1
|
Zhou H, Huang X, Luo Y, Tan T. Scavenging of Methylglyoxal by the Total Flavonoids of Apocyni Veneti Folium in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20374-20382. [PMID: 39231273 DOI: 10.1021/acs.jafc.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Scavenging MGO has been considered as an effective strategy for preventing atherosclerosis. A previous study showed that the total flavonoids of Apocyni Veneti Folium (TFAVF) had a significant antiatherosclerotic effect. However, there are no studies that have investigated the MGO scavenging capacities of TFAVF in mice. We found that TFAVF consisted mainly of quercetin glycosides and kaempferol glycosides using ultrahigh performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). TFAVF was first demonstrated to effectively scavenge MGO in mice based on the formation of mono-MGO-quercetin, mono-MGO-dehydroquercetin, mono-MGO-isorhamnetin, mono-MGO-dehydroisorhamnetin, mono-MGO-kaempferol, and mono-MGO-dehydrokaempferol. In addition, one mono-MGO-quercetin was separated and purified, and its structure was elucidated as 8-MGO-quercetin based on UHPLC-QTOF-MS/MS and NMR data. Quantification studies have demonstrated that kaempferol, dehydrokaempferol, quercetin, dehydroquercetin, isorhamnetin, and dehydroisorhamnetin can dose dependently scavenge MGO in mice. Taken together, these results indicated that TFAVF showed a significant antiatherosclerotic effect, which might be based on MGO detoxification.
Collapse
Affiliation(s)
- Huixian Zhou
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Xinxin Huang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
2
|
D’Haese S, Claes L, Jaeken E, Deluyker D, Evens L, Heeren E, Haesen S, Vastmans L, Lambrichts I, Wouters K, Schalkwijk CG, Hansen D, Eijnde BO, Bito V. Pyridoxamine Alleviates Cardiac Fibrosis and Oxidative Stress in Western Diet-Induced Prediabetic Rats. Int J Mol Sci 2024; 25:8508. [PMID: 39126079 PMCID: PMC11312841 DOI: 10.3390/ijms25158508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) are at an increased risk for heart failure, yet preventive cardiac care is suboptimal in this population. Pyridoxamine (PM), a vitamin B6 analog, has been shown to exert protective effects in metabolic and cardiovascular diseases. In this study, we aimed to investigate whether PM limits adverse cardiac remodeling and dysfunction in rats who develop T2DM. Male rats received a standard chow diet or Western diet (WD) for 18 weeks to induce prediabetes. One WD group received additional PM (1 g/L) via drinking water. Glucose tolerance was assessed with a 1 h oral glucose tolerance test. Cardiac function was evaluated using echocardiography and hemodynamic measurements. Histology on left ventricular (LV) tissue was performed. Treatment with PM prevented the increase in fasting plasma glucose levels compared to WD-fed rats (p < 0.05). LV cardiac dilation tended to be prevented using PM supplementation. In LV tissue, PM limited an increase in interstitial collagen deposition (p < 0.05) seen in WD-fed rats. PM tended to decrease 3-nitrotyrosine and significantly lowered 4-hydroxynonenal content compared to WD-fed rats. We conclude that PM alleviates interstitial fibrosis and oxidative stress in the hearts of WD-induced prediabetic rats.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Lisa Claes
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Eva Jaeken
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Lize Evens
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Ellen Heeren
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Sibren Haesen
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Lotte Vastmans
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Dominique Hansen
- UHasselt, Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Centre, Agoralaan, 3590 Diepenbeek, Belgium;
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - BO Eijnde
- SMRc-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine & Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
- Division of Sport Science, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (L.V.); (I.L.)
| |
Collapse
|
3
|
Debras C, Cordova R, Mayén AL, Maasen K, Knaze V, Eussen SJPM, Schalkwijk CG, Huybrechts I, Tjønneland A, Halkjær J, Katzke V, Bajracharya R, Schulze MB, Masala G, Pala V, Pasanisi F, Macciotta A, Petrova D, Castañeda J, Santiuste C, Amiano P, Moreno-Iribas C, Borné Y, Sonestedt E, Johansson I, Esberg A, Aglago EK, Jenab M, Freisling H. Dietary intake of dicarbonyl compounds and changes in body weight over time in a large cohort of European adults. Br J Nutr 2024; 131:1902-1914. [PMID: 38383991 DOI: 10.1017/s0007114524000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dicarbonyl compounds are highly reactive precursors of advanced glycation end products (AGE), produced endogenously, present in certain foods and formed during food processing. AGE contribute to the development of adverse metabolic outcomes, but health effects of dietary dicarbonyls are largely unexplored. We investigated associations between three dietary dicarbonyl compounds, methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3-DG), and body weight changes in European adults. Dicarbonyl intakes were estimated using food composition database from 263 095 European Prospective Investigation into Cancer and Nutrition-Physical Activity, Nutrition, Alcohol, Cessation of Smoking, Eating Out of Home in Relation to Anthropometry participants with two body weight assessments (median follow-up time = 5·4 years). Associations between dicarbonyls and 5-year body-weight changes were estimated using mixed linear regression models. Stratified analyses by sex, age and baseline BMI were performed. Risk of becoming overweight/obese was assessed using multivariable-adjusted logistic regression. MGO intake was associated with 5-year body-weight gain of 0·089 kg (per 1-sd increase, 95 % CI 0·072, 0·107). 3-DG was inversely associated with body-weight change (-0·076 kg, -0·094, -0·058). No significant association was observed for GO (0·018 kg, -0·002, 0·037). In stratified analyses, GO was associated with body-weight gain among women and older participants (above median of 52·4 years). MGO was associated with higher body-weight gain among older participants. 3-DG was inversely associated with body-weight gain among younger and normal-weight participants. MGO was associated with a higher risk of becoming overweight/obese, while inverse associations were observed for 3-DG. No associations were observed for GO with overweight/obesity. Dietary dicarbonyls are inconsistently associated with body weight change among European adults. Further research is needed to clarify the role of these food components in overweight and obesity, their underlying mechanisms and potential public health implications.
Collapse
Affiliation(s)
- Charlotte Debras
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Reynalda Cordova
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Viktoria Knaze
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases/CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer research Center (DKFZ), Heidelberg, Germany
| | - Rashmita Bajracharya
- Department of Cancer Epidemiology, German Cancer research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabrizio Pasanisi
- Department of Clinical Medicine and Surgery School of Medicine, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Dafina Petrova
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029Madrid, Spain
| | - Jazmin Castañeda
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Carmen Santiuste
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 2013 San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Conchi Moreno-Iribas
- Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Yan Borné
- Nutrition Epidemiology, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Emily Sonestedt
- Nutrition Epidemiology, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Elom Kouassivi Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
4
|
Haesen S, Jager MM, Brillouet A, de Laat I, Vastmans L, Verghote E, Delaet A, D’Haese S, Hamad I, Kleinewietfeld M, Mebis J, Mullens W, Lambrichts I, Wolfs E, Deluyker D, Bito V. Pyridoxamine Limits Cardiac Dysfunction in a Rat Model of Doxorubicin-Induced Cardiotoxicity. Antioxidants (Basel) 2024; 13:112. [PMID: 38247537 PMCID: PMC10812466 DOI: 10.3390/antiox13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
The use of doxorubicin (DOX) chemotherapy is restricted due to dose-dependent cardiotoxicity. Pyridoxamine (PM) is a vitamin B6 derivative with favorable effects on diverse cardiovascular diseases, suggesting a cardioprotective effect on DOX-induced cardiotoxicity. The cardioprotective nature of PM was investigated in a rat model of DOX-induced cardiotoxicity. Six-week-old female Sprague Dawley rats were treated intravenously with 2 mg/kg DOX or saline (CTRL) weekly for eight weeks. Two other groups received PM via the drinking water next to DOX (DOX+PM) or saline (CTRL+PM). Echocardiography, strain analysis, and hemodynamic measurements were performed to evaluate cardiac function. Fibrotic remodeling, myocardial inflammation, oxidative stress, apoptosis, and ferroptosis were evaluated by various in vitro techniques. PM significantly attenuated DOX-induced left ventricular (LV) dilated cardiomyopathy and limited TGF-β1-related LV fibrotic remodeling and macrophage-driven myocardial inflammation. PM protected against DOX-induced ferroptosis, as evidenced by restored DOX-induced disturbance of redox balance, improved cytosolic and mitochondrial iron regulation, and reduced mitochondrial damage at the gene level. In conclusion, PM attenuated the development of cardiac damage after DOX treatment by reducing myocardial fibrosis, inflammation, and mitochondrial damage and by restoring redox and iron regulation at the gene level, suggesting that PM may be a novel cardioprotective strategy for DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sibren Haesen
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Manon Marie Jager
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Aline Brillouet
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Iris de Laat
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Lotte Vastmans
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Eline Verghote
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Anouk Delaet
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Sarah D’Haese
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- Cardiovascular Research Institute Maastricht (CARIM), School for Cardiovascular Diseases, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ibrahim Hamad
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC) Hasselt University, 3590 Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC) Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen Mebis
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- Department of Medical Oncology, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Wilfried Mullens
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
- Department of Cardiology, Ziekenhuis Oost Limburg, Schiepse Bos 6, 3600 Genk, Belgium
| | - Ivo Lambrichts
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Esther Wolfs
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Dorien Deluyker
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| | - Virginie Bito
- UHasselt, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (M.M.J.); (A.B.); (I.d.L.); (L.V.); (E.V.); (A.D.); (S.D.); (I.H.); (M.K.); (J.M.); (W.M.); (I.L.); (E.W.); (D.D.)
| |
Collapse
|
5
|
Haesen S, Verghote E, Heeren E, Wolfs E, Deluyker D, Bito V. Pyridoxamine Attenuates Doxorubicin-Induced Cardiomyopathy without Affecting Its Antitumor Effect on Rat Mammary Tumor Cells. Cells 2024; 13:120. [PMID: 38247812 PMCID: PMC10814382 DOI: 10.3390/cells13020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Doxorubicin (DOX) is commonly used in cancer treatment but associated with cardiotoxicity. Pyridoxamine (PM), a vitamin B6 derivative, could be a cardioprotectant. This study investigated the effect of PM on DOX cardiotoxicity and DOX antitumor effectiveness. Sprague Dawley rats were treated intravenously with DOX (2 mg/kg/week) or saline over eight weeks. Two other groups received PM via oral intake (1 g/L in water bottles) next to DOX or saline. Echocardiography was performed after eight weeks. PM treatment significantly attenuated the DOX-induced reduction in left ventricular ejection fraction (72 ± 2% vs. 58 ± 3% in DOX; p < 0.001) and increase in left ventricular end-systolic volume (0.24 ± 0.02 µL/cm2 vs. 0.38 ± 0.03 µL/cm2 in DOX; p < 0.0001). Additionally, LA7 tumor cells were exposed to DOX, PM, or DOX and PM for 24 h, 48 h, and 72 h. Cell viability, proliferation, cytotoxicity, and apoptosis were assessed. DOX significantly reduced LA7 cell viability and proliferation (p < 0.0001) and increased cytotoxicity (p < 0.05) and cleaved caspase-3 (p < 0.001). Concomitant PM treatment did not alter the DOX effect on LA7 cells. In conclusion, PM attenuated DOX-induced cardiomyopathy in vivo without affecting the antitumor effect of DOX in vitro, highlighting PM as a promising cardioprotectant for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), BIOMED, Agoralaan, 3590 Diepenbeek, Belgium; (S.H.); (E.V.); (E.H.); (E.W.); (D.D.)
| |
Collapse
|
6
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Sutkowska E, Fecka I, Marciniak D, Bednarska K, Sutkowska M, Hap K. Analysis of Methylglyoxal Concentration in a Group of Patients with Newly Diagnosed Prediabetes. Biomedicines 2023; 11:2968. [PMID: 38001968 PMCID: PMC10669086 DOI: 10.3390/biomedicines11112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The abnormal serum concentration of methylglyoxal (MGO) has been presented as an indicator of chronic complications in diabetes (DM). Because such complications are also found in pre-DM, we decided to assess the concentration of this compound in individuals with pre-DM, without cardio-vascular diseases. METHODS Frozen samples from individuals newly diagnosed with pre-DM (N = 31) and healthy subjects (N = 11) were prepared and MGO concentration was determined using UHPLC-ESI-QqTOF-MS. RESULTS Statistical significance was established when the groups were compared for body weight, BMI, fasting glucose level, fatty liver and use of statins but not for the other descriptive parameters. The positive linear correlation showed that the higher HbA1c, the higher MGO concentration (p = 0.01). The values of MGO were within the normal range in both groups (mean value for pre-DM: 135.44 nM (±SD = 32.67) and for the control group: 143.25 nM (±SD = 17.93); p = 0.46 (±95% CI)), with no statistical significance between the groups. CONCLUSIONS We did not confirm the elevated MGO levels in the group of patients with pre-DM. The available data suggests a possible effect of statin intake on MGO levels. This thesis requires confirmation on a larger number of patients with an assessment of MGO levels before and after the introduction of statins.
Collapse
Affiliation(s)
- Edyta Sutkowska
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, pl. Defilad 1, 00-901 Warszawa, Poland
| | - Dominik Marciniak
- Department of Drugs Form Technology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
| | - Magdalena Sutkowska
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1, 50-367 Wroclaw, Poland;
| | - Katarzyna Hap
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Oliveira AL, Medeiros ML, Ghezzi AC, Dos Santos GA, Mello GC, Mónica FZ, Antunes E. Evidence that methylglyoxal and receptor for advanced glycation end products are implicated in bladder dysfunction of obese diabetic ob/ ob mice. Am J Physiol Renal Physiol 2023; 325:F436-F447. [PMID: 37560771 DOI: 10.1152/ajprenal.00089.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Glycolytic overload in diabetes causes large accumulation of the highly reactive dicarbonyl compound methylglyoxal (MGO) and overproduction of advanced glycation end products (AGEs), which interact with their receptors (RAGE), leading to diabetes-associated macrovascular complications. The bladder is an organ that stays most in contact with dicarbonyl species, but little is known about the importance of the MGO-AGEs-RAGE pathway to diabetes-associated bladder dysfunction. Here, we aimed to investigate the role of the MGO-AGEs-RAGE pathway in bladder dysfunction of diabetic male and female ob/ob mice compared with wild-type (WT) lean mice. Diabetic ob/ob mice were treated with the AGE breaker alagebrium (ALT-711, 1 mg/kg) for 8 wk in drinking water. Compared with WT animals, male and female ob/ob mice showed marked hyperglycemia and insulin resistance, whereas fluid intake remained unaltered. Levels of total AGEs, MGO-derived hydroimidazolone 1, and RAGE in bladder tissues, as well as fluorescent AGEs in serum, were significantly elevated in ob/ob mice of either sex. Collagen content was also markedly elevated in the bladders of ob/ob mice. Void spot assays in filter paper in conscious mice revealed significant increases in total void volume and volume per void in ob/ob mice with no alterations of spot number. Treatment with ALT-711 significantly reduced the levels of MGO, AGEs, RAGE, and collagen content in ob/ob mice. In addition, ALT-711 treatment normalized the volume per void and increased the number of spots in ob/ob mice. Activation of AGEs-RAGE pathways by MGO in the bladder wall may contribute to the pathogenesis of diabetes-associated bladder dysfunction.NEW & NOTEWORTHY The involvement of methylglyoxal (MGO) and advanced glycation end products (AGEs) in bladder dysfunction of diabetic ob/ob mice treated with the AGE breaker ALT-711 was investigated here. Diabetic mice exhibited high levels of MGO, AGEs, receptor for AGEs (RAGE), and collagen in serum and/or bladder tissues along with increased volume per void, all of which were reduced by ALT-711. Activation of the MGO-AGEs-RAGE pathway in the bladder wall contributes to the pathogenesis of diabetes-associated bladder dysfunction.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Matheus L Medeiros
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Ana Carolina Ghezzi
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gabriel Alonso Dos Santos
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Glaucia Coelho Mello
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Fabíola Z Mónica
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Hanssen NMJ, Tikellis C, Pickering RJ, Dragoljevic D, Lee MKS, Block T, Scheijen JL, Wouters K, Miyata T, Cooper ME, Murphy AJ, Thomas MC, Schalkwijk CG. Pyridoxamine prevents increased atherosclerosis by intermittent methylglyoxal spikes in the aortic arches of ApoE -/- mice. Biomed Pharmacother 2023; 158:114211. [PMID: 36916437 DOI: 10.1016/j.biopha.2022.114211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Methylglyoxal (MGO) is a reactive glucose metabolite linked to diabetic cardiovascular disease (CVD). MGO levels surge during intermittent hyperglycemia. We hypothesize that these MGO spikes contribute to atherosclerosis, and that pyridoxamine as a MGO quencher prevents this injury. To study this, we intravenously injected normoglycemic 8-week old male C57Bl6 ApoE-/- mice with normal saline (NS, n = 10) or 25 µg MGO for 10 consecutive weeks (MGOiv, n = 11) with or without 1 g/L pyridoxamine (MGOiv+PD, n = 11) in the drinking water. We measured circulating immune cells by flow cytometry. We quantified aortic arch lesion area in aortic roots after Sudan-black staining. We quantified the expression of inflammatory genes in the aorta by qPCR. Intermittent MGO spikes weekly increased atherosclerotic burden in the arch 1.8-fold (NS: 0.9 ± 0.1 vs 1.6 ± 0.2 %), and this was prevented by pyridoxamine (0.8 ± 0.1 %). MGOiv spikes increased circulating neutrophils and monocytes (2-fold relative to NS) and the expression of ICAM (3-fold), RAGE (5-fold), S100A9 (2-fold) and MCP1 (2-fold). All these changes were attenuated by pyridoxamine. This study suggests that MGO spikes damages the vasculature independently of plasma glucose levels. Pyridoxamine and potentially other approaches to reduce MGO may prevent excess cardiovascular risk in diabetes.
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands
| | - Chris Tikellis
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Raelene J Pickering
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Dragana Dragoljevic
- Dept. of leukocyte biology and haematopoiesis, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Man Kit Sam Lee
- Dept. of leukocyte biology and haematopoiesis, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Tomasz Block
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jean Ljm Scheijen
- Dept. of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Kristiaan Wouters
- Dept. of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Japan
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Dept. of leukocyte biology and haematopoiesis, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Merlin C Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Casper G Schalkwijk
- Dept. of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Advanced Glycation End Products: New Clinical and Molecular Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147236. [PMID: 34299683 PMCID: PMC8306599 DOI: 10.3390/ijerph18147236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
Collapse
|
11
|
Lou M, Yuan D, Liao S, Tong L, Li J. Potential mechanisms of cerebrovascular diseases in COVID-19 patients. J Neurovirol 2021; 27:35-51. [PMID: 33534131 PMCID: PMC7856859 DOI: 10.1007/s13365-021-00948-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) in 2019, it is gaining worldwide attention at the moment. Apart from respiratory manifestations, neurological dysfunction in COVID-19 patients, especially the occurrence of cerebrovascular diseases (CVD), has been intensively investigated. In this review, the effects of COVID-19 infection on CVD were summarized as follows: (I) angiotensin-converting enzyme 2 (ACE2) may be involved in the attack on vascular endothelial cells by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to endothelial damage and increased subintimal inflammation, which are followed by hemorrhage or thrombosis; (II) SARS-CoV-2 could alter the expression/activity of ACE2, consequently resulting in the disruption of renin-angiotensin system which is associated with the occurrence and progression of atherosclerosis; (III) upregulation of neutrophil extracellular traps has been detected in COVID-19 patients, which is closely associated with immunothrombosis; (IV) the inflammatory cascade induced by SARS-CoV-2 often leads to hypercoagulability and promotes the formation and progress of atherosclerosis; (V) antiphospholipid antibodies are also detected in plasma of some severe cases, which aggravate the thrombosis through the formation of immune complexes; (VI) hyperglycemia in COVID-19 patients may trigger CVD by increasing oxidative stress and blood viscosity; (VII) the COVID-19 outbreak is a global emergency and causes psychological stress, which could be a potential risk factor of CVD as coagulation, and fibrinolysis may be affected. In this review, we aimed to further our understanding of CVD-associated COVID-19 infection, which could improve the therapeutic outcomes of patients. Personalized treatments should be offered to COVID-19 patients at greater risk for stroke in future clinical practice.
Collapse
Affiliation(s)
- Manxue Lou
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dezhi Yuan
- Department of Neurology, First Affiliated Hospital of Army Medical University (Chongqing Southwest Hospital), Chongqing, 400038, China
- Department of Neurology, People's Hospital of Shapingba District, Chongqing, 400038, China
| | - Shengtao Liao
- Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Linyan Tong
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jinfang Li
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
12
|
Fang X, Liu L, Zhou S, Zhu M, Wang B. N‑acetylcysteine inhibits atherosclerosis by correcting glutathione‑dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice. Mol Med Rep 2021; 23:201. [PMID: 33495825 PMCID: PMC7821347 DOI: 10.3892/mmr.2021.11840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
In diabetic animal models, high plasma/tissue levels of methylglyoxal (MG) are implicated in atherosclerosis. N-acetylcysteine (NAC) is a cysteine prodrug that replenishes intracellular glutathione (GSH) levels, which can increase the elimination of MG in diabetes mellitus (DM). The present study investigated the anti-atherosclerotic role of NAC in DM and aimed to determine whether the mechanism involved GSH-dependent MG elimination in the aorta. Apolipoprotein-E knockdown (ApoE−/−) mice injected with streptozotocin for 5 days exhibited enhanced atherosclerotic plaque size in the aortic root; notably, a high-lipid diet aggravated this alteration. NAC treatment in the drinking water for 12 weeks decreased the size of the atherosclerotic lesion, which was associated with a reduction in MG-dicarbonyl stress and oxidative stress, as indicated by decreased serum malondialdehyde levels, and increased superoxide dismutase-1 and glutathione peroxidase-1 levels in the diabetic aorta. Endothelial damage was also corrected by NAC, as indicated by an increase in the expression levels of phosphorylated (p-)Akt and p-endothelial nitric oxide synthase (eNOS) in the aorta, as well as nitric oxide (NO) in the serum. In addition, MG-treated human umbilical vein endothelial cells (HUVECs) exhibited increased reactive oxygen species and decreased antioxidant enzyme expression levels. NAC treatment corrected the alteration in HUVECs induced by MG, whereas the protective role of NAC was blocked via inhibition of GSH. These findings indicated that the diabetic aorta was more susceptible to atherosclerotic lesions compared with non-diabetic ApoE−/− mice. Furthermore, NAC may offer protection against atherosclerotic development in DM by altering aortic and systemic responses via correcting GSH-dependent MG elimination, leading to decreased oxidative stress and restoration of the p-Akt/p-eNOS pathway in the aorta.
Collapse
Affiliation(s)
- Xin Fang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lihua Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaoqiong Zhou
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Mengen Zhu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
13
|
Endothelial Dysfunction in Diabetes Is Aggravated by Glycated Lipoproteins; Novel Molecular Therapies. Biomedicines 2020; 9:biomedicines9010018. [PMID: 33375461 PMCID: PMC7823542 DOI: 10.3390/biomedicines9010018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes and its vascular complications affect an increasing number of people. This disease of epidemic proportion nowadays involves abnormalities of large and small blood vessels, all commencing with alterations of the endothelial cell (EC) functions. Cardiovascular diseases are a major cause of death and disability among diabetic patients. In diabetes, EC dysfunction (ECD) is induced by the pathological increase of glucose and by the appearance of advanced glycation end products (AGE) attached to the plasma proteins, including lipoproteins. AGE proteins interact with their specific receptors on EC plasma membrane promoting activation of signaling pathways, resulting in decreased nitric oxide bioavailability, increased intracellular oxidative and inflammatory stress, causing dysfunction and finally apoptosis of EC. Irreversibly glycated lipoproteins (AGE-Lp) were proven to have an important role in accelerating atherosclerosis in diabetes. The aim of the present review is to present up-to-date information connecting hyperglycemia, ECD and two classes of glycated Lp, glycated low-density lipoproteins and glycated high-density lipoproteins, which contribute to the aggravation of diabetes complications. We will highlight the role of dyslipidemia, oxidative and inflammatory stress and epigenetic risk factors, along with the specific mechanisms connecting them, as well as the new promising therapies to alleviate ECD in diabetes.
Collapse
|
14
|
Hanssen NMJ, Kraakman MJ, Flynn MC, Nagareddy PR, Schalkwijk CG, Murphy AJ. Postprandial Glucose Spikes, an Important Contributor to Cardiovascular Disease in Diabetes? Front Cardiovasc Med 2020; 7:570553. [PMID: 33195459 PMCID: PMC7530333 DOI: 10.3389/fcvm.2020.570553] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical trials investigating whether glucose lowering treatment reduces the risk of CVD in diabetes have thus far yielded mixed results. However, this doesn't rule out the possibility of hyperglycemia playing a major causal role in promoting CVD or elevating CVD risk. In fact, lowering glucose appears to promote some beneficial long-term effects, and continuous glucose monitoring devices have revealed that postprandial spikes of hyperglycemia occur frequently, and may be an important determinant of CVD risk. It is proposed that these short, intermittent bursts of hyperglycemia may have detrimental effects on several organ systems including the vasculature and the hematopoietic system collectively contributing to the state of elevated CVD risk in diabetes. In this review, we summarize the potential mechanisms through which hyperglycemic spikes may increase atherosclerosis and how new and emerging interventions may combat this.
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Diabetes Centre, Amsterdam University Medical Centre, Amsterdam, Netherlands.,Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Michael J Kraakman
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michelle C Flynn
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH, United States
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handb Exp Pharmacol 2020; 264:395-423. [PMID: 32809100 DOI: 10.1007/164_2020_391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of chemically different compounds are known to inhibit the formation and accumulation of advanced glycation end products (AGEs) or disrupt associated signalling pathways. There is evidence that some of these agents can provide end-organ protection in chronic diseases including diabetes. Whilst this group of therapeutics are structurally and functionally different and have a range of mechanisms of action, they ultimately reduce the deleterious actions and the tissue burden of advanced glycation end products. To date it remains unclear if this is due to the reduction in tissue AGE levels per se or the modulation of downstream signal pathways. Some of these agents either stimulate antioxidant defence or reduce the formation of reactive oxygen species (ROS), modify lipid profiles and inhibit inflammation. A number of existing treatments for glucose lowering, hypertension and hyperlipidaemia are also known to reduce AGE formation as a by-product of their action. Targeted AGE formation inhibitors or AGE cross-link breakers have been developed and have shown beneficial effects in animal models of diabetic complications as well as other chronic conditions. However, only a few of these agents have progressed to clinical development. The failure of clinical translation highlights the importance of further investigation of the advanced glycation pathway, the diverse actions of agents which interfere with AGE formation, cross-linking or AGE receptor activation and their effect on the development and progression of chronic diseases including diabetic complications. Advanced glycation end products (AGEs) are (1) proteins or lipids that become glycated as a result of exposure to sugars or (2) non-proteinaceous oxidised lipids. They are implicated in ageing and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney and Alzheimer's disease. Several antihypertensive and antidiabetic agents and statins also indirectly lower AGEs. Direct AGE inhibitors currently investigated include pyridoxamine and epalrestat, the inhibition of the formation of reactive dicarbonyls such as methylglyoxal as an important precursor of AGEs via increased activation of the detoxifying enzyme Glo-1 and inhibitors of NOX-derived ROS to reduce the AGE/RAGE signalling.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr -/- mice. Nat Commun 2020; 11:4084. [PMID: 32796843 PMCID: PMC7429830 DOI: 10.1038/s41467-020-17915-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr−/− mice, a model of FH. Compared to hypercholesterolemic Ldlr−/− mice treated with vehicle or 4-HOBA, a nonreactive analogue, 2-HOBA decreases atherosclerosis by 60% in en face aortas, without changing plasma cholesterol. Ldlr−/− mice treated with 2-HOBA have reduced MDA-LDL and MDA-HDL levels, and their HDL display increased capacity to reduce macrophage cholesterol. Importantly, 2-HOBA reduces the MDA- and IsoLG-lysyl content in atherosclerotic aortas versus 4-HOBA. Furthermore, 2-HOBA reduces inflammation and plaque apoptotic cells and promotes efferocytosis and features of stable plaques. Dicarbonyl scavenging with 2-HOBA has multiple atheroprotective effects in a murine FH model, supporting its potential as a therapeutic approach for atherosclerotic cardiovascular disease. Hypercholesterolemia is associated with lipid peroxidation induced reactive dicarbonyl adducts. Here the authors show that the dicarbonyl scavenger, 2-hydroxybenzylamine(2-HOBA), decreases reactive dicarbonyl modifications of LDL and HDL, improves HDL function, reduces atherosclerosis and promotes features of stable plaques in a mouse model of hypercholestrolemia.
Collapse
|
17
|
Lin S, Zhang Q, Li S, Zhang T, Wang L, Qin X, Zhang M, Shi S, Cai X. Antioxidative and Angiogenesis-Promoting Effects of Tetrahedral Framework Nucleic Acids in Diabetic Wound Healing with Activation of the Akt/Nrf2/HO-1 Pathway. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11397-11408. [PMID: 32083455 DOI: 10.1021/acsami.0c00874] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Lang Wang
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
18
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
19
|
Abstract
Glycation is the process of linking a sugar and free amino groups of proteins. Cross-linking of glycation products to proteins results in the formation of cross-linked proteins that inhibit the normal functioning of the cell. Advanced glycation end products (AGEs) are risk molecules for the cell aging process. These ends products are increasingly synthesized in diabetes and are essentially responsible for diabetic complications. They accumulate in the extracellular matrix and bind to receptors (receptor of AGE [RAGE]) to generate oxidative stress and inflammation. particularly in the cardiovascular system. Treatment methods targeting the AGE system may be of clinical importance in reducing and preventing the complications induced by AGEs in diabetes and old age. The AGE cross-link breaker alagebrium (a thiazolium derivative) is the most studied anti-AGE compound in the clinical field. Phase III clinical studies with alagebrium have been successfully conducted, and this molecule has positive effects on cardiovascular hypertrophy, diabetes, hypertension, vascular sclerotic pathologies, and similar processes. However, the mechanism is still not fully understood. The primary mechanism is that alagebrium removes newly formed AGEs by chemically separating α-dicarbonyl carbon-carbon bonds formed in cross-linked structures. However, it is also reported that alagebrium is a methylglyoxal effective inhibitor. It is not yet clear whether alagebrium inhibits copper-catalyzed ascorbic acid oxidation through metal chelation or destruction of the AGEs. It is not known whether alagebrium has a direct association with RAGEs. The safety profile is favorably in humans, and studies have been terminated due to financial insufficiency and inability to license as a drug.
Collapse
Affiliation(s)
- Cigdem Toprak
- Department of Medical Pharmacology, Eskisehir Osmangazi University, School of Medicine, Eskisehir, Turkey
| | - Semra Yigitaslan
- Department of Medical Pharmacology, Eskisehir Osmangazi University, School of Medicine, Eskisehir, Turkey
| |
Collapse
|
20
|
Protective effects of Croton hookeri on streptozotocin-induced diabetic nephropathy. Food Chem Toxicol 2019; 135:110873. [PMID: 31600566 DOI: 10.1016/j.fct.2019.110873] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
In this study, the protective effects of Croton hookeri (CH) extract on renal injury were investigated in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by a single injection of STZ (45 mg/kg) to Sprague-Dawley rats. After 5 days, CH extract (200 mg/kg) was administered daily by oral gavage for 2 weeks. Administration of CH extracts significantly reduced blood glucose levels in STZ-induced diabetic rats. STZ-induced changes in total cholesterol, LDL, HDL, ALT, AST, BUN, and serum creatinine levels were significantly restored by treatment with CH extract. Abnormal levels of SOD, catalase, glutathione, and oxidized GSH (GSSG) in STZ-treated rats were also significantly recovered by CH extract treatment. CH extract markedly reduced the expression of collagen-1, fibronectin, and α-SMA in the kidney of STZ-induced diabetic rats. In particular, oxidative DNA damages, MDA, TGF-β, IL-1β, and IL-6 levels were significantly reduced in STZ-treated rats following treatment with CH extract, whereas IL-10 showed opposite trend. STZ-induced SIRT1, SIRT3 downregulation and cloudin-1 upregulation in the kidney were dramatically recovered by CH extract treatment. Our data suggest that CH extract protects against diabetic-induced nephropathy by inhibiting oxidative stress and inflammation. Therefore, it has potential as a food supplement to alleviate renal dysfunction caused by diabetes-induced nephropathy.
Collapse
|
21
|
Wang Y, Li Y, Yang Z, Wang Z, Chang J, Zhang T, Chi Y, Han N, Zhao K. Pyridoxamine Treatment of HK-2 Human Proximal Tubular Epithelial Cells Reduces Oxidative Stress and the Inhibition of Autophagy Induced by High Glucose Levels. Med Sci Monit 2019; 25:1480-1488. [PMID: 30799433 PMCID: PMC6400021 DOI: 10.12659/msm.914799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Diabetic nephropathy is a predominant cause of renal failure, which is an important chronic complication of diabetes. Pyridoxamine (PM) has been reported to protect renal tubular epithelial cells against oxidative damage and delay or inhibit the development and generation of glucose-induced renal insufficiency at the early stage of disease. In this study, we attempted to explore the protection mechanism of PM on human proximal tubular epithelial cells (HK-2 cells) induced by high glucose. Material/Methods HK-2 cells were cultivated by high glucose medium in the absence or presence of PM. Cell Counting Kit-8 was used to investigate the most appropriate drug concentration of PM by detecting the cell viability of HK-2 cells. The expression of autophagy-related protein Beclin-1, LC-3II, and p62 was measured by western blot analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence. The expression and localization of Beclin-1 and p62 were also detected via immunofluorescence. The intracellular reactive oxygen species generation was detected using the reactive oxygen species assay kit. The effects of PM on antioxidant defenses were evaluated with glutathione peroxidase (GPx), manganese superoxide dismutase (MnSOD) activity, and glutathione/glutathione disulfide (GSH/GSSG) ratio. Results High glucose levels were able to upregulate the expression of oxidative stress associated protein and inhibit autophagy-associated changes verified by western blotting, RT-qPCR and immunofluorescence. Administration of PM reversed the high glucose-induced low-expressed Beclin-1 and LC-3II, and overexpressed p62 and intracellular reactive oxygen species levels. Furthermore, non-enzymatic antioxidant defenses and enzymatic antioxidant defenses were turned on by the application of PM. Conclusions Treatment with PM could reverse high glucose-induced inhibition of autophagy and oxidative stress.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Nephrology, Bayannur City Hospital, Bayannaoer, Inner Mongolia, China (mainland)
| | - Ying Li
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Zhiping Yang
- Department of Urinary Surgery, Bayannur City Hospital, Bayannaoer, Inner Mongolia, China (mainland)
| | - Ziqiang Wang
- Department of Nephrology, Cangzhou People's Hospital, Cangzhou, Hebei, China (mainland)
| | - Jiang Chang
- Department of Hepatobiliary Surgery, Bayannur City Hospital, Bayannaoer, Inner Mongolia, China (mainland)
| | - Tao Zhang
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yanqing Chi
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ning Han
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Kunxiao Zhao
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
22
|
Jung E, Kim CS, Jung W, Park SB, Pyo MK, Kim J. Ginseng Extract Modified by Pectin Lyase Inhibits Retinal Vascular Injury and Blood-Retinal Barrier Breakage in a Rat Model of Diabetes. J Med Food 2019; 22:337-343. [PMID: 30785359 DOI: 10.1089/jmf.2018.4256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
GS-E3D is an enzymatically modified ginseng extract by pectin lyase. In this study, we evaluated the preventive effects of GS-E3D on blood-retinal barrier (BRB) leakage in a rat model of diabetes. To produce diabetes, rats were injected with streptozotocin. GS-E3D was orally gavaged at 25, 50, and 100 mg/kg body weight for 6 weeks. We then compared the effect of GS-E3D with that of an unmodified ginseng extract (UGE) on retinal vascular leakage. The administration of GS-E3D significantly blocked diabetes-induced BRB breakdown. Immunofluorescence staining showed that GS-E3D reduced the loss of occludin in diabetic rats. In TUNEL staining, the number of apoptotic retinal microvascular cells was dose dependently decreased by GS-E3D treatment. GS-E3D decreased the accumulations of advanced glycation end products in the retinal vessels. In addition, the inhibition potential of GS-E3D on BRB breakage was stronger compared with UGE. These results indicate that GS-E3D could be a beneficial treatment option for preventing diabetes-induced retinal vascular injury.
Collapse
Affiliation(s)
- Eunsoo Jung
- 1 Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Chan-Sik Kim
- 2 Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Wookwon Jung
- 3 Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Su-Bin Park
- 3 Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Mi-Kyung Pyo
- 4 International Ginseng and Herb Research Institute, Geumsan, South Korea
| | - Junghyun Kim
- 2 Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,3 Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
23
|
Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:611-619. [PMID: 30611860 DOI: 10.1016/j.bbadis.2019.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023]
Abstract
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome.
Collapse
Affiliation(s)
- Marinos Kosmopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Drekolias
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Phaedon D Zavras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
24
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-260. [PMID: 30384259 PMCID: PMC6205410 DOI: 10.1016/j.redox.2018.09.025] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Collapse
Affiliation(s)
- Ting Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Ting Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Danli Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yangyang Hu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jing Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
25
|
Hanssen NMJ, Westerink J, Scheijen JLJM, van der Graaf Y, Stehouwer CDA, Schalkwijk CG. Higher Plasma Methylglyoxal Levels Are Associated With Incident Cardiovascular Disease and Mortality in Individuals With Type 2 Diabetes. Diabetes Care 2018; 41:1689-1695. [PMID: 29784769 DOI: 10.2337/dc18-0159] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/19/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Methylglyoxal (MGO) is a reactive dicarbonyl compound and a potential key player in diabetic cardiovascular disease (CVD). Whether plasma MGO levels are associated with CVD in type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS We included 1,003 individuals (mean ± SD age 59.1 ± 10.5 years, 69.3% male, and 61.6% with prior CVD) with type 2 diabetes from the Second Manifestations of ARTerial disease cohort (SMART). We measured plasma MGO levels and two other dicarbonyls (glyoxal [GO] and 3-deoxyglucosone [3-DG]) at baseline with mass spectrometry. Median follow-up of CVD events was 8.6 years. Data were analyzed with Cox regression with adjustment for sex, age, smoking, systolic blood pressure, total cholesterol, HbA1c, BMI, prior CVD, and medication use. Hazard ratios are expressed per SD Ln-transformed dicarbonyl. RESULTS A total of 287 individuals suffered from at least one CVD event (n = 194 fatal events, n = 146 myocardial infarctions, and n = 72 strokes); 346 individuals died, and 60 individuals underwent an amputation. Higher MGO levels were associated with total (hazard ratio 1.26 [95% CI 1.11-1.42]) and fatal (1.49 [1.30-1.71]) CVD and with all-cause mortality (1.25 [1.11-1.40]), myocardial infarction (1.22 [1.02-1.45]), and amputations (1.36 [1.05-1.76]). MGO levels were not apparently associated with stroke (1.03 [0.79-1.35]). Higher GO levels were significantly associated with fatal CVD (1.17 [1.00-1.37]) but not with other outcomes. 3-DG was not significantly associated with any of the outcomes. CONCLUSIONS Plasma MGO and GO levels are associated with cardiovascular mortality in individuals with type 2 diabetes. Influencing dicaronyl levels may therefore be a target to reduce CVD in type 2 diabetes.
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Yolanda van der Graaf
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | | | | |
Collapse
|
26
|
Cooper ME, El-Osta A, Allen TJ, Watson AMD, Thomas MC, Jandeleit-Dahm KAM. Metabolic Karma-The Atherogenic Legacy of Diabetes: The 2017 Edwin Bierman Award Lecture. Diabetes 2018; 67:785-790. [PMID: 29678824 DOI: 10.2337/dbi18-0010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiovascular disease, despite all the recent advances in treatment of the various risk factors, remains the major cause of mortality in both type 1 and type 2 diabetes. Experimental models of diabetes-associated atherosclerosis, despite their limitations in recapitulating the human context, have assisted in the elucidation of molecular and cellular pathways implicated in the development and progression of macrovascular injury in diabetes. Our own studies have emphasized the role of oxidative stress and advanced glycation and identified potential targets for vasoprotective therapies in the setting of diabetes. Furthermore, it has been clearly shown that previous episodes of hyperglycemia play a key role in promoting end-organ injury in diabetes, as shown in clinical trials such as the UK Prospective Diabetes Study (UKPDS), Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation Observational Study (ADVANCE-ON), and the Diabetes Control and Complications Trial/ Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC). The cause of this phenomenon, known as metabolic memory, remains to be elucidated, but it appears that epigenetic pathways, including glucose-induced histone methylation, play a central role. Further delineation of these pathways and their link to not only glucose but also other factors implicated in vascular injury should lead to more rational, potentially more effective therapies to retard diabetes-associated cardiovascular disease.
Collapse
Affiliation(s)
- Mark Emmanuel Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Assam El-Osta
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Terri Jean Allen
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | | | | | | |
Collapse
|
27
|
Menini S, Iacobini C, de Latouliere L, Manni I, Ionta V, Blasetti Fantauzzi C, Pesce C, Cappello P, Novelli F, Piaggio G, Pugliese G. The advanced glycation end-product N ϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J Pathol 2018. [PMID: 29533466 DOI: 10.1002/path.5072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE Nϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for the risk management and prevention of PaC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Luisa de Latouliere
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Vittoria Ionta
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| | | | - Carlo Pesce
- DINOGMI, University of Genoa Medical School, Genoa, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, 'La Sapienza' University, Rome, Italy
| |
Collapse
|
28
|
Pyridoxamine improves survival and limits cardiac dysfunction after MI. Sci Rep 2017; 7:16010. [PMID: 29167580 PMCID: PMC5700185 DOI: 10.1038/s41598-017-16255-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
Advanced glycation end products (AGEs) play a key role in the progression of heart failure. Whether treatments limiting AGEs formation would prevent adverse left ventricular remodeling after myocardial infarction (MI) remain unknown. We investigated whether pyridoxamine (PM) could limit adverse cardiac outcome in MI. Rats were divided into MI, MI + PM and Sham. Echocardiography and hemodynamic parameters were used to assess cardiac function 8 weeks post-surgery. Total interstitial collagen, collagen I and collagen III were quantified using Sirius Red and polarized light microscopy. PM improved survival following LAD occlusion. Pre-treatment with PM significantly decreased the plasma AGEs levels. MI rats treated with PM displayed reduced left ventricular end-diastolic pressure and tau compared to untreated MI rats. Deformation parameters were also improved with PM. The preserved diastolic function was related to the reduced collagen content, in particular in the highly cross-linked collagen type I, mainly in the peri-infarct region, although not via TGF-β1 pathway. Our data indicate that PM treatment prevents the increase in AGEs levels and reduces collagen levels in a rat model of MI, resulting in an improved cardiac phenotype. As such, therapies targeting formation of AGEs might be beneficial in the prevention and/or treatment of maladaptive remodeling following MI.
Collapse
|
29
|
Protective Effects of Pyridoxamine Supplementation in the Early Stages of Diet-Induced Kidney Dysfunction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2682861. [PMID: 29214163 PMCID: PMC5682048 DOI: 10.1155/2017/2682861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
Pyridoxamine, a structural analog of vitamin B6 that exerts antiglycative effects, has been proposed as supplementary approach in patients with initial diabetic nephropathy. However, the molecular mechanism(s) underlying its protective role has been so far slightly examined. C57Bl/6J mice were fed with a standard diet (SD) or a diet enriched in fat and fructose (HD) for 12 weeks. After 3 weeks, two subgroups of SD and HD mice started pyridoxamine supplementation (150 mg/kg/day) in the drinking water. HD fed mice showed increased body weight and impaired glucose tolerance, whereas pyridoxamine administration significantly improved insulin sensitivity, but not body weight, and reduced diet-induced increase in serum creatinine and urine albumin. Kidney morphology of HD fed mice showed strong vacuolar degeneration and loss of tubule brush border, associated with a drastic increase in both advanced glycation end products (AGEs) and AGEs receptor (RAGE). These effects were significantly counteracted by pyridoxamine, with consequent reduction of the diet-induced overactivation of NF-kB and Rho/ROCK pathways. Overall, the present study demonstrates for the first time that the administration of the antiglycative compound pyridoxamine can reduce the early stages of diet-dependent kidney injury and dysfunction by interfering at many levels with the profibrotic signaling and inflammatory cascades.
Collapse
|
30
|
Hanssen NMJ, Scheijen JLJM, Jorsal A, Parving HH, Tarnow L, Rossing P, Stehouwer CDA, Schalkwijk CG. Higher Plasma Methylglyoxal Levels Are Associated With Incident Cardiovascular Disease in Individuals With Type 1 Diabetes: A 12-Year Follow-up Study. Diabetes 2017; 66:2278-2283. [PMID: 28588100 DOI: 10.2337/db16-1578] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/21/2017] [Indexed: 11/13/2022]
Abstract
Methylglyoxal (MGO), a major precursor for advanced glycation end products, is increased in diabetes. In diabetic rodents, inhibition of MGO prevents cardiovascular disease (CVD). Whether plasma MGO levels are associated with incident CVD in people with type 1 diabetes is unknown. We included 159 individuals with persistent normoalbuminuria and 162 individuals with diabetic nephropathy (DN) from the outpatient clinic at Steno Diabetes Center. We measured MGO at baseline and recorded fatal and nonfatal CVD over a median follow-up of 12.3 years (interquartile range 7.6-12.5 years). Data were analyzed by Cox regression, with adjustment for sex, age, HbA1c, DN, diabetes duration, smoking, systolic blood pressure, antihypertensive medication, and BMI. During follow-up, 73 individuals suffered at least one CVD event (36 fatal and 53 nonfatal). Higher MGO levels were associated with total, fatal, and nonfatal incident CVD (hazard ratios [HRs] 1.47 [95% CI 1.13-1.91], 1.42 [1.01-1.99], and 1.46 [1.08-1.98], respectively). We observed a similar trend for total mortality (HR 1.24 [0.99-1.56]). This study shows for the first time in our knowledge that plasma MGO levels are associated with cardiovascular events in individuals with type 1 diabetes. MGO may explain, at least in part, the increased risk for CVD in type 1 diabetes.
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Anders Jorsal
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Hans-Henrik Parving
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health Science, Aarhus University, Aarhus, Denmark
- Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Lise Tarnow
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health Science, Aarhus University, Aarhus, Denmark
- Nordsjællands Hospital, Hillerød, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health Science, Aarhus University, Aarhus, Denmark
- Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| |
Collapse
|
31
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
32
|
Davies SS, Zhang LS. Reactive Carbonyl Species Scavengers-Novel Therapeutic Approaches for Chronic Diseases. ACTA ACUST UNITED AC 2017; 3:51-67. [PMID: 28993795 DOI: 10.1007/s40495-017-0081-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF THE REVIEW To summarize recent evidence supporting the use of reactive carbonyl species scavengers in the prevention and treatment of disease. RECENT FINDINGS The newly developed 2-aminomethylphenol class of scavengers shows great promise in preclinical trials for a number of diverse conditions including neurodegenerative diseases and cardiovascular disease. In addition, new studies with the thiol-based and imidazole-based scavengers have found new applications outside of adjunctive therapy for chemotherapeutics. SUMMARY Reactive oxygen species (ROS) generated by cells and tissues act as signaling molecules and as cytotoxic agents to defend against pathogens, but ROS also cause collateral damage to vital cellular components. The polyunsaturated fatty acyl chains of phospholipids in the cell membranes are particularly vulnerable to damaging peroxidation by ROS. Evidence suggests that the breakdown of these peroxidized lipids to reactive carbonyls species plays a critical role in many chronic diseases. Antioxidants that abrogate ROS-induced formation of reactive carbonyl species also abrogate normal ROS signaling and thus exert both beneficial and adverse functional effects. The use of scavengers of reactive dicarbonyl species represent an alternative therapeutic strategy to potentially mitigate the adverse effects of ROS without abrogating normal signaling by ROS. In this review, we focus on three classes of reactive carbonyl species scavengers: thiol-based scavengers (2-mercaptoethanesulfonate and amifostine), imidazole-based scavengers (carnosine and its analogs), and 2-aminomethylphenols-based scavengers (pyridoxamine, 2-hydroxybenzylamine, and 5'-O-pentyl-pyridoxamine) that are either undergoing pre-clinical studies, advancing to clinical trials, or are already in clinical use.
Collapse
Affiliation(s)
- Sean S Davies
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| | - Linda S Zhang
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| |
Collapse
|
33
|
Kim J, Kim CS, Kim YS, Lee IS, Kim JS. Jakyakgamcho-tang and Its Major Component, Paeonia Lactiflora, Exhibit Potent Anti-glycation Properties. J Exerc Nutrition Biochem 2016; 20:60-64. [PMID: 28150470 PMCID: PMC5545203 DOI: 10.20463/jenb.2016.0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
[Purpose] Advanced glycation end products (AGEs) have been implicated in the pathogenesis of diabetes and other age-related diseases. AGE inhibitors or breakers, such as aminoguanidine and alagebrium, have been proposed as therapeutic agents for AGE-related disorders. Jakyakgamcho-tang (JGT) is a well-known traditional herbal formula, which consists of the radix of Paeonia lactiflora Pallas (PR) and the radix and rhizome of Glycyrrhiza uralensis Fisch (GR). The purpose of this study was to evaluate the inhibitory and breaking activities of JGT, PR, and GR against AGEs. [Methods] JGT, PR, and GR extracts were prepared in hot water. We performed in vitro assays to evaluate their inhibitory activity against glycation of bovine serum albumin (BSA) by high glucose and their ability to break the already formed AGEs. [Results] In the in vitro AGE formation assay, JGT and PR dose-dependently inhibited AGE-BSA formation (half-maximal inhibitory concentration, IC50, = 41.41 ± 0.36 and 6.84 ± 0.09 μg/mL, respectively). In the breakdown assay of the preformed AGE-BSA-collagen complexes, JGT and PR exhibited potent breaking activities (IC50 = 6.72 ± 1.86 and 7.45 ± 0.47 μg/mL, respectively). However, GR showed a weaker inhibitory activity and no breaking activity against AGEs. [Conclusion] This study suggests that JGT and PR could be valuable drug candidates for treatment of AGE-related diseases by reducing AGE burden.
Collapse
Affiliation(s)
- Junghyun Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon Republic of Korea
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon Republic of Korea
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon Republic of Korea
| | - Ik Soo Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon Republic of Korea
| | - Jin Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon Republic of Korea
| |
Collapse
|
34
|
Illien-Jünger S, Torre O, Kindschuh W, Chen X, Laudier D, Iatridis J. AGEs induce ectopic endochondral ossification in intervertebral discs. Eur Cell Mater 2016; 32:257-270. [PMID: 27858401 PMCID: PMC5482230 DOI: 10.22203/ecm.v032a17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ectopic calcifications in intervertebral discs (IVDs) are known characteristics of IVD degeneration that are not commonly reported but may be implicated in structural failure and dysfunctional IVD cell metabolic responses. This study investigated the novel hypothesis that ectopic calcifications in the IVD are associated with advanced glycation end products (AGEs) via hypertrophy and osteogenic differentiation. Histological analyses of human IVDs from several degeneration stages revealed areas of ectopic calcification within the nucleus pulposus and at the cartilage endplate. These ectopic calcifications were associated with cells positive for the AGE methylglyoxal-hydroimidazolone-1 (MG-H1). MG-H1 was also co-localised with Collagen 10 (COL10) and Osteopontin (OPN) suggesting osteogenic differentiation. Bovine nucleus pulposus and cartilaginous endplate cells in cell culture demonstrated that 200 mg/mL AGEs in low-glucose media increased ectopic calcifications after 4 d in culture and significantly increased COL10 and OPN expression. The receptor for AGE (RAGE) was involved in this differentiation process since its inhibition reduced COL10 and OPN expression. We conclude that AGE accumulation is associated with endochondral ossification in IVDs and likely acts via the AGE/RAGE axis to induce hypertrophy and osteogenic differentiation in IVD cells. We postulate that this ectopic calcification may play an important role in accelerated IVD degeneration including the initiation of structural defects. Since orally administered AGE and RAGE inhibitors are available, future investigations on AGE/RAGE and endochondral ossification may be a promising direction for developing non-invasive treatment against progression of IVD degeneration.
Collapse
Affiliation(s)
- S. Illien-Jünger
- Address for correspondence: Svenja Illien-Jünger Leni and Peter W. May Department of Orthopaedics, Box 1188, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, New York, Telephone number: +1 212 241 1513,
| | | | | | | | | | | |
Collapse
|
35
|
Targeting advanced glycation with pharmaceutical agents: where are we now? Glycoconj J 2016; 33:653-70. [PMID: 27392438 DOI: 10.1007/s10719-016-9691-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Advanced glycation end products (AGEs) are the final products of the Maillard reaction, a complex process that has been studied by food chemists for a century. Over the past 30 years, the biological significance of advanced glycation has also been discovered. There is mounting evidence that advanced glycation plays a homeostatic role within the body and that food-related Maillard products, intermediates such as reactive α-dicarbonyl compounds and AGEs, may influence this process. It remains to be understood, at what point AGEs and their intermediates become pathogenic and contribute to the pathogenesis of chronic diseases that inflict current society. Diabetes and its complications have been a major focus of AGE biology due to the abundance of excess sugar and α-dicarbonyls in this family of diseases. While further temporal information is required, a number of pharmacological agents that inhibit components of the advanced glycation pathway have already showed promising results in preclinical models. These therapies appear to have a wide range of mechanistic actions to reduce AGE load. Some of these agents including Alagebrium, have translated successfully to clinical trials, while others such as aminoguanidine, have had undesirable side-effect profiles. This review will discuss different pharmacological agents that have been used to reduce AGE burden in preclinical models of disease with a focus on diabetes and its complications, compare outcomes of those therapies that have reached clinical trials, and provide further rationale for the use of inhibitors of the glycation pathway in chronic diseases.
Collapse
|
36
|
Mastrocola R, Nigro D, Chiazza F, Medana C, Dal Bello F, Boccuzzi G, Collino M, Aragno M. Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming via SREBP-1c dysregulation in mice. Free Radic Biol Med 2016; 91:224-35. [PMID: 26721591 DOI: 10.1016/j.freeradbiomed.2015.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/07/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
Advanced Glycation End-Products (AGEs) have been recently related to the onset of metabolic diseases and related complications. Moreover, recent findings indicate that AGEs can endogenously be formed by high dietary sugars, in particular by fructose which is widely used as added sweetener in foods and drinks. The aim of the present study was to investigate the impact of a high-fructose diet and the causal role of fructose-derived AGEs in mice skeletal muscle morphology and metabolism. C57Bl/6J mice were fed a standard diet (SD) or a 60% fructose diet (HFRT) for 12 weeks. Two subgroups of SD and HFRT mice received the anti-glycative compound pyridoxamine (150 mg/kg/day) in the drinking water. At the end of protocol high levels of AGEs were detected in both plasma and gastrocnemius muscle of HFRT mice associated to impaired expression of AGE-detoxifying AGE-receptor 1. In gastrocnemius, AGEs upregulated the lipogenesis by multiple interference on SREBP-1c through downregulation of the SREBP-inhibiting enzyme SIRT-1 and increased glycation of the SREBP-activating protein SCAP. The AGEs-induced SREBP-1c activation affected the expression of myogenic regulatory factors leading to alterations in fiber type composition, associated with reduced mitochondrial efficiency and muscular strength. Interestingly, pyridoxamine inhibited AGEs generation, thus counteracting all the fructose-induced alterations. The unsuspected involvement of diet-derived AGEs in muscle metabolic derangements and proteins reprogramming opens new perspectives in pathogenic mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- R Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| | - D Nigro
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - F Chiazza
- Department of Drug Science and Technology, University of Turin, Italy
| | - C Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - F Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - G Boccuzzi
- Department of Medical Sciences, University of Turin, Italy
| | - M Collino
- Department of Drug Science and Technology, University of Turin, Italy
| | - M Aragno
- Department of Clinical and Biological Sciences, University of Turin, Italy
| |
Collapse
|
37
|
Koulis C, Watson A, Gray S, Jandeleit-Dahm K. Linking RAGE and Nox in diabetic micro- and macrovascular complications. DIABETES & METABOLISM 2015; 41:272-281. [DOI: 10.1016/j.diabet.2015.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 12/31/2022]
|
38
|
Kim J, Kim CS, Moon MK, Kim JS. Epicatechin breaks preformed glycated serum albumin and reverses the retinal accumulation of advanced glycation end products. Eur J Pharmacol 2015; 748:108-14. [DOI: 10.1016/j.ejphar.2014.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/21/2014] [Accepted: 12/07/2014] [Indexed: 12/26/2022]
|
39
|
Hanssen NMJ, Beulens JWJ, van Dieren S, Scheijen JLJM, van der A DL, Spijkerman AMW, van der Schouw YT, Stehouwer CDA, Schalkwijk CG. Plasma advanced glycation end products are associated with incident cardiovascular events in individuals with type 2 diabetes: a case-cohort study with a median follow-up of 10 years (EPIC-NL). Diabetes 2015; 64:257-65. [PMID: 24848072 DOI: 10.2337/db13-1864] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Experimental data suggest a role for advanced glycation end products (AGEs) in cardiovascular disease (CVD), particularly in type 2 diabetes (T2DM). However, epidemiological evidence of an association between high plasma AGEs and increased cardiovascular risk remains inconclusive. Therefore, in a case-cohort study comprising 134 cardiovascular case subjects and a random subcohort of 218 individuals (including 65 cardiovascular case subjects), all with T2DM and nested in the European Prospective Investigation into Cancer and Nutrition in the Netherlands (EPIC-NL) study, plasma levels of protein-bound Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and pentosidine were measured with liquid chromatography. AGEs were loge-transformed, combined in a z-score, and the association with incident cardiovascular events was analyzed with Cox proportional hazard regression, adapted for case-cohort design (Prentice method). After multivariable adjustment (sex, age, cohort status, diabetes duration, total cholesterol to HDL-cholesterol ratio, smoking, systolic blood pressure, BMI, blood pressure-, cholesterol- and glucose-lowering treatment, prior cardiovascular events, and triglycerides), higher plasma AGE z-scores were associated with higher risk of incident cardiovascular events in individuals without prior cardiovascular events (hazard ratio 1.31 [95% CI: 1.06-1.61]). A similar trend was observed in individuals with prior cardiovascular events (1.37 [0.63-2.98]). In conclusion, high plasma AGEs were associated with incident cardiovascular events in individuals with T2DM. These results underline the potential importance of AGEs in development of CVD.
Collapse
Affiliation(s)
- Nordin M J Hanssen
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Joline W J Beulens
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Susan van Dieren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jean L J M Scheijen
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Daphne L van der A
- The National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
40
|
Tikellis C, Pickering RJ, Tsorotes D, Huet O, Cooper ME, Jandeleit-Dahm K, Thomas MC. Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes 2014; 63:3915-25. [PMID: 24812427 DOI: 10.2337/db13-0932] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The deleterious effects of high glucose levels and enhanced metabolic flux on the vasculature are thought to be mediated by the generation of toxic metabolites, including reactive dicarbonyls like methylglyoxal (MG). In this article, we demonstrate that increasing plasma MG to levels observed in diabetic mice either using an exogenous source (1% in drinking water) or generated following inhibition, its primary clearance enzyme, glyoxalase-1 (with 50 mg/kg IP bromobenzyl-glutathione cyclopentyl diester every second day), was able to increase vascular adhesion and augment atherogenesis in euglycemic apolipoprotein E knockout mice to a similar magnitude as that observed in hyperglycemic mice with diabetes. The effects of MG appear partly mediated by activation of the receptor for advanced glycation end products (RAGE), as deletion of RAGE was able to reduce inflammation and atherogenesis associated with MG exposure. However, RAGE deletion did not completely prevent inflammation or vascular damage, possibly because the induction of mitochondrial oxidative stress by dicarbonyls also contributes to inflammation and atherogenesis. Such data would suggest that a synergistic combination of RAGE antagonism and antioxidants may offer the greatest utility for the prevention and management of diabetic vascular complications.
Collapse
Affiliation(s)
- Chris Tikellis
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia Central Clinical School, Clinical Hematology, Monash University, Melbourne, Australia
| | | | | | - Olivier Huet
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia Intensive Care Unit, The Alfred Hospital, Melbourne, Australia
| | - Mark E Cooper
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia Department of Medicine, Monash University, Melbourne, Australia
| | - Karin Jandeleit-Dahm
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia Department of Medicine, Monash University, Melbourne, Australia
| | - Merlin C Thomas
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
41
|
Role of bone-marrow- and non-bone-marrow-derived receptor for advanced glycation end-products (RAGE) in a mouse model of diabetes-associated atherosclerosis. Clin Sci (Lond) 2014; 127:485-97. [PMID: 24724734 DOI: 10.1042/cs20140045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RAGE (receptor for advanced glycation end-products) is expressed on multiple cell types implicated in the progression of atherosclerosis and plays a role in DAA (diabetes-associated atherosclerosis). The aim of the present study was to determine the relative role of either BM (bone marrow)- or non-BM-derived RAGE in the pathogenesis of STZ (streptozotocin)-induced DAA. Male ApoE (apolipoprotein E)-null (ApoE-/-:RAGE+/+) and ApoE:RAGE-null (ApoE-/-:RAGE-/-) mice at 7 weeks of age were rendered diabetic with STZ. At 8 weeks of age, ApoE-/- and ApoE-/-:RAGE-/- control and diabetic mice received BM from either RAGE-null or RAGE-bearing mice, generating various chimaeras. After 10 and 20 weeks of diabetes, mice were killed and gene expression and atherosclerotic lesion formation were evaluated respectively. Deletion of RAGE in either the BM cells or non-BM cells both resulted in a significant attenuation in DAA, which was associated with reduced VCAM-1 (vascular cell adhesion molecule-1) expression and translated into reduced adhesion in vitro. In conclusion, the results of the present study highlight the importance of both BM- and non-BM-derived RAGE in attenuating the development of DAA.
Collapse
|
42
|
Almeida F, Santos-Silva D, Rodrigues T, Matafome P, Crisóstomo J, Sena C, Gonçalves L, Seiça R. Pyridoxamine reverts methylglyoxal-induced impairment of survival pathways during heart ischemia. Cardiovasc Ther 2014; 31:e79-85. [PMID: 23841818 DOI: 10.1111/1755-5922.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Increased levels of advanced glycation end-products (AGE) and their precursors, such as methylglyoxal (MG), in patients with diabetes may account for impaired response to heart ischemia. Pyridoxamine is a derivate of vitamin B6, which has been shown to reduce AGE formation. Our goal was to assess the role of pyridoxamine in protecting from MG-induced impaired heart response to ischemia. METHODS Wistar rats were subjected to MG administration (WM), MG plus pyridoxamine (WMPyr), or no treatment (W). Half of the hearts from each group were submitted to ischemia and the other half were perfused as control. The levels of CEL, Bcl-2, Bax, and total and phosphorylated forms of JNK and Akt were determined. RESULTS Methylglyoxal led to higher levels of AGE and AGE receptor (RAGE) than in the W group. During ischemia, MG caused an impairment of survival pathways and Bcl-2/Bax ratio, a marker of apoptosis. Pyridoxamine treatment decreased glycation and restored the activation of JNK and Akt during ischemia. These events were followed by levels of Bcl-2/Bax ratio similar to W group. CONCLUSION Methylglyoxal-induced AGE accumulation impairs the activation of cell survival pathways during ischemia. Pyridoxamine-induced decrease of glycation inhibited the effects of MG accumulation in the heart, suggesting that it can be of added value to usual diabetic therapy.
Collapse
Affiliation(s)
- Filipa Almeida
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Basic Research Unit on Cardiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hanssen NMJ, Brouwers O, Gijbels MJ, Wouters K, Wijnands E, Cleutjens JPM, De Mey JG, Miyata T, Biessen EA, Stehouwer CDA, Schalkwijk CG. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE-/- mice with or without diabetes. Cardiovasc Res 2014; 104:160-70. [PMID: 25139743 DOI: 10.1093/cvr/cvu189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Advanced glycation end-products (AGEs) and their precursors have been associated with the development of atherosclerosis. We recently discovered that glyoxalase 1 (GLO1), the major detoxifying enzyme for AGE precursors, is decreased in ruptured human plaques, and that levels of AGEs are higher in rupture-prone plaques. We here investigated whether overexpression of human GLO1 in ApoE(-/-) mice could reduce the development of atherosclerosis. METHODS AND RESULTS We crossed C57BL/6 ApoE(-/-) mice with C57BL/6 GLO1 overexpressing mice (huGLO1(+/-)) to generate ApoE(-/-) (n = 16) and ApoE(-/-) huGLO1(+/-) (n = 20) mice. To induce diabetes, we injected a subset with streptozotocin (STZ) to generate diabetic ApoE(-/-) (n = 8) and ApoE(-/-) huGLO1(+/-) (n = 13) mice. All mice were fed chow and sacrificed at 25 weeks of age. The GLO1 activity was three-fold increased in huGLO1(+/-) aorta, but aortic root lesion size and phenotype did not differ between mice with and without huGLO1(+/-) overexpression. We detected no differences in gene expression in aortic arches, in AGE levels and cytokines, in circulating cells, and endothelial function between ApoE(-/-) mice with and without huGLO1(+/-) overexpression. Although diabetic mice showed decreased GLO1 expression (P < 0.05) and increased lesion size (P < 0.05) in comparison with non-diabetic mice, GLO1 overexpression also did not affect the aortic root lesion size or inflammation in diabetic mice. CONCLUSION In ApoE(-/-) mice with or without diabetes, GLO1 overexpression did not lead to decreased atherosclerotic lesion size or systemic inflammation. Increasing GLO1 levels does not seem to be an effective strategy to reduce glycation in atherosclerotic lesions, likely due to increased AGE formation through GLO1-independent mechanisms.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Diseases/blood
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/physiopathology
- Apolipoproteins E
- Atherosclerosis/blood
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Cells, Cultured
- Cytokines/blood
- Cytokines/genetics
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Glycation End Products, Advanced/blood
- Humans
- Inflammation Mediators/blood
- Lactoylglutathione Lyase/genetics
- Lactoylglutathione Lyase/metabolism
- Lipoproteins, LDL/metabolism
- Macrophages/enzymology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oxidative Stress
- Plaque, Atherosclerotic
- RNA, Messenger/metabolism
- Severity of Illness Index
- Streptozocin
- Up-Regulation
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Olaf Brouwers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Marion J Gijbels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands Department of Molecular Genetics, MUMC, Maastricht, The Netherlands Department of Medical Biochemistry, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Erwin Wijnands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands
| | - Jack P M Cleutjens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands
| | - Jo G De Mey
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erik A Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
44
|
Geoffrion M, Du X, Irshad Z, Vanderhyden BC, Courville K, Sui G, D'Agati VD, Ott-Braschi S, Rabbani N, Thornalley PJ, Brownlee M, Milne RW. Differential effects of glyoxalase 1 overexpression on diabetic atherosclerosis and renal dysfunction in streptozotocin-treated, apolipoprotein E-deficient mice. Physiol Rep 2014; 2:2/6/e12043. [PMID: 24920125 PMCID: PMC4208644 DOI: 10.14814/phy2.12043] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The reactive dicarbonyls, glyoxal and methylglyoxal (MG), increase in diabetes and may participate in the development of diabetic complications. Glyoxal and MG are detoxified by the sequential activities of glyoxalase 1 (GLO1) and glyoxalase 2. To determine the contribution of these dicarbonyls to the etiology of complications, we have genetically manipulated GLO1 levels in apolipoprotein E‐null (Apoe−/−) mice. Male Apoe−/− mice, hemizygous for a human GLO1 transgene (GLO1TGApoe−/− mice) or male nontransgenic Apoe−/− litter mates were injected with streptozotocin or vehicle and 6 or 20 weeks later, aortic atherosclerosis was quantified. The GLO1 transgene lessened streptozotocin (STZ)‐induced increases in immunoreactive hydroimidazolone (MG‐H1). Compared to nondiabetic mice, STZ‐treated GLO1TGApoe−/− and Apoe−/− mice had increased serum cholesterol and triglycerides and increased atherosclerosis at both times after diabetes induction. While the increased GLO1 activity in the GLO1TGApoe−/− mice failed to protect against diabetic atherosclerosis, it lessened glomerular mesangial expansion, prevented albuminuria and lowered renal levels of dicarbonyls and protein glycation adducts. Aortic atherosclerosis was also quantified in 22‐week‐old, male normoglycemic Glo1 knockdown mice on an Apoe−/− background (Glo1KDApoe−/− mice), an age at which Glo1KD mice exhibit albuminuria and renal pathology similar to that of diabetic mice. In spite of ~75% decrease in GLO1 activity and increased aortic MG‐H1, the Glo1KDApoe−/− mice did not show increased atherosclerosis compared to age‐matched Apoe−/− mice. Thus, manipulation of GLO1 activity does not affect the development of early aortic atherosclerosis in Apoe−/− mice but can dictate the onset of kidney disease independently of blood glucose levels. Increased levels of methylglyoxal and methylglyoxal‐derived advanced glycation end products may contribute to the development of diabetic complications. We show that overexpression of an enzyme that participates in the pathway of methylglyoxal detoxification, glyoxalase 1, protects streptozotocin‐treated, apolipoprotein E‐deficient mice from diabetic kidney disease but not from diabetes‐induced accelerated aortic atherosclerosis.
Collapse
Affiliation(s)
- Michèle Geoffrion
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Xueliang Du
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Zehra Irshad
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Barbara C Vanderhyden
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kerri Courville
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Guangzhi Sui
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
| | | | - Sylvie Ott-Braschi
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Michael Brownlee
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Ross W Milne
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
45
|
Watson AMD, Li J, Samijono D, Bierhaus A, Thomas MC, Jandeleit-Dahm KAM, Cooper ME. Quinapril treatment abolishes diabetes-associated atherosclerosis in RAGE/apolipoprotein E double knockout mice. Atherosclerosis 2014; 235:444-8. [PMID: 24945577 DOI: 10.1016/j.atherosclerosis.2014.05.945] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE/RATIONALE Both the renin-angiotensin system (RAS) and the receptor for advanced glycation end products (RAGE) potentiate diabetes-associated atherosclerosis (DAA). We assessed the effectiveness of concomitant RAS and RAGE inhibition on DAA. METHODS Diabetic (5 × 55 mg/kg streptozotocin daily) and non-diabetic male RAGE/apolipoprotein E double knockout (RAGE/apoE DKO) mice were treated with quinapril (30 mg/kg/day) for 20 weeks. At the end of the study aortic plaques were assessed. RESULTS Diabetic RAGE/apoE DKO showed significantly less plaque area than diabetic apoE KO mice. Plaque deposition was almost abolished in quinapril treated diabetic RAGE/apoE DKOs, with significant attenuation of vascular collagen deposition, nitrotyrosine staining, and reduced macrophage infiltration. Expression of the advanced glycation end product receptor 3 (galectin 3) was also significantly reduced. CONCLUSION Concomitant inhibition of RAS and RAGE signalling almost completely inhibited the development of experimental DAA. A dual therapeutic approach may be a superior strategy for the treatment of diabetic macrovascular disease..
Collapse
Affiliation(s)
- Anna M D Watson
- Diabetes Complications-Diabetes and The Kidney Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| | - Jiaze Li
- Diabetes Complications-Diabetes and The Kidney Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Dian Samijono
- Diabetes Complications-Diabetes and The Kidney Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Angelika Bierhaus
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Merlin C Thomas
- Diabetes Complications-Diabetes and The Kidney Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia; Department of Medicine, Central Clinical School, Monash University, Australia
| | - Karin A M Jandeleit-Dahm
- Diabetes Complications-Diabetes and The Kidney Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia; Department of Medicine, Central Clinical School, Monash University, Australia.
| | - Mark E Cooper
- Diabetes Complications-Diabetes and The Kidney Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia; Department of Medicine, Central Clinical School, Monash University, Australia
| |
Collapse
|
46
|
Otero-Losada M, Cao G, Mc Loughlin S, Rodríguez-Granillo G, Ottaviano G, Milei J. Rate of atherosclerosis progression in ApoE-/- mice long after discontinuation of cola beverage drinking. PLoS One 2014; 9:e89838. [PMID: 24670925 PMCID: PMC3966732 DOI: 10.1371/journal.pone.0089838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
This study was conducted in order to evaluate the effect of cola beverages drinking on atherosclerosisand test the hypothesis whether cola beverages consumption at early life stages might affect the development and progression of atherosclerosis later in life. ApoE-/- C57BL/6J mice (8 week-old) were randomized in 3 groups (n = 20 each) according to free accessto water (W), sucrose sweetened carbonated cola drink(C) or aspartame-acesulfame K sweetened carbonated 'light' cola drink (L)for the next 8 weeks. Drinking treatment was ended by switching C and L groups to drinking water. Four mice per group and time were sequentially euthanized: before treatment (8 weeks-old), at the end of treatment (16 weeks-old) and after treatment discontinuation (20 weeks-old, 24 weeks-old, 30 week-old mice). Aortic roots and livers were harvested, processed for histology and serial cross-sections were stained. Aortic plaque area was analyzed and plaque/media-ratio was calculated. Early consumption of cola drinks accelerated atherosclerotic plaque progression favoring the interaction between macrophages and myofibroblasts, without the participation of either T lymphocytes or proliferative activity. Plaque/media-ratio varied according to drink treatment (F2,54 = 3.433, p<0.04) and mice age (F4,54 = 5.009, p<0.03) and was higher in C and L groups compared with age-matched W group (p<0.05 at 16 weeks and 20 weeks, p<0.01 at 24 weeks and 30 weeks). Natural evolution of atherosclerosis in ApoE-/- mice (W group) evidenced atherosclerosis acceleration in parallel with a rapid increase in liver inflammation around the 20 weeks of age. Cola drinking within the 8-16 weeks of age accelerated atherosclerosis progression in ApoE-/- mice favoring aortic plaque enlargement (inward remodeling) over media thinning all over the study time. Data suggest that cola drinking at early life stages may predispose to atherosclerosis progression later in life in ApoE-/- mice.
Collapse
Affiliation(s)
- Matilde Otero-Losada
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Gabriel Cao
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Santiago Mc Loughlin
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Gastón Rodríguez-Granillo
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Graciela Ottaviano
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - José Milei
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
47
|
Abstract
Cardiovascular disease, caused predominantly by atherosclerotic plaque rupture, remains one of the leading causes of death. However, the mechanism of plaque rupture remains largely unknown. Recent studies have linked high metabolic activity in inflamed atherosclerotic plaques to the development of plaque rupture. AGEs (advanced glycation end-products) are known to be formed as a result of high metabolic activity and are higher in rupture-prone than stable plaques. Furthermore, AGEs seem to be more than mere markers of metabolic activity, as recent studies have elucidated that AGEs and their major precursor, MG (methylglyoxal), may have an important role in the progression of atherosclerosis and plaque rupture. MG can be detoxified by Glo1 (glyoxalase I), thereby preventing the accumulation of MG and MG-derived AGEs. In the present review, data concerning MG, Glo1 and AGEs in the context of plaque phenotype are discussed.
Collapse
|
48
|
Neves D. Advanced glycation end-products: a common pathway in diabetes and age-related erectile dysfunction. Free Radic Res 2013; 47 Suppl 1:49-69. [PMID: 23822116 DOI: 10.3109/10715762.2013.821701] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive derivatives of non-enzymatic glucose-protein condensation reactions integrate a heterogeneous group of irreversible adducts called advanced glycation end-products (AGEs). Numerous studies have investigated the role of the AGEs in cardiovascular system; however, its contribution to erectile dysfunction (ED) that is an early manifestation of cardiovascular disease has been less intensively investigated. This review summarizes the most recent advances concerning AGEs effects in the cavernous tissue of the penis and in ED onset, particularly on diabetes and aging, conditions that not only favor AGEs formation, but also increase risk of developing ED. The specific contribution of AGE on intra- and extracellular deposition of insoluble complexes, interference in activity of endothelial nitric oxide (NO) synthase, NO bioavailability, endothelial-dependent vasodilatation, as well as molecular pathways activated by receptor of AGEs are presented. Finally, the interventional actions that prevent AGEs formation, accumulation or activity in the cavernous tissue and that include nutritional pattern modulation, nutraceuticals, exercise, therapeutic strategies (statins, anti-diabetics, inhibitors of phosphodiesterase-5, anti-hypertensive drugs) and inhibitors of AGEs formation and crosslink breakers, are discussed. From this review, we conclude that despite the experiments conducted in animal models pointing to the AGE/RAGE axis as a potential interventional target with respect to ED associated with diabetes and aging, the clinical data have been very disappointing and, until now, did not provide evidence of benefits of treatments directed to AGE inactivation.
Collapse
Affiliation(s)
- D Neves
- Department of Experimental Biology, Faculty of Medicine and IBMC of Universidade do Porto, Al. Prof Hernani Monteiro, Porto, Portugal.
| |
Collapse
|
49
|
Hanssen NM, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JL, Heeneman S, Biessen EA, Daemen MJ, Brownlee M, de Kleijn DP, Stehouwer CD, Pasterkamp G, Schalkwijk CG. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 2013; 35:1137-46. [DOI: 10.1093/eurheartj/eht402] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
50
|
Wang T, Douglass EF, Fitzgerald KJ, Spiegel DA. A "turn-on" fluorescent sensor for methylglyoxal. J Am Chem Soc 2013; 135:12429-33. [PMID: 23931147 DOI: 10.1021/ja406077j] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methylglyoxal (MGO), a dicarbonyl metabolite produced by all living cells, has been associated with a number of human diseases. However, studies of the role(s) MGO plays biologically have been handicapped by a lack of direct methods for its monitoring and detection. To address this limitation, we have developed a fluorescent sensor (methyl diaminobenzene-BODIPY, or "MBo") that can detect MGO under physiological conditions. We show that MBo is selective for MGO over other biologically relevant dicarbonyls and is suitable for detecting MGO in complex environments, including that of living cells. In addition, we demonstrate MBo's utility in estimating plasma concentrations of MGO. The results reported herein have the potential to advance both clinical and basic science research and practice.
Collapse
Affiliation(s)
- Tina Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|