1
|
Saidi H, Bounihi A, Bouazza A, Hichami A, Koceir EHA, Khan NA. Spirulina reduces diet-induced obesity through downregulation of lipogenic genes expression in Psammomys obesus. Arch Physiol Biochem 2022; 128:1001-1009. [PMID: 32207345 DOI: 10.1080/13813455.2020.1743724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study evaluates the protective effect of spirulina against diet-induced obesity and metabolic disorders in Psammomys obesus, an animal model of metabolic syndrome. Psammomys obesus lives on a low-energy diet, in order to remain healthy. However, under a standard laboratory chow diet (SLCD), this animal exhibits insulin resistance, which occurs as a result of obesity. Psammomys obesus was maintained on SLCD, in order to evaluate the effect of spirulina on obesity development with a particular focus on glucose and lipid metabolism, as well as the mRNA expression of some pro-inflammatory cytokines. After 12 weeks of treatment with spirulina, there was a significant reduction in body weight gain, plasma glucose, insulin and triglyceride levels. There was also a significant reduction in the mRNA expression of genes involved in lipogenesis and inflammation. Spirulina improved insulin sensitivity, glucose and lipid metabolism. These findings highlight the positive effect of spirulina on weight maintenance.
Collapse
Affiliation(s)
- Hamza Saidi
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Abdenour Bounihi
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Aziz Hichami
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | - El Hadj Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Naim Akhtar Khan
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Ying Q, Chan DC, Barrett PHR, Watts GF. Unravelling lipoprotein metabolism with stable isotopes: tracing the flow. Metabolism 2021; 124:154887. [PMID: 34508741 DOI: 10.1016/j.metabol.2021.154887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Dysregulated lipoprotein metabolism is a major cause of atherosclerotic cardiovascular disease (ASCVD). Use of stable isotope tracers and compartmental modelling have provided deeper understanding of the mechanisms underlying lipid disorders in patients at high risk of ASCVD, including familial hypercholesterolemia (FH), elevated lipoprotein(a) [Lp(a)] and metabolic syndrome (MetS). In patients with FH, deficiency in low-density lipoprotein (LDL) receptor activity not only impairs the catabolism of LDL, but also induces hepatic overproduction and decreases catabolism of triglyceride-rich lipoproteins (TRLs). Patients with elevated Lp(a) are characterized by increased hepatic secretion of Lp(a) particles. Atherogenic dyslipidemia in MetS patients relates to a combination of overproduction of very-low density lipoprotein-apolipoprotein (apo) B-100, decreased catabolism of apoB-100-containing particles, and increased catabolism of high-density lipoprotein-apoA-I particles, as well as to impaired clearance of TRLs in the postprandial state. Kinetic studies show that weight loss, fish oils, statins and fibrates have complementary modes of action that correct atherogenic dyslipidemia. Defining the kinetic mechanisms of action of proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 inhibitors on lipid and lipoprotein mechanism in dyslipidemic subjects will further our understanding of these therapies in decreasing the development of ASCVD. "Everything changes but change itself. Everything flows and nothing remains the same... You cannot step twice into the same river, for other waters and yet others go flowing ever on." Heraclitus (c.535- c. 475 BCE).
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
3
|
Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients 2021; 13:nu13020672. [PMID: 33669729 PMCID: PMC7922034 DOI: 10.3390/nu13020672] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols (PLPs), phytochemicals found in a wide range of plant-based foods, have gained extensive attention in view of their antioxidant, anti-inflammatory, immunomodulatory and several additional beneficial activities. The health-promoting effects noted in animal models of various non-communicable diseases explain the growing interest in these molecules. In particular, in vitro and animal studies reported an attenuation of lipid disorders in response to PLPs. However, despite promising preclinical investigations, the effectiveness of PLPs in human dyslipidemia (DLP) is less clear and necessitates revision of available literature. Therefore, the present review analyzes the role of PLPs in managing clinical DLP, notably by dissecting their potential in ameliorating lipid/lipoprotein metabolism and alleviating hyperlipidemia, both postprandially and in long-term interventions. To this end, PubMed was used for article search. The search terms included polyphenols, lipids, triglycerides, cholesterol, LDL-cholesterol and /or HDL-cholesterol. The critical examination of the trials published to date illustrates certain benefits on blood lipids along with co-morbidities in participant’s health status. However, inconsistent results document significant research gaps, potentially owing to study heterogeneity and lack of rigor in establishing PLP bioavailability during supplementation. This underlines the need for further efforts in order to elucidate and support a potential role of PLPs in fighting DLP.
Collapse
|
4
|
Lalande C, Drouin-Chartier JP, Tremblay AJ, Couture P, Veilleux A. Plasma biomarkers of small intestine adaptations in obesity-related metabolic alterations. Diabetol Metab Syndr 2020; 12:31. [PMID: 32292494 PMCID: PMC7144049 DOI: 10.1186/s13098-020-00530-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Evidence suggests that pathophysiological conditions such as obesity and type 2 diabetes (T2D) are associated with morphologic and metabolic alterations in the small intestinal mucosa. Exploring these alterations generally requires invasive methods, limiting data acquisition to subjects with enteropathies or undergoing bariatric surgery. We aimed to evaluate small intestine epithelial cell homeostasis in a cohort of men covering a wide range of adiposity and glucose homoeostasis statuses. METHODS Plasma levels of citrulline, a biomarker of enterocyte mass, and I-FABP, a biomarker of enterocyte death, were measured by UHPLC‑MS and ELISA in 154 nondiabetic men and 67 men with a T2D diagnosis. RESULTS Plasma citrulline was significantly reduced in men with insulin resistance and T2D compared to insulin sensitive men. Decreased citrulline levels were, however, not observed in men with uncontrolled metabolic parameters during T2D. Plasma I-FABP was significantly higher in men with T2D, especially in presence of uncontrolled glycemic and lipid profile parameters. Integration of both parameters, which estimate enterocyte turnover, was associated with glucose homeostasis as well as with T2D diagnosis. Differences in biomarkers levels were independent of age and BMI and glucose filtration rates. CONCLUSIONS Our study supports a decreased functional enterocyte mass and an increased enterocyte death rate in presence of metabolic alterations but emphasizes that epithelial cell homeostasis is especially altered in presence of severe insulin resistance and T2D. The marked changes in small intestine cellularity observed in obesity and diabetes are thus suggested to be part of gut dysfunctions, mainly at an advanced stage of the disease.
Collapse
Affiliation(s)
- Catherine Lalande
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, 2440, boulevard Hochelaga, Québec, QC G1V 0A6 Canada
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC Canada
| | - Jean-Philippe Drouin-Chartier
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, 2440, boulevard Hochelaga, Québec, QC G1V 0A6 Canada
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC Canada
| | - André J. Tremblay
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC Canada
| | - Patrick Couture
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC Canada
- Centre des maladies lipidiques, Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC Canada
| | - Alain Veilleux
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, 2440, boulevard Hochelaga, Québec, QC G1V 0A6 Canada
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, QC Canada
| |
Collapse
|
5
|
Rahmani E, Samimi M, Ebrahimi FA, Foroozanfard F, Ahmadi S, Rahimi M, Jamilian M, Aghadavod E, Bahmani F, Taghizadeh M, Memarzadeh MR, Asemi Z. The effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression of lipoprotein(a) and oxidized low-density lipoprotein, lipid profiles and biomarkers of oxidative stress in patients with polycystic ovary syndrome. Mol Cell Endocrinol 2017; 439:247-255. [PMID: 27619403 DOI: 10.1016/j.mce.2016.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/15/2016] [Accepted: 09/08/2016] [Indexed: 01/07/2023]
Abstract
This study was conducted to determine the effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression of lipoprotein(a) (Lp[a]) and oxidized low-density lipoprotein (Ox-LDL), lipid profiles and biomarkers of oxidative stress in women with polycystic ovary syndrome (PCOS). This randomized double-blind, placebo-controlled trial was done on 68 women diagnosed with PCOS according to the Rotterdam criteria aged 18-40 years old. Participants were randomly assigned into two groups to receive either 1000 mg omega-3 fatty acids from flaxseed oil containing 400 mg α-Linolenic acid plus 400 IU vitamin E supplements (n = 34) or placebo (n = 34) for 12 weeks. Lp(a) and Ox-LDL mRNA levels were quantified in peripheral blood mononuclear cells of PCOS women with RT-PCR method. Lipid profiles and biomarkers of oxidative stress were quantified at the beginning of the study and after 12-week intervention. Quantitative results of RT-PCR demonstrated that compared with the placebo, omega-3 fatty acids and vitamin E co-supplementation downregulated expressed levels of Lp(a) mRNA (P < 0.001) and Ox-LDL mRNA (P < 0.001) in peripheral blood mononuclear cells of women with PCOS. In addition, compared to the placebo group, omega-3 fatty acids and vitamin E co-supplementation resulted in a significant decrease in serum triglycerides (-22.1 ± 22.3 vs. +7.7 ± 23.6 mg/dL, P < 0.001), VLDL- (-4.4 ± 4.5 vs. +1.5 ± 4.7 mg/dL, P < 0.001), total- (-20.3 ± 16.6 vs. +12.2 ± 26.1 mg/dL, P < 0.001), LDL- (-16.7 ± 15.3 vs. +11.9 ± 26.1 mg/dL, P < 0.001) and total-/HDL-cholesterol (-0.5 ± 0.6 vs. +0.4 ± 0.8, P < 0.001). There were a significant increase in plasma total antioxidant capacity (+89.4 ± 108.9 vs. +5.9 ± 116.2 mmol/L, P = 0.003) and a significant decrease in malondialdehyde levels (-0.3 ± 0.4 vs. -0.008 ± 0.6 μmol/L, P = 0.01) by combined omega-3 fatty acids and vitamin E intake compared with the placebo group. Overall, omega-3 fatty acids and vitamin E co-supplementation for 12 weeks in PCOS women significantly improved gene expression of Lp(a) and Ox-LDL, lipid profiles and biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Elham Rahmani
- Department of Gynecology and Obstetrics, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Faraneh Afshar Ebrahimi
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Foroozanfard
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahnaz Ahmadi
- Department of Gynecology and Obstetrics, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi
- Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehri Jamilian
- Endocrinology and Metabolism Research Center, Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Adejor EB, Ameh DA, James DB, Owolabi OA, Ndidi US. Effects of Garcinia kola biflavonoid fractions on serum lipid profile and kidney function parameters in hyperlipidemic rats. CLINICAL PHYTOSCIENCE 2016. [DOI: 10.1186/s40816-016-0033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
A randomized-controlled clinical trial investigating the effect of omega-3 fatty acids and vitamin E co-supplementation on markers of insulin metabolism and lipid profiles in gestational diabetes. J Clin Lipidol 2016; 10:386-93. [DOI: 10.1016/j.jacl.2015.12.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023]
|
8
|
Tremblay AJ, Lamarche B, Hogue JC, Couture P. n-3 Polyunsaturated Fatty Acid Supplementation Has No Effect on Postprandial Triglyceride-Rich Lipoprotein Kinetics in Men with Type 2 Diabetes. J Diabetes Res 2016; 2016:2909210. [PMID: 27034958 PMCID: PMC4789436 DOI: 10.1155/2016/2909210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFAs) have been proposed to modulate plasma lipids, lipoprotein metabolism, and inflammatory state and to reduce triglyceride (TG) concentrations. The present double-blind, randomized, placebo-controlled, crossover study investigated the effects of n-3 PUFA supplementation at 3 g/d for 8 weeks on the intravascular kinetics of intestinally derived apolipoprotein (apo) B-48-containing lipoproteins in 10 men with type 2 diabetes. In vivo kinetics of the TG-rich lipoprotein (TRL) apoB-48 and VLDL apoB-100 were assessed using a primed-constant infusion of L-[5,5,5-D3] leucine for 12 hours in a fed state. Compared with the placebo, n-3 PUFA supplementation significantly reduced fasting TG concentrations by -9.7% (P = 0.05) but also significantly increased plasma levels of cholesterol (C) (+6.0%, P = 0.05), LDL-C (+12.2%, P = 0.04), and HDL-C (+8.4, P = 0.007). n-3 PUFA supplementation had no significant impact on postprandial TRL apoB-48 and VLDL apoB-100 levels or on the production or catabolic rates of these lipoproteins. These data indicate that 8-week supplementation with n-3 PUFAs in men with type 2 diabetes has no beneficial effect on TRL apoB-48 and VLDL apoB-100 levels or kinetics.
Collapse
Affiliation(s)
- André J. Tremblay
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada G1V 0A6
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada G1V 0A6
| | - Jean-Charles Hogue
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada G1V 0A6
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada G1V 0A6
- CHUQ Research Center, Laval University, Quebec City, QC, Canada G1V 4G2
- *Patrick Couture:
| |
Collapse
|
9
|
Veilleux A, Mayeur S, Bérubé JC, Beaulieu JF, Tremblay E, Hould FS, Bossé Y, Richard D, Levy E. Altered intestinal functions and increased local inflammation in insulin-resistant obese subjects: a gene-expression profile analysis. BMC Gastroenterol 2015; 15:119. [PMID: 26376914 PMCID: PMC4574092 DOI: 10.1186/s12876-015-0342-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/25/2015] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Metabolic alterations relevant to postprandial dyslipidemia were previously identified in the intestine of obese insulin-resistant subjects. The aim of the study was to identify the genes deregulated by systemic insulin resistance in the intestine of severely obese subjects. METHODS Transcripts from duodenal samples of insulin-sensitive (HOMA-IR < 3, n = 9) and insulin-resistant (HOMA-IR > 7, n = 9) obese subjects were assayed by microarray (Illumina HumanHT-12). RESULTS A total of 195 annotated genes were identified as differentially expressed between these two groups (Fold change > 1.2). Of these genes, 36 were found to be directly involved in known intestinal functions, including digestion, extracellular matrix, endocrine system, immunity and cholesterol metabolism. Interestingly, all differentially expressed genes (n = 8) implicated in inflammation and oxidative stress were found to be upregulated in the intestine of insulin-resistant compared to insulin-sensitive subjects. Metabolic pathway analysis revealed that several signaling pathways involved in immunity and inflammation were significantly enriched in differently expressed genes and were predicted to be activated in the intestine of insulin-resistant subjects. Using stringent criteria (Fold change > 1.5; FDR < 0.05), three genes were found to be significantly and differently expressed in the intestine of insulin-resistant compared to insulin-sensitive subjects: the transcripts of the insulinotropic glucose-dependant peptide (GIP) and of the β-microseminoprotein (MSMB) were significantly reduced, but that of the humanin like-1 (MTRNR2L1) was significantly increased. CONCLUSION These results underline that systemic insulin resistance is associated with remodeling of key intestinal functions. Moreover, these data indicate that small intestine metabolic dysfunction is accompanied with a local amplification of low-grade inflammatory process implicating several pathways. Genes identified in this study are potentially triggered throughout the development of intestinal metabolic abnormalities, which could contribute to dyslipidemia, a component of metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Alain Veilleux
- Department of Nutrition, Université de Montréal and Research center of CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Qc, Canada.
| | - Sylvain Mayeur
- Department of Nutrition, Université de Montréal and Research center of CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Qc, Canada.
| | - Jean-Christophe Bérubé
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada.
| | - Jean-François Beaulieu
- Departement of Anatomy and cellular biology, Université de Sherbrooke, Sherbrooke, Qc, Canada. .,Canada Research Chair in Intestinal Physiopathology, Sherbrooke, Québec, Canada.
| | - Eric Tremblay
- Departement of Anatomy and cellular biology, Université de Sherbrooke, Sherbrooke, Qc, Canada.
| | - Frédéric-Simon Hould
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada. .,Departement of surgery, Université Laval, Québec, Qc, Canada.
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada. .,Department of Molecular Medicine, Université Laval, Quebec, Qc, Canada.
| | - Denis Richard
- Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Qc, Canada. .,Department of Molecular Medicine, Université Laval, Quebec, Qc, Canada. .,Chaire de Recherche Merck Frosst/IRSC Research Chair on Obesity, Québec, Qc, Canada.
| | - Emile Levy
- Department of Nutrition, Université de Montréal and Research center of CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Qc, Canada. .,JA. deSève Research Chair in nutrition, Montréal, Qc, Canada.
| |
Collapse
|
10
|
Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update. Nutrients 2015; 7:4416-25. [PMID: 26043038 PMCID: PMC4488792 DOI: 10.3390/nu7064416] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids.
Collapse
|
11
|
Atek-Mebarki F, Hichami A, Abdoul-Azize S, Bitam A, Koceïr EA, Khan NA. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus. Biochimie 2014; 109:60-6. [PMID: 25528298 DOI: 10.1016/j.biochi.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022]
Abstract
The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus.
Collapse
Affiliation(s)
- Feriel Atek-Mebarki
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France; Bioenergetics and Intermediary Metabolism Laboratory, Biological Sciences and Physiology Department, FSB, University of Sciences and Technology Houari Boumédiene (USTHB), Algiers, Algeria
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France
| | - Souleymane Abdoul-Azize
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France
| | - Arezki Bitam
- Bioenergetics and Intermediary Metabolism Laboratory, Biological Sciences and Physiology Department, FSB, University of Sciences and Technology Houari Boumédiene (USTHB), Algiers, Algeria
| | - Elhadj Ahmed Koceïr
- Bioenergetics and Intermediary Metabolism Laboratory, Biological Sciences and Physiology Department, FSB, University of Sciences and Technology Houari Boumédiene (USTHB), Algiers, Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France.
| |
Collapse
|
12
|
Miyoshi T, Noda Y, Ohno Y, Sugiyama H, Oe H, Nakamura K, Kohno K, Ito H. Omega-3 fatty acids improve postprandial lipemia and associated endothelial dysfunction in healthy individuals - a randomized cross-over trial. Biomed Pharmacother 2014; 68:1071-7. [PMID: 25458786 DOI: 10.1016/j.biopha.2014.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/16/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Postprandial elevation of triglycerides impairs endothelial function and contributes to the development of atherosclerosis. We investigated the effects of omega-3 fatty acids on postprandial endothelial function and lipid profiles. METHODS Healthy volunteers [10] were given supplementation at 4g/day omega-3 fatty acids (or were not treated) for 4 weeks in a randomised crossover study. Postprandial levels of various lipids were monitored and endothelial function assessed by brachial artery flow-mediated dilation during fasting and after a standard cookie test. RESULTS Omega-3 fatty acids reduced postprandial endothelial dysfunction compared with the control diet (flow-mediated dilation at 4h=-0.5±1.2 vs. -2.0±1.6%, P=0.03). Postprandial levels of triglycerides, apolipoprotein B-48, and remnant lipoprotein-cholesterol increased in untreated subjects, peaked at 2-4h, and returned to baseline at 8h, whereas low-density lipoprotein-cholesterol levels did not change. Supplementation with omega-3 fatty acids significantly suppressed postprandial elevation of triglycerides (incremental area under the curve=220±209 vs. 374±216mg/h/dL, P=0.04) and remnant lipoprotein-cholesterol (incremental area under the curve=21.7±13.8 vs. 13.3±12.9mg/h/dL, P=0.04). Supplementation with omega-3 fatty acids significantly suppressed the increase in triglyceride content in chylomicrons as well as in very-low-density lipoproteins from baseline to 4h after the cookie test. CONCLUSION Omega-3 fatty acids significantly decreased postprandial triglyceride elevation and postprandial endothelial dysfunction, suggesting that omega-3 fatty acids may have vascular protective effects in postprandial state.
Collapse
Affiliation(s)
- Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yoko Noda
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuko Ohno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Sugiyama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Oe
- Center of Ultrasonic Diagnostics, Okayama University Hospital, Okayama, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kunihisa Kohno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Wong ATY, Chan DC, Barrett PHR, Adams LA, Watts GF. Effect of ω-3 fatty acid ethyl esters on apolipoprotein B-48 kinetics in obese subjects on a weight-loss diet: a new tracer kinetic study in the postprandial state. J Clin Endocrinol Metab 2014; 99:E1427-35. [PMID: 24606094 DOI: 10.1210/jc.2013-4037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Dysregulated chylomicron metabolism may account for hypertriglyceridemia and increased risk of cardiovascular disease in obese subjects. Supplementation with ω-3 fatty acid ethyl ester (FAEE) decreases plasma triglyceride. However, its effect on postprandial chylomicron metabolism in obese subjects on a weight-loss diet has not yet been investigated. OBJECTIVE We aimed to examine the effect of ω-3 FAEE supplementation on apolipoprotein (apo) B-48 kinetics in obese subjects on a weight-loss diet. DESIGN, SETTING, AND PATIENTS We carried out a 12-week, randomized trial of a hypocaloric diet plus 4 g/d ω-3 FAEE supplementation (46% eicosapentaenoic acid and 38% docosahexaenoic acid) (n = 13) compared with a hypocaloric diet alone (n = 12) on postprandial apoB-48 kinetics in obese subjects after ingestion of an oral load. The apoB-48 kinetics were determined using stable isotope tracer kinetics and multicompartmental modeling. OUTCOMES MEASURES We evaluated plasma total and incremental apoB-48 0- to 10-hour area under the curves (AUCs) as well as apoB-48 secretion and fractional catabolic rate. RESULTS Weight loss with or without ω-3 FAEE supplementation significantly reduced body weight, total fat mass, homeostasis model assessment score, fasting triglyceride concentration, postprandial triglyceride AUC, and increased plasma high-density lipoprotein cholesterol concentration (P < .05 in all). Compared with weight loss alone, weight loss plus ω-3 FAEE significantly (all P < .05) decreased fasting triglyceride (-11%), apoB-48 (-36%) concentrations, postprandial triglyceride (-21%), and apoB-48 (-22%) total AUCs, as well as incremental postprandial triglyceride AUCs (-32%). The ω-3 FAEE also significantly decreased apoB-48 secretion in the basal state, without a significant effect during the postprandial period (3-6 hours). The fractional catabolic rate of apoB-48 increased with both interventions with no significant independent effect of ω-3 FAEE supplementation. CONCLUSION Addition of ω-3 FAEE supplementation to a moderate weight-loss diet in obese subjects can significantly improve chylomicron metabolism by independently decreasing the secretion of apoB-48.
Collapse
Affiliation(s)
- Annette T Y Wong
- School of Medicine and Pharmacology (A.T.Y.W., D.C.C., P.H.R.B., G.F.W.) and Faculty of Engineering, Computing, and Mathematics (P.H.R.B.), University of Western Australia, Perth, Western Australia, WA 6847 Australia; and Department of Gastroenterology and Hepatology (L.A.A.), Sir Charles Gairdner Hospital, Perth, Western Australia, WA 6009 Australia
| | | | | | | | | |
Collapse
|
14
|
Harmel E, Grenier E, Bendjoudi Ouadda A, El Chebly M, Ziv E, Beaulieu JF, Sané A, Spahis S, Laville M, Levy E. AMPK in the small intestine in normal and pathophysiological conditions. Endocrinology 2014; 155:873-88. [PMID: 24424053 DOI: 10.1210/en.2013-1750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of AMPK in regulating energy storage and depletion remains unexplored in the intestine. This study will to define its status, composition, regulation and lipid function, as well as to examine the impact of insulin resistance and type 2 diabetes on intestinal AMPK activation, insulin sensitivity, and lipid metabolism. Caco-2/15 cells and Psammomys obesus (P. obesus) animal models were experimented. We showed the predominance of AMPKα1 and the prevalence of α1/β2/γ1 heterotrimer in Caco-2/15 cells. The activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside and metformin resulted in increased phospho(p)-ACC. However, the down-regulation of p-AMPK by compound C and high glucose lowered p-ACC without affecting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Administration of metformin to P. obesus with insulin resistance and type 2 diabetes led to 1) an up-regulation of intestinal AMPK signaling pathway typified by ascending p-AMPKα(-Thr172); 2) a reduction in ACC activity; 3) an elevation of carnitine palmitoyltransferase 1; 4) a trend of increase in insulin sensitivity portrayed by augmentation of p-Akt and phospho-glycogen synthetase kinase 3β; 5) a reduced phosphorylation of p38-MAPK and ERK1/2; and 6) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. These data suggest that AMPK fulfills key functions in metabolic processes in the small intestine.
Collapse
Affiliation(s)
- Elodie Harmel
- Research Center (E.H., E.G., A.B.O., M.E.C., A.S., S.S., E.L.), Sainte-Justine MUHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition (E.H., E.G., S.S., E.L.) and Department of Biochemistry (M.E.C.), Université de Montréal, Montreal, Quebec, Canada, H3T 1C5; Diabetes Unit (E.Z.), Division of Internal Medicine, Hadassah Ein Kerem Hospital, 120 Jerusalem, Israel-91; Canadian Institutes for Health Research Team on the Digestive Epithelium (J.F.B., E.L.), Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4; and CRNH Rhône-Alpes (E.H., M.L.), Université Lyon 1, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1060, CENS, Centre Hospitalier Lyon-Sud, F-69310 Pierre Bénite, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Veilleux A, Grenier É, Marceau P, Carpentier AC, Richard D, Levy E. Intestinal Lipid Handling. Arterioscler Thromb Vasc Biol 2014; 34:644-53. [DOI: 10.1161/atvbaha.113.302993] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Veilleux
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Émilie Grenier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Picard Marceau
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - André C. Carpentier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Denis Richard
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Emile Levy
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| |
Collapse
|
16
|
Xiao C, Dash S, Morgantini C, Lewis GF. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis 2014; 233:608-615. [PMID: 24534456 DOI: 10.1016/j.atherosclerosis.2013.12.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 12/25/2022]
Abstract
Overproduction of hepatic apoB100-containing VLDL particles has been well documented in animal models and in humans with insulin resistance such as the metabolic syndrome and type 2 diabetes, and contributes to the typical dyslipidemia of these conditions. In addition, postprandial hyperlipidemia and elevated plasma concentrations of intestinal apoB48-containing chylomicron and chylomicron remnant particles have been demonstrated in insulin resistant states. Intestinal lipoprotein production is primarily determined by the amount of fat ingested and absorbed. Until approximately 10 years ago, however, relatively little attention was paid to the role of the intestine itself in regulating the production of triglyceride-rich lipoproteins (TRL) and its dysregulation in pathological states such as insulin resistance. We and others have shown that insulin resistant animal models and humans are characterized by overproduction of intestinal apoB48-containing lipoproteins. Whereas various factors are known to regulate hepatic lipoprotein particle production, less is known about factors that regulate the production of intestinal lipoprotein particles. Monosacharides, plasma free fatty acids (FFA), resveratrol, intestinal peptides (e.g. GLP-1 and GLP-2), and pancreatic hormones (e.g. insulin) have recently been shown to be important regulators of intestinal lipoprotein secretion. Available evidence in humans and animal models strongly supports the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of chylomicrons in fed and fasting states. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors contribute to the enhanced formation and secretion of TRL. Understanding the regulation of intestinal lipoprotein production is imperative for the development of new therapeutic strategies for the prevention and treatment of dyslipidemia. Here we review recent developments in this field and present evidence that intestinal lipoprotein production is a process with metabolic plasticity and that modulation of intestinal lipoprotein secretion may be a feasible therapeutic strategy in the treatment of dyslipidemia and possibly prevention of atherosclerosis.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Satya Dash
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Cecilia Morgantini
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Gary F Lewis
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
17
|
Couture P, Tremblay AJ, Kelly I, Lemelin V, Droit A, Lamarche B. Key intestinal genes involved in lipoprotein metabolism are downregulated in dyslipidemic men with insulin resistance. J Lipid Res 2013; 55:128-37. [PMID: 24142110 DOI: 10.1194/jlr.m040071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Insulin resistance (IR) is associated with elevated plasma levels of triglyceride-rich lipoproteins (TRLs) of intestinal origin. However, the mechanisms underlying the overaccumulation of apolipoprotein (apo)B-48-containing TRLs in individuals with IR are not yet fully understood. This study examined the relationships between apoB-48-containing TRL kinetics and the expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism in 14 obese nondiabetic men with IR compared with 10 insulin-sensitive (IS) men matched for waist circumference. The in vivo kinetics of TRL apoB-48 were assessed using a primed-constant infusion of L-[5,5,5-D₃]leucine for 12 h with the participants in a constantly fed state. The expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism was assessed by performing real-time PCR quantification and LC-MS/MS on duodenal biopsy specimens. The TRL apoB-48 pool size and production rate were 102% (P < 0.0001) and 87% (P = 0.01) greater, respectively, in the men with IR versus the IS men. On the other hand, intestinal mRNA levels of sterol regulatory element binding factor-2, hepatocyte nuclear factor-4α, and microsomal triglyceride transfer protein were significantly lower in the men with IR than in the IS men. These data indicate that IR is associated with intestinal overproduction of lipoproteins and significant downregulation of key intestinal genes involved in lipid/lipoprotein metabolism.
Collapse
Affiliation(s)
- Patrick Couture
- Institute of Nutrition and Functional Foods Centre Hospitalier de l'Université Laval (CHUL) Research Centre
| | | | | | | | | | | |
Collapse
|
18
|
Lee MW, Park JK, Hong JW, Kim KJ, Shin DY, Ahn CW, Song YD, Cho HK, Park SW, Lee EJ. Beneficial Effects of Omega-3 Fatty Acids on Low Density Lipoprotein Particle Size in Patients with Type 2 Diabetes Already under Statin Therapy. Diabetes Metab J 2013; 37:207-11. [PMID: 23807924 PMCID: PMC3689018 DOI: 10.4093/dmj.2013.37.3.207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 02/18/2013] [Indexed: 12/11/2022] Open
Abstract
Beyond statin therapy for reducing low density lipoprotein cholesterol (LDL-C), additional therapeutic strategies are required to achieve more optimal reduction in cardiovascular risk among diabetic patients with dyslipidemia. To evaluate the effects and the safety of combined treatment with omega-3 fatty acids and statin in dyslipidemic patients with type 2 diabetes, we conducted a randomized, open-label study in Korea. Patients with persistent hypertriglyceridemia (≥200 mg/dL) while taking statin for at least 6 weeks were eligible. Fifty-one patients were randomized to receive either omega-3 fatty acid 4, 2 g, or no drug for 8 weeks while continuing statin therapy. After 8 weeks of treatment, the mean percentage change of low density lipoprotein (LDL) particle size and triglyceride (TG) level was greater in patients who were prescribed 4 g of omega-3 fatty acid with statin than in patients receiving statin monotherapy (2.8%±3.1% vs. 2.3%±3.6%, P=0.024; -41.0%±24.1% vs. -24.2%±31.9%, P=0.049). Coadministration of omega-3 fatty acids with statin increased LDL particle size and decreased TG level in dyslipidemic patients with type 2 diabetes. The therapy was well tolerated without significant adverse effects.
Collapse
Affiliation(s)
- Myung Won Lee
- Department of Endocrinology, Gwangmyeong Sung Ae Hospital, Gwangmyeong, Korea
| | - Jeong Kyung Park
- Department of Endocrinology, Good Morning Hospital, Pyeongtaek, Korea
| | - Jae Won Hong
- Division of Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Joon Kim
- Division of Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Yeob Shin
- Division of Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Woo Ahn
- Department of Endocrinology and Metabolism, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Duk Song
- Department of Endocrinology and Metabolism, National Health Insurance Cooperation Ilsan Hospital, Goyang, Korea
| | | | - Seok Won Park
- Department of Endocrinology and Metabolism, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Jig Lee
- Division of Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Rol del enterocito en la dislipemia de la resistencia insulínica. ACTA ACUST UNITED AC 2013; 60:179-89. [DOI: 10.1016/j.endonu.2012.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/06/2023]
|
20
|
Ooi EMM, Lichtenstein AH, Millar JS, Diffenderfer MR, Lamon-Fava S, Rasmussen H, Welty FK, Barrett PHR, Schaefer EJ. Effects of Therapeutic Lifestyle Change diets high and low in dietary fish-derived FAs on lipoprotein metabolism in middle-aged and elderly subjects. J Lipid Res 2012; 53:1958-67. [PMID: 22773687 PMCID: PMC3413235 DOI: 10.1194/jlr.p024315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/02/2012] [Indexed: 12/16/2022] Open
Abstract
The effects of Therapeutic Lifestyle Change (TLC) diets, low and high in dietary fish, on apolipoprotein metabolism were examined. Subjects were provided with a Western diet for 6 weeks, followed by 24 weeks of either of two TLC diets (10/group). Apolipoprotein kinetics were determined in the fed state using stable isotope methods and compartmental modeling at the end of each phase. Only the high-fish diet decreased median triglyceride-rich lipoprotein (TRL) apoB-100 concentration (-23%), production rate (PR, -9%), and direct catabolism (-53%), and increased TRL-to-LDL apoB-100 conversion (+39%) as compared with the baseline diet (all P < 0.05). This diet also decreased TRL apoB-48 concentration (-24%), fractional catabolic rate (FCR, -20%), and PR (-50%) as compared with the baseline diet (all P < 0.05). The high-fish and low-fish diets decreased LDL apoB-100 concentration (-9%, -23%), increased LDL apoB-100 FCR (+44%, +48%), and decreased HDL apoA-I concentration (-15%, -14%) and PR (-11%, -12%) as compared with the baseline diet (all P < 0.05). On the high-fish diet, changes in TRL apoB-100 PR were negatively correlated with changes in plasma eicosapentaenoic and docosahexaenoic acids. In conclusion, the high-fish diet decreased TRL apoB-100 and TRL apoB-48 concentrations chiefly by decreasing their PR. Both diets decreased LDL apoB-100 concentration by increasing LDL apoB-100 FCR and decreased HDL apoA-I concentration by decreasing HDL apoA-I PR.
Collapse
Affiliation(s)
- Esther M. M. Ooi
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
- Metabolic Research Centre, School of Medicine &
Pharmacology and Faculty of Engineering, Computing and Mathematics,
University of Western Australia, Perth, Western
Australia, Australia
| | - Alice H. Lichtenstein
- Cardiovascular Nutrition Laboratory,
Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA
| | - John S. Millar
- Institute for Translational Medicine and
Therapeutics, Institute for Diabetes, Obesity and Metabolism, University
of Pennsylvania, Philadelphia, PA; and
| | - Margaret R. Diffenderfer
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| | - Stefania Lamon-Fava
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| | - Helen Rasmussen
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| | - Francine K. Welty
- Division of Cardiology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston,
MA
| | - P. Hugh R. Barrett
- Metabolic Research Centre, School of Medicine &
Pharmacology and Faculty of Engineering, Computing and Mathematics,
University of Western Australia, Perth, Western
Australia, Australia
| | - Ernst J. Schaefer
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| |
Collapse
|
21
|
Slivkoff-Clark KM, James AP, Mamo JC. The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men. Nutr Metab (Lond) 2012; 9:9. [PMID: 22314022 PMCID: PMC3296659 DOI: 10.1186/1743-7075-9-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/07/2012] [Indexed: 12/15/2022] Open
Abstract
Background Visceral obesity and insulin resistance are associated with a postprandial accumulation of atherogenic chylomicron remnants that is difficult to modulate with lipid-lowering therapies. Dietary fish oil and exercise are cardioprotective interventions that can significantly modify the metabolism of TAG-rich lipoproteins. In this study, we investigated whether chronic exercise and fish oil act in combination to affect chylomicron metabolism in obese men with moderate insulin resistance. Methods The single blind study tested the effect of fish oil, exercise and the combined treatments on fasting and postprandial chylomicron metabolism. Twenty nine men with metabolic syndrome were randomly assigned to take fish oil or placebo for four weeks, before undertaking an additional 12 week walking program. At baseline and at the end of each treatment, subjects were tested for concentrations of fasting apo B48, plasma lipids and insulin. Postprandial apo B48 and TAG kinetics were also determined following ingestion of a fat enriched meal. Results Combining fish oil and exercise resulted in a significant reduction in the fasting apo B48 concentration, concomitant with attenuation of fasting TAG concentrations and the postprandial TAGIAUC response (p < 0.05). Fish oil by itself reduced the postprandial TAG response (p < 0.05) but not postprandial apo B48 kinetics. Individual treatments of fish oil and exercise did not correspond with improvements in fasting plasma TAG and apo B48. Conclusion Fish oil was shown to independently improve plasma TAG homeostasis but did not resolve hyper-chylomicronaemia. Instead, combining fish oil with chronic exercise reduced the plasma concentration of pro-atherogenic chylomicron remnants; in addition it reduced the fasting and postprandial TAG response in viscerally obese insulin resistant subjects.
Collapse
Affiliation(s)
- Karin M Slivkoff-Clark
- School of Public Health, Curtin Health Innovation Research Institute and the Australian Technology Network, Centre for Metabolic Fitness, Curtin University, Bentley Campus, Kent St, Perth 6102, Australia.
| | | | | |
Collapse
|
22
|
The chylomicron: relationship to atherosclerosis. Int J Vasc Med 2011; 2012:784536. [PMID: 22007304 PMCID: PMC3189596 DOI: 10.1155/2012/784536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022] Open
Abstract
The B-containing lipoproteins are the transporters of cholesterol, and the evidence suggests that the apo B48-containing postprandial chylomicron particles and the triglyceride-rich very low density lipoprotein (VLDL) particles play an important part in the development of the plaque both directly and indirectly by their impact on LDL composition. The ratio of dietary to synthesised cholesterol is variable but tightly regulated: hence intervention with diet at best reduces serum cholesterol by <20% andusually <10%. Statins are the mainstay of cholesterol reduction therapy, but they increase cholesterol absorption, an example of the relationship between synthesis and absorption. Inhibition of cholesterol absorption with Ezetimibe, an inhibitor of Niemann Pick C1-like 1 (NPC1-L1), the major regulator of cholesterol absorption, increases cholesterol synthesis and hence the value of adding an inhibitor of cholesterol absorption to an inhibitor of cholesterol synthesis. Apo B48, the structural protein of the chylomicron particle, is synthesised in abundance so that the release of these particles is dependent on the amount of cholesterol and triglyceride available in the intestine. This paper will discuss cholesterol absorption and synthesis, chylomicron formation, and the effect of postprandial lipoproteins on factors involved in atherosclerosis.
Collapse
|
23
|
Levy E, Lalonde G, Delvin E, Elchebly M, Précourt LP, Seidah NG, Spahis S, Rabasa-Lhoret R, Ziv E. Intestinal and hepatic cholesterol carriers in diabetic Psammomys obesus. Endocrinology 2010; 151:958-70. [PMID: 20130116 DOI: 10.1210/en.2009-0866] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance and type 2 diabetes (T2D) are characterized by hyperlipidemia. The aim of the present study was to elucidate whether T2D contributes to abnormal cholesterol (CHOL) homeostasis. Experiments were carried out in the small intestine and liver of Psammomys obesus, a model of nutritionally induced T2D. Our results show that diabetic animals exhibited a lower intestinal CHOL uptake, which was associated with a decrease in 1) the gene and protein expression of Niemann-Pick C1 like 1 that plays a pivotal role in CHOL incorporation in the enterocytes; and 2) mRNA of ATP-binding cassette transporters (ABC)A1 that mediates CHOL efflux from intestinal cells to apolipoprotein A-I and high-density lipoprotein. No changes were observed in the other intestinal transporters scavenger receptor-class B type I (SR-BI) and annexin 2. On the other hand, in diabetic animals, a significant mRNA decrease was noticed in intestinal ABCG5 and ABCG8 responsible for the secretion of absorbed CHOL back into the lumen. Furthermore, jejunal PCSK9 protein was diminished and low-density lipoprotein receptor was raised, along with a significant down-regulation in jejunal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in P. obesus with T2D. Finally, among the transcription factors tested, only an increase in liver X receptors alpha and a decrease in peroxisome proliferator-activated receptors delta/beta mRNAs were detected in the intestine. In the liver, there was 1) an augmentation in the protein mass of Niemann-Pick C1 like 1, SR-BI, and annexin 2; 2) an up-regulation of SR-BI mRNA; 3) a fall in ABCG8 protein content as well as in ABCG5 and ABCA1 mRNA; and 4) an augmentation in liver X receptors alpha and peroxisome proliferator-activated receptors beta/delta mRNA, together with a drop in sterol regulatory element binding protein-2 protein. Our findings show that the development in P. obesus with T2D modifies the whole intraenterocyte and hepatocyte machinery responsible for CHOL homeostasis.
Collapse
Affiliation(s)
- Emile Levy
- Gastroenterology, Hepatology, and Nutrition Unit, Research Centre, Sainte-Justine Hospital, 3175 Sainte-Catherine Road, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hassanali Z, Ametaj BN, Field CJ, Proctor SD, Vine DF. Dietary supplementation of n-3 PUFA reduces weight gain and improves postprandial lipaemia and the associated inflammatory response in the obese JCR:LA-cp rat. Diabetes Obes Metab 2010; 12:139-47. [PMID: 19917068 DOI: 10.1111/j.1463-1326.2009.01130.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postprandial dyslipidaemia occurs in obesity and insulin resistance (IR), and is associated with an increased risk of developing cardiovascular disease. We have recently established that the JCR:LA-cp rodent model develops postprandial dyslipidaemia concomitant with complications of the metabolic syndrome. Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) are proposed to modulate plasma lipids, serum hormone levels, lipoprotein metabolism and the inflammatory state; however, results remain inconsistent during conditions of IR. AIM To assess the acute metabolic and inflammatory effects of dietary fish oil supplementation on existing postprandial dyslipidaemia in the JCR:LA-cp model. METHODS JCR:LA-cp rats (14 weeks of age) were fed either a control, isocaloric, lipid balanced diet (15% w/w total fat, 1.0% cholesterol, P:S ratio 0.4), a lipid balanced diet with 5% n-3 PUFA [fish oil derived eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA)] or a lipid balanced diet with 10% n-3 PUFA for 3 weeks. Fasting plasma lipid, cytokine levels, postprandial chylomicron (apoB48) metabolism and the postprandial inflammatory response [haptoglobin and lipopolysaccharide binding protein (LBP)] were assessed following a standardized 'oral fat challenge'. RESULTS n-3 PUFA treatment resulted in a significant improvement (i.e. decrease) in the postprandial response for triglyceride (45%) (p < 0.05), apoB48 (45%) (p < 0.03) and LBP (33%) (p < 0.05) compared to controls (measured as area under the clearance curve). In contrast, we observed a significant elevation in postprandial haptoglobin (165%) (p < 0.001) in obese rats supplemented with 10% n-3 PUFA. Treatment with 5% n-3 PUFA in the JCR:LA-cp obese animals resulted in a complementary decrease in total body weight gain (6%) (p < 0.001) and an increase (i.e. improvement) in adiponectin (33%) (p < 0.05) compared to controls, without a concomitant reduction in food intake. CONCLUSION Acute dietary n-3 PUFA dietary supplementation can improve fasting as well as postprandial lipid metabolism and components of the associated inflammatory response in the JCR:LA-cp rat. Further, moderate dose n-3 PUFA supplementation may reduce corresponding body weight during conditions of hypercholesterolaemia and/or modulate inflammation associated with obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Z Hassanali
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, T6G 2P5, Alberta, Canada
| | | | | | | | | |
Collapse
|
25
|
Samane S, Christon R, Dombrowski L, Turcotte S, Charrouf Z, Lavigne C, Levy E, Bachelard H, Amarouch H, Marette A, Haddad PS. Fish oil and argan oil intake differently modulate insulin resistance and glucose intolerance in a rat model of dietary-induced obesity. Metabolism 2009; 58:909-19. [PMID: 19394055 DOI: 10.1016/j.metabol.2009.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/23/2009] [Indexed: 01/28/2023]
Abstract
We investigated the potential metabolic benefits of fish oil (FO) or vegetable argan oil (AO) intake in a dietary model of obesity-linked insulin resistance. Rats were fed a standard chow diet (controls), a high-fat/high-sucrose (HFHS) diet, or an HFHS diet in which 6% of the fat was replaced by either FO or AO feeding, respectively. The HFHS diet increased adipose tissue weight and insulin resistance as revealed by increased fasting glucose and exaggerated glycemic and insulin responses to a glucose tolerance test (intraperitoneal glucose tolerance test). Fish oil feeding prevented fat accretion, reduced fasting glycemia, and normalized glycemic or insulin responses to intraperitoneal glucose tolerance test as compared with HFHS diet. Unlike FO consumption, AO intake failed to prevent obesity, yet restored fasting glycemia back to chow-fed control values. Insulin-induced phosphorylation of Akt and Erk in adipose tissues, skeletal muscles, and liver was greatly attenuated in HFHS rats as compared with chow-fed controls. High-fat/high-sucrose diet-induced insulin resistance was also confirmed in isolated hepatocytes. Fish oil intake prevented insulin resistance by improving or fully restoring insulin signaling responses in all tissues and isolated hepatocytes. Argan oil intake also improved insulin-dependent phosphorylations of Akt and Erk; and in adipose tissue, these responses were increased even beyond values observed in chow-fed controls. Taken together, these results strongly support the beneficial action of FO on diet-induced insulin resistance and glucose intolerance, an effect likely explained by the ability of FO to prevent HFHS-induced adiposity. Our data also show for the first time that AO can improve some of the metabolic and insulin signaling abnormalities associated with HFHS feeding.
Collapse
Affiliation(s)
- Samira Samane
- Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Increased hepatic lipogenesis in insulin resistance and Type 2 diabetes is associated with AMPK signalling pathway up-regulation in Psammomys obesus. Biosci Rep 2009; 29:283-92. [DOI: 10.1042/bsr20080141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AMPK (AMP-activated protein kinase) has been suggested to be a central player regulating FA (fatty acid) metabolism through its ability to regulate ACC (acetyl-CoA carboxylase) activity. Nevertheless, its involvement in insulin resistance- and TD2 (Type 2 diabetes)-associated dyslipidaemia remains enigmatic. In the present study, we employed the Psammomys obesus gerbil, a well-established model of insulin resistance and TD2, in order to appreciate the contribution of the AMPK/ACC pathway to the abnormal hepatic lipid synthesis and increased lipid accumulation in the liver. Our investigation provided evidence that the development of insulin resistance/diabetic state in P. obesus is accompanied by (i) body weight gain and hyperlipidaemia; (ii) elevations of hepatic ACC-Ser79 phosphorylation and ACC protein levels; (iii) a rise in the gene expression of cytosolic ACC1 concomitant with invariable mitochondrial ACC2; (iv) an increase in hepatic AMPKα-Thr172 phosphorylation and protein expression without any modification in the calculated ratio of phospho-AMPKα to total AMPKα; (v) a stimulation in ACC activity despite increased AMPKα phosphorylation and protein expression; and (vi) a trend of increase in mRNA levels of key lipogenic enzymes [SCD-1 (stearoyl-CoA desaturase-1), mGPAT (mitochondrial isoform of glycerol-3-phosphate acyltransferase) and FAS (FA synthase)] and transcription factors [SREBP-1 (sterol-regulatory-element-binding protein-1) and ChREBP (carbohydrate responsive element-binding protein)]. Altogether, our findings suggest that up-regulation of the AMPK pathway seems to be a natural response in order to reduce lipid metabolism abnormalities, thus supporting the role of AMPK as a promising target for the treatment of TD2-associated dyslipidaemia.
Collapse
|
27
|
Valdivielso P, Rioja J, García-Arias C, Sánchez-Chaparro MA, González-Santos P. Omega 3 fatty acids induce a marked reduction of apolipoprotein B48 when added to fluvastatin in patients with type 2 diabetes and mixed hyperlipidemia: a preliminary report. Cardiovasc Diabetol 2009; 8:1. [PMID: 19133114 PMCID: PMC2631503 DOI: 10.1186/1475-2840-8-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 01/08/2009] [Indexed: 11/15/2022] Open
Abstract
Backgorund Mixed hyperlipidemia is common in patients with diabetes. Statins, the choice drugs, are effective at reducing lipoproteins that contain apolipoprotein B100, but they fail to exert good control over intestinal lipoproteins, which have an atherogenic potential. We describe the effect of prescription omega 3 fatty acids on the intestinal lipoproteins in patients with type 2 diabetes who were already receiving fluvastatin 80 mg per day. Methods Patients with type 2 diabetes and mixed hyperlipidemia were recruited. Fasting lipid profile was taken when patients were treated with diet, diet plus 80 mg of fluvastatin and diet plus fluvastatin 80 mg and 4 g of prescription omega 3 fatty acids. The intestinal lipoproteins were quantified by the fasting concentration of apolipoprotein B48 using a commercial ELISA. Results The addition of 4 g of prescription omega 3 was followed by significant reductions in the levels of triglycerides, VLDL triglycerides and the triglyceride/HDL cholesterol ratio, and an increase in HDL cholesterol (P < 0.05). Fluvastatin induced a reduction of 26% in B100 (P < 0.05) and 14% in B48 (NS). However, the addition of omega 3 fatty acids enhanced this reduction to 32% in B100 (NS) and up to 36% in B48 (P < 0.05). Conclusion Our preliminary findings therefore suggest an additional benefit on postprandial atherogenic particles when omega 3 fatty acids are added to standard treatment with fluvastatin.
Collapse
Affiliation(s)
- Pedro Valdivielso
- Department of Medicine, Hospital Virgen de la Victoria, Department of Medicine & Dermatology, University of Malaga, Malaga, Spain.
| | | | | | | | | |
Collapse
|
28
|
Ravid Z, Bendayan M, Delvin E, Sane AT, Elchebly M, Lafond J, Lambert M, Mailhot G, Levy E. Modulation of intestinal cholesterol absorption by high glucose levels: impact on cholesterol transporters, regulatory enzymes, and transcription factors. Am J Physiol Gastrointest Liver Physiol 2008; 295:G873-85. [PMID: 18772361 DOI: 10.1152/ajpgi.90376.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growing evidence suggests that the small intestine may contribute to excessive postprandial lipemia, which is highly prevalent in insulin-resistant/Type 2 diabetic individuals and substantially increases the risk of cardiovascular disease. The aim of the present study was to determine the role of high glucose levels on intestinal cholesterol absorption, cholesterol transporter expression, enzymes controlling cholesterol homeostasis, and the status of transcription factors. To this end, we employed highly differentiated and polarized cells (20 days of culture), plated on permeable polycarbonate filters. In the presence of [(14)C]cholesterol, glucose at 25 mM stimulated cholesterol uptake compared with Caco-2/15 cells supplemented with 5 mM glucose (P < 0.04). Because combination of 5 mM glucose with 20 mM of the structurally related mannitol or sorbitol did not change cholesterol uptake, we conclude that extracellular glucose concentration is uniquely involved in the regulation of intestinal cholesterol transport. The high concentration of glucose enhanced the protein expression of the critical cholesterol transporter NPC1L1 and that of CD36 (P < 0.02) and concomitantly decreased SR-BI protein mass (P < 0.02). No significant changes were observed in the protein expression of ABCA1 and ABCG8, which act as efflux pumps favoring cholesterol export out of absorptive cells. At the same time, 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity was decreased (P < 0.007), whereas ACAT activity remained unchanged. Finally, increases were noted in the transcription factors LXR-alpha, LXR-beta, PPAR-beta, and PPAR-gamma along with a drop in the protein expression of SREBP-2. Collectively, our data indicate that glucose at high concentrations may regulate intestinal cholesterol transport and metabolism in Caco-2/15 cells, thus suggesting a potential influence on the cholesterol absorption process in Type 2 diabetes.
Collapse
Affiliation(s)
- Z Ravid
- Research Centre, CHU-Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Type 2 diabetes is caused by defects in both insulin signaling and insulin secretion. Though the role of the ubiquitin proteasome system (UPS) in the pathogenesis of type 2 diabetes remains largely unexplored, the few examples present in the literature are interesting and suggest targets for drug development. Studies indicate that insulin resistance can be induced by stimulating the degradation of important molecules in the insulin signaling pathway, in particular the insulin receptor substrate proteins IRS1, IRS2 and the kinase AKT1 (Akt). In addition, a defect in insulin secretion could occur due to UPS-mediated degradation of IRS2 in the β-cells of the pancreas. The UPS also appears to be involved in regulating lipid synthesis in adipocytes and lipid production by the liver and could influence the development of obesity. Other possible mechanisms for inducing defects in insulin signaling and secretion remain to be explored, including the role of ubiquitylation in insulin receptor internalization and trafficking. Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Simon S Wing
- Polypeptide Laboratory, Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, H3A 2B2, Canada.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Excessive postprandial lipemia is highly prevalent in obese and insulin-resistant/type 2 diabetic individuals and substantially increases the risk of atherosclerosis and cardiovascular disease. This article will review our current understanding of the link between insulin resistance and intestinal lipoprotein overproduction and highlight some of the key recent findings in the field. RECENT FINDINGS Emerging evidence from several animal models of insulin resistance as well as insulin-resistant humans clearly supports the link between insulin resistance and aberrant intestinal lipoprotein metabolism. In insulin-resistant states, elevated free fatty acid flux into the intestine, downregulation of intestinal insulin signaling and upregulation of microsomal triglyceride transfer protein all appear to stimulate intestinal lipoprotein production. Gut peptides, GLP-1 and GLP-2, may be important regulators of intestinal lipid absorption and lipoprotein production. SUMMARY Available evidence in humans and animal models strongly favors the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of triglyceride-rich lipoproteins. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors all contribute to the enhanced formation and secretion of triglyceride-rich lipoproteins.
Collapse
Affiliation(s)
- Khosrow Adeli
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
31
|
Dubey P, Cheema SK. Molecular mechanisms involved in the regulation of lipid and lipoprotein metabolism by fish oil. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.5.559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|