1
|
Gu Y, Yu S, Gu W, Li B, Xue J, Liu J, Zhang Q, Yin Y, Zhang H, Guo Q, Yuan M, Lyu Z, Mu Y, Cheng Y. M2 macrophage infusion ameliorates diabetic glomerulopathy via the JAK2/STAT3 pathway in db/db mice. Ren Fail 2024; 46:2378210. [PMID: 39090966 PMCID: PMC11299449 DOI: 10.1080/0886022x.2024.2378210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Objectives: To explore the therapeutic effects of M2 macrophages in diabetic nephropathy (DN) and their mechanism.Methods: We infused M2 macrophages stimulated with IL-4 into 10-week-old db/db mice once a week for 4 weeks through the tail vein as M2 group. Then we investigated the role of M2 macrophages in alleviating the infammation of DN and explored the mechanism.Results: M2 macrophages hindered the progression of DN, reduced the levels of IL-1β (DN group was 34%, M2 group was 13%, p < 0.01) and MCP-1 (DN group was 49%, M2 group was 16%, p < 0.01) in the glomeruli. It was also proven that M2 macrophages alleviate mesangial cell injury caused by a high glucose environment. M2 macrophage tracking showed that the infused M2 macrophages migrated to the kidney, and the number of M2 macrophages in the kidney reached a maximum on day 3. Moreover, the ratio of M2 to M1 macrophages was 2.3 in the M2 infusion group, while 0.4 in the DN group (p < 0.01). Mechanistically, M2 macrophages downregulated Janus kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 in mesangial cells.Conclusions: Multiple infusions of M2 macrophages significantly alleviated inflammation in the kidney and hindered the progression of DN at least partially by abrogating the M1/M2 homeostasis disturbances and suppressing the JAK2/STAT3 pathway in glomerular mesangial cells. M2 macrophage infusion may be a new therapeutic strategy for DN treatment.
Collapse
Affiliation(s)
- Yulin Gu
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Songyan Yu
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Bing Li
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jing Xue
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Qi Zhang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Yin
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Haixia Zhang
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Qinghua Guo
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Mingxia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yu Cheng
- Department of Endocrinology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Deng L, Shi C, Li R, Zhang Y, Wang X, Cai G, Hong Q, Chen X. The mechanisms underlying Chinese medicines to treat inflammation in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118424. [PMID: 38844252 DOI: 10.1016/j.jep.2024.118424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.
Collapse
Affiliation(s)
- Lingchen Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Run Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Xiangmei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
3
|
Zheng M, Song W, Huang P, Huang Y, Lin H, Zhang M, He H, Wu J. Drug conjugates crosslinked bioresponsive hydrogel for combination therapy of diabetic wound. J Control Release 2024; 376:701-716. [PMID: 39447843 DOI: 10.1016/j.jconrel.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Basic fibroblast growth factor (bFGF) has proved to be effective for wound healing, yet its effectiveness is extremely retarded in diabetic wounds due to the severe oxidative stress in wound beds. To solve this issue, herein a novel combination therapy of bFGF and N-acetylcysteine (NAC, antioxidant) was devised for improved diabetic wound repair. To avoid rapid loss of both drugs in the wound beds, a bioresponsive hydrogel (bFGF-HSPP-NAC) was engineered by incorporating bFGF and NAC into polymer-drug conjugates (HSPP) via thiol-disulfide exchange reactions. In response to oxidative stress (e.g., reactive oxygen species), the disulfide bonds (SS) within the hydrogel are broken into thiol groups (-S-H), thereby promoting hydrogel degradation and enabling controlled drug release. Initially, NAC is released to scavenge free radicals and ameliorate oxidative damage. Subsequently, bFGF is released to expedite tissue regeneration. This combinatorial strategy is tailored to the specific characteristics of the wound microenvironment at various stages of diabetic wound healing, thereby achieving therapeutic efficacy. The results indicate that the bFGF-HSPP-NAC hydrogel markedly enhances re-epithelialization, collagen deposition, hair follicle regeneration, and neovascularization. In conclusion, the bioresponsive bFGF-HSPP-NAC hydrogel demonstrates significant potential for application in combinatorial therapeutic approaches for diabetic wound healing.
Collapse
Affiliation(s)
- Manhui Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Peipei Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yueping Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hanxuan Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Miao Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
4
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
5
|
Duc Nguyen H, Ardeshir A, Fonseca VA, Kim WK. Cluster of differentiation molecules in the metabolic syndrome. Clin Chim Acta 2024; 561:119819. [PMID: 38901629 DOI: 10.1016/j.cca.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Amir Ardeshir
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department Endocrinology Metabolism & Diabetes, Tulane University School of Medicine, New Orleans, LA, USA
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
6
|
Hu J, Dong X, Yao X, Yi T. Circulating inflammatory factors and risk causality associated with type 2 diabetic nephropathy: A Mendelian randomization and bioinformatics study. Medicine (Baltimore) 2024; 103:e38864. [PMID: 38996161 PMCID: PMC11245217 DOI: 10.1097/md.0000000000038864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The main causative factors of diabetic nephropathy (DN), a common complication of diabetes mellitus, are metabolic abnormalities and hemodynamic changes. However, studies have shown that the immune-inflammatory response also plays an important role in DN pathogenesis. Therefore, in this study, we analyzed the causal relationship and immune infiltration between inflammatory factors and DN using Mendelian randomization (MR) and bioinformatics techniques. We analyzed the causal relationship between 91 inflammatory factors and DN using two-sample MR dominated by the results of inverse variance-weighted analysis. Based on the MR analysis, the immune mechanism of inflammatory factors in DN was further explored using immune cell infiltration analysis. MR analysis indicated a positive causal relationship between DN and IL1A, caspase 8 (CASP8), macrophage colony-stimulating factor 1, IL10, STAM-binding protein, and tumor necrosis factor ligand superfamily member 12 (TNFSF12) and a negative causal relationship between DN and cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. The pathogenic mechanism of CASP8 may involve the recruitment of CD4+ T cells and macrophages for DN infiltration. In this study, we found a causal relationship between DN and IL1A, CASP8, macrophage colony-stimulating factor 1, IL10, STAM-binding protein, TNFSF12, cystatin D, fibroblast growth factor 19, neurturin, and TNFSF14. Bioinformatic immune infiltration analysis further revealed that CASP8 regulates DN by influencing the infiltration of immune cells, such as T cells and macrophages.
Collapse
Affiliation(s)
- Jialin Hu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xue Dong
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xingyi Yao
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tongning Yi
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
7
|
Chen L, Lu S, Wu Z, Zhang E, Cai Q, Zhang X. Innate immunity in diabetic nephropathy: Pathogenic mechanisms and therapeutic targets. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 01/02/2025]
Abstract
AbstractDiabetic nephropathy (DN) represents a prevalent chronic microvascular complication of diabetes mellitus (DM) and is a major cause of end‐stage renal disease. The anfractuous surrounding of DN pathogenesis and the intricate nature of this metabolic disorder often pose challenges in both the diagnosis and treatment of DN compared to other kidney diseases. Hyperglycaemia in DM predispose vulnerable renal cells into microenvironmental disequilibrium and thereby results in innate immunocytes infiltration including neutrophils, macrophages, myeloid‐derived suppressor cells, dendritic cells, and so forth. These immune cells play dual roles in kidney injury and closely correlated with the degree of proteinuria in DN patients. Additionally, innate immune signaling cascades, initiated by altered metabolic and hemodynamic in diabetic context, are crucial in instigating and perpetuating renal inflammation, which detrimentally contribute to DN pathogenesis. As such, anti‐inflammatory therapies, particularly those targeting innate immunity, hold renoprotective promise in DN. In this article, we reviewed the origin and feature of the above four prominent kidney innate immune cells, analyze their pathogenic role in DN, and discuss potential targeted‐therapeutic strategies, aiming to enhance the current understanding of renal innate immunity and hence help to discover promising therapeutic approaches for DN.
Collapse
Affiliation(s)
- Le‐Xin Chen
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Shu‐Ru Lu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Zhi‐Hao Wu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - En‐Xin Zhang
- Shenzhen Bao'an Authentic TCM Therapy Hospital Shenzhen PR China
| | - Qing‐Qun Cai
- The First Affiliated Hospital Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Xiao‐Jun Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| |
Collapse
|
8
|
Shao X, Shi Y, Wang Y, Zhang L, Bai P, Wang J, Aniwan A, Lin Y, Zhou S, Yu P. Single-Cell Sequencing Reveals the Expression of Immune-Related Genes in Macrophages of Diabetic Kidney Disease. Inflammation 2024; 47:227-243. [PMID: 37777674 DOI: 10.1007/s10753-023-01906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yueyue Shi
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300134, China
| | - Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, People's Republic of China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pufei Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - JunMei Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
9
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. Jiangtang Decoction Ameliorates Diabetic Kidney Disease Through the Modulation of the Gut Microbiota. Diabetes Metab Syndr Obes 2023; 16:3707-3725. [PMID: 38029001 PMCID: PMC10674671 DOI: 10.2147/dmso.s441457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to elucidate the impact of Jiangtang decoction (JTD) on diabetic kidney disease (DKD) and its association with alterations in the gut microbiota. Methods Using a diabetic mouse model (KK-Ay mice), daily administration of JTD for eight weeks was undertaken. Weekly measurements of body weight and blood glucose were performed, while kidney function, uremic toxins, inflammation factors, and fecal microbiota composition were assessed upon sacrifice. Ultra-structural analysis of kidney tissue was conducted to observe the pathological changes. Results The study findings demonstrated that JTD improve metabolism, kidney function, uremic toxins and inflammation, while also exerting a modulatory effect on the gut microbiota. Specifically, the genera Rikenella, Lachnoclostridium, and unclassified_c_Bacilli exhibited significantly increased abundance following JTD treatment, accompanied by reduced abundance of norank_f_Lachnospiraceae compared to the model group. Importantly, Rikenella and unclassified_c_Bacilli demonstrated negative correlations with urine protein levels. Lachnoclostridium and norank_f_Lachnospiraceae were positively associated with creatinine (Cr), indoxyl sulfate (IS) and interleukin (IL)-6. Moreover, norank_f_Lachnospiraceae exhibited positive associations with various indicators of DKD severity, including weight, blood glucose, urea nitrogen (UN), kidney injury molecule-1 (KIM-1) levels, trimethylamine-N-oxide (TMAO), p-cresyl sulfate (pCS), nucleotide-binding oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) and IL-17A production. Conclusion These findings suggested that JTD possess the ability to modulate the abundance of Rikenella, Lachnoclostridium, unclassified_c_Bacilli and norank_f_Lachnospiraceae within the gut microbiota. This modulation, in turn, influenced metabolic processes, kidney function, uremic toxin accumulation, and inflammation, ultimately contributing to the amelioration of DKD.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
10
|
Yang Q, Huo E, Cai Y, Zhang Z, Dong C, Asara JM, Shi H, Wei Q. Myeloid PFKFB3-mediated glycolysis promotes kidney fibrosis. Front Immunol 2023; 14:1259434. [PMID: 38035106 PMCID: PMC10687406 DOI: 10.3389/fimmu.2023.1259434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Excessive renal fibrosis is a common pathology in progressive chronic kidney diseases. Inflammatory injury and aberrant repair processes contribute to the development of kidney fibrosis. Myeloid cells, particularly monocytes/macrophages, play a crucial role in kidney fibrosis by releasing their proinflammatory cytokines and extracellular matrix components such as collagen and fibronectin into the microenvironment of the injured kidney. Numerous signaling pathways have been identified in relation to these activities. However, the involvement of metabolic pathways in myeloid cell functions during the development of renal fibrosis remains understudied. In our study, we initially reanalyzed single-cell RNA sequencing data of renal myeloid cells from Dr. Denby's group and observed an increased gene expression in glycolytic pathway in myeloid cells that are critical for renal inflammation and fibrosis. To investigate the role of myeloid glycolysis in renal fibrosis, we utilized a model of unilateral ureteral obstruction in mice deficient of Pfkfb3, an activator of glycolysis, in myeloid cells (Pfkfb3 ΔMϕ ) and their wild type littermates (Pfkfb3 WT). We observed a significant reduction in fibrosis in the obstructive kidneys of Pfkfb3 ΔMϕ mice compared to Pfkfb3 WT mice. This was accompanied by a substantial decrease in macrophage infiltration, as well as a decrease of M1 and M2 macrophages and a suppression of macrophage to obtain myofibroblast phenotype in the obstructive kidneys of Pfkfb3 ΔMϕ mice. Mechanistic studies indicate that glycolytic metabolites stabilize HIF1α, leading to alterations in macrophage phenotype that contribute to renal fibrosis. In conclusion, our study implicates that targeting myeloid glycolysis represents a novel approach to inhibit renal fibrosis.
Collapse
Affiliation(s)
- Qiuhua Yang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Emily Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Augusta Preparatory Day School, Martinez, GA, United States
| | - Yongfeng Cai
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zhidan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Charles Dong
- Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Ma H, Hu T, Tao W, Tong J, Han Z, Herndler-Brandstetter D, Wei Z, Liu R, Zhou T, Liu Q, Xu X, Zhang K, Zhou R, Cho JH, Li HB, Huang H, Flavell RA, Zhu S. A lncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Res 2023; 33:372-388. [PMID: 37055591 PMCID: PMC10156687 DOI: 10.1038/s41422-023-00790-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 04/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are known to have complex, genetically influenced etiologies, involving dysfunctional interactions between the intestinal immune system and the microbiome. Here, we characterized how the RNA transcript from an IBD-associated long non-coding RNA locus ("CARINH-Colitis Associated IRF1 antisense Regulator of Intestinal Homeostasis") protects against IBD. We show that CARINH and its neighboring gene coding for the transcription factor IRF1 together form a feedforward loop in host myeloid cells. The loop activation is sustained by microbial factors, and functions to maintain the intestinal host-commensal homeostasis via the induction of the anti-inflammatory factor IL-18BP and anti-microbial factors called guanylate-binding proteins (GBPs). Extending these mechanistic insights back to humans, we demonstrate that the function of the CARINH/IRF1 loop is conserved between mice and humans. Genetically, the T allele of rs2188962, the most probable causal variant of IBD within the CARINH locus from the human genetics study, impairs the inducible expression of the CARINH/IRF1 loop and thus increases genetic predisposition to IBD. Our study thus illustrates how an IBD-associated lncRNA maintains intestinal homeostasis and protects the host against colitis.
Collapse
Affiliation(s)
- Hongdi Ma
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taidou Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiyu Tong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zili Han
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tingyue Zhou
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuyuan Liu
- The Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuemei Xu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Judy H Cho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- School of Data Science, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| |
Collapse
|
12
|
Li HD, You YK, Shao BY, Wu WF, Wang YF, Guo JB, Meng XM, Chen H. Roles and crosstalks of macrophages in diabetic nephropathy. Front Immunol 2022; 13:1015142. [PMID: 36405700 PMCID: PMC9666695 DOI: 10.3389/fimmu.2022.1015142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy (DN) is the most common chronic kidney disease. Accumulation of glucose and metabolites activates resident macrophages in kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by releasing cytokines/chemokines, recruiting peripheral monocytes/macrophages, enhancing renal cell injuries (podocytes, mesangial cells, endothelial cells and tubular epithelial cells), and macrophage-myofibroblast transition. The differentiation and cross-talks of macrophages ultimately result renal inflammation and fibrosis in DN. Emerging evidence shows that targeting macrophages by suppressing macrophage activation/transition, and macrophages-cell interactions may be a promising approach to attenuate DN. In the review, we summarized the diverse roles of macrophages and the cross-talks to other cells in DN, and highlighted the therapeutic potentials by targeting macrophages.
Collapse
Affiliation(s)
- Hai-Di Li
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Bao-Yi Shao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wei-Feng Wu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi-Fan Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jian-Bo Guo
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| | - Haiyong Chen
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| |
Collapse
|
13
|
Yadav S, Priya A, Borade DR, Agrawal-Rajput R. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res 2022; 71:130-152. [PMID: 36266603 PMCID: PMC9589538 DOI: 10.1007/s12026-022-09330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte–macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Astik Priya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Diksha R Borade
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
14
|
Bell RMB, Conway BR. Macrophages in the kidney in health, injury and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:101-147. [PMID: 35461656 DOI: 10.1016/bs.ircmb.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel M B Bell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
15
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
16
|
Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis. Biomed Pharmacother 2021; 143:112115. [PMID: 34488081 DOI: 10.1016/j.biopha.2021.112115] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Renal fibrosis is a failed wound-healing process of the kidney tissue after chronic, sustained injury, which is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), regardless of cause. However, there is a lack of effective treatment specifically targeting against renal fibrosis per se to date. The main pathological feature of renal fibrosis is the massive activation and proliferation of renal fibroblasts and the excessive synthesis and secretion of extracellular matrix (ECM) deposited in the renal interstitium, leading to structural damage, impairment of renal function, and eventually end-stage renal disease. In this review, we summarize recent advancements regarding the participation and interaction of many types of kidney residents and infiltrated cells during renal fibrosis, attempt to comprehensively discuss the mechanism of renal fibrosis from the cellular level and conclude by highlighting novel therapeutic targets and approaches for development of new treatments for patients with renal fibrosis.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
18
|
Gao M, Wang J, Zang J, An Y, Dong Y. The Mechanism of CD8 + T Cells for Reducing Myofibroblasts Accumulation during Renal Fibrosis. Biomolecules 2021; 11:biom11070990. [PMID: 34356613 PMCID: PMC8301885 DOI: 10.3390/biom11070990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a hallmark of chronic kidney disease (CKD) and a common manifestation of end-stage renal disease that is associated with multiple types of renal insults and functional loss of the kidney. Unresolved renal inflammation triggers fibrotic processes by promoting the activation and expansion of extracellular matrix-producing fibroblasts and myofibroblasts. Growing evidence now indicates that diverse T cells and macrophage subpopulations play central roles in the inflammatory microenvironment and fibrotic process. The present review aims to elucidate the role of CD8+ T cells in renal fibrosis, and identify its possible mechanisms in the inflammatory microenvironment.
Collapse
|
19
|
Abstract
Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease for over 20 years. Yet, over these two decades, the clinical approach to this condition has not much improved beyond the administration of glucose-lowering agents, renin-angiotensin-aldosterone system blockers for blood pressure control, and lipid-lowering agents. The proportion of diabetic patients who develop DKD and progress to end-stage renal disease has remained nearly the same. This unmet need for DKD treatment is caused by the complex pathophysiology of DKD, and the difficulty of translating treatment from bench to bed, which further adds to the growing argument that DKD is not a homogeneous disease. To better capture the full spectrum of DKD in our design of treatment regimens, we need improved diagnostic tools that can better distinguish the subgroups within the condition. For instance, DKD is typically placed in the broad category of a non-inflammatory kidney disease. However, genome-wide transcriptome analysis studies consistently indicate the inflammatory signaling pathway activation in DKD. This review will utilize human data in discussing the potential for redefining the role of inflammation in DKD. We also comment on the therapeutic potential of targeted anti-inflammatory therapy for DKD.
Collapse
Affiliation(s)
- Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
- Correspondence to Ju-Young Moon, M.D. Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea Tel: +82-2-440-7064 Fax: +82-2-440-8150 E-mail:
| |
Collapse
|
20
|
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int J Mol Sci 2021; 22:ijms22116009. [PMID: 34199409 PMCID: PMC8199594 DOI: 10.3390/ijms22116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Claudine Moratal
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
- Correspondence:
| | - Audrey Laurain
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Mourad Naïmi
- Université Côte d’Azur, CHU, 06000 Nice, France;
| | - Thibault Florin
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Vincent Esnault
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
| | - Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Guillaume Favre
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| |
Collapse
|
21
|
Li Y, Yu W, He M, Yuan F. The Effects of M1/M2 Macrophages on the mRNA Expression Profile of Diabetic Glomerular Endothelial Cells. Nephron Clin Pract 2021; 145:568-578. [PMID: 33957627 DOI: 10.1159/000513268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to explore the effects of M1/M2 macrophages on the mRNA expression profile of glomerular endothelial cells (GECs) treated with advanced glycosylation end products (AGEs). METHODS We cocultured M1/M2 macrophages and GECs treated with AGEs. The mRNA expression profile was detected by transcriptome sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed using the online tool Database for Annotation, Visualization, and Integrated Discovery (DAVID). The expression of differential genes was confirmed using droplet digital PCR and Western blot. RESULTS The results showed that 1,337 genes were significantly changed in M2 cocultured with AGE-treated GECs compared to those of the M1 cocultured with AGE-treated GECs. The KEGG analysis results show that the differentially expressed genes are primarily involved in specific pathways, including the rat sarcoma signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway. The expression of Braf, Fgfr2, Map3k1, and Mras, which are involved in the MAPK signaling pathway, was downregulated in cocultured M2 with AGE-treated GECs and was consistent with sequencing. Therefore, the cocultured M1/M2 macrophages with AGE-treated GECs can affect the expression of mRNA in GECs, and M2 macrophages via the MAPK signaling pathway may protect GECs from damage by AGEs. CONCLUSION Coculturing M1/M2 macrophages and GECs treated with AGEs can affect the mRNA expression in GECs. M2 macrophages can inhibit the Braf, Fgfr2, Map3k1, Mras, and p-ERK expression in the MAPK signaling pathway, which may be related to M2 macrophages protecting GECs from damage by AGEs.
Collapse
Affiliation(s)
- Yining Li
- Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weihong Yu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingyue He
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Yuan
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Macrophages play an important role in regulating homeostasis, kidney injury, repair, and tissue fibrogenesis. The present review will discuss recent advances that explore the novel subsets and functions of macrophage in the pathogenesis of kidney damage and hypertension. RECENT FINDINGS Macrophages differentiate into a variety of subsets in microenvironment-dependent manner. Although the M1/M2 nomenclature is still applied in considering the pro-inflammatory versus anti-inflammatory effects of macrophages in kidney injury, novel, and accurate macrophage phenotypes are defined by flow cytometric markers and single-cell RNA signatures. Studies exploring the crosstalk between macrophages and other cells are rapidly advancing with the additional recognition of exosome trafficking between cells. Using murine conditional mutants, actions of macrophage can be defined more precisely than in bone marrow transfer models. Some studies revealed the opposing effects of the same protein in renal parenchymal cells and macrophages, highlighting a need for the development of cell-specific immune therapies for translation. SUMMARY Macrophage-targeted therapies hold potential for limiting kidney injury and hypertension. To realize this potential, future studies will be required to understand precise mechanisms in macrophage polarization, crosstalk, proliferation, and maturation in the setting of renal disease.
Collapse
|
24
|
Matoba K, Takeda Y, Nagai Y, Kanazawa Y, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. ROCK Inhibition May Stop Diabetic Kidney Disease. JMA J 2020; 3:154-163. [PMID: 33150249 PMCID: PMC7590381 DOI: 10.31662/jmaj.2020-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is strongly associated with cardiovascular mortality. Given the pandemic of obesity and diabetes, the elucidation of the molecular underpinnings of DKD and establishment of effective therapy are urgently required. Studies over the past decade have identified the activated renin-angiotensin system (RAS) and hemodynamic changes as important therapeutic targets. However, given the residual risk observed in patients treated with RAS inhibitors and/or sodium glucose co-transporter 2 inhibitors, the involvement of other molecular machinery is likely, and the elucidation of such pathways represents fertile ground for the development of novel strategies. Rho-kinase (ROCK) is a serine/threonine kinase that is under the control of small GTPase protein Rho. Many fundamental cellular processes, including migration, proliferation, and survival are orchestrated by ROCK through a mechanism involving cytoskeletal reorganization. From a pathological standpoint, several analyses provide compelling evidence supporting the hypothesis that ROCK is an important regulator of DKD that is highly pertinent to cardiovascular disease. In cell-based studies, ROCK is activated in response to a diverse array of external stimuli associated with diabetes, and renal ROCK activity is elevated in the context of type 1 and 2 diabetes. Experimental studies have demonstrated the efficacy of pharmacological or genetic inhibition of ROCK in the prevention of diabetes-related histological and functional abnormalities in the kidney. Through a bird’s eye view of ROCK in renal biology, the present review provides a conceptual framework that may be widely applicable to the pathological processes of multiple organs and illustrate novel therapeutic promise in diabetology.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, Tagua VG, Hernández-Carballo C, Ferri C, Rodríguez-Rodríguez AE, Mora-Fernández C, Navarro-González JF. Inflammatory Targets in Diabetic Nephropathy. J Clin Med 2020; 9:jcm9020458. [PMID: 32046074 PMCID: PMC7074396 DOI: 10.3390/jcm9020458] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the most frequent complications in patients with diabetes mellitus is diabetic nephropathy (DN). At present, it constitutes the first cause of end stage renal disease, and the main cause of cardiovascular morbidity and mortality in these patients. Therefore, it is clear that new strategies are required to delay the development and the progression of this pathology. This new approach should look beyond the control of traditional risk factors such as hyperglycemia and hypertension. Currently, inflammation has been recognized as one of the underlying processes involved in the development and progression of kidney disease in the diabetic population. Understanding the cascade of signals and mechanisms that trigger this maladaptive immune response, which eventually leads to the development of DN, is crucial. This knowledge will allow the identification of new targets and facilitate the design of innovative therapeutic strategies. In this review, we focus on the pathogenesis of proinflammatory molecules and mechanisms related to the development and progression of DN, and discuss the potential utility of new strategies based on agents that target inflammation.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
| | | | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-922-602-389
| |
Collapse
|
26
|
Tesch GH, Pullen N, Jesson MI, Schlerman FJ, Nikolic-Paterson DJ. Combined inhibition of CCR2 and ACE provides added protection against progression of diabetic nephropathy in Nos3-deficient mice. Am J Physiol Renal Physiol 2019; 317:F1439-F1449. [PMID: 31566438 DOI: 10.1152/ajprenal.00340.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophage-mediated renal injury promotes the development of diabetic nephropathy. Blockade of chemokine (C-C motif) receptor 2 (CCR2) inhibits kidney macrophage accumulation and early glomerular damage in diabetic animals. This study tested early and late interventions with a CCR2 antagonist (CCR2A) in a model of progressive diabetic glomerulosclerosis and determined whether CCR2A provides added benefit over conventional treatment with an angiotensin-converting enzyme inhibitor (ACEi). Diabetes was induced in hypertensive endothelial nitric oxide synthase (Nos3)-deficient mice by administration of five low-dose streptozotocin (STZ) injections daily. Groups of diabetic Nos3-/- mice received a CCR2A (30 mg·kg-1·day-1 PF-04634817 in chow) as an early intervention (weeks 2-15 after STZ). The late intervention (weeks 8-15 after STZ) involved PF-04634817 alone, ACEi (captopril in water 10 mg·kg-1·day-1) alone, or combined ACEi + CCR2A. Control diabetic and nondiabetic Nos3-/- mice received normal chow and water. Early intervention with a CCR2A inhibited kidney inflammation and glomerulosclerosis, albuminuria, podocyte loss, and renal function impairment but not hypertension in diabetic Nos3-/- mice. Late intervention with a CCR2A also inhibited kidney inflammation, glomerulosclerosis, and renal dysfunction but did not affect albuminuria. ACEi alone suppressed hypertension and albuminuria and partially reduced podocyte loss and glomerulosclerosis but did not affect renal dysfunction. Compared with ACEi alone, the combined late intervention with ACEi + CCR2A provided better protection against kidney damage (inflammation, glomerulosclerosis, and renal function impairment) but not albuminuria. In conclusion, this study demonstrates that combining CCR2A and ACEi provides broader and superior renal protection than ACEi alone in a model of established diabetic glomerulosclerosis with hypertension.
Collapse
Affiliation(s)
- Gregory H Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Monash University Centre for Inflammatory Diseases, Clayton, Victoria, Australia
| | - Nick Pullen
- Pfizer Global Research & Development, Cambridge, Massachusetts
| | | | | | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Monash University Centre for Inflammatory Diseases, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Unraveling the Role of Inflammation in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2019; 20:ijms20143393. [PMID: 31295940 PMCID: PMC6678414 DOI: 10.3390/ijms20143393] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage renal disease (ESRD) and is therefore a major burden on the healthcare system. Patients with DKD are highly susceptible to developing cardiovascular disease, which contributes to increased morbidity and mortality rates. While progress has been made to inhibit the acceleration of DKD, current standards of care reduce but do not eliminate the risk of DKD. There is growing appreciation for the role of inflammation in modulating the process of DKD. The focus of this review is on providing an overview of the current status of knowledge regarding the pathologic roles of inflammation in the development of DKD. Finally, we summarize recent therapeutic advances to prevent DKD, with a focus on the anti-inflammatory effects of newly developed agents.
Collapse
|
28
|
Sabapathy V, Stremska ME, Mohammad S, Corey RL, Sharma PR, Sharma R. Novel Immunomodulatory Cytokine Regulates Inflammation, Diabetes, and Obesity to Protect From Diabetic Nephropathy. Front Pharmacol 2019; 10:572. [PMID: 31191312 PMCID: PMC6540785 DOI: 10.3389/fphar.2019.00572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
Obesity-linked (type 2) diabetic nephropathy (T2DN) has become the largest contributor to morbidity and mortality in the modern world. Recent evidences suggest that inflammation may contribute to the pathogenesis of T2DN and T-regulatory cells (Treg) are protective. We developed a novel cytokine (named IL233) bearing IL-2 and IL-33 activities in a single molecule and demonstrated that IL233 promotes Treg and T-helper (Th) 2 immune responses to protect mice from inflammatory acute kidney injury. Here, we investigated whether through a similar enhancement of Treg and inhibition of inflammation, IL233 protects from T2DN in a genetically obese mouse model, when administered either early or late after the onset of diabetes. In the older mice with obesity and microalbuminuria, IL233 treatment reduced hyperglycemia, plasma glycated proteins, and albuminuria. Interestingly, IL233 administered before the onset of microalbuminuria not only strongly inhibited the progression of T2DN and reversed diabetes as indicated by lowering of blood glucose, normalization of glucose tolerance and insulin levels in islets, but surprisingly, also attenuated weight gain and adipogenicity despite comparable food intake. Histological examination of kidneys showed that saline control mice had severe inflammation, glomerular hypertrophy, and mesangial expansion, which were all attenuated in the IL233 treated mice. The protection correlated with greater accumulation of Tregs, group 2 innate lymphoid cells (ILC2), alternately activated macrophages and eosinophils in the adipose tissue, along with a skewing toward T-helper 2 responses. Thus, the novel IL233 cytokine bears therapeutic potential as it protects genetically obese mice from T2DN by regulating multiple contributors to pathogenesis. Short Description: A novel bifunctional cytokine IL233, bearing IL-2 and IL-33 activities reverses inflammation and protects from type-2 diabetic nephropathy through promoting T-regulatory cells and type 2 immune response.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Marta E. Stremska
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Saleh Mohammad
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Rebecca L. Corey
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Poonam R. Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
29
|
The CSF1 receptor inhibitor pexidartinib (PLX3397) reduces tissue macrophage levels without affecting glucose homeostasis in mice. Int J Obes (Lond) 2019; 44:245-253. [PMID: 30926949 DOI: 10.1038/s41366-019-0355-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/19/2023]
|
30
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 556] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
31
|
Meng XM, Mak TSK, Lan HY. Macrophages in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:285-303. [PMID: 31399970 DOI: 10.1007/978-981-13-8871-2_13] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monocytes/macrophages are highly involved in the process of renal injury, repair and fibrosis in many aspects of experimental and human renal diseases. Monocyte-derived macrophages, characterized by high heterogeneity and plasticity, are recruited, activated, and polarized in the whole process of renal fibrotic diseases in response to local microenvironment. As classically activated M1 or CD11b+/Ly6Chigh macrophages accelerate renal injury by producing pro-inflammatory factors like tumor necrosis factor-alpha (TNFα) and interleukins, alternatively activated M2 or CD11b+/Ly6Cintermediate macrophages may contribute to kidney repair by exerting anti-inflammation and wound healing functions. However, uncontrolled M2 macrophages or CD11b+/Ly6Clow macrophages promote renal fibrosis via paracrine effects or direct transition to myofibroblast-like cells via the process of macrophage-to-myofibroblast transition (MMT). In this regard, therapeutic strategies targeting monocyte/macrophage recruitment, activation, and polarization should be emphasized in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
32
|
Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y, Duan H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol 2018; 478:115-125. [PMID: 30098377 DOI: 10.1016/j.mce.2018.08.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Activation of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported in diabetic kidney, yet the potential role of NLRP3 inflammasome in DN is not well known. In this study, we explored the role of NLRP3 inflammasome on inflammation and fibrosis in diabetic kidney using NLRP3 knockout mice. Renal expression of NLRP3, caspase-1 p10, interleukin-18 (IL-18) and cleaved IL-1β was increased in diabetic wild-type (WT) mice at 24 weeks. NLRP3 knockout (KO) improved renal function, attenuated glomerular hypertrophy, glomerulosclerosis, mesangial expansion, interstitial fibrosis, inflammation and expression of TGF-β1 and connective tissue growth factor (CTGF), as well as the activation of Smad3 in kidneys of STZ-induced diabetic mice. In addition, NLRP3 KO inhibited expression of thioredoxin-interacting protein (TXNIP) and NADPH oxidase 4 (Nox4) and superoxide production in diabetic kidneys. The diabetes-induced increase in urinary level of 8-hydroxydeoxyguanosine (8-OHdG) was attenuated in NLRP3 KO mice. In vitro experiments, using HK-2 cells, revealed that high glucose (HG)-mediated expression of TXNIP and Nox4 was inhibited by transfection with NLRP3 shRNA plasmid or antioxidant tempol treatment. Silencing of the NLRP3 resulted in reduced generation of reactive oxygen species (ROS) in HK-2 cells under HG conditions. Furthermore, we also found exposure of IL-1β to HK-2 cells induced ROS generation and expression of TXNIP and Nox4. Taken together, inhibition of NLRP3 inflammasome activation inhibits renal inflammation and fibrosis at least in part via suppression of oxidative stress in diabetic nephropathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Weixia Han
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Chao Liu
- Hebei Key Laboratory of Animal Science, Shijiazhuang, China
| | - Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China.
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| |
Collapse
|
33
|
Naicker SD, Cormican S, Griffin TP, Maretto S, Martin WP, Ferguson JP, Cotter D, Connaughton EP, Dennedy MC, Griffin MD. Chronic Kidney Disease Severity Is Associated With Selective Expansion of a Distinctive Intermediate Monocyte Subpopulation. Front Immunol 2018; 9:2845. [PMID: 30619252 PMCID: PMC6302774 DOI: 10.3389/fimmu.2018.02845] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) affects 11–13% of the world's population and greatly increases risk of atherosclerotic cardiovascular disease (ASCVD) and death. It is characterized by systemic inflammation and disturbances in the blood leukocytes that remain incompletely understood. In particular, abnormalities in the numbers and relative proportions of the three major monocyte subsets—classical, intermediate, and non-classical—are described in CKD and end-stage renal disease. In this study, we characterized absolute numbers of blood leukocyte subtypes in adults with renal function varying from normal to advanced CKD. The primary aim was to identify monocyte subpopulations that associated most closely with current estimated glomerular filtration rate (eGFR) and subsequent rate of eGFR decline. Leucocyte and monocyte populations were enumerated by multi-color flow cytometry of whole blood and peripheral blood mononuclear cell (PBMC) samples from adults with CKD stage 1–5 (n = 154) and healthy adults (n = 33). Multiple-linear regression analyses were performed to identify associations between numbers of leucocyte and monocyte populations and clinical characteristics including eGFR and rate of eGFR decline with adjustment for age and gender. In whole blood, total monocyte and neutrophil, but not lymphocyte, numbers were higher in adults with CKD 1-5 compared to no CKD and were significantly associated with current eGFR even following correction for age. In PBMC, classical and intermediate monocyte numbers were higher in CKD 1-5 but only intermediate monocyte numbers were significantly associated with current eGFR in an age-corrected analysis. When intermediate monocytes were further sub-divided into those with mid- and high-level expression of class II MHC (HLA-DRmid and HLA-DRhi intermediate monocytes) it was found that only DRhi intermediate monocytes were increased in number in CKD 1-5 compared to no CKD and were significantly associated with eGFR independently of age among the total (No CKD + CKD 1-5) study cohort as well as those with established CKD (CKD 1-5 only). Furthermore, blood number of DRhi intermediate monocytes alone proved to be significantly associated with subsequent rate of renal functional decline. Together, our data confirm neutrophil and monocyte subset dysregulation in CKD and identify a distinct subpopulation of intermediate monocytes that is associated with higher rate of loss of kidney function.
Collapse
Affiliation(s)
- Serika D Naicker
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Sarah Cormican
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Nephrology Services, Saolta University Healthcare Group, Galway, Ireland
| | - Tomás P Griffin
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| | - Silvia Maretto
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - William P Martin
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - John P Ferguson
- HRB Clinical Research Facility, National University of Ireland, Galway, Ireland
| | - Deirdre Cotter
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Eanna P Connaughton
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - M Conall Dennedy
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Matthew D Griffin
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Nephrology Services, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
34
|
Zhao Y, Guo Y, Jiang Y, Zhu X, Zhang X. Vitamin D suppresses macrophage infiltration by down-regulation of TREM-1 in diabetic nephropathy rats. Mol Cell Endocrinol 2018; 473:44-52. [PMID: 29331667 DOI: 10.1016/j.mce.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 01/30/2023]
Abstract
This study intends to investigate the effect of active vitamin D (VD) on the expression of triggering receptor expressed on myeloid cells-1 (TREM-1) in the renal tissues of diabetic nephropathy (DN) rats and to explore the impact of TREM-1 on macrophage adhesion and migration. We find that the expressions of TREM-1 and CD68 protein are higher in DN rats compared with rats in the normal control group and that these changes are decreased in the DN + VD group. In vitro, the capacity for macrophage adhesion and migration and the expression of TREM-1 are increased under high-glucose conditions, but VD inhibits this progress. TREM-1 siRNA decreases high-glucose-induced macrophage adhesion and migration, whereas over-expression of TREM-1 inhibits its action. However, VD cannot suppress high glucose-induced TREM-1 expression and macrophage adhesion and migration when TREM-1 is over-expressed. These results demonstrate that VD can suppress macrophage adhesion and migration by reducing the expression of TREM-1.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Yinfeng Guo
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Yuteng Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Xiaodong Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
35
|
Saleh R, Lee MC, Khiew SH, Louis C, Fleetwood AJ, Achuthan A, Förster I, Cook AD, Hamilton JA. CSF-1 in Inflammatory and Arthritic Pain Development. THE JOURNAL OF IMMUNOLOGY 2018; 201:2042-2053. [PMID: 30120124 DOI: 10.4049/jimmunol.1800665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Pain is one of the most debilitating symptoms in many diseases for which there is inadequate management and understanding. CSF-1, also known as M-CSF, acts via its receptor (CSF-1R, c-Fms) to regulate the development of the monocyte/macrophage lineage and to act locally in tissues to control macrophage numbers and function. It has been implicated in the control of neuropathic pain via a central action on microglia. We report in this study that systemic administration of a neutralizing anti-CSF-1R or CSF-1 mAb inhibits the development of inflammatory pain induced by zymosan, GM-CSF, and TNF in mice. This approach also prevented but did not ameliorate the development of arthritic pain and optimal disease driven by the three stimuli in mice, suggesting that CSF-1 may only be relevant when the driving inflammatory insults in tissues are acute and/or periodic. Systemic CSF-1 administration rapidly induced pain and enhanced the arthritis in an inflamed mouse joint, albeit via a different pathway(s) from that used by systemic GM-CSF and TNF. It is concluded that CSF-1 can function peripherally during the generation of inflammatory pain and hence may be a target for such pain and associated disease, including when the clinically important cytokines, TNF and GM-CSF, are involved. Our findings have ramifications for the selection and design of anti-CSF-1R/CSF-1 trials.
Collapse
Affiliation(s)
- Reem Saleh
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Ming-Chin Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Stella H Khiew
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Cynthia Louis
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.,Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and
| | - Andrew J Fleetwood
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Irmgard Förster
- Department of Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia;
| |
Collapse
|
36
|
Feng Y, Liang Y, Ren J, Dai C. Canonical Wnt Signaling Promotes Macrophage Proliferation during Kidney Fibrosis. KIDNEY DISEASES 2018; 4:95-103. [PMID: 29998124 DOI: 10.1159/000488984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/05/2018] [Indexed: 12/26/2022]
Abstract
Background Wnt/β-catenin, an evolutionary conserved signaling pathway, plays an essential role in modulating kidney injury and repair. Our previous studies demonstrated that Wnt/β-catenin signaling could stimulate macrophage M2 polarization and contribute to kidney fibrosis. However, whether canonical Wnt signaling activation leads to macrophage proliferation during kidney fibrosis remains to be determined. Methods In this study, a mouse model with macrophage-specific β-catenin gene deletion was generated and a unilateral ureter obstruction (UUO) model was created. Results In a mouse model with UUO nephropathy, deletion of β-catenin in macrophages attenuated macrophage proliferation and accumulation in kidney tissue. Wnt3a, a well-known canonical Wnt signaling stimulator, could markedly promote macrophage proliferation, whereas blocking canonical Wnt signaling with ICG-001 or ablating β-catenin could largely inhibit macrophage colony-stimulating factor-stimulated macrophage proliferation. Wnt3a treatment could time-dependently upregulate cyclin D1 protein expression and blocking β-catenin signaling could downregulate it. Conclusion These results demonstrate that Wnt/ β-catenin signaling is essential for promoting macrophage proliferation during kidney fibrosis.
Collapse
Affiliation(s)
- Ye Feng
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Liang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiafa Ren
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Abraham AP, Ma FY, Mulley WR, Nikolic-Paterson DJ, Tesch GH. Matrix metalloproteinase-12 deficiency attenuates experimental crescentic anti-glomerular basement membrane glomerulonephritis. Nephrology (Carlton) 2018; 23:183-189. [DOI: 10.1111/nep.12964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Abu P. Abraham
- Department of Nephrology; Monash Medical Centre; Melbourne Victoria Australia
- Monash University, Centre for Inflammatory Diseases; Melbourne Victoria Australia
| | - Frank Y. Ma
- Department of Nephrology; Monash Medical Centre; Melbourne Victoria Australia
- Monash University, Centre for Inflammatory Diseases; Melbourne Victoria Australia
| | - William R. Mulley
- Department of Nephrology; Monash Medical Centre; Melbourne Victoria Australia
- Monash University, Centre for Inflammatory Diseases; Melbourne Victoria Australia
| | - David J. Nikolic-Paterson
- Department of Nephrology; Monash Medical Centre; Melbourne Victoria Australia
- Monash University, Centre for Inflammatory Diseases; Melbourne Victoria Australia
| | - Greg H. Tesch
- Department of Nephrology; Monash Medical Centre; Melbourne Victoria Australia
- Monash University, Centre for Inflammatory Diseases; Melbourne Victoria Australia
| |
Collapse
|
38
|
Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc Natl Acad Sci U S A 2017; 114:E10418-E10427. [PMID: 29133420 PMCID: PMC5715775 DOI: 10.1073/pnas.1713543114] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our studies indicate that the resident macrophages of the pancreatic islets of Langerhans have a seminal role in the initiation and progression of autoimmune diabetes in NOD mice. In this study, islet macrophages were depleted by administration of a monoclonal antibody to the CSF-1 receptor. Macrophage depletion, either at the start of the autoimmune process or when diabetogenesis is active, leads to a significant reduction in diabetes incidence. Depletion of the islet macrophages reduces the entrance of T cells into islets and results in the absence of antigen presentation. Concordantly, a regulatory pathway develops that controls diabetes progression. We conclude that treatments that target the islet macrophages may have important clinical relevance for the control of autoimmune type 1 diabetes. Treatment of C57BL/6 or NOD mice with a monoclonal antibody to the CSF-1 receptor resulted in depletion of the resident macrophages of pancreatic islets of Langerhans that lasted for several weeks. Depletion of macrophages in C57BL/6 mice did not affect multiple parameters of islet function, including glucose response, insulin content, and transcriptional profile. In NOD mice depleted of islet-resident macrophages starting at 3 wk of age, several changes occurred: (i) the early entrance of CD4 T cells and dendritic cells into pancreatic islets was reduced, (ii) presentation of insulin epitopes by dispersed islet cells to T cells was impaired, and (iii) the development of autoimmune diabetes was significantly reduced. Treatment of NOD mice starting at 10 wk of age, when the autoimmune process has progressed, also significantly reduced the incidence of diabetes. Despite the absence of diabetes, NOD mice treated with anti–CSF-1 receptor starting at 3 or 10 wk of age still contained variably elevated leukocytic infiltrates in their islets when examined at 20–40 wk of age. Diabetes occurred in the anti–CSF-1 receptor protected mice after treatment with a blocking antibody directed against PD-1. We conclude that treatment of NOD mice with an antibody against CSF-1 receptor reduced diabetes incidence and led to the development of a regulatory pathway that controlled autoimmune progression.
Collapse
|
39
|
Diabetic nephropathy - is this an immune disorder? Clin Sci (Lond) 2017; 131:2183-2199. [PMID: 28760771 DOI: 10.1042/cs20160636] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Chronic diabetes is associated with metabolic and haemodynamic stresses which can facilitate modifications to DNA, proteins and lipids, induce cellular dysfunction and damage, and stimulate inflammatory and fibrotic responses which lead to various types of renal injury. Approximately 30-40% of patients with diabetes develop nephropathy and this renal injury normally progresses in about a third of patients. Due to the growing incidence of diabetes, diabetic nephropathy is now the main cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence from experimental and clinical studies has demonstrated that renal inflammation plays a critical role in determining whether renal injury progresses during diabetes. However, the immune response associated with diabetic nephropathy is considerably different to that seen in autoimmune kidney diseases or in acute kidney injury arising from episodes of ischaemia or infection. This review evaluates the role of the immune system in the development of diabetic nephropathy, including the specific contributions of leucocyte subsets (macrophages, neutrophils, mast cells, T and B lymphocytes), danger-associated molecular patterns (DAMPs), inflammasomes, immunoglobulin and complement. It also examines factors which may influence the development of the immune response, including genetic factors and exposure to other kidney insults. In addition, this review discusses therapies which are currently under development for targeting the immune system in diabetic nephropathy and indicates those which have proceeded into clinical trials.
Collapse
|
40
|
Pichler R, Afkarian M, Dieter BP, Tuttle KR. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 2017; 312:F716-F731. [PMID: 27558558 PMCID: PMC6109808 DOI: 10.1152/ajprenal.00314.2016] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/16/2016] [Indexed: 01/10/2023] Open
Abstract
Increasing incidences of obesity and diabetes have made diabetic kidney disease (DKD) the leading cause of chronic kidney disease and end-stage renal disease worldwide. Despite current pharmacological treatments, including strategies for optimizing glycemic control and inhibitors of the renin-angiotensin system, DKD still makes up almost one-half of all cases of end-stage renal disease in the United States. Compelling and mounting evidence has clearly demonstrated that immunity and inflammation play a paramount role in the pathogenesis of DKD. This article reviews the involvement of the immune system in DKD and identifies important roles of key immune and inflammatory mediators. One of the most recently identified biomarkers is serum amyloid A, which appears to be relatively specific for DKD. Novel and evolving treatment approaches target protein kinases, transcription factors, chemokines, adhesion molecules, growth factors, advanced glycation end-products, and other inflammatory molecules. This is the beginning of a new era in the understanding and treatment of DKD, and we may have finally reached a tipping point in our fight against the growing burden of DKD.
Collapse
Affiliation(s)
- Raimund Pichler
- Division of Nephrology, University of Washington, Seattle, Washington;
| | - Maryam Afkarian
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
| | - Brad P Dieter
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
- Providence Health Care, Spokane, Washington
| | - Katherine R Tuttle
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
- Providence Health Care, Spokane, Washington
| |
Collapse
|
41
|
Østergaard MV, Pinto V, Stevenson K, Worm J, Fink LN, Coward RJM. DBA2J db/db mice are susceptible to early albuminuria and glomerulosclerosis that correlate with systemic insulin resistance. Am J Physiol Renal Physiol 2016; 312:F312-F321. [PMID: 27852608 DOI: 10.1152/ajprenal.00451.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies.
Collapse
Affiliation(s)
- Mette V Østergaard
- Global Research, Novo Nordisk, Måløv, Denmark.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| | - Vanda Pinto
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| | - Kirsty Stevenson
- Department of Biochemistry, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Jesper Worm
- Global Research, Novo Nordisk, Måløv, Denmark
| | | | - Richard J M Coward
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| |
Collapse
|
42
|
Duthie F, O’Sullivan ED, Hughes J. ISN Forefronts Symposium 2015: The Diverse Function of Macrophages in Renal Disease. Kidney Int Rep 2016. [PMCID: PMC5720538 DOI: 10.1016/j.ekir.2016.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Experimental and human studies indicate that macrophages play a key role within the diseased kidney and represent a target for novel therapies. This brief review outlines the involvement and nature of macrophages in renal disease and highlights the phenotypic plasticity of these cells and their responsiveness to the renal microenvironment.
Collapse
|
43
|
Wan J, Li P, Liu DW, Chen Y, Mo HZ, Liu BG, Chen WJ, Lu XQ, Guo J, Zhang Q, Qiao YJ, Liu ZS, Wan GR. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes. Mol Med Rep 2016; 14:1771-84. [PMID: 27357417 DOI: 10.3892/mmr.2016.5441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 02/02/2016] [Indexed: 11/05/2022] Open
Abstract
The mechanism underlying epithelial‑to‑mesenchymal transition (EMT) caused by high glucose (HG) stimulation in diabetic nephropathy (DN) remains to be fully elucidated. The present study investigated the effects of HG on EMT and the activity of glycogen synthase kinase 3β (GSK‑3β) in podocytes and the kidneys of db/db mice, and assessed the effects of (2'Z, 3'E)‑6‑bromoindirubin‑3'‑oxime (BIO), an inhibitor of GSK‑3β, on EMT and glomerular injury. The resulting data showed that the activity of GSK‑3β was upregulated by HG and downregulated by BIO in the podocytes and the renal cortex. The expression levels of epithelial markers, including nephrin, podocin and synaptopodin, were decreased by HG and increased by BIO, whereas the reverse were true for mesenchymal markers, including α‑smooth muscle actin (α‑SMA) and fibronectin. The expression levels of β‑catenin and Snail, in contrast to current understanding of the Wnt signaling pathway, were increased by HG and decreased by BIO. In addition, expression of the vitamin D receptor (VDR) was decreased by HG and increased by BIO. In conclusion, the present study revealed that the mechanism by which BIO inhibited HG‑mediated EMT in podocytes and the renal cortex was primarily due to the VDR. Treatment with BIO protected renal function by maintaining the integrity of the filtration membrane and decreasing UAE, but not by regulating blood glucose. Therefore, GSK‑3β may be used as a sensitive biomarker of DN, and its inhibition by BIO may be effective in the treatment of DN.
Collapse
Affiliation(s)
- Jia Wan
- Henan Food and Drug Administration, Zhengzhou, Henan 450012, P.R. China
| | - Peng Li
- Pharmaceutical College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Dong-Wei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450012, P.R. China
| | - Ying Chen
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P.R. China
| | - Hai-Zhen Mo
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P.R. China
| | - Ben-Guo Liu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P.R. China
| | - Wen-Jie Chen
- Modern Education Technology Center, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiao-Qing Lu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450012, P.R. China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450012, P.R. China
| | - Qian Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450012, P.R. China
| | - Ying-Jin Qiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450012, P.R. China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450012, P.R. China
| | - Guang-Rui Wan
- Pharmaceutical College, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
44
|
Guan SS, Sheu ML, Wu CT, Chiang CK, Liu SH. ATP synthase subunit-β down-regulation aggravates diabetic nephropathy. Sci Rep 2015; 5:14561. [PMID: 26449648 PMCID: PMC4598833 DOI: 10.1038/srep14561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/03/2015] [Indexed: 01/14/2023] Open
Abstract
In this study, we investigated the role of ATP synthase subunit-β (ATP5b) in diabetic nephropathy. Histopathological changes, fibrosis, and protein expressions of α-smooth muscle actin (α-SMA), advanced glycation end-products (AGEs), and ATP5b were obviously observed in the kidneys of db/db diabetic mice as compared with the control db/m(+) mice. The increased ATP5b expression was majorly observed in diabetic renal tubules and was notably observed to locate in cytoplasm of tubule cells, but no significant increase of ATP5b in diabetic glomeruli. AGEs significantly increased protein expression of ATP5b and fibrotic factors and decreased ATP content in cultured renal tubular cells via an AGEs-receptor for AGEs (RAGE) axis pathway. Oxidative stress was also induced in diabetic kidneys and AGEs-treated renal tubular cells. The increase of ATP5b and CTGF protein expression in AGEs-treated renal tubular cells was reversed by antioxidant N-acetylcysteine. ATP5b-siRNA transfection augmented the increased protein expression of α-SMA and CTGF and CTGF promoter activity in AGEs-treated renal tubular cells. The in vivo ATP5b-siRNA delivery significantly enhanced renal fibrosis and serum creatinine in db/db mice with ATP5b down-regulation. These findings suggest that increased ATP5b plays an important adaptive or protective role in decreasing the rate of AGEs-induced renal fibrosis during diabetic condition.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan, Taiwan
| | - Meei-Ling Sheu
- Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Departments of Integrated Diagnostics &Therapeutics and Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
Meng XM, Tang PMK, Li J, Lan HY. Macrophage Phenotype in Kidney Injury and Repair. KIDNEY DISEASES 2015; 1:138-46. [PMID: 27536674 DOI: 10.1159/000431214] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Glomerular and interstitial macrophage infiltration is a feature for both the acute and chronic kidney diseases. Macrophages have been shown to play a diverse role in kidney injury and repair. Thus, macrophages may be a key cell type in acute and chronic kidney injury and repair. SUMMARY AND KEY MESSAGES During renal inflammation, circulating monocytes are recruited and then become activated and polarized. By adapting to the local microenvironment, macrophages can differentiate into different phenotypes and function as a double-bladed sword in different stages of kidney disease. In general, M1 macrophages play a pathogenic role in boosting inflammatory renal injury, whereas M2 macrophages exert an anti-inflammatory and wound healing (or profibrotic) role during renal repair. In this review, we highlight the phenotypic polarization of macrophages in renal diseases and dissect their distinct functions in renal injury and repair processes, respectively. Moreover, the current understanding of regulatory mechanisms on the phenotypic switch and macrophage-related therapy are also intensively discussed.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
46
|
Bowden MA, Tesch GH, Julius TL, Rosli S, Love JE, Ritchie RH. Earlier onset of diabesity-Induced adverse cardiac remodeling in female compared to male mice. Obesity (Silver Spring) 2015; 23:1166-77. [PMID: 25959739 DOI: 10.1002/oby.21072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Emerging evidence suggests female type 2 diabetes (T2DM) patients may fare worse than males with respect to cardiovascular complications. Hence the impact of sex on relative progression of left ventricular (LV) remodeling in obese db/db mice was characterized. METHODS The changes in parameters of LV hypertrophy (heart weight, pro-hypertrophic gene expression, cardiomyocyte size) and fibrosis (LV collagen deposition and oxidative stress), in parallel with body weight and blood glucose and lipid profiles, in male and female db/db T2DM mice, at 10, 14, and 18 weeks of age, were determined. RESULTS Diabesity-induced cardiac remodeling was at least comparable in female (compared to male) mice. Females exhibited enhanced systemic oxidative stress and nonesterified fatty acid levels. Progression of LV pro-hypertrophic (β-myosin heavy chain, B-type natriuretic peptide) and pro-oxidant gene expression (NADPH oxidase subunit Nox2, plasminogen activator inhibitor-1 PAI-I) was, however, exaggerated in females when expressed relative to 10-week-old db/db mice. Increased cardiomyocyte width was also evident earlier in db/db females than males. No other gender differences were observed. CONCLUSIONS Progressive, age-dependent development of cardiac remodeling in db/db mice parallels impairments in glucose handling and oxidative stress. Certain aspects of the T2DM-induced LV remodeling response may have an earlier and/or exaggerated onset in diabetic females.
Collapse
Affiliation(s)
- Marissa A Bowden
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Greg H Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Tracey L Julius
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Sarah Rosli
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jane E Love
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
47
|
Jenkin KA, O'Keefe L, Simcocks AC, Grinfeld E, Mathai ML, McAinch AJ, Hryciw DH. Chronic administration of AM251 improves albuminuria and renal tubular structure in obese rats. J Endocrinol 2015; 225:113-24. [PMID: 25804605 DOI: 10.1530/joe-15-0004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 01/07/2023]
Abstract
Modulation of the endocannabinoid system as an anti-obesity therapeutic is well established; however, the direct effects of cannabinoid receptor 1 (CB1) antagonism on renal function and structure in a model of diet-induced obesity (DIO) are unknown. The aim of this study was to characterise the renal effects of the CB1 antagonist AM251 in a model of DIO. Male Sprague-Dawley rats were fed a low- or high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks to elicit DIO (n=9). In a different cohort, rats were fed a HFD for 15 weeks. After 9 weeks consuming a HFD, rats were injected daily for 6 weeks with 3 mg/kg AM251 (n=9) or saline via i.p. injection (n=9). After 10 weeks consuming a HFD, CB1 and megalin protein expression were significantly increased in the kidneys of obese rats. Antagonism of CB1 with AM251 significantly reduced weight gain, systolic blood pressure, plasma leptin, and reduced albuminuria and plasma creatinine levels in obese rats. Importantly, there was a significant reduction in tubular cross-section diameter in the obese rats treated with AM251. An improvement in albuminuria was likely due to the reduction in tubular size, reduced leptinaemia and maintenance of megalin expression levels. In obese rats, AM251 did not alter diastolic blood pressure, sodium excretion, creatinine clearance or expression of the fibrotic proteins VEGFA, TGFB1 and collagen IV in the kidney. This study demonstrates that treatment with CB1 antagonist AM251 improves renal outcomes in obese rats.
Collapse
Affiliation(s)
- Kayte A Jenkin
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Lannie O'Keefe
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Anna C Simcocks
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Esther Grinfeld
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Michael L Mathai
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Andrew J McAinch
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Deanne H Hryciw
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Konenkov VI, Klimontov VV, Myakina NE, Tyan NV, Fazullina ON, Romanov VV. Increased serum concentrations of inflammatory cytokines in type 2 diabetic patients with chronic kidney disease. TERAPEVT ARKH 2015; 87:45-49. [DOI: 10.17116/terarkh201587645-49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
D'Addio F, Trevisani A, Ben Nasr M, Bassi R, El Essawy B, Abdi R, Secchi A, Fiorina P. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy. Acta Diabetol 2014; 51:897-904. [PMID: 24894496 DOI: 10.1007/s00592-014-0603-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022]
Abstract
Diabetic nephropathy is the leading and possibly the most devastating complication of diabetes, with a prevalence ranging from 25 to 40 % in diabetic individuals, and as such represents an important challenge for public health worldwide. As a major cause of end-stage renal disease, diabetic nephropathy also accounts for a large proportion of deaths in diabetic individuals. To date, therapeutic options for overt diabetic nephropathy include medical interventions to reduce blood glucose levels and to control blood pressure and proteinuria. Recent evidence suggests a strong role for inflammation in the development and progression of diabetic nephropathy. Various immune cells, cytokines and chemokines have been implicated in the onset of diabetic nephropathy, while immune-related transcription factors and adhesion molecules have been correlated with the establishment of a renal proinflammatory microenvironment. Both inflammation and immune activation may promote severe distress in the kidney, with subsequent increased local fibrosis, ultimately leading to the development of end-stage renal disease. Stem cells are undifferentiated cells capable of regenerating virtually any organ or tissue and bearing important immunoregulatory and anti-inflammatory properties. Due to the aforementioned considerations, significant interest has been ignited with regard to the use of stem cells as novel therapeutics for diabetic nephropathy. Here, we will be examining in detail how anti-inflammatory properties of different populations of stem cells may offer novel therapy for the treatment of diabetic nephropathy.
Collapse
|
50
|
Abstract
Diabetic nephropathy is a significant cause of chronic kidney disease and end-stage renal failure globally. Much research has been conducted in both basic science and clinical therapeutics, which has enhanced understanding of the pathophysiology of diabetic nephropathy and expanded the potential therapies available. This review will examine the current concepts of diabetic nephropathy management in the context of some of the basic science and pathophysiology aspects relevant to the approaches taken in novel, investigative treatment strategies.
Collapse
Affiliation(s)
- Andy Kh Lim
- Department of Nephrology, Monash Medical Center, Monash Health, Clayton, VIC, Australia ; Department of General Medicine, Dandenong Hospital, Monash Health, Clayton, VIC, Australia ; Department of Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|