1
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
2
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Goutas A, Outskouni Z, Papathanasiou I, Satra M, Koliakos G, Trachana V. Dysregulation of Caveolin-1 Phosphorylation and Nuclear Translocation Is Associated with Senescence Onset. Cells 2021; 10:cells10112939. [PMID: 34831162 PMCID: PMC8616550 DOI: 10.3390/cells10112939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
We recently reported that the inability of osteoarthritic (OA) chondrocytes to repair oxidative stress (OS) induced DNA damage is linked to Cav-1 overexpression/improper localization. We speculated that the senescent status of OA cells was responsible for this Cav-1 dysregulation. Here, to further investigate this hypothesis, we used Wharton Jelly derived mesenchymal stem cells (WJ-MSCs) and investigated Cav-1 function as cells reached replicative senescence or upon stress induced senescence (SIPS). We showed that Cav-1 is upregulated, phosphorylated and translocated to the nucleus in young WJ-MSCs upon acute exogenous OS, and that it returns back to basal/nonphosphorylated levels and exports the nucleus in the recovery phase. However, as cells reach senescence, this regulation is lost. OS did not induce any Cav-1-mediated response, which is concomitant with the inability of older cells to restore DNA damage. Furthermore, downregulation of Cav-1 resulted in persistent OS-induced DNA damage and subsequent onset of senescence. We also report that the establishment of senescence is mediated by autophagy stimulation, since downregulation of autophagy key molecule Atg5, simultaneously with Cav-1 downregulation, was found to inhibit SIPS. Basically, we propose that Cav-1 involvement in DNA damage response can lead to senescence, either because the damage is extensive or because Cav-1 is absent/unable to perform its homeostatic role.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Maria Satra
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - George Koliakos
- Biohellenika, Biotechnology Company, 57001 Thessaloniki, Greece;
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
- Correspondence: ; Tel.: +30-2410-685624
| |
Collapse
|
4
|
Vijayan M, Reddy PH. Non-Coding RNAs Based Molecular Links in Type 2 Diabetes, Ischemic Stroke, and Vascular Dementia. J Alzheimers Dis 2021; 75:353-383. [PMID: 32310177 DOI: 10.3233/jad-200070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews recent advances in the study of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and their functions in type 2 diabetes mellitus (T2DM), ischemic stroke (IS), and vascular dementia (VaD). miRNAs and lncRNAs are gene regulation markers that both regulate translational aspects of a wide range of proteins and biological processes in healthy and disease states. Recent studies from our laboratory and others have revealed that miRNAs and lncRNAs expressed differently are potential therapeutic targets for neurological diseases, especially T2DM, IS, VaD, and Alzheimer's disease (AD). Currently, the effect of aging in T2DM, IS, and VaD and the cellular and molecular pathways are largely unknown. In this article, we highlight results from the works on the molecular connections between T2DM and IS, and IS and VaD. In each disease, we also summarize the pathophysiology and the differential expressions of miRNAs and lncRNAs. Based on current research findings, we hypothesize that 1) T2DM bi-directionally and age-dependently induces IS and VaD, and 2) these changes are precursors to the onset of dementia in elderly people. Research into these hypotheses is required to examine further whether research efforts on reducing T2DM, IS, and VaD may affect dementia and/or delay the AD disease process in the aged population.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
Van Regemorter E, Joris V, Van Regemorter V, Marique L, Behets C, Lengelé B, Boschi A, Baldeschi L, Daumerie C, Many MC, Craps J. Downregulation of Caveolin-1 and Upregulation of Deiodinase 3, Associated with Hypoxia-Inducible Factor-1α Increase, Are Involved in the Oxidative Stress of Graves' Orbital Adipocytes. Thyroid 2021; 31:627-637. [PMID: 32977740 DOI: 10.1089/thy.2020.0238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Even though the clinical features of Graves' orbitopathy (GO) are well known, its exact pathogenesis remains controversial. The imbalance of redox homeostasis in the connective tissue could play a crucial role leading to an inflammatory state and edema of soft orbital tissues, thus contributing to orbital hypoxia and increase in hypoxia-inducible factor (HIF)-1α. This oxidative stress appears to target the orbital cells such as fibroblasts and also adipocytes. This study aims to explore which pathways can lead to the aforementioned oxidative stress in GO adipose cells and therefore offers new plausible therapeutic targets. Methods: Orbital fat samples were obtained from patients with GO (Western blot [WB]: n = 8, immunohistochemistry [IHC]: n = 8) and from control patients (WB: n = 5, IHC: n = 3-5). They were processed for WB analysis and IHC of the antioxidants (catalase, superoxide dismutase 1) and for HIF-1α. The expression of caveolin-1 (Cav-1) and deiodinase 3 (DIO3), known to be regulated by HIF-1α, was also analyzed by WB and IHC, as well as the targets of Cav-1: glucose transporter type 4 (Glut-4), NADPH oxidase (NOX)-2, and endothelial nitric oxide synthase (eNOS). Triiodothyronine (T3) expression was also analyzed by IHC. Results: In GO adipocytes, the expression of catalase was reduced, whereas that of HIF-1α was strongly increased. A decreased local T3 supply was associated with DIO3 upregulation. The low expression of Cav-1 in GO adipocytes was associated not only with low expression of Glut-4 but also with an increased expression of NOX-2 and active eNOS phosphorylated on serine 1177. Conclusions: Cav-1 and DIO3, both sensitive to hypoxia and to the increase of HIF-1α, play a pivotal role in the oxidative stress in GO adipocytes. DIO3 regulates the cellular supply of T3, which is essential for the cell homeostasis. Cav-1 determines the cellular glucose supply through Glut-4 and regulates the activity of NOX-2 generating superoxide anions and that of eNOS generating nitric oxide (NO).
Collapse
Affiliation(s)
- Elliott Van Regemorter
- Pole of Morphology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Virginie Joris
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Victoria Van Regemorter
- Pole of Morphology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Lancelot Marique
- Pole of Morphology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Benoit Lengelé
- Pole of Morphology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Antonella Boschi
- Department of Ophthalmology and Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Lelio Baldeschi
- Department of Ophthalmology and Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Chantal Daumerie
- Department of Endocrinology, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium
| | - Marie-Christine Many
- Pole of Morphology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Julie Craps
- Pole of Morphology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
7
|
Sudhahar V, Okur MN, O'Bryan JP, Minshall RD, Fulton D, Ushio-Fukai M, Fukai T. Caveolin-1 stabilizes ATP7A, a copper transporter for extracellular SOD, in vascular tissue to maintain endothelial function. Am J Physiol Cell Physiol 2020; 319:C933-C944. [PMID: 32936699 PMCID: PMC7789967 DOI: 10.1152/ajpcell.00151.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
Caveolin-1 (Cav-1) is a scaffolding protein and a major component of caveolae/lipid rafts. Previous reports have shown that endothelial dysfunction in Cav-1-deficient (Cav-1-/-) mice is mediated by elevated oxidative stress through endothelial nitric oxide synthase (eNOS) uncoupling and increased NADPH oxidase. Oxidant stress is the net balance of oxidant generation and scavenging, and the role of Cav-1 as a regulator of antioxidant enzymes in vascular tissue is poorly understood. Extracellular SOD (SOD3) is a copper (Cu)-containing enzyme that is secreted from vascular smooth muscle cells/fibroblasts and subsequently binds to the endothelial cells surface, where it scavenges extracellular [Formula: see text] and preserves endothelial function. SOD3 activity is dependent on Cu, supplied by the Cu transporter ATP7A, but whether Cav-1 regulates the ATP7A-SOD3 axis and its role in oxidative stress-mediated vascular dysfunction has not been studied. Here we show that the activity of SOD3, but not SOD1, was significantly decreased in Cav-1-/- vessels, which was rescued by re-expression of Cav-1 or Cu supplementation. Loss of Cav-1 reduced ATP7A protein, but not mRNA, and this was mediated by ubiquitination of ATP7A and proteasomal degradation. ATP7A bound to Cav-1 and was colocalized with SOD3 in caveolae/lipid rafts or perinucleus in vascular tissues or cells. Impaired endothelium-dependent vasorelaxation in Cav-1-/- mice was rescued by gene transfer of SOD3 or by ATP7A-overexpressing transgenic mice. These data reveal an unexpected role of Cav-1 in stabilizing ATP7A protein expression by preventing its ubiquitination and proteasomal degradation, thereby increasing SOD3 activity, which in turn protects against vascular oxidative stress-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Mustafa Nazir Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Richard D Minshall
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
8
|
Russell JS, Griffith TA, Peart JN, Headrick JP. Cardiomyoblast caveolin expression: effects of simulated diabetes, α-linolenic acid, and cell signaling pathways. Am J Physiol Cell Physiol 2020; 319:C11-C20. [PMID: 32348174 DOI: 10.1152/ajpcell.00499.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caveolins regulate myocardial substrate handling, survival signaling, and stress resistance; however, control of expression is incompletely defined. We test how metabolic features of type 2 diabetes (T2D), and modulation of cell signaling, influence caveolins in H9c2 cardiomyoblasts. Cells were exposed to glucose (25 vs. 5 mM), insulin (100 nM), or palmitate (0.1 mM), individually or combined, and the effects of adenylate cyclase (AC) activation (50 μM forskolin), focal adhesion kinase (FAK) or protein kinase C β2 (PKCβ2) inhibition (1 μM FAK inhibitor 14 or CGP-53353, respectively) or the polyunsaturated fatty acid (PUFA) α-linolenic acid (ALA; 10 μM) were tested. Simulated T2D (elevated glucose + insulin + palmitate) depressed caveolin-1 and -3 without modifying caveolin-2. Caveolin-3 repression was primarily palmitate dependent, whereas high glucose (HG) and insulin independently increased caveolin-3 (while reducing expression when combined). Differential control was evident: baseline caveolin-3 was suppressed by FAK/PKCβ2 and insensitive to AC activities, with baseline caveolin-1 and -2 suppressed by AC and insensitive to FAK/PKCβ2. Forskolin and ALA selectively preserved caveolin-3 in T2D cells, whereas PKCβ2 and FAK inhibition increased caveolin-3 under all conditions. Despite preservation of caveolin-3, ALA did not modify nucleosome content (apoptosis marker) or transcription of proinflammatory mediators in T2D cells. In summary, caveolin-1 and -3 are strongly repressed with simulated T2D, with caveolin-3 particularly sensitive to palmitate; intrinsic PKCβ2 and FAK activities depress caveolin-3 in healthy and stressed cells; ALA and AC activation and PKCβ2 inhibition preserve caveolin-3 under T2D conditions; and caveolin-3 changes with T2D and ALA appear unrelated to inflammatory signaling or extent of apoptosis.
Collapse
Affiliation(s)
- Jake S Russell
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Tia A Griffith
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Jason N Peart
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - John P Headrick
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| |
Collapse
|
9
|
Mu J, Li Q. Anomalous expression of miR-103 in polycystic ovary syndrome influenced by hormonal, and metabolic variables. Exp Mol Pathol 2020; 116:104482. [PMID: 32504622 DOI: 10.1016/j.yexmp.2020.104482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), a common endocrine disorder in reproductive-aged women, is correlated with obesity and insulin resistance (IR), androgens excess, chronic anovulation, and infertility. MicroRNAs (miRNAs) are small, single-stranded, noncoding RNA molecules that participate in inflammation, reproduction and metabolism, may contribute to PCOS. Current study aiming to manifest the correlation of body mass index (BMI) and testosterone (T) with miR-103 expression before and after fat loss. METHODS 46 controls (N = 23 with BMI < 24 kg/m2, N = 23 with BMI ≥ 28 kg/m2) and 46 patients with PCOS (N = 23 with BMI < 24 kg/m2, N = 23 with BMI ≥ 28 kg/m2) aged between 20 and 30 were recruited. Waist-to-hip (WHR) and Body fat% (BF%) was measured and calculated. Serum hormones, serum lipid, metabolism parameters, and serum miR-103 were measured. All the assessments were measured before and after fat loss in a three-month intervention period. RESULTS miR-103 was correlated with BMI rather than testosterone (T), and there was a significant difference between the non-obese and obese groups in miR-103 expression. Compared to before fat loss, miR-103 expression showed a slight downward trend. CONCLUSIONS Serum miR-103 differentially expressed between controls and PCOS subjects, miR-103 was positively correlated with BMI. There was significant difference between the non-obese and obese groups in miR-103 expression.
Collapse
Affiliation(s)
- Jiawei Mu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qiang Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
10
|
Marunaka Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. Int J Mol Sci 2018; 19:ijms19103244. [PMID: 30347717 PMCID: PMC6214001 DOI: 10.3390/ijms19103244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Blood contains powerful pH-buffering molecules such as hemoglobin (Hb) and albumin, while interstitial fluids have little pH-buffering molecules. Thus, even under metabolic disorder conditions except severe cases, arterial blood pH is kept constant within the normal range (7.35~7.45), but the interstitial fluid pH under metabolic disorder conditions becomes lower than the normal level. Insulin resistance is one of the most important key factors in pathogenesis of diabetes mellitus, nevertheless the molecular mechanism of insulin resistance occurrence is still unclear. Our studies indicate that lowered interstitial fluid pH occurs in diabetes mellitus, causing insulin resistance via reduction of the binding affinity of insulin to its receptor. Therefore, the key point for improvement of insulin resistance occurring in diabetes mellitus is development of methods or techniques elevating the lowered interstitial fluid pH. Intake of weak organic acids is found to improve the insulin resistance by elevating the lowered interstitial fluid pH in diabetes mellitus. One of the molecular mechanisms of the pH elevation is that: (1) the carboxyl group (R-COO−) but not H+ composing weak organic acids in foods is absorbed into the body, and (2) the absorbed the carboxyl group (R-COO−) behaves as a pH buffer material, elevating the interstitial fluid pH. On the other hand, high salt intake has been suggested to cause diabetes mellitus; however, the molecular mechanism is unclear. A possible mechanism of high salt intake-caused diabetes mellitus is proposed from a viewpoint of regulation of the interstitial fluid pH: high salt intake lowers the interstitial fluid pH via high production of H+ associated with ATP synthesis required for the Na+,K+-ATPase to extrude the high leveled intracellular Na+ caused by high salt intake. This review article introduces the molecular mechanism causing the lowered interstitial fluid pH and insulin resistance in diabetes mellitus, the improvement of insulin resistance via intake of weak organic acid-containing foods, and a proposal mechanism of high salt intake-caused diabetes mellitus.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan.
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan.
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
- Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan.
| |
Collapse
|
11
|
Marampon F, Antinozzi C, Corinaldesi C, Vannelli GB, Sarchielli E, Migliaccio S, Di Luigi L, Lenzi A, Crescioli C. The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism. Endocrine 2018; 59:602-613. [PMID: 28786077 DOI: 10.1007/s12020-017-1378-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Tadalafil seems to ameliorate insulin resistance and glucose homeostasis in humans. We have previously reported that tadalafil targets human skeletal muscle cells with an insulin (I)-like effect. We aim to evaluate in human fetal skeletal muscle cells after tadalafil or I: (i) expression profile of I-regulated genes dedicated to cellular energy control, glycolitic activity or microtubule formation/vesicle transport, as GLUT4, PPARγ, HK2, IRS-1, KIF1C, and KIFAP3; (ii) GLUT4, Flotillin-1, and Caveolin-1 localization, all proteins involved in energy-dependent cell trafficking; (iii) activation of I-targeted paths, as IRS-1, PKB/AKT, mTOR, P70/S6K. Free fatty acids intracellular level was measured. Sildenafil or a cGMP synthetic analog were used for comparison; PDE5 and PDE11 gene expression was evaluated in human fetal skeletal muscle cells. METHODS RTq-PCR, PCR, western blot, free fatty acid assay commercial kit, and lipid stain non-fluorescent assay were used. RESULTS Tadalafil upregulated I-targeted investigated genes with the same temporal pattern as I (GLUT4, PPARγ, and IRS-1 at 3 h; HK2, KIF1C, KIFAP3 at 12 h), re-localized GLUT4 in cell sites positively immune-decorated for Caveolin-1 and Flotillin-1, suggesting the involvement of lipid rafts, induced specific residue phosphorylation of IRS-1/AKT/mTOR complex in association with free fatty acid de novo synthesis. Sildenafil or GMP analog did not affect GLUT4 trafficking or free fatty acid levels. CONCLUSION In human fetal skeletal muscle cells tadalafil likely favors energy storage by modulating lipid homeostasis via IRS-1-mediated mechanisms, involving activation of I-targeted genes and intracellular cascade related to metabolic control. Those data provide some biomolecular evidences explaining, in part, tadalafil-induced favorable control of human metabolism shown by clinical studies.
Collapse
Affiliation(s)
- F Marampon
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - C Antinozzi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - C Corinaldesi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - L Di Luigi
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Rome, Italy.
| |
Collapse
|
12
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
13
|
Li M, Chen D, Huang H, Wang J, Wan X, Xu C, Li C, Ma H, Yu C, Li Y. Caveolin1 protects against diet induced hepatic lipid accumulation in mice. PLoS One 2017; 12:e0178748. [PMID: 28570612 PMCID: PMC5453590 DOI: 10.1371/journal.pone.0178748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background and aim Caveolin1 (CAV1) is involved in lipid homeostasis and endocytosis, but little is known about the significance of CAV1 in the pathogenesis and development of nonalcoholic fatty liver disease (NAFLD). This study aimed to determine the role of CAV1 in NAFLD. Methods Expression of CAV1 in the in vitro and in vivo models of NAFLD was analyzed. The effects of CAV1 knockdown or overexpression on free fatty acid (FFA)-induced lipid accumulation in L02 cells and AML12 cells were determined. CAV1 knockout (CAV1-KO) mice and their wild-type (WT) littermates were subjected to a high fat diet (HFD) for 4 weeks, and the functional consequences of losing the CAV1 gene and its subsequent molecular mechanisms were also examined. Results Noticeably, CAV1 expression was markedly reduced in NAFLD. CAV1 knockdown led to the aggravation of steatosis that was induced by FFA in both L02 cells and AML12 cells, while CAV1 overexpression markedly attenuated lipid accumulation in the cells. Consistent with CAV1 repression in the livers of HFD-induced mice, the CAV1-KO mice exhibited more severe hepatic steatosis upon HFD intake. In addition, increased cholesterol levels and elevated transaminases were detected in the plasma of CAV1-KO mice. The protein expression of SREBP1, a key gene involved in lipogenesis, was augmented following CAV1 suppression in FFA-treated hepatocytes and in the livers of HFD-fed CAV1-KO mice. Conclusions CAV1 serves as an important protective factor in the development of NAFLD by modulating lipid metabolism gene expression.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dahua Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haixiu Huang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiewei Wang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chunxiao Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Han Ma
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (CHY); (YML)
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (CHY); (YML)
| |
Collapse
|
14
|
Antinozzi C, Corinaldesi C, Giordano C, Pisano A, Cerbelli B, Migliaccio S, Di Luigi L, Stefanantoni K, Vannelli GB, Minisola S, Valesini G, Riccieri V, Lenzi A, Crescioli C. Potential role for the VDR agonist elocalcitol in metabolic control: Evidences in human skeletal muscle cells. J Steroid Biochem Mol Biol 2017; 167:169-181. [PMID: 28042053 DOI: 10.1016/j.jsbmb.2016.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/20/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Vitamin D plays a pivotal role to maintain skeletal muscle integrity and health. Vitamin D deficiency characterizes inflammatory myopathy (IM) and diabetes, often overlapping diseases involving skeletal muscle damage. Vitamin D receptor (VDR) agonists likely exert beneficial effects in both IM and metabolic disturbances. We aim to evaluate in vitro the effect of elocalcitol, a non-hypercalcemic VDR agonist, on the biomolecular metabolic machinery of human skeletal muscle cells (Hfsmc), vs. insulin (I). We analyzed GLUT4, Flotillin-1, Caveolin-3 and Caveolin-1 cell expression/localization; mTOR, AKT, ERK and 4E-BP1 phosphorylation; IL-6 myokine release; VDR expression. We investigated in vivo vitamin D status in IM subjects, evaluating VDR muscular expression and serum vitamin D with metabolism-related parameters, as glycemia, triglycerides, cholesterol, resistin and adiponectin. In Hfsmc, elocalcitol exerted an I-like effect, promoting GLUT4 re-localization in Flotillin-1, Caveolin-3 and Caveolin-1 positive sites and mTOR, AKT, ERK, 4E-BP1 activation; it enhanced IL-6 myokine release. IM subjects, all normoglycemic, showed VDR/vitamin D deficiency that, together with high lipidemic and resistin profile, possibly increases the risk to develop metabolic diseases. VDR agonists as elocalcitol may be therapeutic tools for skeletal muscle integrity/function maintenance, an indispensable condition for health homeostasis.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Clarissa Corinaldesi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Annalinda Pisano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Katia Stefanantoni
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, 00161 Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Valeria Riccieri
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy.
| |
Collapse
|
15
|
Nguyen KCT, Cho KA. Versatile Functions of Caveolin-1 in Aging-related Diseases. Chonnam Med J 2017; 53:28-36. [PMID: 28184336 PMCID: PMC5299127 DOI: 10.4068/cmj.2017.53.1.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) is a trans-membrane protein that is a major component of the caveolae structure on the plasma membrane. Cav-1 is involved in the regulation of various cellular processes, including cell growth, differentiation, endocytosis, and in particular it has been implied in cellular senescence. Here we review current knowledge about Cav-1 in cellular signaling and discuss the role of Cav-1 in aging-related diseases.
Collapse
Affiliation(s)
- Kim Cuc Thi Nguyen
- Deparment of Life Science, ThaiNguyen University of Science, TanThinh Ward, ThaiNguyen, VietNam
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
16
|
Boothe T, Lim GE, Cen H, Skovsø S, Piske M, Li SN, Nabi IR, Gilon P, Johnson JD. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab 2016; 5:366-378. [PMID: 27110488 PMCID: PMC4837300 DOI: 10.1016/j.molmet.2016.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. METHODS We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. RESULTS Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. CONCLUSIONS We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation.
Collapse
Affiliation(s)
- Tobias Boothe
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gareth E Lim
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Cen
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Micah Piske
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shu Nan Li
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ivan R Nabi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
A Chromosome 13 locus is associated with male-specific mortality in mice. Aging Clin Exp Res 2016; 28:59-67. [PMID: 25995165 DOI: 10.1007/s40520-015-0370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM Mortality is a highly complex trait influenced by a wide array of genetic factors. METHODS We examined a population of 1200 mice that were F2 generation offspring of a 4-way reciprocal cross between C57BL6/J and DBA2/J strains. Animals were sacrificed at age 200, 500, or 800 days and genotyped at 96 markers. The 800 days old cohort, which were the survivors of a much larger breeding group, were examined for enriched frequency of alleles that benefit survival and depletion of alleles that reduce survival. RESULTS Loci on Chr 13 in males and on Chr X in females were significantly distorted from Mendelian expectations, even after conservative correction for multiple testing. DBA2/J alleles between 35 and 80 Mb on Chr 13 were underrepresented in the age 800 male animals. D2 genotypes in this region were also associated with premature death during behavioral testing. Furthermore, confirmatory analysis showed BXD recombinant inbred strains carrying the D2 alleles in this region had shorter median survival. Exploration of available pathology data indicated that a syndrome involving dental malocclusions, pancreatic islet hypertrophy, and kidney lipidosis may have mediated the effects of DBA alleles on mortality specifically in male mice. The heterozygote advantage locus on the X Chr was not found to be associated with any pathology. CONCLUSIONS These results suggest a novel locus influencing survival in the B6/D2 genetic background, perhaps via a metabolic disorder that emerges by 200 days of age in male animals.
Collapse
|
18
|
Gleizes C, Kreutter G, Abbas M, Kassem M, Constantinescu AA, Boisramé-Helms J, Yver B, Toti F, Kessler L. β cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control. J Cell Mol Med 2015; 20:231-42. [PMID: 26607759 PMCID: PMC4727568 DOI: 10.1111/jcmm.12683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 08/14/2015] [Indexed: 01/11/2023] Open
Abstract
Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and β-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f β-cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross-talk model. Methyl-β-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative β-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events.
Collapse
Affiliation(s)
- Céline Gleizes
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Malak Abbas
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Doctoral School of Sciences and Technologies, Lebanese University, Beiruth-Hadath, Lebanon
| | - Mohamad Kassem
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France
| | - Andrei Alexandru Constantinescu
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Department of Parasitology and Parasitic Diseases and Animal Biology, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | - Julie Boisramé-Helms
- Department of Reanimation, Nouvel hopital civil, Strasbourg CEDEX, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Blandine Yver
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France
| | - Florence Toti
- UMR7213 CNRS, Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Laurence Kessler
- EA7293, Vascular and Tissular Stress in Transplantation, Faculty of Medicine, University of Strasbourg, Illkirch, France.,Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, Strasbourg, France.,Department of Diabetology, University Hospital, Strasbourg Cedex, France
| |
Collapse
|
19
|
Son YH, Lee SJ, Lee KB, Lee JH, Jeong EM, Chung SG, Park SC, Kim IG. Dexamethasone downregulates caveolin-1 causing muscle atrophy via inhibited insulin signaling. J Endocrinol 2015; 225:27-37. [PMID: 25688118 DOI: 10.1530/joe-14-0490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glucocorticoids play a major role in the development of muscle atrophy in various medical conditions, such as cancer, burn injury, and sepsis, by inhibiting insulin signaling. In this study, we report a new pathway in which glucocorticoids reduce the levels of upstream insulin signaling components by downregulating the transcription of the gene encoding caveolin-1 (CAV1), a scaffolding protein present in the caveolar membrane. Treatment with the glucocorticoid dexamethasone (DEX) decreased CAV1 protein and Cav1 mRNA expression, with a concomitant reduction in insulin receptor alpha (IRα) and IR substrate 1 (IRS1) levels in C2C12 myotubes. On the basis of the results of promoter analysis using deletion mutants and site-directed mutagenesis a negative glucocorticoid-response element in the regulatory region of the Cav1 gene was identified, confirming that Cav1 is a glucocorticoid-target gene. Cav1 knockdown using siRNA decreased the protein levels of IRα and IRS1, and overexpression of Cav1 prevented the DEX-induced decrease in IRα and IRS1 proteins, demonstrating a causal role of Cav1 in the inhibition of insulin signaling. Moreover, injection of adenovirus expressing Cav1 into the gastrocnemius muscle of mice prevented DEX-induced atrophy. These results indicate that CAV1 is a critical regulator of muscle homeostasis, linking glucocorticoid signaling to the insulin signaling pathway, thereby providing a novel target for the prevention of glucocorticoid-induced muscle atrophy.
Collapse
Affiliation(s)
- Young Hoon Son
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Seok-Jin Lee
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Ki-Baek Lee
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Sun Gun Chung
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Sang-Chul Park
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| |
Collapse
|
20
|
Mukherjee R, Kim SW, Choi MS, Yun JW. Sex-dependent expression of caveolin 1 in response to sex steroid hormones is closely associated with development of obesity in rats. PLoS One 2014; 9:e90918. [PMID: 24608114 PMCID: PMC3948350 DOI: 10.1371/journal.pone.0090918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022] Open
Abstract
Caveolin-1 (CAV1) is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD) and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2) and androgen (dihydrotestosterone, DHT) had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL) and uncoupling protein 1 (UCP1) in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
| | - Sang Woo Kim
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
| | - Myung Sook Choi
- Center for Food and Nutritional Genomics Research & Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Bonaventura MM, Rodriguez D, Ferreira ML, Crivello M, Repetto EM, Bettler B, Libertun C, Lux-Lantos VA. Sex differences in insulin resistance in GABAB1 knockout mice. Life Sci 2013; 92:175-82. [PMID: 23178152 DOI: 10.1016/j.lfs.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/16/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
AIMS We have previously demonstrated that the absence of functional GABA B receptors (GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work was to extend our studies of these alterations in GABAB1KO mice and investigate the sexual differences therein. MAIN METHODS Male and female, GABAB1KO and WT mice were used. Glucose and insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were determined, and HOMA-IR calculated. Skeletal muscle insulin receptor β subunit (IRβ), insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined by Western blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-induced Akt phosphorylation (Western blot). Food intake and hypothalamic NPY mRNA expression (by qPCR) were also evaluated. KEY FINDINGS Fasted insulin and HOMA-IR were augmented in GABAB1KO males, with no alterations in females. Areas under the curve (AUC) for GTT and ITT were increased in GABAB1KO mice of both genders, indicating compromised insulin sensitivity. No genotype differences were observed in IST, GST or in IRβ, IRS1, IRS2 and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO males while no alterations were observed in females. GABAB1KO mice showed increased food intake and NPY expression. SIGNIFICANCE Glucose metabolism and energy balance disruptions were more pronounced in GABAB1KO males, which develop peripheral insulin resistance probably due to augmented insulin secretion. Metabolic alterations in females were milder and possibly due to previously described reproductive disorders, such as persistent estrus.
Collapse
Affiliation(s)
- M M Bonaventura
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 2013; 34:33-83. [PMID: 23169676 DOI: 10.1210/er.2012-1012] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beyond its established role in bone and mineral homeostasis, there is emerging evidence that vitamin D exerts a range of effects in skeletal muscle. Reports of profound muscle weakness and changes in the muscle morphology of adults with vitamin D deficiency have long been described. These reports have been supplemented by numerous trials assessing the impact of vitamin D on muscle strength and mass and falls in predominantly elderly and deficient populations. At a basic level, animal models have confirmed that vitamin D deficiency and congenital aberrations in the vitamin D endocrine system may result in muscle weakness. To explain these effects, some molecular mechanisms by which vitamin D impacts on muscle cell differentiation, intracellular calcium handling, and genomic activity have been elucidated. There are also suggestions that vitamin D alters muscle metabolism, specifically its sensitivity to insulin, which is a pertinent feature in the pathophysiology of insulin resistance and type 2 diabetes. We will review the range of human clinical, animal, and cell studies that address the impact of vitamin D in skeletal muscle, and discuss the controversial issues. This is a vibrant field of research and one that continues to extend the frontiers of knowledge of vitamin D's broad functional repertoire.
Collapse
Affiliation(s)
- Christian M Girgis
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
23
|
Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and diabetes. Rheum Dis Clin North Am 2012; 38:179-206. [PMID: 22525851 DOI: 10.1016/j.rdc.2012.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is no doubt that vitamin D deficiency is the cause of several metabolic bone diseases, but vitamin D status is also linked to many major human diseases including immune disorders. Mounting data strengthen the link between vitamin D and diabetes, in particular T1D and T2D. Despite some inconsistencies between studies that associate serum 25(OH)D levels with the risk of developing T1D or T2D, there seems to be an overall trend for an inverse correlation between levels of 25(OH)D and both disorders. There is also compelling evidence that 1,25(OH)2D regulates b-cell function by different mechanisms, such as influencing insulin secretion by regulating intracellular levels of Ca2+, increasing β-cell resistance to apoptosis, and perhaps also increasing β-cell replication. The capacity of vitamin D, more specifically 1,25(OH)2D, to modulate immune responses is of particular interest for both the therapy and prevention of diabetes. In the case of T1D, vitamin D supplementation in prediabetic individuals could help prevent or reduce the initiation of autoimmune processes possibly by regulating thymic selection of the T-cell repertoire, decreasing the numbers of autoreactive T cells, and inducing Treg cells. Although immune modulation is generally discussed for the treatment of T1D, it is also relevant for T2D. Indeed, recent studies have shown that T2D patients have increased systemic inflammation and that this state can induce β-cell dysfunction and death. Supplementation trials with regular vitamin D for the protection against the development of T1D and T2D have generated some contradictory data, but many weaknesses can be identified in these trials as most were underpowered or open-labeled. However, the overwhelming strength of preclinical data and of the observational studies make vitamin D or its analogues strong candidates for the prevention or treatment of diabetes or its complications. However, proof of causality needs well-designed clinical trials and if positive, adequate dosing, regimen, and compound studies are needed to define the contribution of vitamin D status and therapy in the global diabetes problem. There are many confounding factors that need to be taken into consideration when translating successful vitamin D therapies in animal models into humans, for example, gender, age, lifestyle, and genetic background. To come to solid conclusions on the potential of vitamin D or its analogues in the prevention of or therapy for all forms of diabetes, it is clear that large prospective trials with carefully selected populations and end points will be needed, but should also receive high priority.
Collapse
Affiliation(s)
- Tatiana Takiishi
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, UZ Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
24
|
Scherp P, Putluri N, LeBlanc GJ, Wang ZQ, Zhang XH, Yu Y, Ribnicky D, Cefalu WT, Kheterpal I. Proteomic analysis reveals cellular pathways regulating carbohydrate metabolism that are modulated in primary human skeletal muscle culture due to treatment with bioactives from Artemisia dracunculus L. J Proteomics 2012; 75:3199-210. [PMID: 22480907 DOI: 10.1016/j.jprot.2012.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/25/2022]
Abstract
Insulin resistance is a major pathophysiologic abnormality that characterizes metabolic syndrome and type 2 diabetes. A well characterized ethanolic extract of Artemisia dracunculus L., termed PMI 5011, has been shown to improve insulin action in vitro and in vivo, but the cellular mechanisms remain elusive. Using differential proteomics, we have studied mechanisms by which PMI 5011 enhances insulin action in primary human skeletal muscle culture obtained by biopsy from obese, insulin-resistant individuals. Using iTRAQ™ labeling and LC-MS/MS, we have identified over 200 differentially regulated proteins due to treatment with PMI 5011 and insulin stimulation. Bioinformatics analyses determined that several metabolic pathways related to glycolysis, glucose transport and cell signaling were highly represented and differentially regulated in the presence of PMI 5011 indicating that this extract affects several pathways modulating carbohydrate metabolism, including translocation of GLUT4 to the plasma membrane. These findings provide a molecular mechanism by which a botanical extract improves insulin stimulated glucose uptake, transport and metabolism at the cellular level resulting in enhanced whole body insulin sensitivity.
Collapse
Affiliation(s)
- Peter Scherp
- Protein Structural Biology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab 2012; 15:171-85. [PMID: 22326219 PMCID: PMC3278712 DOI: 10.1016/j.cmet.2012.01.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 07/30/2011] [Accepted: 01/06/2012] [Indexed: 11/23/2022]
Abstract
Caveolin-1 is a major structural component of raft structures within the plasma membrane and has been implicated as a regulator of cellular signal transduction with prominent expression in adipocytes. Here, we embarked on a comprehensive characterization of the metabolic pathways dysregulated in caveolin-1 null mice. We found that these mice display decreased circulating levels of total and high molecular weight adiponectin and a reduced ability to change substrate use in response to feeding/fasting conditions. Caveolin-1 null mice are extremely lean but retain muscle mass despite lipodystrophy and massive metabolic dysfunction. Hepatic gluconeogenesis is chronically elevated, while hepatic steatosis is reduced. Our data suggest that the complex phenotype of the caveolin-1 null mouse is caused by altered metabolic and mitochondrial function in adipose tissue with a subsequent compensatory response driven mostly by the liver. This mouse model highlights the central contributions of adipose tissue for system-wide preservation of metabolic flexibility.
Collapse
|
26
|
Zou H, Stoppani E, Volonte D, Galbiati F. Caveolin-1, cellular senescence and age-related diseases. Mech Ageing Dev 2011; 132:533-42. [PMID: 22100852 DOI: 10.1016/j.mad.2011.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 01/22/2023]
Abstract
According to the "free radical theory" of aging, normal aging occurs as the result of tissue damages inflicted by reactive oxygen species (ROS) when ROS production exceeds the antioxidant capacity of the cell. ROS induce cellular dysfunctions such as stress-induced premature senescence (SIPS), which is believed to contribute to normal organismal aging and play a role in age-related diseases. Consistent with this hypothesis, increased oxidative damage of DNA, proteins, and lipids have been reported in aged animals and senescent cells accumulate in vivo with advancing age. Caveolin-1 acts as a scaffolding protein that concentrates and functionally regulates signaling molecules. Recently, great progress has been made toward understanding of the role of caveolin-1 in stress-induced premature senescence. Data show that caveolin-mediated signaling may contribute to explain, at the molecular level, how oxidative stress promotes the deleterious effects of cellular senescence such as aging and age-related diseases. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of SIPS and their relevance to the biology of aging.
Collapse
Affiliation(s)
- Huafei Zou
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
27
|
Engel D, Beckers L, Wijnands E, Seijkens T, Lievens D, Drechsler M, Gerdes N, Soehnlein O, Daemen MJAP, Stan RV, Biessen EAL, Lutgens E. Caveolin-1 deficiency decreases atherosclerosis by hampering leukocyte influx into the arterial wall and generating a regulatory T-cell response. FASEB J 2011; 25:3838-48. [PMID: 21795505 DOI: 10.1096/fj.11-183350] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Caveolin-1 plays a crucial role in atherosclerosis, which is mainly attributed to its effects on low-density-lipoprotein (LDL) transcytosis. However, caveolin-1 has also been implicated in the regulation of inflammation. We investigated the effects of caveolin-1 deficiency in atherosclerosis with its accompanying changes in plaque- and lymphoid-related immunology and inflammation. Cav1(-/-)Apoe(-/-) mice exhibited a 15-fold reduction in plaque size with plaques containing fewer macrophages, T cells, and neutrophils. Intravital microscopy revealed 83% less leukocyte adhesion to the vessel wall in Cav1(-/-)Apoe(-/-) mice, which could be attributed to reduced endothelial chemokine ligand-2 (CCL-2/MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) expression. Caveolin-1 deficiency resulted in a 57% increase in regulatory T cells and a 4% decrease in CD4(+) effector T cells in lymphoid organs. Bone marrow transplantations revealed that Cav1(-/-)Apoe(-/-) mice receiving Cav1(+/+)Apoe(-/-) or Cav1(-/-)Apoe(-/-) bone marrow presented 4- to 4.5-fold smaller plaques with no additional phenotypic changes. In contrast, atherosclerosis was not affected in Cav1(+/+) Apoe(-/-) recipients receiving Cav1(-/-)Apoe(-/-) or Cav1(+/+) Apoe(-/-) bone marrow. However, the presence of Cav1(-/-) Apoe(-/-) bone marrow was associated with an anti-inflammatory T-cell profile. Our study reveals that nonhematopoietic caveolin-1 determines plaque size, whereas hematopoietic caveolin-1 regulates lymphoid immune-modulation. However, both are required for phenotypic modulation of plaques.
Collapse
Affiliation(s)
- David Engel
- Department of Pathology, Cardiovascular Research Institute Maastricht, University Maastricht, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
17β-Estradiol attenuates diet-induced insulin resistance and glucose intolerance through up-regulation of caveolin-3. Ir J Med Sci 2010; 180:221-7. [DOI: 10.1007/s11845-010-0594-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
|
29
|
Hennige AM, Heni M, Machann J, Staiger H, Sartorius T, Hoene M, Lehmann R, Weigert C, Peter A, Bornemann A, Kroeber S, Pujol A, Franckhauser S, Bosch F, Schick F, Lammers R, Häring HU. Enforced expression of protein kinase C in skeletal muscle causes physical inactivity, fatty liver and insulin resistance in the brain. J Cell Mol Med 2010; 14:903-13. [PMID: 20569275 PMCID: PMC3823122 DOI: 10.1111/j.1582-4934.2008.00629.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Among the multitude of dysregulated signalling mechanisms that comprise insulin resistance in divergent organs, the primary events in the development of type 2 diabetes are not well established. As protein kinase C (PKC) activation is consistently present in skeletal muscle of obese and insulin resistant subjects, we generated a transgenic mouse model that overexpresses constitutively active PKC-β2 in skeletal muscle to test whether activation of PKC is sufficient to cause an aversive whole-body phenotype. Upon this genetic modification, increased serine phosphorylation in Irs1 was observed and followed by impaired 3H-deoxy-glucose uptake and muscle glycogen content, and transgenic mice exhibited insulin and glucose intolerance as they age. Muscle histochemistry revealed an increase in lipid deposition (intramyocellular lipids), and transgenic mice displayed impaired expression of transcriptional regulators of genes involved in fatty acid oxidation (peroxisome proliferator-activated receptor-γ, PGC-1β, acyl-CoA oxidase) and lipolysis (hormone-sensitive lipase). In this regard, muscle of transgenic mice exhibited a reduced capacity to oxidize palmitate and contained less mitochondria as determined by citrate synthase activity. Moreover, the phenotype included a profound decrease in the daily running distance, intra-abdominal and hepatic fat accumulation and impaired insulin action in the brain. Together, our data suggest that activation of a classical PKC in skeletal muscle as present in the pre-diabetic state is sufficient to cause disturbances in whole-body glucose and lipid metabolism followed by profound alterations in oxidative capacity, ectopic fat deposition and physical activity.
Collapse
Affiliation(s)
- Anita M Hennige
- University of Tuebingen, Department of Internal Medicine, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oh YS, Lee TS, Cheon GJ, Jang IS, Jun HS, Park SC. Modulation of insulin sensitivity and caveolin-1 expression by orchidectomy in a nonobese type 2 diabetes animal model. Mol Med 2010; 17:4-11. [PMID: 20844837 DOI: 10.2119/molmed.2009.00105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/09/2010] [Indexed: 11/06/2022] Open
Abstract
Previously, we found that male JYD mice developed type 2 diabetes but female mice did not, and that decreased expression levels of caveolin-1 were correlated with the development of a diabetic phenotype in these mice. Therefore, we hypothesized that sex hormones affect the expression of caveolin-1 and contribute to the development of insulin resistance and hyperglycemia in JYD mice. We used glucose and insulin tolerance tests to examine insulin sensitivity in male, female and orchidectomized male JYD mice. Glucose uptake was analyzed by using (18)F-fluorodeoxyglucose positron emission tomography. We also examined insulin-signaling molecules and caveolin proteins in various tissues in these mice by Western blotting. In addition, we examined changes of caveolin-1 expression in L6 skeletal muscle cells treated with 17-β estradiol or dihydroxytestosterone. We found that glucose and insulin tolerance were impaired and hyperglycemia developed in male, but not female, JYD mice. Expression of insulin-signaling molecules such as insulin receptor, protein kinase B, and glucose transporter-4 were decreased in male JYD mice compared with female mice. Orchidectomized JYD male mice showed improved glucose and insulin tolerance with a concomitant increase in the expression of insulin-signaling molecules and caveolin-1 in adipose tissue and skeletal muscle. Moreover, 17-β-estradiol treatment increased the expression of caveolin-1 in differentiated skeletal muscle cells. We conclude that sex hormones modulate the expression of caveolin-1 and insulin-signaling molecules, subsequently affecting insulin sensitivity and the development of type 2 diabetes in JYD mice.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and diabetes. Endocrinol Metab Clin North Am 2010; 39:419-46, table of contents. [PMID: 20511061 DOI: 10.1016/j.ecl.2010.02.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 1 (T1D) and type 2 (T2D) diabetes are considered multifactorial diseases in which both genetic predisposition and environmental factors participate in their development. Many cellular, preclinical, and observational studies support a role for vitamin D in the pathogenesis of both types of diabetes including: (1) T1D and T2D patients have a higher incidence of hypovitaminosis D; (2) pancreatic tissue (more specifically the insulin-producing beta-cells) as well as numerous cell types of the immune system express the vitamin D receptor (VDR) and vitamin D-binding protein (DBP); and (3) some allelic variations in genes involved in vitamin D metabolism and VDR are associated with glucose (in)tolerance, insulin secretion, and sensitivity, as well as inflammation. Moreover, pharmacologic doses of 1,25-dihydroxyvitamin D (1,25(OH)(2)D), the active form of vitamin D, prevent insulitis and T1D in nonobese diabetic (NOD) mice and other models of T1D, possibly by immune modulation as well as by direct effects on beta-cell function. In T2D, vitamin D supplementation can increase insulin sensitivity and decrease inflammation. This article reviews the role of vitamin D in the pathogenesis of T1D and T2D, focusing on the therapeutic potential for vitamin D in the prevention/intervention of T1D and T2D as well as its complications.
Collapse
Affiliation(s)
- Tatiana Takiishi
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, UZ Gasthuisberg, O&N I Herestraat, Leuven, Belgium
| | | | | | | |
Collapse
|
32
|
Boucher BJ. Does vitamin D status contribute to caveolin-1-mediated insulin sensitivity in skeletal muscle? Diabetologia 2009; 52:2240; author reply 2241-3. [PMID: 19672573 DOI: 10.1007/s00125-009-1478-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/24/2009] [Indexed: 02/06/2023]
|
33
|
Malakauskas SM, Kourany WM, Zhang XY, Lu D, Stevens RD, Koves TR, Hohmeier HE, Muoio DM, Newgard CB, Le TH. Increased insulin sensitivity in mice lacking collectrin, a downstream target of HNF-1alpha. Mol Endocrinol 2009; 23:881-92. [PMID: 19246514 PMCID: PMC2691681 DOI: 10.1210/me.2008-0274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 02/19/2009] [Indexed: 01/05/2023] Open
Abstract
Collectrin is a downstream target of the transcription factor hepatocyte nuclear factor-1alpha (HNF-1alpha), which is mutated in maturity-onset diabetes of the young subtype 3 (MODY3). Evidence from transgenic mouse models with collectrin overexpression in pancreatic islets suggests divergent roles for collectrin in influencing beta-cell mass and insulin exocytosis. To clarify the function of collectrin in the pancreas, we used a mouse line with targeted deletion of the gene. We examined pancreas morphology, glucose homeostasis by ip glucose tolerance testing (IPGTT) and insulin tolerance testing (IPITT), and pancreas function by in vivo acute-phase insulin response determination and glucose-stimulated insulin secretion from isolated islets. We find no difference in either pancreas morphology or function between wild-type and collectrin-deficient animals (Tmem27(-/y)). However, we note that by 6 months of age, Tmem27(-/y) mice exhibit increased insulin sensitivity by IPITT and decreased adiposity by dual-energy x-ray absorptiometry scanning compared with wild-type. We have previously reported that Tmem27(-/y) mice exhibit profound aminoaciduria due to failed renal recovery. We now demonstrate that Tmem27(-/y) animals also display inappropriate excretion of some short-chain acylcarnitines derived from amino acid and fatty acid oxidation. We provide further evidence for compensatory up-regulation of oxidative metabolism in Tmem27(-/y) mice, along with enhanced protein turnover associated with preserved lean mass even out to 1.5 yr of age. Our studies suggest that collectrin-deficient mice activate a number of adaptive mechanisms to defend energy homeostasis in the setting of ongoing nutrient losses.
Collapse
|
34
|
Hahn-Obercyger M, Graeve L, Madar Z. A high-cholesterol diet increases the association between caveolae and insulin receptors in rat liver. J Lipid Res 2008; 50:98-107. [PMID: 18757837 DOI: 10.1194/jlr.m800441-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolin-1, a component of caveolae, regulates signaling pathway compartmentalization by interacting with tyrosine (Tyr) kinase receptors and their substrates. Perturbations in caveolae lipid composition have been shown in vitro to displace proteins from lipid microdomains, thereby altering their functionality and subsequent downstream signaling. The role of caveolin-1 in insulin receptor (IR) signaling has been widely investigated in vitro mainly in 3T3-L1 adipocyte cells. However, in vivo experiments investigating this connection in liver tissue have not been carried out. The objective of the present study was to investigate the effects of a high-cholesterol diet on caveolin-1 expression and IR localization and activity in the rat liver. Compared with a standard diet, rats fed with diet rich in cholesterol significantly altered liver caveolae by increasing both caveolin-1 (66%, P < 0.05) and caveolin-2 (55%, P < 0.05) expression while caveolin-1 mRNA levels were reduced. Concomitantly, a 25% increase in localization of the caveolae-resident signaling protein IR was observed. The distribution of caveolar and noncaveolar phosphorylated IR was unaffected but insulin-induced IR activation was significantly enhanced following consumption of the high-cholesterol diet (120%, P < 0.001). However, the downstream molecules IRS-1 and Akt have shown impaired activity in cholesterol-fed rats suggesting insulin resistance condition. Insulin stimulation failed to induce Tyr phosphorylation of caveolin-1 in cholesterol-fed rats. These findings suggest a mechanism by which a high-cholesterol diet altered caveolin-1 expression in vivo accompanied by altered IR localization and activity.
Collapse
Affiliation(s)
- Michal Hahn-Obercyger
- The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Institute of Biochemistry, Food Science and Nutrition, Rehovot, Israel
| | | | | |
Collapse
|