ijms232314853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Ornamental kale, as a burgeoning landscaping plant, is gaining popularity for its rich color patterns in leaf and cold tolerance. Leaf variegation endows ornamental kale with unique ornamental characters, and the mutants are ideal materials for exploring the formation mechanisms of variegated phenotype. Herein, we identified a novel variegated leaf kale mutant ‘JC007-2B’ with green margins and white centers. Morphological observations and physiological determinations of the green leaf stage (S1), albino stage (S2) and variegated leaf stage (S3) demonstrated that the chloroplast structure and photosynthetic pigment content in the white sectors (S3_C) of variegated leaves were abnormal. Genetic analysis revealed that a single dominant nuclear gene (BoVl) controlled the variegated leaf trait of ‘JC007-2B’, and three candidate genes for BoVl were fine-mapped to a 6.74 Kb interval on chromosome C03. Multiple sequence alignment among the green-leaf mapping parent ‘BS’, recombinant individuals, mutant parent ‘JC007-2B’ and its same originated DH line population established that the mutation sites in Bo3g002080 exhibited a complete consensus. Bo3g002080, homologous to Arabidopsis MED4, was identified as the candidate gene for BoVl. Expression analysis showed that Bo3g002080 displayed a 2158.85-fold higher expression at albino stage than that in green leaf stage. Transcriptome analysis showed that related pathways of photosynthesis and chloroplast development were significantly enriched in the white sectors, and relevant DEGs involved in these pathways were almost down-regulated. Overall, our study provides a new gene resource for cultivar breeding in ornamental kale and contributes to uncovering the molecular genetic mechanism underlying the variegated leaf formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110065, China
| |
Collapse
|
15
|
Are South African Wild Foods the Answer to Rising Rates of Cardiovascular Disease? DIVERSITY 2022. [DOI: 10.3390/d14121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rising burden of cardiovascular disease in South Africa gives impetus to managerial changes, particularly to the available foods in the market. Since there are many economically disadvantaged groups in urban societies who are at the forefront of the CVD burden, initiatives to make healthier foods available should focus on affordability in conjunction with improved phytochemical diversity to incentivize change. The modern obesogenic diet is deficient in phytochemicals that are protective against the metabolic products of sugar metabolism, i.e., inflammation, reactive oxygen species and mitochondrial fatigue, whereas traditional southern African food species have high phytochemical diversity and are also higher in soluble dietary fibres that modulate the release of sugars from starches, nurture the microbiome and produce digestive artefacts that are prophylactic against cardiovascular disease. The examples of indigenous southern African food species with high horticultural potential that can be harvested sustainably to feed a large market of consumers include: Aloe marlothii, Acanthosicyos horridus, Adansonia digitata, Aloe ferox, Amaranthus hybridus, Annesorhiza nuda, Aponogeton distachyos, Bulbine frutescens, Carpobrotus edulis, Citrullus lanatus, Dioscorea bulbifera, Dovyalis caffra, Eleusine coracana, Lagenaria siceraria, Mentha longifolia, Momordica balsamina, Pelargonium crispum, Pelargonium sidoides, Pennisetum glaucum, Plectranthus esculentus, Schinziophyton rautanenii, Sclerocarya birrea, Solenostemon rotundifolius, Talinum caffrum, Tylosema esculentum, Vigna unguiculata and Vigna subterranea. The current review explains the importance of phytochemical diversity in the human diet, it gives a lucid explanation of phytochemical groups and links the phytochemical profiles of these indigenous southern African foods to their protective effects against cardiovascular disease.
Collapse
|
16
|
Ye S, Hua S, Ma T, Ma X, Chen Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6630-6645. [PMID: 35857343 DOI: 10.1093/jxb/erac312] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms underlying anthocyanin-based flower coloration remain unknown in Brassica napus. To identify the key genes and metabolites associated with apricot and pink flower colors, metabolome, BSA-seq, and RNA-seq analyses were conducted on apricot-, pink-, yellow-, and white-flowered F2B. napus. Yellow carotenoids and red anthocyanins were abundant in apricot petals, while colorless carotenoids and red anthocyanins accumulated in pink petals. Most carotenoid genes were not differentially regulated between apricot and yellow or between pink and white petals. Three regulator genes, BnaMYBL2, BnaA07.PAP2, and BnaTT8, and structural genes in anthocyanin biosynthesis were dramatically enhanced in apricot and pink petals in comparison with yellow and white petals. Map-based cloning revealed that BnaA07.PAP2 is responsible for anthocyanin-based flower color and encodes a nucleus-localized protein predominantly expressed in apricot and pink flowers. Two insertions in the promoter region are responsible for the transcriptional activation of BnaA07.PAP2 in flowers. Introducing the BnaA07.PAP2In-184-317 allele broadly activated the expression of anthocyanin-related genes and promoted anthocyanin accumulation in flowers, yielding color change from yellow to apricot. These findings illustrate the genetic basis of anthocyanin-based flower coloration and provide a valuable genetic resource for breeding varieties with novel flower colors in B. napus.
Collapse
Affiliation(s)
- Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Shuijin Hua
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yanping Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Fattorini R, Ó’Maoiléidigh DS. Cis-regulatory variation expands the colour palette of the Brassicaceae. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6511-6515. [PMID: 36322901 PMCID: PMC9629846 DOI: 10.1093/jxb/erac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This article comments on: Ye S, Hua S, Ma T, Ma X, Chen Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. 2022. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. Journal of Experimental Botany 73,6630–6645.
Collapse
Affiliation(s)
- Róisín Fattorini
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, UK
| | | |
Collapse
|
18
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Fu H, Chao H, Zhao X, Wang H, Li H, Zhao W, Sun T, Li M, Huang J. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus. PLANT MOLECULAR BIOLOGY 2022; 110:53-68. [PMID: 35723867 DOI: 10.1007/s11103-022-01285-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The main anthocyanin components were identified, and the transcriptional regulation pattern of anthocyanin related genes in leaves and stem bark was elucidated in a purple B. napus. Brassica napus is one of the most important oil crops planted worldwide, and developing varieties of dual-purpose for oil and vegetable is beneficial to improve economic benefits. Anthocyanins are a class of secondary metabolites that not only make plants present beautiful colors, but have a variety of important physiological functions and biological activities. Therefore, increasing the accumulation of anthocyanin in vegetative organs can improve vegetable value of rapeseed. However, anthocyanin enriched varieties in vegetative organs are rare, and there are few studies on category identification and accumulation mechanism of anthocyanin, which limits the utilization of anthocyanins in B. napus. In this study, 157 anthocyanin biosynthesis related genes (ABGs) were identified in B. napus genome by homology comparison and collinearity analysis of genes related to anthocyanin synthesis and regulation in Arabidopsis. Moreover, five anthocyanins were identified in the stem bark and leaves of the purple B. napus PR01 by high performance liquid chromatography-mass spectrometry (HPLC-MS), and the expression characteristics of ABGs in the leaves and stem bark of PR01 were analyzed and compared with the green cultivar ZS11 by RNA-Seq. Combining further weighted gene co-expression network analysis (WGCNA), the up-regulation of transcript factors BnaA07. PAP2 and BnaC06. PAP2 were identified as the key to the up-regulation of most of anthocyanin synthesis genes that promoted anthocyanin accumulation in PR01. This study is helpful to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provides the theoretical basis for breeding novel varieties of dual-purpose for oil and vegetable.
Collapse
Affiliation(s)
- Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xuejie Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoyi Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
Genome-wide identification of R2R3-MYB gene family and association with anthocyanin biosynthesis in Brassica species. BMC Genomics 2022; 23:441. [PMID: 35701743 PMCID: PMC9199147 DOI: 10.1186/s12864-022-08666-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica species include important oil crops and vegetables in the world. The R2R3-MYB gene participates in a variety of plant functions, including the activation or inhibition of anthocyanin biosynthesis. Although previous studies have reported its phylogenetic relationships, gene structures, and expression patterns in Arabidopsis, the number and sequence variation of this gene family in Brassica crops and its involvement in the natural quantitative variation in anthocyanin biosynthesis regulation are still largely unknown. In this study, by using whole genome sequences and comprehensive genome-wide comparative analysis among the six cultivated Brassica species, 2120 R2R3-MYB genes were identified in six Brassica species, in total These R2R3-MYB genes were phylogenetically clustered into 12 groups. The R2R3-MYB family between A and C subgenomes showed better collinearity than between B and C and between A and B. From comparing transcriptional changes of five Brassica species with the purple and green leaves for the detection of the R2R3-MYB genes associated with anthocyanin biosynthesis, 7 R2R3-MYB genes were co-differentially expressed. The promoter and structure analysis of these genes showed that some variations between non-coding region, but they were highly conserved at the protein level and spatial structure. Co-expression analysis of anthocyanin-related genes and R2R3-MYBs indicated that MYB90 was strongly co-expressed with TT8, and they were co-expressed with structural genes F3H, LDOX, ANS and UF3GT at the same time. These results further clarified the roles of the R2R3-MYBs for leaf coloration in Brasica species, which provided new insights into the functions of the R2R3-MYB gene family in Brasica species.
Collapse
|
21
|
Gan C, Yan C, Pang W, Cui L, Fu P, Yu X, Qiu Z, Zhu M, Piao Z, Deng X. Identification of Novel Locus RsCr6 Related to Clubroot Resistance in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:866211. [PMID: 35665145 PMCID: PMC9161170 DOI: 10.3389/fpls.2022.866211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Clubroot is a devastating disease that causes substantial yield loss worldwide. However, the inheritance and molecular mechanisms of clubroot resistance during pathogen infection in radish remain largely unclear. In this study, we investigated the inheritance of clubroot resistance in the F2 population derived from crossing clubroot-resistant (CR) and clubroot-susceptible inbred lines "GLX" and "XNQ," respectively. Genetic analysis revealed that a single dominant gene controlled the clubroot resistance of "GLX" with a Mendelian ratio of resistance and susceptibility of nearly 3:1. Bulked segregant analysis combined with whole-genome resequencing (BSA-seq) was performed to detect the target region of RsCr6 on chromosome Rs8. Linkage analysis revealed that the RsCr6 locus was located between two markers, HB321 and HB331, with an interval of approximately 92 kb. Based on the outcomes of transcriptome analysis, in the RsCr6 locus, the R120263140 and R120263070 genes with a possible relation to clubroot resistance were considered candidate genes. In addition, three core breeding materials containing the two reported quantitative trait loci (QTLs) and our novel locus RsCr6 targeting clubroot resistance were obtained using marker-assisted selection (MAS) technology. This study reveals a novel locus responsible for clubroot resistance in radishes. Further analysis of new genes may reveal the molecular mechanisms underlying the clubroot resistance of plants and provide a theoretical basis for radish resistance breeding.
Collapse
Affiliation(s)
- Caixia Gan
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chenghuan Yan
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Lei Cui
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pengyu Fu
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
| | - Xiaoqing Yu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengming Qiu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Meiyu Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaohui Deng
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
22
|
Chen D, Yang Y, Niu G, Shan X, Zhang X, Jiang H, Liu L, Wen Z, Ge X, Zhao Q, Yao X, Sun D. Metabolic and RNA sequencing analysis of cauliflower curds with different types of pigmentation. AOB PLANTS 2022; 14:plac001. [PMID: 35414860 PMCID: PMC8994856 DOI: 10.1093/aobpla/plac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis) is a popular vegetable worldwide due to its delicious taste, high nutritional value and anti-cancer properties. Cauliflower normally produces white curds, and natural spontaneous mutations lead to the production of orange, purple or green curds. However, some white cauliflowers show uneven purple pigmentation in their curds, which seriously affects the appearance quality and economic value of this crop. The underlying mechanism is still unclear. In this study, we performed comparative transcriptional and metabolic profiling analysis of light orange, white and purplish cauliflower curds. Metabolite analysis revealed that the pigments conferring purple colouration were delphinin and cyanin. Transcriptome analysis showed that the anthocyanin metabolism-related structural genes DFR, ANS and UGT and the transcription factor genes PAP2, TT8, GL3, EGL3 and TTG1 were upregulated in purplish versus white curds. These findings shed light on the formation of purplish curds, which could facilitate the breeding of purely white or red cauliflower.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou 341000, China
| | - Yingxia Yang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Guobao Niu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaozheng Shan
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaoli Zhang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Hanmin Jiang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Lili Liu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Zhenghua Wen
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiancheng Zhao
- Tianjin Huierjia Seeds Industry Technology Co., Ltd, Tianjin 300392, China
| | - Xingwei Yao
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Deling Sun
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| |
Collapse
|
23
|
Albert NW, Lafferty DJ, Moss SMA, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z 2022; 53:304-331. [PMID: 39439482 PMCID: PMC11459809 DOI: 10.1080/03036758.2022.2034654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Flavonoids are plant-specific secondary metabolites that arose early during land-plant colonisation, most likely evolving for protection from UV-B and other abiotic stresses. As plants increased in complexity, so too did the diversity of flavonoid compounds produced and their physiological roles. The most conspicuous are the pigments, including yellow aurones and chalcones, and the red/purple/blue anthocyanins, which provide colours to flowers, fruits and foliage. Anthocyanins have been particularly well studied, prompted by the ease of identifying mutants of genes involved in biosynthesis or regulation, providing an important model system to study fundamental aspects of genetics, gene regulation and biochemistry. This has included identifying the first plant transcription factor, and later resolving how multiple classes of transcription factor coordinate in regulating the production of various flavonoid classes - each with different activities and produced at differing developmental stages. In addition, dietary flavonoids from fruits/vegetables and forage confer human- and animal-health benefits, respectively. This has prompted strong interest in generating new plant varieties with increased flavonoid content through both traditional breeding and plant biotechnology. Gene-editing technologies provide new opportunities to study how flavonoids are regulated and produced and to improve the flavonoid content of flowers, fruits, vegetables and forages.
Collapse
Affiliation(s)
- Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah M. A. Moss
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
24
|
He D, Zhang D, Li T, Liu L, Zhou D, Kang L, Wu J, Liu Z, Yan M. Whole-Genome Identification and Comparative Expression Analysis of Anthocyanin Biosynthetic Genes in Brassica napus. Front Genet 2021; 12:764835. [PMID: 34868247 PMCID: PMC8636775 DOI: 10.3389/fgene.2021.764835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022] Open
Abstract
Anthocyanins contribute to most colors of plants and play protective roles in response to abiotic stresses. Brassica napus is widely cultivated worldwide as both an oilseed and a vegetable. However, only several high anthocyanin-containing cultivars have been reported, and the mechanisms of anthocyanin accumulation have not been well-elucidated in B. napus. Here, the phenotype, comparative whole-genome identification, and gene expression analysis were performed to investigate the dynamic change of the anthocyanin content and the gene expression patterns of anthocyanin biosynthetic genes (ABGs) in B. napus. A total of 152 ABGs were identified in the B. napus reference genome. To screen out the critical genes involved in anthocyanin biosynthesis and accumulation, the RNA-seq of young leaves of two B. napus lines with purple leaves (PL) or green leaves (GL), and their F1 progeny at 41, 91, and 101 days were performed to identify the differentially expressed genes. The comparative expression analysis of these ABGs indicated that the upregulation of TT8 together with its target genes (such as DFR, ANS, UFGT, and TT19) might promote the anthocyanin accumulation in PL at the early developmental stage (41–91 days). While the downregulation of those ABGs and anthocyanin degradation at the late developmental stage (91–101 days) might result in the decrease in anthocyanin accumulation. Our results would enhance the understanding of the regulatory network of anthocyanin dynamic accumulation in B. napus.
Collapse
Affiliation(s)
- Dan He
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Dawei Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Ting Li
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Lili Liu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Dinggang Zhou
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Lei Kang
- Oilseed Research Institute, Hunan Agricultural University, Changsha, China
| | - Jinfeng Wu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhongsong Liu
- Oilseed Research Institute, Hunan Agricultural University, Changsha, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| |
Collapse
|
25
|
Islam K, Rawoof A, Ahmad I, Dubey M, Momo J, Ramchiary N. Capsicum chinense MYB Transcription Factor Genes: Identification, Expression Analysis, and Their Conservation and Diversification With Other Solanaceae Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:721265. [PMID: 34721453 PMCID: PMC8548648 DOI: 10.3389/fpls.2021.721265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Han F, Zhang X, Yang L, Zhuang M, Zhang Y, Liu Y, Li Z, Wang Y, Fang Z, Ji J, Lv H. Genome-wide characterization and analysis of the anthocyanin biosynthetic genes in Brassica oleracea. PLANTA 2021; 254:92. [PMID: 34633541 DOI: 10.1007/s00425-021-03746-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
From Brassica oleracea genome, 88 anthocyanin biosynthetic genes were identified. They expanded via whole-genome or tandem duplication and showed significant expression differentiation. Functional characterization revealed BoMYB113.1 as positive and BoMYBL2.1 as negative regulators responsible for anthocyanin accumulation. Brassica oleracea produces various health-promoting phytochemicals, including glucosinolates, carotenoids, and vitamins. Despite the anthocyanin biosynthetic pathways in the model plant Arabidopsis thaliana being well characterized, little is known about the genetic basis of anthocyanin biosynthesis in B. oleracea. In this study, we identified 88 B. oleracea anthocyanin biosynthetic genes (BoABGs) representing homologs of 46 Arabidopsis anthocyanin biosynthetic genes (AtABGs). Most anthocyanin biosynthetic genes, having expanded via whole-genome duplication and tandem duplication, retained more than one copy in B. oleracea. Expression analysis revealed diverse expression patterns of BoABGs in different tissues, and BoABG duplications showed significant expression differentiation. Additional expression analysis and functional characterization revealed that the positive regulator BoMYB113.1 and negative regulator BoMYBL2.1 may be key genes responsible for anthocyanin accumulation in red cabbage and ornamental kale by upregulating the expression of structural genes. This study paves the way for a better understanding of anthocyanin biosynthetic genes in B. oleracea and should promote breeding for anthocyanin content.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Xiaoli Zhang
- Tianjin Kernel Vegetable Research Institute, State Key Laboratory of Vegetable Germplasm Innovation, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
27
|
Yue Z, Ma R, Cheng D, Yan X, He Y, Wang C, Pan X, Yin L, Zhang X, Wei C. Candidate gene analysis of watermelon stripe pattern locus ClSP ongoing recombination suppression. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3263-3277. [PMID: 34185107 DOI: 10.1007/s00122-021-03891-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Using two segregating population, watermelon stripe pattern underlying gene ClSP was delimited to a 611.78 Kb region, consisting of four discrete haploblocks and ongoing recombination suppression. Stripe pattern is an important commodity trait in watermelon, displaying diverse types. In this study, two segregating populations were generated for genetic mapping the single dominant locus ClSP, which was finally delimited to a 611.78 Kb interval with suppression of recombination. According to polymorphism sites detected among genotypes, four discrete haploblocks were characterized in this target region. Based on reference genomes, 81 predicted genes were annotated in the ClSP interval, including seven transcription factors namely as candidate No1-No7. Meanwhile, the ortholog gene of cucumber ist responsible for the irregular stripes was considered as candidate No8. Strikingly, gene structures of No1-No5 completely varied from their reference descriptions and subsequently re-annotated. For instance, the original adjacent distribution candidates No2 and No3 were re-annotated as No2_3, while No4 and No5 were integrated as No4_5. Sequence analysis demonstrated the third polymorphism in CDS of re-annotated No4_5 resulting in truncated proteins in non-stripe plants. Furthermore, only No4_5 was down-regulated in light green stripes relative to dark green stripes. Transcriptome analysis identified 356 DEGs between dark green striped and light green striped peels, with genes involved in photosynthesis and chloroplast development down-regulated in light green stripes but calcium ion binding related genes up-regulated. Additionally, 38 DEGs were annotated as transcription factors, with the majority up-regulated in light green stripes, such as ERFs and WRKYs. This study not only contributes to a better understanding of the molecular mechanisms underlying watermelon stripe development, but also provides new insights into the genomic structure of ClSP locus and valuable candidates.
Collapse
Affiliation(s)
- Zhen Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Rongxue Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Xing Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yaping He
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Chunxia Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Xiaona Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Lijuan Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A and F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Abstract
Broccoli (Brassica oleracea L. var. italica) is one of the most important vegetable crops cultivated worldwide. The market demand for broccoli is still increasing due to its richness in vitamins, anthocyanins, mineral substances, fiber, secondary metabolites and other nutrients. The famous secondary metabolites, glucosinolates, sulforaphane and selenium have protective effects against cancer. Significant progress has been made in fine-mapping and cloning genes that are responsible for important traits; this progress provides a foundation for marker-assisted selection (MAS) in broccoli breeding. Genetic engineering by the well-developed Agrobacterium tumefaciens-mediated transformation in broccoli has contributed to the improvement of quality; postharvest life; glucosinolate and sulforaphane content; and resistance to insects, pathogens and abiotic stresses. Here, we review recent progress in the genetics and molecular breeding of broccoli. Future perspectives for improving broccoli are also briefly discussed.
Collapse
|
29
|
An G, Chen J. Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea. BMC PLANT BIOLOGY 2021; 21:301. [PMID: 34187365 PMCID: PMC8240407 DOI: 10.1186/s12870-021-03084-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/04/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. RESULT In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3'region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3'H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3'region of the allele BjMYB113c. CONCLUSIONS Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.
Collapse
Affiliation(s)
- Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.
| |
Collapse
|
30
|
Feng X, Zhang Y, Wang H, Tian Z, Xin S, Zhu P. The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:159-169. [PMID: 33011819 DOI: 10.1007/s00122-020-03688-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Overexpression and virus-induced gene silencing verified BoDFR1 conferred the anthocyanin accumulation in pink-leaved ornamental kale. Leaf color is an essential trait in the important horticultural biennial plant ornamental kale (Brassica oleracea var. acephala). The identity of the gene conferring this striking trait and its mode of inheritance are topics of debate. Based on an analysis of F1, F2, BC1P1, and BC1P2 ornamental kale populations derived from a cross between a pink-leaved P28 and white-leaved D10 line, we determined that the pink leaf trait is controlled by a semi-dominant gene. We cloned two genes potentially involved in anthocyanin biosynthesis in ornamental kale: Bo9g058630 and Bo6g100940. Based on their variation in sequence, we speculated that Bo9g058630, encoding the kale dihydroflavonol-4 reductase (BoDFR1) enzyme, plays a critical role in the development of the pink leaf trait. Indeed, an InDel marker specific for BoDFR1 completely co-segregated with the pink leaf trait in our F2 population. We then generated the 35Spro: DFR-GUS overexpression vector, which we transformed into D10. Overexpression of BoDFR1 indeed restored some anthocyanin accumulation in this white-leaved parental line. In addition, we targeted BoDFR1 in P28 using virus-induced gene silencing. Again, silencing of BoDFR1 resulted in a substantial decrease in anthocyanin accumulation. This work lays the foundation for further exploration of the mechanism underlying anthocyanin accumulation in pink-leaved ornamental kale.
Collapse
Affiliation(s)
- Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yuting Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Huan Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zhendong Tian
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Siyao Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China.
| |
Collapse
|
31
|
Yan C, Peng L, Zhang L, Qiu Z. Fine mapping of a candidate gene for cool-temperature-induced albinism in ornamental kale. BMC PLANT BIOLOGY 2020; 20:460. [PMID: 33028227 PMCID: PMC7541286 DOI: 10.1186/s12870-020-02657-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The symptoms of cool-temperature-induced chlorosis (CTIC) are widely existed in higher plants. Although many studies have shown that the genetic mechanism of CTIC is generally controlled by recessive genes in model plants, the dominant inheritance of albinism has not been reported thus far. Here, two CTIC mutants, Red Kamome and White Kamome, were utilized to analyse the inheritance of the albino trait in ornamental kale. The objective of this investigation is to fine-map the target locus and identify the most likely candidate genes for albinism. RESULTS Genetic analysis revealed that the albinism in the inner leaves of ornamental kale followed semi-dominant inheritance and was controlled by a single locus in two segregating populations. BSR-seq in combination with linkage analysis was employed to fine-map the causal gene, named AK (Albino Kale), to an approximate 60 kb interval on chromosome C03. Transcriptome data from two extreme pools indicated that the differentially expressed gene of Bol015404, which encodes a cytochrome P450 protein, was the candidate gene. The Bol015404 gene was demonstrated to be upregulated in the albino leaves of ornamental kale by qPCR. Additionally, the critical temperature for the albinism was determined between 10 °C and 16 °C by gradient test. CONCLUSIONS Using two independent segregating populations, the albino mutants were shown to be controlled by one semi-dominant gene, AK, in ornamental kale. The Bol015404 gene was co-segregated with albinism phenotypes, suggesting this unknown function P450 gene as the most likely candidate gene. The albino trait appeared caused by the low temperatures rather than photoperiod. Our results lay a solid foundation on the genetic control of albinism in ornamental kale.
Collapse
Affiliation(s)
- Chenghuan Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Liying Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengming Qiu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China.
| |
Collapse
|
32
|
Chen D, Liu Y, Yin S, Qiu J, Jin Q, King GJ, Wang J, Ge X, Li Z. Alternatively Spliced BnaPAP2.A7 Isoforms Play Opposing Roles in Anthocyanin Biosynthesis of Brassica napus L. FRONTIERS IN PLANT SCIENCE 2020; 11:983. [PMID: 32973819 PMCID: PMC7466728 DOI: 10.3389/fpls.2020.00983] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Brassica napus L. (rapeseed, oilseed rape, and canola) and varieties of its two diploid parents, B. oleracea and B. rapa, display a large amount of variation in anthocyanin pigmentation of the leaf, stem, and fruit. Here, we demonstrate that BnaPAP2.A7, an ortholog of the B. oleracea anthocyanin activator BoMYB2 that confers purple traits, positively regulates anthocyanin biosynthesis in leaves of B. napus. Sequencing of BnaPAP2.A7 and transgenic analysis suggests that activation of this gene in purple rapeseed may result from a single nucleotide and/or 2bp insertion in its promoter region. BnaPAP2.A7 gives rise to three splice variants, designated BnaPAP2.A7-744, BnaPAP2.A7-910, and BnaPAP2.A7-395 according to the length of the transcripts. While BnaPAP2.A7-744 encodes a full-length R2R3-MYB, both BnaPAP2.A7-910 and BnaPAP2.A7-395 encode truncated proteins that lack both a partial R3 repeat and the complete C terminal domain, and so in vitro are unable to interact with the Arabidopsis bHLH protein AtTT8. Although expression of either BnaPAP2.A7-910 or BnaPAP2.A7-395 in green rapeseed does not result in purple leaves, both genes do modify genome-wide gene expression, with a strong repression of anthocyanin-related genes. We have demonstrated that BnaPAP.A7 regulates anthocyanin accumulation in leaves of B. napus and propose a potential mechanism for modulation of anthocyanin biosynthesis by alternative splicing.
Collapse
Affiliation(s)
- Daozong Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Yin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Qiu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Yin S, Wan M, Guo C, Wang B, Li H, Li G, Tian Y, Ge X, King GJ, Liu K, Li Z, Wang J. Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4729-4741. [PMID: 32417916 DOI: 10.1093/jxb/eraa237] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/10/2020] [Indexed: 05/08/2023]
Abstract
In Brassicaceae, the requirement for vernalization is conferred by high expression of FLOWERING LOCUS C (FLC). The expression of FLC is known to be repressed by prolonged exposure to cold. Rapeseed (Brassica napus L.) cultivars can be classified into spring, winter, and semi-winter crop types, depending on their respective vernalization requirements. In addition to two known distinct transposon insertion events, here we identified a 4.422 kb hAT and a 5.625 kb long interspersed nuclear element transposon insertion within BnaFLC.A10, and a 810 bp miniature inverted-repeat transposable element (MITE) in BnaFLC.A2. Quantitative PCR demonstrated that these insertions lead to distinct gene expression patterns and contribute differentially to the vernalization response. Transgenic and haplotype analysis indicated that the known 621 bp MITE in the promoter region of BnaFLC.A10 is a transcriptional enhancer that appears to be the main determinant of rapeseed vernalization, and has contributed to the adaptation of rapeseed in winter cultivation environments. In the absence of this transposon insertion, the functional allele of BnaFLC.A2 is a major determinant of vernalization demand. Thus, the combination of BnaFLC.A10 carrying the 621 bp MITE insertion and a functional BnaFLC.A2 appears necessary to establish the winter rapeseed crop phenotype.
Collapse
Affiliation(s)
- Shuai Yin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Wan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haitao Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ge Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanyong Tian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Bai H, Song Z, Zhang Y, Li Z, Wang Y, Liu X, Ma J, Quan J, Wu X, Liu M, Zhou J, Dong Z, Li D. The bHLH transcription factor PPLS1 regulates the color of pulvinus and leaf sheath in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1911-1926. [PMID: 32157354 DOI: 10.1007/s00122-020-03566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/15/2020] [Indexed: 05/20/2023]
Abstract
The bHLH transcription factor, PPLS1, interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet (Setaria italica). Foxtail millet (Setaria italica), a self-pollinated crop with numerous small florets, is difficult for cross-pollination. The color of pulvinus and leaf sheath with purple being dominant to green is an indicative character and often used for screening authentic hybrids in foxtail millet crossing. Deciphering molecular mechanism controlling this trait would greatly facilitate genetic improvement of cultivars in foxtail millet. Here, using the F2 bulk specific-locus amplified fragment sequencing approach, we mapped the putative causal gene for the purple color of pulvinus and leaf sheath (PPLS) trait to a 100 Kb region on chromosome 7. Expression analyses of the 15 genes in this region revealed that Seita.7G195400 (renamed here as PPLS1) was differentially expressed between purple and green cultivars. PPLS1 encodes a bHLH transcription factor and is localized in the nucleus with a transactivation activity. Furthermore, we observed that expression of a MYB transcription factor gene, SiMYB85 (Seita.4G086300) involved in anthocyanin biosynthesis, shows a totally positive association with that of PPLS1. Heterologous co-expression of both PPLS1 and SiMYB85 in tobacco leaves led to elevated anthocyanin accumulation and expression of some anthocyanin-related genes. Furthermore, PPLS1 physically interacts with SiMYB85. Taken together, our results suggest that PPLS1 interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet.
Collapse
Affiliation(s)
- Hui Bai
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Zhenjun Song
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiyong Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Yongfang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Xue Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Jifang Ma
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Jianzhang Quan
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China
| | - Xianghong Wu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- College of Life Sciences, Nankai University, Tianjin, 300071, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhiping Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang, 050035, China.
| | - Dayong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China.
| |
Collapse
|
35
|
Hao N, Han D, Huang K, Du Y, Yang J, Zhang J, Wen C, Wu T. Genome-based breeding approaches in major vegetable crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1739-1752. [PMID: 31728564 DOI: 10.1007/s00122-019-03477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/09/2019] [Indexed: 05/09/2023]
Abstract
Vegetable crops are major nutrient sources for humanity and have been well-cultivated since thousands of years of domestication. With the rapid development of next-generation sequencing and high-throughput genotyping technologies, the reference genome of more than 20 vegetables have been well-assembled and published. Resequencing approaches on large-scale germplasm resources have clarified the domestication and improvement of vegetable crops by human selection; its application on genetic mapping and quantitative trait locus analysis has led to the discovery of key genes and molecular markers linked to important traits in vegetables. Moreover, genome-based breeding has been utilized in many vegetable crops, including Solanaceae, Cucurbitaceae, Cruciferae, and other families, thereby promoting molecular breeding at a single-nucleotide level. Thus, genome-wide SNP markers have been widely used, and high-throughput genotyping techniques have become one of the most essential methods in vegetable breeding. With the popularization of gene editing technology research on vegetable crops, breeding efficiency can be rapidly increased, especially by combining the genomic and variomic information of vegetable crops. This review outlines the present genome-based breeding approaches used for major vegetable crops to provide insights into next-generation molecular breeding for the increasing global population.
Collapse
Affiliation(s)
- Ning Hao
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Deguo Han
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Ke Huang
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Yalin Du
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China.
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China.
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
36
|
Heng S, Wang L, Yang X, Huang H, Chen G, Cui M, Liu M, Lv Q, Wan Z, Shen J, Fu T. Genetic and Comparative Transcriptome Analysis Revealed DEGs Involved in the Purple Leaf Formation in Brassica juncea. Front Genet 2020; 11:322. [PMID: 32391051 PMCID: PMC7193680 DOI: 10.3389/fgene.2020.00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
Brassica juncea is an important dietary vegetable cultivated and consumed in China for its edible stalks and leaves. The purple leaf mustard, which is rich in anthocyanins, is eye-catching and delivers valuable nutrition. However, the molecular mechanism involved in anthocyanin biosynthesis has not been well studied in B. juncea. Here, histological and transcriptome analyses were used to characterize the purple leaf color and gene expression profiles. Free-hand section analysis showed that the anthocyanin was mainly accumulated in the adaxial epidermal leaf cells. The anthocyanin content in the purple leaves was significantly higher than that in the green leaves. To investigate the critical genes and pathways involved in anthocyanin biosynthesis and accumulation, the transcriptome analysis was used to identify the differentially expressed genes (DEGs) between the purple and green leaves from the backcrossed BC3 segregation population in B. juncea. A total of 2,286 different expressed genes were identified between the purple and green leaves. Among them, 1,593 DEGs were up-regulated and 693 DEGs were down-regulated. There were 213 differently expressed transcription factors among them. The MYB and bHLH transcription factors, which may regulate anthocyanin biosynthesis, were up-regulated in the purple leaves. Interestingly, most of the genes involved in plant-pathogen interaction pathway were also up-regulated in the purple leaves. The late biosynthetic genes involved in anthocyanin biosynthesis were highly up-regulated in the purple leaves of B. juncea. The up regulation of BjTT8 and BjMYC2 and anthocyanin biosynthetic genes (BjC4H, BjDFR, and BjANS) may activate the purple leaf formation in B. juncea. This study may help to understand the transcriptional regulation of anthocyanin biosynthesis in B. juncea.
Collapse
Affiliation(s)
- Shuangping Heng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xi Yang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hao Huang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Guo Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Mengdi Cui
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Mingfang Liu
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qing Lv
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Zhengjie Wan
- College of Horticulture and Forestry, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Jinxiong Shen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Identification of Candidate Genes Involved in Curd Riceyness in Cauliflower. Int J Mol Sci 2020; 21:ijms21061999. [PMID: 32183438 PMCID: PMC7139996 DOI: 10.3390/ijms21061999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
“Riceyness” refers to the precocious development of flower bud initials over the curd surface of cauliflower, and it is regarded as undesirable for the market. The present study aimed to identify the candidate loci and genes responsible for the morphological difference in riceyness between a pair of cauliflower sister lines. Genetic analysis revealed that riceyness is controlled by a single dominant locus. An F2 population derived from the cross between these sister lines was used to construct “riceyness” and “non-riceyness” bulks, and then it was subjected to BSA-seq. On the basis of the results of Δ(SNP-index) analysis, a 4.0 Mb candidate region including 22 putative SNPs was mapped on chromosome C04. Combining the RNA-seq, gene function annotation, and target sequence analysis among two parents and other breeding lines, an orthologous gene of the Arabidopsis gene SOC1, Bo4g024850 was presumed as the candidate gene, and an upstream SNP likely resulted in riceyness phenotype via influencing the expression levels of Bo4g024850. These results are helpful to understand the genetic mechanism regulating riceyness, and to facilitate the molecular improvement on cauliflower curds.
Collapse
|
38
|
Yu H, Wang J, Sheng X, Zhao Z, Shen Y, Branca F, Gu H. Construction of a high-density genetic map and identification of loci controlling purple sepal trait of flower head in Brassica oleracea L. italica. BMC PLANT BIOLOGY 2019; 19:228. [PMID: 31146678 PMCID: PMC6543578 DOI: 10.1186/s12870-019-1831-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Some broccoli (Brassica oleracea L. italic) accessions have purple sepals and cold weather would deepen the purple color, while the sepals of other broccoli lines are always green even in cold winter. The related locus or gene is still unknown. In this study, a high-density genetic map was constructed based on specific locus amplified fragment (SLAF) sequencing in a doubled-haploid segregation population with 127 individuals. And mapping of the purple sepal trait in flower heads based on phenotypic data collected during three seasons was performed. RESULTS A genetic map was constructed, which contained 6694 SLAF markers with an average sequencing depth of 81.37-fold in the maternal line, 84-fold in the paternal line, and 15.76-fold in each individual population studied. In all of the annual data recorded, three quantitative trait loci (QTLs) were identified that were all distributed within the linkage group (LG) 1. Among them, a major locus, qPH.C01-2, located at 36.393 cM LG1, was consistently detected in all analysis. Besides this locus, another two minor loci, qPH.C01-4 and qPH.C01-5, were identified near qPH.C01-2, based on the phenotypic data from spring of 2018. CONCLUSION The purple sepal trait could be controlled by a major single locus and two minor loci. The genetic map and location of the purple sepal trait of flower heads provide an important foundation for mapping other compound traits and the identification of the genes related to purple sepal trait in broccoli.
Collapse
Affiliation(s)
- Huifang Yu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiansheng Wang
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoguang Sheng
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenqing Zhao
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yusen Shen
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Honghui Gu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|