1
|
Li H, Xu Y, Jiang Y, Jiang Z, Otiz-Guzman J, Morrill JC, Cai J, Mao Z, Xu Y, Arenkiel BR, Huang C, Tong Q. The melanocortin action is biased toward protection from weight loss in mice. Nat Commun 2023; 14:2200. [PMID: 37069175 PMCID: PMC10110624 DOI: 10.1038/s41467-023-37912-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development. We demonstrate that chronic inhibition of arcuate neurons expressing proopiomelanocortin (POMC) or paraventricular hypothalamic neurons expressing melanocortin receptor 4 (MC4R) causes massive obesity. However, chronic activation of these neuronal populations failed to reduce body weight. Furthermore, gain of function of the melanocortin action through overexpression of MC4R, POMC or its derived peptides had little effect on obesity prevention or reversal. These results reveal a bias of the melanocortin action towards protection of weight loss and provide a neural basis behind the well-known, but mechanistically ill-defined, predisposition to obesity development.
Collapse
Affiliation(s)
- Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jessie C Morrill
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Zhengmei Mao
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Bakhtiari M, Park J, Ding YC, Shleizer-Burko S, Neuhausen SL, Halldórsson BV, Stefánsson K, Gymrek M, Bafna V. Variable number tandem repeats mediate the expression of proximal genes. Nat Commun 2021; 12:2075. [PMID: 33824302 PMCID: PMC8024321 DOI: 10.1038/s41467-021-22206-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Variable number tandem repeats (VNTRs) account for significant genetic variation in many organisms. In humans, VNTRs have been implicated in both Mendelian and complex disorders, but are largely ignored by genomic pipelines due to the complexity of genotyping and the computational expense. We describe adVNTR-NN, a method that uses shallow neural networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining high accuracy. We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals. Associating VNTR length with gene expression in 46 tissues, we identify 163 "eVNTRs". Of the 22 eVNTRs in blood where independent data is available, 21 (95%) are replicated in terms of significance and direction of association. 49% of the eVNTR loci show a strong and likely causal impact on the expression of genes and 80% have maximum effect size at least 0.3. The impacted genes are involved in diseases including Alzheimer's, obesity and familial cancers, highlighting the importance of VNTRs for understanding the genetic basis of complex diseases.
Collapse
Affiliation(s)
- Mehrdad Bakhtiari
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jonghun Park
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yuan-Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | | | - Melissa Gymrek
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Siu JJ, Queen NJ, Liu X, Huang W, McMurphy T, Cao L. Molecular Therapy of Melanocortin-4-Receptor Obesity by an Autoregulatory BDNF Vector. Mol Ther Methods Clin Dev 2017; 7:83-95. [PMID: 29296625 PMCID: PMC5744069 DOI: 10.1016/j.omtm.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Mutations in the melanocortin-4-receptor (MC4R) comprise the most common monogenic form of severe early-onset obesity, and conventional treatments are either ineffective long-term or contraindicated. Immediately downstream of MC4R-in the pathway for regulating energy balance-is brain-derived neurotrophic factor (BDNF). Our previous studies show that adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity and diabetes in both diet-induced and genetic models. To facilitate clinical translation, we developed a built-in autoregulatory system to control therapeutic gene expression mimicking the body's natural feedback systems. This autoregulatory approach leads to a sustainable plateau of body weight after substantial weight loss is achieved. Here, we examined the efficacy and safety of autoregulatory BDNF gene therapy in Mc4r heterozygous mice, which best resemble MC4R obese patients. Mc4r heterozygous mice were treated with either autoregulatory BDNF vector or YFP control and monitored for 30 weeks. BDNF gene therapy prevented the development of obesity and metabolic syndromes characterized by decreasing body weight and adiposity, suppressing food intake, alleviating hyperleptinemia and hyperinsulinemia, improving glucose and insulin tolerance, and increasing energy expenditure, without adverse cardiovascular function or behavioral disturbances. These safety and efficacy data provide preclinical evidence that BDNF gene therapy is a compelling treatment option for MC4R-deficient obese patients.
Collapse
Affiliation(s)
- Jason J. Siu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Travis McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Eerola K, Rinne P, Penttinen AM, Vähätalo L, Savontaus M, Savontaus E. α-MSH overexpression in the nucleus tractus solitarius decreases fat mass and elevates heart rate. J Endocrinol 2014; 222:123-36. [PMID: 24829220 DOI: 10.1530/joe-14-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The POMC pathway is involved in the regulation of energy and cardiovascular homeostasis in the hypothalamus and the brain stem. Although the acute effects of POMC-derived peptides in different brain locations have been elucidated, the chronic site-specific effects of distinct peptides remain to be studied. To this end, we used a lentiviral gene delivery vector to study the long-term effects of α-MSH in the nucleus tractus solitarius (NTS) of the brain stem. The α-MSH vector (LVi-α-MSH-EGFP) based on the N-terminal POMC sequence and a control vector (LVi-EGFP) were delivered into the NTS of C57BL/6N male mice fed on a western diet. Effects on body weight and composition, feeding, glucose metabolism, and hemodynamics by telemetric analyses were studied during the 12-week follow-up. The LVi-α-MSH-EGFP-treated mice had a significantly smaller gain in the fat mass compared with LVi-EGFP-injected mice. There was a small initial decrease in food intake and no differences in the physical activity. Glucose metabolism was not changed compared with the control. LVi-α-MSH-EGFP increased the heart rate (HR), which was attenuated by adrenergic blockade suggesting an increased sympathetic activity. Reduced response to muscarinic blockade suggested a decreased parasympathetic activity. Fitting with sympathetic activation, LVi-α-MSH-EGFP treatment reduced urine secretion. Thus, the results demonstrate that long-term α-MSH overexpression in the NTS attenuates diet-induced obesity. Modulation of autonomic nervous system tone increased the HR and most probably contributed to an anti-obesity effect. The results underline the key role of NTS in the α-MSH-induced long-term effects on adiposity and in regulation of sympathetic and parasympathetic activities.
Collapse
Affiliation(s)
- K Eerola
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - P Rinne
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - A M Penttinen
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - L Vähätalo
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - M Savontaus
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - E Savontaus
- Department of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, FinlandDepartment of PharmacologyDrug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, FinlandTurku Centre for BiotechnologyUniversity of Turku, Turku, FinlandDrug Research Doctoral ProgramUniversity of Turku, Turku, FinlandHeart CenterTurku University Hospital and University of Turku, Turku, FinlandUnit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Eerola K, Nordlund W, Virtanen S, Dickens AM, Mattila M, Ruohonen ST, Chua SC, Wardlaw SL, Savontaus M, Savontaus E. Lentivirus-mediated α-melanocyte-stimulating hormone overexpression in the hypothalamus decreases diet induced obesity in mice. J Neuroendocrinol 2013; 25:1298-1307. [PMID: 24118213 DOI: 10.1111/jne.12109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 11/29/2022]
Abstract
Melanocyte stimulating hormone (MSH) derived from the pro-hormone pro-opiomelanocortin (POMC) has potent effects on metabolism and feeding that lead to reduced body weight in the long-term. To determine the individual roles of POMC derived peptides and their sites of action, we created a method for the delivery of single MSH peptides using lentiviral vectors and studied the long-term anti-obesity effects of hypothalamic α-MSH overexpression in mice. An α-MSH lentivirus (LVi-α-MSH-EGFP) vector carrying the N'-terminal part of POMC and the α-MSH sequence was generated and shown to produce bioactive peptide in an in vitro melanin synthesis assay. Stereotaxis was used to deliver the LVi-α-MSH-EGFP or control LVi-EGFP vector to the arcuate nucleus (ARC) of the hypothalamus of male C57Bl/6N mice fed on a high-fat diet. The effects of 6-week-treatment on body weight, food intake, glucose tolerance and organ weights were determined. Additionally, a 14-day pairfeeding study was conducted to assess whether the weight decreasing effect of the LVi-α-MSH-EGFP treatment is dependent on decreased food intake. The 6-week LVi-α-MSH-EGFP treatment reduced weight gain (8.4 ± 0.4 g versus 12.3 ± 0.6 g; P < 0.05), which was statistically significant starting from 1 week after the injections. The weight of mesenteric fat was decreased and glucose tolerance was improved compared to LVi-EGFP treated mice. Food intake was decreased during the first week in the LVi-α-MSH-EGFP treated mice but subsequently increased to the level of LVi-EGFP treated mice. The LVi-EGFP injected control mice gained more weight even when pairfed to the level of food intake by LVi-α-MSH-EGFP treated mice. We demonstrate that gene transfer of α-MSH, a single peptide product of POMC, into the ARC of the hypothalamus, reduces obesity and improves glucose tolerance, and that factors other than decreased food intake also influence the weight decreasing effects of α-MSH overexpression in the ARC. Furthermore, viral MSH vectors delivered stereotaxically provide a novel tool for further exploration of chronic site-specific effects of POMC peptides.
Collapse
Affiliation(s)
- K Eerola
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- FinPharma Doctoral Program, Drug Discovery Section, Turku, Finland
| | - W Nordlund
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - S Virtanen
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - A M Dickens
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku PET Centre, Medicity/PET Preclinical Imaging, University of Turku, Turku, Finland
| | - M Mattila
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - S T Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - S C Chua
- Albert Einstein College of Medicine, New York, NY, USA
| | - S L Wardlaw
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - M Savontaus
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Turku Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - E Savontaus
- Department of Pharmacology, Drug Development and Therapeutics, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Kievit P, Halem H, Marks DL, Dong JZ, Glavas MM, Sinnayah P, Pranger L, Cowley MA, Grove KL, Culler MD. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 2013; 62:490-7. [PMID: 23048186 PMCID: PMC3554387 DOI: 10.2337/db12-0598] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The melanocortin-4 receptor (MC4R) is well recognized as an important mediator of body weight homeostasis. Activation of MC4R causes dramatic weight loss in rodent models, and mutations in human are associated with obesity. This makes MC4R a logical target for pharmacological therapy for the treatment of obesity. However, previous studies in rodents and humans have observed a broad array of side effects caused by acute treatment with MC4R agonists, including increased heart rate and blood pressure. We demonstrate that treatment with a highly-selective novel MC4R agonist (BIM-22493 or RM-493) resulted in transient decreases in food intake (35%), with persistent weight loss over 8 weeks of treatment (13.5%) in a diet-induced obese nonhuman primate model. Consistent with weight loss, these animals significantly decreased adiposity and improved glucose tolerance. Importantly, we observed no increases in blood pressure or heart rate with BIM-22493 treatment. In contrast, treatment with LY2112688, an MC4R agonist previously shown to increase blood pressure and heart rate in humans, caused increases in blood pressure and heart rate, while modestly decreasing food intake. These studies demonstrate that distinct melanocortin peptide drugs can have widely different efficacies and side effects.
Collapse
Affiliation(s)
- Paul Kievit
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Heather Halem
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
| | - Daniel L. Marks
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Jesse Z. Dong
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
| | - Maria M. Glavas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Puspha Sinnayah
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Lindsay Pranger
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Michael A. Cowley
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
- Corresponding authors: Michael D. Culler, , and Kevin L. Grove,
| | - Michael D. Culler
- Endocrinology Research, Ipsen-Biomeasure Incorporated, Milford, Massachusetts
- Corresponding authors: Michael D. Culler, , and Kevin L. Grove,
| |
Collapse
|
7
|
Andino LM, Ryder DJ, Shapiro A, Matheny MK, Zhang Y, Judge MK, Cheng KY, Tümer N, Scarpace PJ. POMC overexpression in the ventral tegmental area ameliorates dietary obesity. J Endocrinol 2011; 210:199-207. [PMID: 21565854 DOI: 10.1530/joe-10-0418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The activation of proopiomelanocortin (POMC) neurons in different regions of the brain, including the arcuate nucleus of the hypothalamus (ARC) and the nucleus of the solitary tract curtails feeding and attenuates body weight. In this study, we compared the effects of delivery of a recombinant adeno-associated viral (rAAV) construct encoding POMC to the ARC with delivery to the ventral tegmental area (VTA). F344×Brown Norway rats were high-fat (HF) fed for 14 days after which self-complementary rAAV constructs expressing either green fluorescent protein or the POMC gene were injected using coordinates targeting either the VTA or the ARC. Corresponding increased POMC levels were found at the predicted injection sites and subsequent α-melanocyte-stimulating hormone levels were observed. Food intake and body weight were measured for 4 months. Although caloric intake was unaltered by POMC overexpression, weight gain was tempered with POMC overexpression in either the VTA or the ARC compared with controls. There were parallel decreases in adipose tissue reserves. In addition, levels of oxygen consumption and brown adipose tissue uncoupling protein 1 were significantly elevated with POMC treatment in the VTA. Interestingly, tyrosine hydroxylase levels were increased in both the ARC and VTA with POMC overexpression in either the ARC or the VTA. In conclusion, these data indicate a role for POMC overexpression within the VTA reward center to combat HF-induced obesity.
Collapse
Affiliation(s)
- Lourdes M Andino
- Departments of Pharmacology and Therapeutics Aging and Geriatrics, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tiesjema B, Merkestein M, Garner KM, de Krom M, Adan RAH. Multimeric α-MSH has increased efficacy to activate the melanocortin MC4 receptor. Eur J Pharmacol 2008; 585:24-30. [PMID: 18378226 DOI: 10.1016/j.ejphar.2008.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Birgitte Tiesjema
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Kiuru M, Crystal RG. Progress and prospects: gene therapy for performance and appearance enhancement. Gene Ther 2008; 15:329-37. [DOI: 10.1038/sj.gt.3303100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Abstract
PURPOSE OF REVIEW Obesity is associated with many health problems and its prevalence is rapidly increasing worldwide. Very few pharmaceutical compounds are available for obesity treatment. Strategies for the development of compounds can be targeted to the outcomes of reduced dietary energy intake and/or increased energy expenditure/thermogenesis. In this review, we focus on recent discoveries that advance our understanding of mitochondrial uncoupling as a target for the treatment of obesity. There are various mechanisms whereby uncoupling can occur and for the purpose of this review, we elaborate upon the uncoupling that can occur (1) through the original uncoupling protein, UCP1, in brown adipocytes, or in 'converted' white adipose tissue, and (2) in skeletal muscle. RECENT FINDINGS Studies have identified a number of novel receptors and regulatory proteins involved in the emergence of brown adipocytes in white adipose tissue. Molecular and pharmacologic approaches in knockout and transgenic mice have demonstrated their relevance to obesity treatment. Recent research into uncoupling mechanisms in skeletal muscle indicates that uncoupling can occur through basal and inducible processes. SUMMARY Uncoupling is a naturally occurring phenomenon whose underlying mechanisms require substantial further study for the development of antiobesity therapies.
Collapse
Affiliation(s)
- Sheila Costford
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | |
Collapse
|