1
|
Li X, Ren Y, Chang K, Wu W, Griffiths HR, Lu S, Gao D. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol 2023; 14:1153915. [PMID: 37153549 PMCID: PMC10154623 DOI: 10.3389/fimmu.2023.1153915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Macrophage infiltration into adipose tissue is a key pathological factor inducing adipose tissue dysfunction and contributing to obesity-induced inflammation and metabolic disorders. In this review, we aim to present the most recent research on macrophage heterogeneity in adipose tissue, with a focus on the molecular targets applied to macrophages as potential therapeutics for metabolic diseases. We begin by discussing the recruitment of macrophages and their roles in adipose tissue. While resident adipose tissue macrophages display an anti-inflammatory phenotype and promote the development of metabolically favorable beige adipose tissue, an increase in pro-inflammatory macrophages in adipose tissue has negative effects on adipose tissue function, including inhibition of adipogenesis, promotion of inflammation, insulin resistance, and fibrosis. Then, we presented the identities of the newly discovered adipose tissue macrophage subtypes (e.g. metabolically activated macrophages, CD9+ macrophages, lipid-associated macrophages, DARC+ macrophages, and MFehi macrophages), the majority of which are located in crown-like structures within adipose tissue during obesity. Finally, we discussed macrophage-targeting strategies to ameliorate obesity-related inflammation and metabolic abnormalities, with a focus on transcriptional factors such as PPARγ, KLF4, NFATc3, and HoxA5, which promote macrophage anti-inflammatory M2 polarization, as well as TLR4/NF-κB-mediated inflammatory pathways that activate pro-inflammatory M1 macrophages. In addition, a number of intracellular metabolic pathways closely associated with glucose metabolism, oxidative stress, nutrient sensing, and circadian clock regulation were examined. Understanding the complexities of macrophage plasticity and functionality may open up new avenues for the development of macrophage-based treatments for obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Xirong Li
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yakun Ren
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Kewei Chang
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| | - Wenlong Wu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Dan Gao
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| |
Collapse
|
2
|
Choi KJ, Lee JH, Park SB, Na YJ, Jung WH, Lee H, Kim KY. Development of in vitro three-dimensional drug screening system for obesity-related metabolic syndrome. J Pharmacol Sci 2022; 148:377-386. [DOI: 10.1016/j.jphs.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022] Open
|
3
|
Altun I, Yan X, Ussar S. Immune Cell Regulation of White Adipose Progenitor Cell Fate. Front Endocrinol (Lausanne) 2022; 13:859044. [PMID: 35422761 PMCID: PMC9001836 DOI: 10.3389/fendo.2022.859044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
Adipose tissue is essential for energy storage and endocrine regulation of metabolism. Imbalance in energy intake and expenditure result in obesity causing adipose tissue dysfunction. This alters cellular composition of the stromal cell populations and their function. Moreover, the individual cellular composition of each adipose tissue depot, regulated by environmental factors and genetics, determines the ability of the depots to expand and maintain its endocrine and storage function. Thus, stromal cells modulate adipocyte function and vice versa. In this mini-review we discuss heterogeneity in terms of composition and fate of adipose progenitor subtypes and their interactions with and regulation by different immune cell populations. Immune cells are the most diverse cell populations in adipose tissue and play essential roles in regulating adipose tissue function via interaction with adipocytes but also with adipocyte progenitors. We specifically discuss the role of macrophages, mast cells, innate lymphoid cells and T cells in the regulation of adipocyte progenitor proliferation, differentiation and lineage commitment. Understanding the factors and cellular interactions regulating preadipocyte expansion and fate decision will allow the identification of novel mechanisms and therapeutic strategies to promote healthy adipose tissue expansion without systemic metabolic impairment.
Collapse
Affiliation(s)
- Irem Altun
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xiaocheng Yan
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Siegfried Ussar
- Research Group Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
- *Correspondence: Siegfried Ussar,
| |
Collapse
|
4
|
Moreno-Navarrete JM, Comas F, de Jager V, Fernández-Real JM, Bouma HR. Cecal Ligation and Puncture-Induced Sepsis Promotes Brown Adipose Tissue Inflammation Without Any Impact on Expression of Thermogenic-Related Genes. Front Physiol 2021; 12:692618. [PMID: 34322037 PMCID: PMC8313297 DOI: 10.3389/fphys.2021.692618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: The negative effects of chronic low-level inflammation on adipose tissue physiology have been extensively demonstrated, whereas the effects of acute inflammation are less studied. Here, we aimed to investigate the effects of sepsis-induced acute inflammation on gene expression markers of brown and white adipose tissue functionality. Methods: Brown adipose tissue (BAT) and perirenal white adipose tissue (prWAT) gene expression markers were analyzed in cecal ligation and puncture (CLP)-induced sepsis mice model. Results: CLP-induced sepsis attenuated expression of adipogenesis-related genes, in parallel to increased Tnf, Il6, and Ltf gene expression in prWAT. In contrast, CLP-induced sepsis resulted in increased expression of pro-inflammatory genes (Il6, Ltf, and Lbp) in BAT, without affecting expression of genes encoding for thermogenic activity. Conclusion: Sepsis promotes both prWAT and BAT inflammation, associated with reduced adipogenesis-related gene expression in prWAT, without significant effects on BAT thermogenic genes.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain.,Department of Medicine, Universitat de Girona, Girona, Spain
| | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain
| | - Vincent de Jager
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain.,Department of Medicine, Universitat de Girona, Girona, Spain
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Kang X, Liang H, Luo Y, Li Z, He F, Han X, Zhang L. Streptococcus thermophilus MN-ZLW-002 Can Inhibit Pre-adipocyte Differentiation through Macrophage Activation. Biol Pharm Bull 2021; 44:316-324. [PMID: 33390424 DOI: 10.1248/bpb.b20-00335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well documented that obesity and metabolic syndrome have a deep association with the intestinal immune system of the host animal. Recent studies indicate that some selected probiotics can modulate the immune responses of the host animal, thereby altering its lipid metabolism. However, the underlying mechanisms are still not fully understood. This study was conducted to investigate the possibility of probiotics to activate macrophages in the hosts, thus alter the differentiation of pre-adipocytes. In this study, Streptococcus thermophilus MN-ZLW-002 (MN-ZLW-002) was co-cultured with RAW264.7 macrophages, with Lactobacillus rhamnosus GG (LGG) as a control. The conditioned medium (CM) of the co-culture was collected and then added to 3T3-L1 pre-adipocytes. Viable and heat-killed (80 °C, 30 min) MN-ZLW-002 stimulated RAW264.7 cells to produce significant amounts of interleukin (IL)-6 and tumor necrosis factor (TNF)-α and induced intense phosphorylation of P38, p44/42 mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase (ERK)) and nuclear factor κB (NF-κB). Cytokine production reduced dramatically when heat-killed MN-ZLW-002 was treated with Ribonuclease. Viable and heat-killed LGG induced less cytokine production and little signaling protein activation. Viable and heat-killed MN-ZLW-002-stimulated RAW264.7-CM notably suppressed pre-adipocytes differentiation. However, viable LGG-stimulated RAW264.7-CM had a weaker effect and heat-killed LGG-stimulated RAW264.7-CM had no effect. These findings suggest that viable and heat-killed (80 °C, 30 min) MN-ZLW-002 may alter its lipid metabolism by regulating its immune response, possibly via the release of cytokine, particularly TNF-α. The RNA of heat-killed MN-ZLW-002 may be a key component in its immune activation effect.
Collapse
Affiliation(s)
- Xiaohong Kang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
| | - Huijing Liang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, Sichuan University
| | - Yating Luo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, Sichuan University
| | - Zhouyong Li
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co., Ltd
| | - Fang He
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, Sichuan University
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
| | - Lanwei Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology.,College of Food Science and Engineering, Ocean University of China
| |
Collapse
|
6
|
Kang X, Liang H, Luo Y, Li Z, He F, Han X, Zhang L. Anti-adipogenesis and metabolism-regulating effects of heat-inactivated Streptococcus thermophilus MN-ZLW-002. Lett Appl Microbiol 2020; 72:677-687. [PMID: 32981107 DOI: 10.1111/lam.13398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome and obesity have become serious threats to public health worldwide. This study was conducted to evaluate the anti-adipogenesis and metabolism-regulating effects of heat-inactivated Streptococcus thermophilus MN-ZLW-002 (MN-ZLW-002), which can be used as a yogurt starter. In vitro study suggested that MN-ZLW-002 stimulated the RAW264.7 macrophages to produce significant amounts of interleukin (IL)-6, IL-10 and tumour necrosis factor (TNF)-α and induced intense phosphorylation of P38, p44/42 MAPK and nuclear factor κB. MN-ZLW-002-stimulated RAW264.7-conditioned medium (CM) notably suppressed the differentiation and adipogenesis of 3T3-L1 pre-adipocytes. The 12-week in vivo study suggested that orally administered MN-ZLW-002 significantly reduced the weight gain of mice caused by the high-fat diet (HFD) at weeks 3-8; decreased fasting blood glucose levels at week 4 and week 8; decreased serum total triglyceride level at week 12. MN-ZLW-002 also reduced serum IL-1β and chemokine ligand 3 levels in the HFD-fed mice. These findings suggest that heat-inactivated MN-ZLW-002 can suppress adipocytes differentiation and lipid accumulation by regulating the immune response, possibly via the release of cytokines, particularly TNF-α; MN-ZLW-002 can improve metabolism-related indicators in the early stage of HFD intervention and regulate the related pro-inflammatory immune response.
Collapse
Affiliation(s)
- X Kang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - H Liang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Luo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Z Li
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co., Ltd, Hohhot, Inner Mongolia, China
| | - F He
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - L Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China.,College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
7
|
Pyrina I, Chung KJ, Michailidou Z, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Front Cell Dev Biol 2020; 8:644. [PMID: 32760729 PMCID: PMC7372115 DOI: 10.3389/fcell.2020.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Adipose progenitor cells, or preadipocytes, constitute a small population of immature cells within the adipose tissue. They are a heterogeneous group of cells, in which different subtypes have a varying degree of commitment toward diverse cell fates, contributing to white and beige adipogenesis, fibrosis or maintenance of an immature cell phenotype with proliferation capacity. Mature adipocytes as well as cells of the immune system residing in the adipose tissue can modulate the function and differentiation potential of preadipocytes in a contact- and/or paracrine-dependent manner. In the course of obesity, the accumulation of immune cells within the adipose tissue contributes to the development of a pro-inflammatory microenvironment in the tissue. Under such circumstances, the crosstalk between preadipocytes and immune or parenchymal cells of the adipose tissue may critically regulate the differentiation of preadipocytes into white adipocytes, beige adipocytes, or myofibroblasts, thereby influencing adipose tissue expansion and adipose tissue dysfunction, including downregulation of beige adipogenesis and development of fibrosis. The present review will outline the current knowledge about factors shaping cell fate decisions of adipose progenitor cells in the context of obesity-related inflammation.
Collapse
Affiliation(s)
- Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Zoi Michailidou
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Gambaro SE, Zubiría MG, Giordano AP, Portales AE, Alzamendi A, Rumbo M, Giovambattista A. "Spexin improves adipose tissue inflammation and macrophage recruitment in obese mice". Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158700. [PMID: 32201217 DOI: 10.1016/j.bbalip.2020.158700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/23/2022]
Abstract
Spexin (SPX) is a novel adipokine related to many metabolic effects, such as gastrointestinal movements, insulin and glucose homeostasis, lipid metabolism and energy balance. This study evaluates the role of SPX in the improvement of the metabolic and inflammatory profile in fructose-rich-diet obese mice. Adult Swiss mice were supplemented or not with fructose (20% in tap water, FRD and CTR, respectively) for 10 weeks. The last ten days, mice were treated or not with SPX (ip. 29 μg/Kg/day, FRD-SPX and CTR-SPX, respectively). A positive correlation was observed between body weight prior to treatment and weight loss after SPX challenge. Moreover, plasma and liver triglycerides and adipose tissue (AT) features (mass, adipocyte hypertrophy, mRNA of leptin) were improved. SPX also induced a reduction in epididymal AT (EAT) expression of TNFα, IL1β and IL6 and an improvement in IL10 and CD206. M1 macrophages in EAT, principally the Ly6C- populations (M1a and M1b), were decreased. Adipocytes from FRD-SPX mice induced less macrophage activation (IL6, mRNA and secretion) than FRD after overnight co-culture with the monocyte cell line (RAW264.7) in stimulated conditions (M1 activation, LPS 100 ng/mL). Finally, in vitro, monocytes pre-incubated with SPX and stimulated with LPS showed decreased inflammatory mRNA markers compared to monocytes with LPS alone. In conclusion, SPX decreased body weight and improved the metabolic profile and adipocyte hypertrophy. Inflammatory Ly6C- macrophages decreased, together with inflammatory marker expression. In vitro studies demonstrate that SPX induced a decrease in M1 macrophage polarization directly or through mature adipocytes.
Collapse
Affiliation(s)
- Sabrina Eliana Gambaro
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina
| | - María Guillermina Zubiría
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina
| | - Alejandra Paula Giordano
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Andrea Estefanía Portales
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Ana Alzamendi
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, CONICET-UNLP, La Plata, 1900, Argentina
| | - Andrés Giovambattista
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina.
| |
Collapse
|
9
|
Pesce Viglietti AI, Giambartolomei GH, Quarleri J, Delpino MV. Brucella abortus Infection Modulates 3T3-L1 Adipocyte Inflammatory Response and Inhibits Adipogenesis. Front Endocrinol (Lausanne) 2020; 11:585923. [PMID: 33071987 PMCID: PMC7531218 DOI: 10.3389/fendo.2020.585923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries. The adipocytes are the most abundant cell type of adipose tissue and their secreted factors play an important role in several aspects of the innate and adaptive immune response. Here, we demonstrated the ability of Brucella abortus to infect and replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1 cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a mechanism independent of bacterial viability and dependent on lipidated outer membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte differentiation involving a TNF-α dependent mechanism, thus suggesting a plausible interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is able to alter adipogenesis process in adipocytes and its precursors directly after their infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through soluble factors released by B. abortus-infected macrophages.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: María Victoria Delpino, ; Jorge Quarleri,
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: María Victoria Delpino, ; Jorge Quarleri,
| |
Collapse
|
10
|
Zhu J, Bing C, Wilding JPH. 1α,25(OH) 2D 3 attenuates IL-6 and IL-1β-mediated inflammatory responses in macrophage conditioned medium-stimulated human white preadipocytes by modulating p44/42 MAPK and NF-κB signaling pathways. Diabetol Metab Syndr 2019; 11:9. [PMID: 30697360 PMCID: PMC6346557 DOI: 10.1186/s13098-019-0405-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolic syndrome is characterized by macrophage infiltration and inflammatory responses-metaflammation in adipose tissue. IL-6 and IL-1β could mediate the inflammatory responses in macrophage stimulated-preadipocytes by modulating MAPK and NF-κB pathways. To test this hypothesis we used antibodies to block IL-6 and IL-1β action in macrophage conditioned medium (MacCM)-stimulated human white preadipocytes. Moreover, as interventions that prevent this could potentially be used to treat or prevent metabolic syndrome, and 1α,25(OH)2D3 has previously been reported to exert an anti-inflammatory action on macrophage-stimulated adipocytes, in this study we also investigated whether 1α,25(OH)2D3 could attenuate inflammatory responses in MacCM-stimulated preadipocytes, and explored the potential anti-inflammatory mechanisms. METHODS Human white preadipocytes were cultured with 25% MacCM for 24 h to elicit inflammatory responses. This was confirmed by measuring the concentrations and mRNA levels of major pro-inflammatory factors [IL-1β, IL-6, IL-8, monocyte chemoattractant protein (MCP)-1 and regulated on activation, normal T cell expressed and secreted (RANTES)] by ELISA and qPCR, respectively. IL-6 and IL-1β actions were blocked using IL-6 antibody (300 ng/ml) and IL-1β antibody (15 μg/ml), respectively. Potential anti-inflammatory effects of 1α,25(OH)2D3 were investigated by pre-treatment and treatment of 1α,25(OH)2D3 (0.01 to 10 nM) for 48 h in MacCM-stimulated preadipocytes. In parallel, western blotting was used to determine inflammatory signaling molecules including relA of the NF-κB pathway and p44/42 MAPK modified during these processes. RESULTS MacCM enhanced the secretion and gene expression of IL-1β, IL-6, IL-8, MCP-1 and RANTES by increasing the phosphorylation levels of relA and p44/42 MAPK in preadipocytes, whereas blocking IL-6 and IL-1β action inhibited the inflammatory responses by decreasing p44/42 MAPK and relA phosphorylation, respectively. Furthermore, 10 nM of 1α,25(OH)2D3 generally inhibited the IL-6 and IL-1β-mediated inflammatory responses, and reduced both p44/42 MAPK and relA phosphorylation in MacCM-stimulated preadipocytes. CONCLUSIONS 1α,25(OH)2D3 attenuates IL-6 and IL-1β-mediated inflammatory responses, probably by inhibiting p44/42 MAPK and relA phosphorylation in MacCM-stimulated human white preadipocytes.
Collapse
Affiliation(s)
- Jingjing Zhu
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX UK
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu District, Suzhou, 215004 People’s Republic of China
| | - Chen Bing
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX UK
| | - John P. H. Wilding
- Institute of Ageing and Chronic Disease, William Henry Duncan Building, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX UK
- Clinical Science Center, University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL UK
| |
Collapse
|
11
|
IL-1β- and IL-4-polarized macrophages have opposite effects on adipogenesis of intramuscular fibro-adipogenic progenitors in humans. Sci Rep 2018; 8:17005. [PMID: 30451963 PMCID: PMC6242986 DOI: 10.1038/s41598-018-35429-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat deposition represents a negative prognostic factor for several myopathies, metabolic diseases and aging. Fibro-adipogenic progenitors (FAPs) are considered as the main source of intramuscular adipocytes, but the mechanisms controlling their adipogenic potential are still not elucidated in humans. The aim of this study was to explore the regulation of human FAP adipogenesis by macrophages. We found that CD140a-expressing FAPs were located close to CD68 positive macrophages in muscles from patients with Duchenne muscular dystrophy (DMD). This strongly suggests a potential interaction between FAPs and macrophages in vivo. Isolated human primary FAPs were then differentiated in the presence of conditioned media obtained from primary blood monocyte-polarized macrophages. Molecules released by IL-1β-polarized macrophages (M(IL-1β)) drastically reduced FAP adipogenic potential as assessed by decreased cellular lipid accumulation and reduced gene expression of adipogenic markers. This was associated with an increased gene expression of pro-inflammatory cytokines in FAPs. Conversely, factors secreted by IL-4-polarized macrophages (M(IL-4)) enhanced FAP adipogenesis. Finally, the inhibition of FAP adipocyte differentiation by M(IL-1β) macrophages requires the stimulation of Smad2 phosphorylation of FAPs. Our findings identify a novel potential crosstalk between FAPs and M(IL-1β) and M(IL-4) macrophages in the development of adipocyte accumulation in human skeletal muscles.
Collapse
|
12
|
M1 macrophage subtypes activation and adipocyte dysfunction worsen during prolonged consumption of a fructose-rich diet. J Nutr Biochem 2018; 61:173-182. [PMID: 30245336 DOI: 10.1016/j.jnutbio.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
Abstract
Fructose-rich diet (FRD) has been associated with obesity development, which is characterized by adipocytes hypertrophy and chronic low-grade inflammation. Interaction of adipocytes and immune cells plays a key role in adipose tissue (AT) alterations in obesity. We assessed the metabolic and immune impairments in AT in a murine obesity model induced by FRD at different periods. Adult Swiss mice were divided into groups of 6 and 10 weeks of fructose (FRD 6wk, FRD 10wk) or water intake (CTR 6wk, CTR 10wk). FRD induced increased in body weight, epidydimal AT mass, and plasmatic and liver Tg, and impaired insulin sensitivity. Also, hypertrophic adipocytes from FRD 6wk-10wk mice showed higher IL-6 when stimulated with LPS and leptin secretion. Several of these alterations worsened in FRD 10wk. Regarding AT inflammation, FRD mice have increased TNFα, IL-6 and IL1β, and decrease in IL-10 and CD206 mRNA levels. Using CD11b, LY6C, CD11c and CD206 as macrophages markers, we identified for first time in AT M1 (M1a: Ly6C+/-CD11c+CD206- and M1b: Ly6C+/-CD11c+CD206+) and M2 subtypes (Ly6C+/-CD11c-CD206+). M1a phenotype increased from 6 weeks onward, while Ly6C+/- M1b phenotype increased only after 10 weeks. Finally, co-culture of RAW264.7 (monocytes cell line) and CTR or FRD adipocytes showed that FRD 10wk adipocytes increased IL-6 expression in non- or LPS-stimulated monocytes. Our results showed that AT dysfunction got worse as the period of fructose consumption was longer. Inflammatory macrophage subtypes increased depending on the period of FRD intake, and hypertrophic adipocytes were able to create an environment that favored M1 phenotype in vitro.
Collapse
|
13
|
Briones L, Andrews M, Pizarro F, Arredondo-Olguín M. Expression of genes associated with inflammation and iron metabolism in 3T3-L1 cells induced with macrophages-conditioned medium, glucose and iron. Biometals 2018; 31:595-604. [PMID: 29730778 DOI: 10.1007/s10534-018-0108-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/26/2018] [Indexed: 01/04/2023]
Abstract
Obesity is characterized by a chronic inflammatory process, with an increased volume of total adipose tissue, especially visceral, which secretes pro-inflammatory cytokines such as TNF-α and IL-6. Hepcidin (Hpc), a main iron metabolism regulator, is synthetized by an IL-6 stimuli, among others, in liver and adipose tissue, favoring an association between the inflammatory process and iron metabolism. Still there are questions remain regarding the interaction of these factors. Our aim was to study the effect of a macrophage-conditioned medium (MCM) on adipocyte cells challenged with glucose and/or iron. We studied the mRNA relative abundance of genes related to inflammation in differentiated 3T3-L1 cells challenged with Fe (40 µM), glucose (20 mM) or Fe/glucose (40 µM/20 mM) with or without MCM for 24 h. We also measured the intracellular iron levels under these conditions. Our results showed that when adipocytes were challenged with MCM, glucose and/or Fe, the intracellular iron and mRNA levels of pro-inflammatory cytokines increased. These responses were higher when all the stimuli were combined with MCM from macrophages. Thus, we showed that combined high glucose/high Fe alone or with MCM may contribute to an increase on intracellular iron and inflammatory response in 3T3-L1 differentiated cells, by increased mRNA levels of IL-6, TNF-α, MCP-1, Hpc and reducing adiponectin levels, enhancing the inflammatory processes.
Collapse
Affiliation(s)
- L Briones
- Micronutrient Laboratory, Nutrition Institute and Food Technology, INTA, University of Chile, El Líbano, 5524, Santiago, Macul, Chile.,Department of Nutrition and Public Health, Faculty of Health Science and Food, University of Bío-Bío, Andrés Bello 720, Chillán, Chile
| | - M Andrews
- Micronutrient Laboratory, Nutrition Institute and Food Technology, INTA, University of Chile, El Líbano, 5524, Santiago, Macul, Chile
| | - F Pizarro
- Micronutrient Laboratory, Nutrition Institute and Food Technology, INTA, University of Chile, El Líbano, 5524, Santiago, Macul, Chile
| | - M Arredondo-Olguín
- Micronutrient Laboratory, Nutrition Institute and Food Technology, INTA, University of Chile, El Líbano, 5524, Santiago, Macul, Chile.
| |
Collapse
|
14
|
Abstract
Propose Obesity is a fast growing epidemic worldwide. During obesity, the increase in adipose tissue mass arise from two different mechanisms, namely, hyperplasia and hypertrophy. Hyperplasia which is the increase in adipocyte number is characteristic of severe obese patients. Recently, there has been much interest in targeting adipogenesis as therapeutic strategy against obesity. Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Methods Presently, we provide a review of key studies evaluating the effects of dietary flavonoids in different stages of adipocyte development with a particular emphasis on the investigations that explore the underlying mechanisms of action of these compounds in human or animal cell lines as well as animal models. Results Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Although most of the studies reveal anti-adipogenic effect of flavonoids, some flavonoids demonstrated proadipogenic effect in mesenchymal stem cells or preadipocytes. Conclusion The anti-adipogenic effect of flavonoids is mainly via their effect on regulation of several pathways such as induction of apoptosis, suppression of key adipogenic transcription factors, activation of AMPK and Wnt pathways, inhibition of clonal expansion, and cell-cycle arrest.
Collapse
|
15
|
Shafei AES, Nabih ES, Shehata KA, Abd Elfatah ESM, Sanad ABA, Marey MY, Hammouda AAMA, Mohammed MMM, Mostafa R, Ali MA. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Child Obes 2018; 14:18-25. [PMID: 29019419 DOI: 10.1089/chi.2017.0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is a global health problem. It is characterized by excess adipose tissue that results from either increase in the number of adipocytes or increase in adipocytes size. Adipocyte differentiation is a highly regulated process that involves the activation of several transcription factors culminating in the removal of adipocytes from the cell cycle and induction of highly specific proteins. Several other factors, including hormones, genes, and epigenetics, are among the most important triggers of the differentiation process. Although the main contributing factors to obesity are high caloric intake, a sedentary lifestyle, and genetic predisposition, strong evidence supports a role for life exposure to environmental pollutants. Endocrine-disrupting chemicals are exogenous, both natural and man-made, chemicals that disrupt the body signaling processes, thus interfering with the endocrine system. Several studies have shown that prenatal exposure to endocrine disruptors modulates the mechanisms, by which multipotent mesenchymal stem cells differentiate into adipocytes. This review discusses adipocytes differentiation and highlights the possible mechanisms of prenatal exposure to endocrine disruptors in reprogramming of adipogenesis and induction of obesity later in life. Therefore, this review provides knowledge that reduction of early life exposure to these chemicals could open the door for new strategies in the prevention of obesity, especially during childhood.
Collapse
Affiliation(s)
- Ayman El-Sayed Shafei
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Enas Samir Nabih
- 2 Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| | | | | | | | | | | | | | - Randa Mostafa
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Mahmoud A Ali
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| |
Collapse
|
16
|
Cai J, Li B, Liu K, Feng J, Gao K, Lu F. Low-dose G-CSF improves fat graft retention by mobilizing endogenous stem cells and inducing angiogenesis, whereas high-dose G-CSF inhibits adipogenesis with prolonged inflammation and severe fibrosis. Biochem Biophys Res Commun 2017; 491:662-667. [DOI: 10.1016/j.bbrc.2017.07.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 11/30/2022]
|
17
|
Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation. Sci Rep 2017; 7:7653. [PMID: 28794431 PMCID: PMC5550513 DOI: 10.1038/s41598-017-07923-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2−/−) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2−/− mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2−/− mice. Peritoneal macrophages from M-JAK2−/− mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.
Collapse
|
18
|
Effect of High Glucose Concentration on Human Preadipocytes and Their Response to Macrophage-Conditioned Medium. Can J Diabetes 2016; 40:411-418. [DOI: 10.1016/j.jcjd.2016.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/28/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022]
|
19
|
Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Sci Rep 2016; 6:31566. [PMID: 27511834 PMCID: PMC4980670 DOI: 10.1038/srep31566] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023] Open
Abstract
Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance.
Collapse
|
20
|
Tencerova M, Kassem M. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis. Front Endocrinol (Lausanne) 2016; 7:127. [PMID: 27708616 PMCID: PMC5030474 DOI: 10.3389/fendo.2016.00127] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- *Correspondence: Michaela Tencerova,
| | - Moustapha Kassem
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Fernández-Trasancos Á, Guerola-Segura R, Paradela-Dobarro B, Álvarez E, García-Acuña JM, Fernández ÁL, González-Juanatey JR, Eiras S. Glucose and Inflammatory Cells Decrease Adiponectin in Epicardial Adipose Tissue Cells: Paracrine Consequences on Vascular Endothelium. J Cell Physiol 2015; 231:1015-23. [DOI: 10.1002/jcp.25189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ángel Fernández-Trasancos
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Raquel Guerola-Segura
- Department of Cardiology, Coronary Care Unit; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Beatriz Paradela-Dobarro
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Ezequiel Álvarez
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - José María García-Acuña
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
- Department of Cardiology, Coronary Care Unit; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Ángel Luis Fernández
- Department of Heart Surgery; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - José Ramón González-Juanatey
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
- Department of Cardiology, Coronary Care Unit; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Sonia Eiras
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
22
|
WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells. Biochem Biophys Res Commun 2015; 462:105-11. [DOI: 10.1016/j.bbrc.2015.04.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
|
23
|
Bing C. Is interleukin-1β a culprit in macrophage-adipocyte crosstalk in obesity? Adipocyte 2015; 4:149-52. [PMID: 26167419 PMCID: PMC4496963 DOI: 10.4161/21623945.2014.979661] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue remodeling occurs in obesity, characterized by adipocyte hypertrophy and increased infiltration of macrophages which also shift to a proinflammatory phenotype. Factors derived from these macrophages significantly alter adipocyte function, such as repressing adipogenesis, inducing inflammatory response and desensitizing insulin action. As macrophages produce a cocktail of inflammatory signals, identifying the key factors that mediate the detrimental effects may offer effective therapeutic targets. IL-1β, a major cytokine produced largely by macrophages, is implicated in the development of obesity-associated insulin resistance. In this article, we discuss recent advances in our understanding of the role of IL-1β in macrophage-adipocyte crosstalk in obesity. IL-1β impairs insulin sensitivity in adipose tissue by inhibition of insulin signal transduction. Blocking the activity of IL-1β, its receptor binding or production improves insulin signaling and action in human adipocytes. This is in parallel with a reduction in macrophage-stimulated proinflammatory profile and lipolysis. Targeting IL-1β may be beneficial for protecting against obesity-related insulin resistance at the tissue and systemic levels.
Collapse
Key Words
- Akt, protein kinase B
- CCL5, chemokine (C-C motif) ligand-5
- GLUT4, glucose transporter 4
- IL-1Ra, interleukin-1 receptor antagonist
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- IL-8, interleukin-8
- IRS1, insulin receptor substrate 1
- MC, macrophage-conditioned
- MCP-1, monocyte chemotactic protein-1
- NFκB, nuclear factor of κ light polypeptide gene enhancer in B-cells
- NLRP3, nucleotide-binding oligomerization domain
- PI3K, phosphoinositide-3-kinase
- SVF, stromal vascular fraction
- TNFα, tumour necrosis factor-alpha
- adipocyte
- adipose tissue
- chemokine
- cytokine
- domain-containing protein 3
- inflammation
- insulin resistance
- interleukin-1β
- leucine-rich repeat and pyrin
- macrophage
- obesity
Collapse
|
24
|
Advanced application of porcine intramuscular adipocytes for evaluating anti-adipogenic and anti-inflammatory activities of immunobiotics. PLoS One 2015; 10:e0119644. [PMID: 25789857 PMCID: PMC4366390 DOI: 10.1371/journal.pone.0119644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
We previously established a clonal porcine intramuscular preadipocyte (PIP) line and we were able to establish a protocol to obtain functional mature adipocytes from PIP cells. We hypothesized that both PIP cells and mature adipocytes are likely to be useful in vitro tools for increasing our understanding of immunobiology of adipose tissue, and for the selection and study of immunoregulatory probiotics (immunobiotics) able to modulate adipocytes immune responses. In this study, we investigated the immunobiology of PIP cells and mature adipocytes in relation to their response to TNF-α stimulation. In addition, we evaluated the possibility that immunobiotic microorganisms modify adipogenesis and immune functions of porcine adipose tissue through Peyer’s patches (PPs) immune-competent cells. We treated the porcine PPs immune cells with different probiotic strains; and we evaluated the effect of conditioned media from probiotic-stimulated immune cells in PIP cells and mature adipocytes. The Lactobacillus GG and L. gasseri TMC0356 showed remarkable effects, and were able to significantly reduce the expression of pro-inflammatory factors and negative regulators (A20, Bcl-3, and MKP-1) in adipocytes challenged with TNF-α. The results of this study demonstrated that the evaluation of IL-6, and MCP-1 production, and A20 and Bcl-3 down-regulation in TNF-α-challenged adipocytes could function as biomarkers to screen and select potential immunobiotic strains. Taking into consideration that several in vivo and in vitro studies clearly demonstrated the beneficial effects of Lactobacillus GG and L. gasseri TMC0356 in adipose inflammation, the results presented in this work indicate that the PIP cells and porcine adipocytes could be used for the screening and the selection of new immunobiotic strains with the potential to functionally modulate adipose inflammation when orally administered.
Collapse
|
25
|
Karaman S, Hollmén M, Robciuc MR, Alitalo A, Nurmi H, Morf B, Buschle D, Alkan HF, Ochsenbein AM, Alitalo K, Wolfrum C, Detmar M. Blockade of VEGF-C and VEGF-D modulates adipose tissue inflammation and improves metabolic parameters under high-fat diet. Mol Metab 2015; 4:93-105. [PMID: 25685697 PMCID: PMC4314545 DOI: 10.1016/j.molmet.2014.11.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Elevated serum levels of the lymphangiogenic factors VEGF-C and -D have been observed in obese individuals but their relevance for the metabolic syndrome has remained unknown. METHODS K14-VEGFR-3-Ig (sR3) mice that constitutively express soluble-VEGFR-3-Ig in the skin, scavenging VEGF-C and -D, and wildtype (WT) mice were fed either chow or high-fat diet for 20 weeks. To assess the effect of VEGFR-3 blockage on adipose tissue growth and insulin sensitivity, we evaluated weight gain, adipocyte size and hepatic lipid accumulation. These results were complemented with insulin tolerance tests, FACS analysis of adipose tissue macrophages, in vitro 3T3-L1 differentiation assays and in vivo blocking antibody treatment experiments. RESULTS We show here that sR3 mice are protected from obesity-induced insulin resistance and hepatic lipid accumulation. This protection is associated with enhanced subcutaneous adipose tissue hyperplasia and an increased number of alternatively-activated (M2) macrophages in adipose tissue. We also show that VEGF-C and -D are chemotactic for murine macrophages and that this effect is mediated by VEGFR-3, which is upregulated on M1 polarized macrophages. Systemic antibody blockage of VEGFR-3 in db/db mice reduces adipose tissue macrophage infiltration and hepatic lipid accumulation, and improves insulin sensitivity. CONCLUSIONS These results reveal an unanticipated role of the lymphangiogenic factors VEGF-C and -D in the mediation of metabolic syndrome-associated adipose tissue inflammation. Blockage of these lymphangiogenic factors might constitute a new therapeutic strategy for the prevention of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Sinem Karaman
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Maija Hollmén
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Marius R. Robciuc
- Wihuri Research Institute and Translational Cancer Biology Program, Institute for Molecular Medicine Finland and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Annamari Alitalo
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Biology Program, Institute for Molecular Medicine Finland and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Bettina Morf
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Dorina Buschle
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - H. Furkan Alkan
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Alexandra M. Ochsenbein
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Institute for Molecular Medicine Finland and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
26
|
Nagafuku M, Sato T, Sato S, Shimizu K, Taira T, Inokuchi JI. Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3. Glycobiology 2014; 25:303-18. [DOI: 10.1093/glycob/cwu112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, Hunter L, Bing C. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 2014; 307:E289-304. [PMID: 24918199 PMCID: PMC4121578 DOI: 10.1152/ajpendo.00430.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
Abstract
Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue.
Collapse
MESH Headings
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/immunology
- Adipocytes, White/metabolism
- Antibodies, Neutralizing/pharmacology
- Caspase 1/chemistry
- Caspase 1/metabolism
- Caspase Inhibitors/pharmacology
- Cell Communication
- Cell Line
- Cells, Cultured
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Insulin Resistance
- Interleukin 1 Receptor Antagonist Protein/genetics
- Interleukin 1 Receptor Antagonist Protein/metabolism
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/metabolism
- Lipolysis/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Receptors, Interleukin-1/agonists
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Dan Gao
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Mohamed Madi
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Cherlyn Ding
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Fok
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Steele
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Ford
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Leif Hunter
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Chen Bing
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
28
|
The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 2013; 533:481-7. [PMID: 24140453 DOI: 10.1016/j.gene.2013.10.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 02/03/2023]
Abstract
Recent findings indicate that microRNAs (miRNAs) are involved in the regulatory network of adipogenesis and obesity. Thus far, only a few human miRNAs are known to function as adipogenic regulators, fanning interest in studies on the functional role of miRNAs during adipogenesis in humans. In a previous study, we used a microarray to assess miRNA expression during human preadipocyte differentiation. We found that expression of the miR-26b was increased in mature adipocytes. MiR-26b is an intronic miRNA located in the intron of CTDSP1 (carboxy terminal domain, RNA polymerase II, polypeptide A, small phosphatase 1). Target prediction and Renilla luciferase analyses revealed the phosphatase and tensin homolog gene (PTEN) as a putative target gene. In this study, we found that miR-26b was gradually upregulated during adipocyte differentiation. To understand the roles of miR-26b in adipogenesis, we adopted a loss-of-function approach to silence miR-26b stably in human preadipocytes. We found that miR-26b inhibition effectively suppressed adipocyte differentiation, as evidenced by decreased lipid droplets and the ability of miR-26b to decrease mRNA levels of adipocyte-specific molecular markers and triglyceride accumulation. Furthermore, the cell growth assay revealed that miR-26b inhibition promoted proliferation. Nevertheless, it had no effect on apoptosis. Taken together, these data indicate that miR-26b may be involved in adipogenesis and could be targeted for therapeutic intervention in obesity.
Collapse
|
29
|
Delayed cytogenetic and major molecular responses associated to increased BMI at baseline in chronic myeloid leukemia patients treated with imatinib. Cancer Lett 2013; 333:32-5. [DOI: 10.1016/j.canlet.2012.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022]
|
30
|
Gagnon A, Foster C, Landry A, Sorisky A. The role of interleukin 1β in the anti-adipogenic action of macrophages on human preadipocytes. J Endocrinol 2013; 217:197-206. [PMID: 23461871 DOI: 10.1530/joe-12-0565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When adipose tissue accumulates in obesity, the ability of preadipocytes to differentiate permits a hyperplastic expansion of functional adipocytes that preserves insulin sensitivity. Adipose infiltration by macrophages is associated with an adipogenic deficit and the appearance of inflamed, insulin-resistant hypertrophied adipocytes. Interleukin 1β (IL1β) has been reported to account for the anti-adipogenic action of macrophages in a mouse model. Using the THP-1 human macrophage cell line and human primary preadipocytes, our objective was to determine whether IL1β was necessary for the ability of conditioned medium from THP-1 macrophages (THP-1-MacCM) to: i) stimulate human preadipocyte inhibitor of κB kinase β (IKKβ) and ii) inhibit human adipocyte differentiation. IL1β is present in THP-1-MacCM, and THP-1-MacCM or IL1β (500 pg/ml; its concentration in THP-1-MacCM) acutely stimulated IKKβ phosphorylation and inhibitor of κB (IκB) degradation in preadipocytes. IL1β was sufficient to inhibit adipogenesis on its own, and this was blocked by SC-514, an IKKβ inhibitor, as has been reported for THP-1-MacCM. IκB degradation by IL1β-immunodepleted THP-1-MacCM was attenuated, whereas IKKβ phosphorylation and the inhibition of adipocyte differentiation were unchanged. Therefore, in contrast to what has been suggested for mouse cell models, IL1β is not required for the ability of MacCM to inhibit adipogenesis in human cell models.
Collapse
Affiliation(s)
- Annemarie Gagnon
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Imatinib induces body mass changes in women with chronic myeloid leukemia. Ann Hematol 2013; 92:1581-2. [DOI: 10.1007/s00277-013-1752-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/30/2013] [Indexed: 10/27/2022]
|
32
|
Kotnik P, Keuper M, Wabitsch M, Fischer-Posovszky P. Interleukin-1β downregulates RBP4 secretion in human adipocytes. PLoS One 2013; 8:e57796. [PMID: 23460908 PMCID: PMC3584036 DOI: 10.1371/journal.pone.0057796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
AIMS/HYPOTHESIS The excessive accumulation of adipose tissue in the obese state is linked to an altered secretion profile of adipocytes, chronic low-grade inflammation and metabolic complications. RBP4 has been implicated in these alterations, especially insulin resistance. The aim of the present study was to determine if a local inflammatory micro-environment in adipose tissue regulates RBP4 expression and secretion. METHODS Human SGBS and primary adipocytes cultured with conditioned media from human THP-1 macrophages were used as an in vitro model for adipose inflammation. Adipocytes were exposed to recombinant TNF-α, IL-1β, IL-6 or IL-8. In addition, coexpression of IL-1β and RBP4 was measured in adipose tissue samples from 18 healthy females. RBP4 expression was studied by quantitative PCR and ELISA. RESULTS RBP4 mRNA expression and secretion was significantly reduced upon incubation with macrophage-conditioned media in SGBS adipocytes and human primary adipocytes. Out of several factors studied we identified IL-1β as a new factor regulating RBP4. IL-1β significantly downregulated RBP4 mRNA and secretion in a time- and dose-dependent manner. IL-1β mediated its inhibitory effects on RBP4 expression via IL-1 receptor and NF-κB, as incubation with the IL-1 receptor blocking antibody and the NF-κB inhibitors CAPE and SC-514 reversed its effect. Most interestingly, RBP4 mRNA was negatively correlated with IL-1β mRNA in subcutaneous adipose tissue. CONCLUSIONS Adipose tissue inflammation as found in the obese state might lead to a downregulation in local RBP4 levels. IL-1β was identified as a major factor contributing to the decrease in RBP4. The increase in circulating RBP4 that often precedes the development of systemic insulin resistance is most likely unrelated to inflammatory processes in adipose tissue.
Collapse
Affiliation(s)
- Primoz Kotnik
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children’s Hospital, UKC Ljubljana, Ljubljana, Slovenia
| | - Michaela Keuper
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
- * E-mail: (PFP); (MW)
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
- * E-mail: (PFP); (MW)
| |
Collapse
|
33
|
Study of lactoferrin gene expression in human and mouse adipose tissue, human preadipocytes and mouse 3T3-L1 fibroblasts. Association with adipogenic and inflammatory markers. J Nutr Biochem 2013; 24:1266-75. [PMID: 23333090 DOI: 10.1016/j.jnutbio.2012.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Abstract
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.
Collapse
|
34
|
Sorisky A, Molgat ASD, Gagnon A. Macrophage-induced adipose tissue dysfunction and the preadipocyte: should I stay (and differentiate) or should I go? Adv Nutr 2013; 4:67-75. [PMID: 23319125 PMCID: PMC3648741 DOI: 10.3945/an.112.003020] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue can be regarded as a multidepot organ responsible for metabolic homeostasis by managing sophisticated energy transactions as well as by producing bioactive molecules that regulate insulin sensitivity and immune and vascular responses. Chronic nutrient excess expands adipose tissue, and concomitant variations in its cellular and matrix remodeling can affect the extent of the metabolic dysfunction that is associated with obesity. Preadipocytes, also termed adipose progenitor cells, play a pivotal role in determining whether a dysfunctional hypertrophic state arises as opposed to a hyperplastic process in which mature adipocytes remain relatively responsive. Obesity is associated with infiltration of macrophages, and these immune cells have been shown to communicate with preadipocytes to influence how they differentiate, survive, and proliferate. Understanding macrophage-preadipocyte interactions and their effect on adipose remodeling mechanisms may identify potential therapeutic molecular targets to improve adipose tissue function, even in the face of obesity.
Collapse
Affiliation(s)
- Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research Institute, Ontario, Canada.
| | | | | |
Collapse
|
35
|
Miyazawa K, He F, Yoda K, Hiramatsu M. Potent effects of, and mechanisms for, modification of crosstalk between macrophages and adipocytes by lactobacilli. Microbiol Immunol 2012; 56:847-54. [DOI: 10.1111/j.1348-0421.2012.00512.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Macrophages Alter the Differentiation-Dependent Decreases in Fibronectin and Collagen I/III Protein Levels in Human Preadipocytes. Lipids 2012; 47:873-80. [DOI: 10.1007/s11745-012-3696-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/21/2012] [Indexed: 12/18/2022]
|
37
|
Molgat ASD, Gagnon A, Foster C, Sorisky A. The activation state of macrophages alters their ability to suppress preadipocyte apoptosis. J Endocrinol 2012; 214:21-9. [PMID: 22556272 DOI: 10.1530/joe-12-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adipose tissue contains macrophages whose state of activation is regulated as obesity develops. Macrophage-secreted factors influence critical processes involved in adipose tissue homeostasis, including preadipocyte proliferation and differentiation into adipocytes. Macrophage-conditioned medium (MacCM) from J774A.1 macrophages protects 3T3-L1 preadipocytes from apoptosis through platelet-derived growth factor (PDGF) signaling. Here, we investigated the effect of macrophage activation on MacCM-dependent preadipocyte survival. MacCM was prepared following activation of either J774A.1 macrophages with lipopolysaccharide (LPS) or human primary monocyte-derived macrophages (MD-macrophages) with LPS or interleukin 4 (IL4). 3T3-L1 and human primary preadipocytes were induced to undergo apoptosis in MacCM, and apoptosis was quantified by cell enumeration or Hoechst nuclear staining. Preadipocyte PDGF signaling was assessed by immunoblot analysis of phosphorylated PDGF receptor, Akt, and ERK1/2. Pro-inflammatory activation of J774A.1 macrophages with LPS inhibited the pro-survival activity of MacCM on 3T3-L1 preadipocytes, despite intact PDGF signaling. Upregulation of macrophage tumor necrosis factor a (TNFα) expression occurred in response to LPS, and TNFα was demonstrated to be responsible for the inability of LPS-J774A.1-MacCM to inhibit preadipocyte apoptosis. Furthermore, MacCM from human MD-macrophages (MD-MacCM) inhibited apoptosis of primary human preadipocytes. MD-MacCM from LPS-treated macrophages, but not IL4-treated anti-inflammatory macrophages, was unable to protect human preadipocytes from cell death. In both murine cell lines and human primary cells, pro-inflammatory activation of macrophages inhibits their pro-survival activity, favoring preadipocyte death. These findings may be relevant to preadipocyte fate and adipose tissue remodeling in obesity.
Collapse
Affiliation(s)
- André S D Molgat
- Chronic Disease Program, Ottawa Hospital Research Institute, Canada K1H 8L6
| | | | | | | |
Collapse
|
38
|
O'Hara A, Lim FL, Mazzatti DJ, Trayhurn P. Stimulation of inflammatory gene expression in human preadipocytes by macrophage-conditioned medium: upregulation of IL-6 production by macrophage-derived IL-1β. Mol Cell Endocrinol 2012; 349:239-47. [PMID: 22079434 DOI: 10.1016/j.mce.2011.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/07/2011] [Accepted: 10/26/2011] [Indexed: 11/29/2022]
Abstract
The aim of this study was to examine the effects of macrophage secretions on global gene expression in human preadipocytes using microarrays. Preadipocytes were cultured with unconditioned or conditioned medium from U937 macrophages, and gene expression examined with Agilent arrays (43,000 probes). 472 transcripts were differentially regulated (>2-fold difference; P<0.05) between preadipocytes in the conditioned medium compared to the unconditioned; 401 were upregulated and 71 downregulated. The upregulated transcripts were particularly linked to inflammation, including IL-1β, IL-6, and CCL20 (16.8-, 10.0-, and 8.9-fold increases, respectively) together with matrix metalloproteinases (MMP3, MMP9 and MMP12). Major pathways regulated by the conditioned medium were linked to inflammation, macrophage infiltration and lipid accumulation. Network analysis identified NFkB and IL-1β as central nodes in the upregulation of multiple inflammation-related genes. Treatment with an IL-1β neutralising antibody abolished the stimulation of IL-6 secretion by conditioned medium, indicating that IL-1β is a key regulator of preadipocyte IL-6 production. Macrophages evoke extensive changes in preadipocyte gene expression.
Collapse
Affiliation(s)
- Adrian O'Hara
- Obesity Biology Research Unit, School of Clinical Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | | | | | | |
Collapse
|
39
|
Oosterveer MH, Koolman AH, de Boer PT, Bos T, Bleeker A, van Dijk TH, Bloks VW, Kuipers F, Sauer PJ, van Dijk G. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function. Nutr Metab (Lond) 2011; 8:93. [PMID: 22201701 PMCID: PMC3307495 DOI: 10.1186/1743-7075-8-93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF) or a high-fat/fish oil (HF/FO) diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL) activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Department of Pediatrics, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Anniek H Koolman
- Department of Pediatrics, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands.,Center for Behavior and Neurosciences, Unit Neuroendocrinology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Pieter T de Boer
- Department of Pediatrics, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Trijnie Bos
- Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Aycha Bleeker
- Department of Pediatrics, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands.,Department of Laboratory Medicine, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Pieter Jj Sauer
- Department of Pediatrics, University Medical Center Groningen; University of Groningen, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Gertjan van Dijk
- Center for Behavior and Neurosciences, Unit Neuroendocrinology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
40
|
Abstract
Human obesity can be viewed as a set of phenotypes that evolve over time in a sequence of stages that need to be precisely measured. Environmental, behavioral, genetic and biological factors interact to cause obesity. This presentation provides a clinical viewpoint on some biological processes that may explain some of the stages in the development of human obesity, its chronic maintenance and occurrence of complications, with a focus on brain structures, genetics, the profound alterations in adipose tissue biology and gut microbiota components. Roux-en-Y gastric bypass surgery is an increasingly effective model to study in this context because it leads to major improvements in glucose and lipid homeostasis and to the amelioration of some systemic inflammatory markers.
Collapse
|
41
|
Gao D, Bing C. Macrophage-induced expression and release of matrix metalloproteinase 1 and 3 by human preadipocytes is mediated by IL-1β via activation of MAPK signaling. J Cell Physiol 2011; 226:2869-80. [PMID: 21935932 DOI: 10.1002/jcp.22630] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obesity is associated with a chronic low-grade inflammation and increased macrophage infiltration in adipose tissue. Matrix metalloproteinases (MMPs) are involved in adipose tissue remodeling and inflammatory responses in obesity. This study investigated whether macrophage-derived factors modulate expression and secretion of MMP1 and MMP3 in human preadipocytes. The potential mediators and signaling pathways were also explored. MMP1 and MMP3 were primarily expressed and secreted by preadipocytes and dramatically reduced post-differentiation. Preadipocytes were incubated with RPMI 1640 medium (control) or THP-1 macrophage-conditioned (MC) medium (25% and 100%) for 24 h. MC medium markedly increased mRNA levels of MMP1 (up to 122-fold) and MMP3 (up to 59-fold), as well as protein release of MMP1 (up to 378-fold) and MMP3 (up to 10-fold) in a dose-dependent manner. Treatment with IL-1β or TNFα, the major products of macrophages, also induced MMP1 and MMP3 secretion by preadipocytes. Neutralizing IL-1β abolished the induction of MMP1 and MMP3 in preadipocytes by MC medium while the effects of TNFα neutralization were modest. Furthermore, MC medium or IL-1β led to the phosphorylation of p38, ERK and JNK MAPKs. Inhibition of p38, ERK and JNK reversed the stimulatory effects of MC or IL-1β on MMP1 and MMP3 production. MC medium and IL-1β also activated NF-κB p65 whereas reduced IκBα protein expression in preadipocytes. These results suggest that macrophage accumulation in adipose tissue has a central role in stimulating MMP1 and MMP3 production by preadipocytes, and this is partially mediated by IL-1β via activation of the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Dan Gao
- Department of Obesity and Endocrinology, Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
42
|
Zhang L, Sugiyama T, Murabayashi N, Umekawa T, Ma N, Kamimoto Y, Ogawa Y, Sagawa N. The inflammatory changes of adipose tissue in late pregnant mice. J Mol Endocrinol 2011; 47:157-65. [PMID: 21697073 PMCID: PMC3162642 DOI: 10.1530/jme-11-0030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The infiltration of classically activated macrophages (M1) and alternatively activated macrophages (M2) in subcutaneous adipose tissue (SAT) and parametrial adipose tissue (PAT) was analyzed to investigate whether local inflammatory change in adipose tissue occurs in late pregnancy. C57BL/6N female mice at 6 weeks of age were fed a normal chow diet for 4 weeks prior to mating at 10 weeks of age and were sampled on day 17 of pregnancy. The serum levels of adipokines and biochemical markers were measured using ELISA and enzymatic methods. The identification of M1 and M2 was analyzed by double immunofluorescence with anti-F4/80 and anti-CD11c antibodies. The gene expression of adipokines in adipose tissues was analyzed by quantitative RT-PCR. The pregnant group showed adipocyte hypertrophy, higher macrophage infiltration, and higher M1/M2 in both SAT and PAT compared with the non-pregnant (NP) group. Serum levels of free fatty acids, tumor necrosis factor α (TNFα), interleukin 6 (IL6), and IL10 were higher, and serum levels of adiponectin were lower in the pregnant group than those in the NP group. The gene expressions of CD68, Itgax, CCR2, TNFα, and PAI1 in SAT during pregnancy were significantly higher than those in the NP group, as were the gene expressions of CD68, Emrl, Itgax, MCP1, TNFα, IL6, PAI1, adiponectin, and IL10 in PAT. These results suggest that the low-grade inflammation of adipose tissue indicated by increased macrophage infiltration occurs in late normal pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Ning Ma
- Faculty of Health ScienceSuzuka University of Medical ScienceSuzuka, Japan
| | | | - Yoshihiro Ogawa
- Department of Molecular Medicine and MetabolismMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | | |
Collapse
|
43
|
Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis 2011; 221:2-11. [PMID: 21978918 DOI: 10.1016/j.atherosclerosis.2011.09.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/16/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
Since their establishment thirty years ago, THP-1 cells have become one of most widely used cell lines to investigate the function and regulation of monocytes and macrophages in the cardiovascular system. However, because this cell line was derived from the blood of a patient with acute monocytic leukemia, the extent to which THP-1 cells mimic monocytes and macrophages in the vasculature is not entirely known. This article serves as a meaningful attempt to address this question by reviewing the recent publications. The interactions between THP-1 cells and various vascular cells (such as endothelial cells, smooth muscle cells, adipocytes, and T cells) provide insight into the roles of the interconnection of monocytes-macrophages with other vascular cells during vascular inflammation, particularly atherogenesis and obesity. Transcriptome, microRNA profile, and histone modifications of THP-1 cells shed new light on the regulatory mechanism of the monocytes-macrophages in response to various inflammatory mediators, such as oxidized low density lipoprotein, lipopolysaccharide, and glucose. These studies hint that under certain defined conditions, THP-1 cells not only resemble primary monocytes-macrophages isolated from healthy donors or donors with disease, such as diabetes mellitus, but also mimic the in situ alteration of macrophages in the adipose tissue of obese subjects and in atherosclerotic lesions. A potential trajectory is to use this cell line to study the novel molecular mechanisms in monocytes and macrophages in relation to the physiology and pathophysiology of the cardiovascular system, however, the conclusion of studies employing THP-1 cells requires further verification using primary cells and/or in vivo models to be generalized to monocytes and macrophages.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States.
| |
Collapse
|
44
|
Ide J, Gagnon A, Molgat AS, Landry A, Foster C, Sorisky A. Macrophage-conditioned medium inhibits the activation of cyclin-dependent kinase 2 by adipogenic inducers in 3T3-L1 preadipocytes. J Cell Physiol 2011; 226:2297-306. [DOI: 10.1002/jcp.22566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Keuper M, Blüher M, Schön MR, Möller P, Dzyakanchuk A, Amrein K, Debatin KM, Wabitsch M, Fischer-Posovszky P. An inflammatory micro-environment promotes human adipocyte apoptosis. Mol Cell Endocrinol 2011; 339:105-13. [PMID: 21501656 DOI: 10.1016/j.mce.2011.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 02/08/2023]
Abstract
Obesity-associated macrophage infiltration into adipose tissue is responsible for both local and systemic inflammation. Recent findings suggest fat cell apoptosis as an initiator of macrophage recruitment. Here, we investigated the effects of an inflammatory micro-environment on fat cells using human THP-1 macrophages and SGBS adipocytes. Macrophage-secreted factors induced insulin resistance, inhibited insulin-stimulated Akt phosphorylation, and induced apoptosis of adipocytes. The apoptosis-inducing effect was even more pronounced in direct co-cultures of adipocytes and macrophages. Our data suggest a link between insulin resistance and apoptosis sensitivity. Accordingly, pharmacological and genetic inhibition of insulin signaling at the level of Akt2 sensitized adipocytes to apoptosis induction by macrophage-secreted factors. In conclusion, we describe here a novel interaction of macrophages and fat cells, i.e. induction of apoptosis. Our data suggest a feed-forward cycle in which macrophages further drive the inflammatory process by inducing insulin resistance and concomitant apoptosis of adipocytes.
Collapse
Affiliation(s)
- Michaela Keuper
- Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent Medicine, Ulm University, Eythstr. 24, 89075 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Moreno-Navarrete JM, Ortega F, Sabater M, Ricart W, Fernández-Real JM. Proadipogenic effects of lactoferrin in human subcutaneous and visceral preadipocytes. J Nutr Biochem 2011; 22:1143-9. [PMID: 21295959 DOI: 10.1016/j.jnutbio.2010.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 11/19/2022]
Abstract
Lactoferrin has been associated with insulin sensitivity in vivo and in vitro studies. We aimed to test the effects of lactoferrin on human subcutaneous and visceral preadipocytes. Human subcutaneous and visceral preadipocytes were cultured with increasing lactoferrin (hLf, 0.1, 1, 10 μM) under differentiation conditions. The effects of lactoferrin on adipogenesis were studied through the expression of different adipogenic and inflammatory markers, AMPK activation and Retinoblastoma 1 (RB1) activity. The response to insulin was evaluated through (Ser473)AKT phosphorylation. In both subcutaneous and visceral preadipocytes, lactoferrin (1 and 10 μM) increased adipogenic gene expressions and protein levels (fatty acid synthase, PPARγ, FABP4, ADIPOQ, ACC and STAMP2) and decreased inflammatory markers (IL8, IL6 and MCP1) dose-dependently in parallel to increased insulin-induced (Ser473)AKT phosphorylation. In addition to these adipogenic effects, lactoferrin decreased significantly AMPK activity (reducing (pThr172)AMPK and (pSer79)ACC) and RB1 activity (increasing the (pser807/811)RB1/RB1 ratio). In conclusion, these results suggest that lactoferrin promotes adipogenesis in human adipocytes by enhancing insulin signaling and inhibiting RB1 and AMPK activities.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, CIBEROBN Fisiopatología de la Obesidad y Nutrición CB06/03/010 and Girona Biomedical Research Institute, Girona, Spain
| | | | | | | | | |
Collapse
|
47
|
Tsuriya D, Morita H, Morioka T, Takahashi N, Ito T, Oki Y, Nakamura H. Significant correlation between visceral adiposity and high-sensitivity C-reactive protein (hs-CRP) in Japanese subjects. Intern Med 2011; 50:2767-73. [PMID: 22082888 DOI: 10.2169/internalmedicine.50.5908] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE High-sensitivity C-reactive protein (hs-CRP) is a marker for low-grade inflammation, as well as atherosclerosis, obesity, hyperglycemia and hypertension. Because the factor showing the strongest association with inflammation is currently unknown, we investigated the associations between hs-CRP and clinical and biochemical characteristics in Japanese subjects with mild obesity or impaired glucose tolerance. METHODS Subjects aged <65 years old, attending the Seirei Medical Examination Center, underwent complete physical and laboratory examinations. A total of 112 subjects (mean age 59.9±5.9 years old, males/females: n=50/62) with a waist circumference of >85 cm in males and >90 cm in females, homeostasis model assessment-insulin resistance (HOMA-IR) ≥1.7, or impaired glucose tolerance were eligible for this study. All subjects had normal albuminuria. RESULTS Log-transformed hs-CRP concentrations were significantly correlated with BMI (r=0.278, p<0.01), HOMA-IR (r=0.296, p<0.005), 2-h post-challenge IRI during an oral glucose tolerance test (r=0.218, p<0.05), maximum intima-media thickness (r=0.240, p<0.05), visceral fat area evaluated by computed tomography (r=0.423, p<0.0001) and subcutaneous fat area (r=0.231, p<0.05). Multiple linear regression analysis showed that visceral fat was the most significantly correlated factor with hs-CRP. CONCLUSION Visceral fat mass was a significant and independent predictor for serum hs-CRP levels in Japanese subjects with mild obesity and/or impaired glucose tolerance.
Collapse
Affiliation(s)
- Daisuke Tsuriya
- The Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Keuper M, Dzyakanchuk A, Amrein KE, Wabitsch M, Fischer-Posovszky P. THP-1 Macrophages and SGBS Adipocytes - A New Human in vitro Model System of Inflamed Adipose Tissue. Front Endocrinol (Lausanne) 2011; 2:89. [PMID: 22645513 PMCID: PMC3355855 DOI: 10.3389/fendo.2011.00089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/15/2011] [Indexed: 11/13/2022] Open
Abstract
Obesity is associated with an accumulation of macrophages in adipose tissue. This inflammation of adipose tissue is a key event in the pathogenesis of several obesity-related disorders, particularly insulin resistance. Here, we summarized existing model systems that mimic the situation of inflamed adipose tissue in vitro, most of them being murine. Importantly, we introduce our newly established human model system which combines the THP-1 monocytic cell line and the preadipocyte cell strain Simpson-Golabi-Behmel syndrome (SGBS). THP-1 cells, which originate from an acute monocytic leukemia, differentiate easily into macrophages in vitro. The human preadipocyte cell strain SGBS was recently introduced as a unique tool to study human fat cell functions. SGBS cells are characterized by a high capacity for adipogenic differentiation. SGBS adipocytes are capable of fat cell-specific metabolic functions such as insulin-stimulated glucose uptake, insulin-stimulated de novo lipogenesis and β-adrenergic-stimulated lipolysis and they secrete typical adipokines including leptin, adiponectin, and RBP4. Applying either macrophage-conditioned medium or a direct co-culture of macrophages and fat cells, our model system can be used to distinguish between paracrine and cell-contact dependent effects. In conclusion, we propose this model as a useful tool to study adipose inflammation in vitro. It represents an inexpensive, highly reproducible human system. The methods described here can be easily extended for usage of primary human macrophages and fat cells.
Collapse
Affiliation(s)
- Michaela Keuper
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm UniversityUlm, Germany
| | - Anna Dzyakanchuk
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd.Basel, Switzerland
| | - Kurt E. Amrein
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd.Basel, Switzerland
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm UniversityUlm, Germany
- *Correspondence: Martin Wabitsch, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University, Eythstr 24, 89075 Ulm, Germany. e-mail:
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm UniversityUlm, Germany
| |
Collapse
|
49
|
Molgat ASD, Gagnon A, Sorisky A. Macrophage-induced preadipocyte survival depends on signaling through Akt, ERK1/2, and reactive oxygen species. Exp Cell Res 2010; 317:521-30. [PMID: 21056559 DOI: 10.1016/j.yexcr.2010.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 01/11/2023]
Abstract
Obesity is associated with adipose tissue remodeling, characterized by macrophage accumulation, adipocyte hypertrophy, and apoptosis. We previously reported that macrophage-conditioned medium (MacCM) protects preadipocytes from apoptosis, due to serum withdrawal, in a platelet-derived growth factor (PDGF)-dependent manner. We have now investigated the role of intracellular signaling pathways, activated in response to MacCM versus PDGF, in promoting preadipocyte survival. Exposure of 3T3-L1 preadipocytes to J774A.1-MacCM or PDGF strongly stimulated Akt and ERK1/2 phosphorylation from initially undetectable levels. Inhibition of the upstream regulators of Akt or ERK1/2, i.e. phosphoinositide 3-kinase (PI3K; using wortmannin or LY294002) or MEK1/2 (using UO126 or PD98509), abrogated the respective phosphorylation responses, and significantly impaired pro-survival activity. J774A.1-MacCM increased reactive oxygen species (ROS) levels by 3.4-fold, and diphenyleneiodonium (DPI) or N-acetyl cysteine (NAC) significantly inhibited pro-survival signaling and preadipocyte survival in response to J774A.1-MacCM. Serum withdrawal itself also increased ROS levels (2.1-fold), and the associated cell death was attenuated by DPI or NAC. In summary, J774A.1-MacCM-dependent 3T3-L1 preadipocyte survival requires the Akt and ERK1/2 signaling pathways. Furthermore, ROS generation by J774A.1-MacCM is required for Akt and ERK1/2 signaling to promote 3T3-L1 preadipocyte survival. These data suggest potential mechanisms by which macrophages may alter preadipocyte fate.
Collapse
Affiliation(s)
- André S D Molgat
- Chronic Disease Program, Ottawa Hospital Research Institute, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
50
|
Teixeira D, Pestana D, Faria A, Calhau C, Azevedo I, Monteiro R. Modulation of adipocyte biology by δ(9)-tetrahydrocannabinol. Obesity (Silver Spring) 2010; 18:2077-85. [PMID: 20467421 DOI: 10.1038/oby.2010.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is recognized that the endocannabinoid system (ECS) plays a crucial role in the modulation of food intake and other aspects of energy metabolism. In this study, we aimed to investigate the effects of Δ(9)-tetrahydrocannabinol (THC) on adipocyte biology. 3T3-L1 cells were used to evaluate proliferation by sulforhodamine B (SRB) staining and methyl-(3)H-thymidine incorporation after 48 or 72 h of treatment with THC (1-500 nmol/l). Cells were differentiated in the presence or absence of the cannabinoid, and adipogenesis was determined by measuring lipid accumulation and peroxisome proliferator-activated receptor γ (PPARγ) transcription through reverse transcriptase-PCR (RT-PCR). Lipolysis was quantified under basal conditions or after isoproterenol (IP, 100 nmol/l) or insulin (INS, 100 nmol/l) treatment. Transforming growth factor β (TGFβ), diacylglycerol lipase α, and N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) transcriptions were determined by RT-PCR in preadipocytes and adipocytes and adiponectin only in adipocytes. THC treatment increased culture protein content and reduced methyl-(3)H-thymidine incorporation. Cells treated with THC underwent adipogenesis shown by the expression of PPARγ and had increased lipid accumulation. Basal and IP-stimulated lipolyses were inhibited by THC and there was no effect on lipolysis of INS-treated adipocytes. The effects on methyl-(3)H-thymidine incorporation and lipolysis seem to be mediated through CB1- and CB2-dependent pathways. THC decreased NAPE-PLD in preadipocytes and increased adiponectin and TGFβ transcription in adipocytes. These results show that the ECS interferes with adipocyte biology and may contribute to adipose tissue (AT) remodeling. Although these observations point toward increased AT deposition, the stimulation of adiponectin production and inhibition of lipolysis may be in favor of improved INS sensitivity under cannabinoid influence.
Collapse
Affiliation(s)
- Diana Teixeira
- Department of Biochemistry U38-FCT, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|