1
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A triad of non-coding RNAs regulating the neurovascular unit in diabetic retinopathy and their therapeutic potentials. Exp Eye Res 2025; 251:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
2
|
Tedja MS, Swierkowska-Janc J, Enthoven CA, Meester-Smoor MA, Hysi PG, Felix JF, Cowan CS, Cherry TJ, van der Spek PJ, Ghanbari M, Erkeland SJ, Barakat TS, Klaver CCW, Verhoeven VJM. A genome-wide scan of non-coding RNAs and enhancers for refractive error and myopia. Hum Genet 2025; 144:67-91. [PMID: 39774722 PMCID: PMC11754329 DOI: 10.1007/s00439-024-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches. We performed a genetic association study between variants in non-coding RNAs and enhancers, and RE and myopia. We obtained single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes, miRNA-binding sites, long non-coding RNAs genes (lncRNAs) and enhancers from publicly available databases: miRNASNPv2, PolymiRTS, VISTA Enhancer Browser, FANTOM5 and lncRNASNP2. We investigated whether SNPs overlapping these elements were associated with RE and myopia leveraged from a large GWAS meta-analysis (N = 160,420). With genetic risk scores (GRSs) per element, we investigated the joint effect of associated variants on RE, axial length (AL)/corneal radius (CR), and AL progression in an independent child cohort, the Generation R Study (N = 3638 children). We constructed a score for biological plausibility per SNP in highly confident miRNA-binding sites and enhancers in chromatin accessible regions. We found that SNPs in two miRNA genes, 14 enhancers and 81 lncRNA genes in chromatin accessible regions and 54 highly confident miRNA-binding sites, were in RE and myopia-associated loci. GRSs from SNPs in enhancers were significantly associated with RE, AL/CR and AL progression. GRSs from lncRNAs were significantly associated with all AL/CR and AL progression. GRSs from miRNAs were not associated with any ocular biometric measurement. GRSs from miRNA-binding sites showed suggestive but inconsistent significance. We prioritized candidate miRNA binding sites and candidate enhancers for future functional validation. Pathways of target and host genes of highly ranked variants included eye development (BMP4, MPPED2), neurogenesis (DDIT4, NTM), extracellular matrix (ANTXR2, BMP3), photoreceptor metabolism (DNAJB12), photoreceptor morphogenesis (CHDR1), neural signaling (VIPR2) and TGF-beta signaling (ANAPC16). This is the first large-scale study of non-coding RNAs and enhancers for RE and myopia. Enhancers and lncRNAs could be of large importance as they are associated with childhood myopia. We provide a confident blueprint for future functional validation by prioritizing candidate miRNA binding sites and candidate enhancers.
Collapse
Affiliation(s)
- Milly S Tedja
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joanna Swierkowska-Janc
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Clair A Enthoven
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
| | - Janine F Felix
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, USA
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Law M, Wang PC, Zhou ZY, Wang Y. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals (Basel) 2024; 17:1495. [PMID: 39598406 PMCID: PMC11597311 DOI: 10.3390/ph17111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy. It suppresses hypoxia-inducible factor-1α (HIF-1α)-mediated pathological angiogenesis while promoting healthy, physiological capillarization. As a result, SIRT1 protects against microvascular dysfunction, such as diabetic microangiopathy, while enhancing exercise-induced skeletal muscle capillarization and energy metabolism. In the brain, SIRT1 upregulates tight junction proteins and strengthens their interactions, thus maintaining the integrity of the blood-brain barrier. The present review summarizes recent findings on the regulation of microvascular function by SIRT1, the underlying mechanisms, and various approaches to modulate SIRT1 activity in microcirculation. The importance of SIRT1 as a molecular target in aging-related diseases, such as diabetic retinopathy and stroke, is underscored, along with the need for more clinical evidence to support SIRT1 modulation in the microcirculation.
Collapse
Affiliation(s)
- Martin Law
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
| | - Pei-Chun Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Chen WT, Luo Y, Chen XM, Xiao JH. Role of exosome-derived miRNAs in diabetic wound angiogenesis. Mol Cell Biochem 2024; 479:2565-2580. [PMID: 37891446 DOI: 10.1007/s11010-023-04874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Chronic wounds with high disability are among the most common and serious complications of diabetes. Angiogenesis dysfunction impair wound healing in patients with diabetes. Compared with traditional therapies that can only provide symptomatic treatment, stem cells-owing to their powerful paracrine properties, can alleviate the pathogenesis of chronic diabetic wounds and even cure them. Exosome-derived microRNAs (miRNAs), important components of stem cell paracrine signaling, have been reported for therapeutic use in various disease models, including diabetic wounds. Exosome-derived miRNAs have been widely reported to be involved in regulating vascular function and have promising applications in the repair and regeneration of skin wounds. Therefore, this article aims to review the current status of the pathophysiology of exosome-derived miRNAs in the diabetes-induced impairment of wound healing, along with current knowledge of the underlying mechanisms, emphasizing the regulatory mechanism of angiogenesis, we hope to document the emerging theoretical basis for improving wound repair by restoring angiogenesis in diabetes.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Xue-Mei Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
5
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Crespo-Garcia S, Fournier F, Diaz-Marin R, Klier S, Ragusa D, Masaki L, Cagnone G, Blot G, Hafiane I, Dejda A, Rizk R, Juneau R, Buscarlet M, Chorfi S, Patel P, Beltran PJ, Joyal JS, Rezende FA, Hata M, Nguyen A, Sullivan L, Damiano J, Wilson AM, Mallette FA, David NE, Ghosh A, Tsuruda PR, Dananberg J, Sapieha P. Therapeutic targeting of cellular senescence in diabetic macular edema: preclinical and phase 1 trial results. Nat Med 2024; 30:443-454. [PMID: 38321220 DOI: 10.1038/s41591-024-02802-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- École d'optométrie, University of Montreal, Montreal, Quebec, Canada
| | - Frédérik Fournier
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sharon Klier
- UNITY Biotechnology, South San Francisco, CA, USA
| | - Derek Ragusa
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | - Gael Cagnone
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Guillaume Blot
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ikhlas Hafiane
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rana Rizk
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rachel Juneau
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Manuel Buscarlet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sarah Chorfi
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Jean-Sebastien Joyal
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Flavio A Rezende
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Masayuki Hata
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alex Nguyen
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | | | - Ariel M Wilson
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- UNITY Biotechnology, South San Francisco, CA, USA.
| |
Collapse
|
7
|
Zhang LC, Li N, Xu M, Chen JL, He H, Liu J, Wang TH, Zuo ZF. Salidroside protects RGC from pyroptosis in diabetes-induced retinopathy associated with NLRP3, NFEZL2 and NGKB1, revealed by network pharmacology analysis and experimental validation. Eur J Med Res 2024; 29:60. [PMID: 38243268 PMCID: PMC10799395 DOI: 10.1186/s40001-023-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE To investigate the effect of salidroside (SAL) in protecting retinal ganglion cell (RGC) from pyroptosis and explore associated molecular network mechanism in diabetic retinapathy (DR) rats. METHODS HE, Nissl and immunofluorescence staining were used to observe the retinal morphological change, and the related target genes for salidroside, DR and pyroptosis were downloaded from GeneCard database. Then Venny, PPI, GO, KEGG analysis and molecular docking were used to reveal molecular network mechanism of SAL in inhibiting the pyroptosis of RGC. Lastly, all hub genes were confirmed by using qPCR. RESULTS HE and Nissl staining showed that SAL could improve the pathological structure known as pyroptosis in diabetic retina, and the fluorescence detection of pyroptosis marker in DM group was the strongest, while they decreased in the SAL group(P < 0.05)). Network pharmacological analysis showed 6 intersecting genes were obtained by venny analysis. GO and KEGG analysis showed 9 biological process, 3 molecular function and 3 signaling pathways were involved. Importantly, molecular docking showed that NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1 could combine with salidroside, and qPCR validates the convincible change of CASP3, NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1. CONCLUSION Salidroside can significantly improve diabetes-inducedRGC pyrotosis in retina, in which, the underlying mechanism is associated with the NLRP3, NFEZL2 and NGKB1 regulation.
Collapse
Affiliation(s)
- Lan-Chun Zhang
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Na Li
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Min Xu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ji-Lin Chen
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Hua He
- Department of Pharmacology, Haiyuan College of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Jia Liu
- Department of Pharmacology, Haiyuan College of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Ting-Hua Wang
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Zhong-Fu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
8
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
9
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
10
|
Da'as SI, Ahmed I, Hasan WH, Abdelrahman DA, Aliyev E, Nisar S, Bhat AA, Joglekar MV, Hardikar AA, Fakhro KA, Akil ASAS. The link between glycemic control measures and eye microvascular complications in a clinical cohort of type 2 diabetes with microRNA-223-3p signature. J Transl Med 2023; 21:171. [PMID: 36869348 PMCID: PMC9985290 DOI: 10.1186/s12967-023-03893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and β cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Waseem H Hasan
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Doua A Abdelrahman
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmad Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Khalid A Fakhro
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
11
|
Zhao B, Zhu L, Ye M, Lou X, Mou Q, Hu Y, Zhang H, Zhao Y. Oxidative stress and epigenetics in ocular vascular aging: an updated review. Mol Med 2023; 29:28. [PMID: 36849907 PMCID: PMC9972630 DOI: 10.1186/s10020-023-00624-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Vascular aging is an inevitable process with advancing age, which plays a crucial role in the pathogenesis of cardiovascular and microvascular diseases. Diabetic retinopathy (DR) and age-related macular degeneration (AMD), characterized by microvascular dysfunction, are the common causes of irreversible blindness worldwide, however there is still a lack of effective therapeutic strategies for rescuing the visual function. In order to develop novel treatments, it is essential to illuminate the pathological mechanisms underlying the vascular aging during DR and AMD progression. In this review, we have summarized the recent discoveries of the effects of oxidative stress and epigenetics on microvascular degeneration, which could provide potential therapeutic targets for DR and AMD.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Lin R, Yu J. The role of NAD + metabolism in macrophages in age-related macular degeneration. Mech Ageing Dev 2023; 209:111755. [PMID: 36435209 DOI: 10.1016/j.mad.2022.111755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of legal blindness and moderate and severe vision impairment (MSVI) in people older than 50 years. It is classified in various stages including early, intermediate, and late stage. In the early stages, innate immune system, especially macrophages, play an essential part in disease onset and progression. NAD+ is an essential coenzyme involved in cellular senescence and immune cell function, and its role in age-related diseases is gaining increasing attention. The imbalance between the NAD+ synthesis and consumption causes the fluctuation of intracellular NAD+ level which determines the polarization fate of macrophages. In AMD, the over-expression of NAD+-consuming enzymes in macrophages leads to declining of NAD+ concentrations in the microenvironment. This phenomenon triggers the activation of inflammatory pathways in macrophages, positive feedback aggregation of inflammatory cells and accumulation of reactive oxygen species (ROS). This review details the role of NAD+ metabolism in macrophages and molecular mechanisms during AMD. The selected pathways were identified as potential targets for intervention in AMD, pending further investigation.
Collapse
Affiliation(s)
- Ruoyi Lin
- Department of Ophthalmology, the Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Yu
- Department of Ophthalmology, the Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200072, China; Department of Ophthalmology, Bengbu Third People's Hospital, Bengbu, Anhui 233099, China.
| |
Collapse
|
13
|
Chan SY, Wan CWT, Law TYS, Chan DYL, Fok EKL. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Int J Mol Sci 2022; 23:15716. [PMID: 36555356 PMCID: PMC9779749 DOI: 10.3390/ijms232415716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the paternal half of the genetic material, the male gamete carries assorted epigenetic marks for optimal fertilization and the developmental trajectory for the early embryo. Recent works showed dynamic changes in small noncoding RNA (sncRNA) in spermatozoa as they transit through the testicular environment to the epididymal segments. Studies demonstrated the changes to be mediated by epididymosomes during the transit through the adluminal duct in the epididymis, and the changes in sperm sncRNA content stemmed from environmental insults significantly altering the early embryo development and predisposing the offspring to metabolic disorders. Here, we review the current knowledge on the establishment of the sperm sncRNA transcriptome and their role in male-factor infertility, evidence of altered offspring health in response to the paternal life experiences through sperm sncRNA species and, finally, their implications in assisted reproductive technology in terms of epigenetic inheritance.
Collapse
Affiliation(s)
- Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Crystal Wing Tung Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| |
Collapse
|
14
|
Macvanin MT, Rizzo M, Radovanovic J, Sonmez A, Paneni F, Isenovic ER. Role of Chemerin in Cardiovascular Diseases. Biomedicines 2022; 10:biomedicines10112970. [PMID: 36428537 PMCID: PMC9687862 DOI: 10.3390/biomedicines10112970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
(1) Background: Obesity is closely connected to the pathophysiology of cardiovascular diseases (CVDs). Excess fat accumulation is associated with metabolic malfunctions that disrupt cardiovascular homeostasis by activating inflammatory processes that recruit immune cells to the site of injury and reduce nitric oxide levels, resulting in increased blood pressure, endothelial cell migration, proliferation, and apoptosis. Adipose tissue produces adipokines, such as chemerin, that may alter immune responses, lipid metabolism, vascular homeostasis, and angiogenesis. (2) Methods: We performed PubMed and MEDLINE searches for articles with English abstracts published between 1997 (when the first report on chemerin identification was published) and 2022. The search retrieved original peer-reviewed articles analyzed in the context of the role of chemerin in CVDs, explicitly focusing on the most recent findings published in the past five years. (3) Results: This review summarizes up-to-date findings related to mechanisms of chemerin action, its role in the development and progression of CVDs, and novel strategies for developing chemerin-targeting therapeutic agents for treating CVDs. (4) Conclusions: Extensive evidence points to chemerin's role in vascular inflammation, angiogenesis, and blood pressure modulation, which opens up exciting perspectives for developing chemerin-targeting therapeutic agents for the treatment of CVDs.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Manfredi Rizzo
- Department of Internal Medicine and Medical Specialties (DIMIS), Università degli Studi di Palermo (UNIPA), 90128 Palermo, Italy
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Alper Sonmez
- Department of Endocrinology and Metabolism, Gulhane School of Medicine, University of Health Sciences, Ankara 34668, Turkey
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, 8091 Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Correspondence:
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
16
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
17
|
Shityakov S, Nagai M, Ergün S, Braunger BM, Förster CY. The Protective Effects of Neurotrophins and MicroRNA in Diabetic Retinopathy, Nephropathy and Heart Failure via Regulating Endothelial Function. Biomolecules 2022; 12:biom12081113. [PMID: 36009007 PMCID: PMC9405668 DOI: 10.3390/biom12081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.
Collapse
Affiliation(s)
- Sergey Shityakov
- Division of Chemoinformatics, Infochemistry Scientific Center, Lomonosova Street 9, 191002 Saint-Petersburg, Russia
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, 2-1-1 Kabeminami, Aaskita-ku, Hiroshima 731-0293, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| |
Collapse
|
18
|
Taurone S, De Ponte C, Rotili D, De Santis E, Mai A, Fiorentino F, Scarpa S, Artico M, Micera A. Biochemical Functions and Clinical Characterizations of the Sirtuins in Diabetes-Induced Retinal Pathologies. Int J Mol Sci 2022; 23:ijms23074048. [PMID: 35409409 PMCID: PMC8999941 DOI: 10.3390/ijms23074048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is undoubtedly one of the most prominent causes of blindness worldwide. This pathology is the most frequent microvascular complication arising from diabetes, and its incidence is increasing at a constant pace. To date, the insurgence of DR is thought to be the consequence of the intricate complex of relations connecting inflammation, the generation of free oxygen species, and the consequent oxidative stress determined by protracted hyperglycemia. The sirtuin (SIRT) family comprises 7 histone and non-histone protein deacetylases and mono (ADP-ribosyl) transferases regulating different processes, including metabolism, senescence, DNA maintenance, and cell cycle regulation. These enzymes are involved in the development of various diseases such as neurodegeneration, cardiovascular pathologies, metabolic disorders, and cancer. SIRT1, 3, 5, and 6 are key enzymes in DR since they modulate glucose metabolism, insulin sensitivity, and inflammation. Currently, indirect and direct activators of SIRTs (such as antagomir, glycyrrhizin, and resveratrol) are being developed to modulate the inflammation response arising during DR. In this review, we aim to illustrate the most important inflammatory and metabolic pathways connecting SIRT activity to DR, and to describe the most relevant SIRT activators that might be proposed as new therapeutics to treat DR.
Collapse
Affiliation(s)
- Samanta Taurone
- IRCCS—Fondazione Bietti, via Livenza 3, 00198 Rome, Italy;
- Correspondence: ; Tel.: +39-06-85-356-727; Fax: +39-06-84-242-333
| | - Chiara De Ponte
- Department of Sensory Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (M.A.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (M.A.)
| | | |
Collapse
|
19
|
Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines 2022; 10:668. [PMID: 35327470 PMCID: PMC8945691 DOI: 10.3390/biomedicines10030668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
This review offers an overview of the relationship between diabetes, obstructive sleep apnea (OSA), obesity, and heart disease. It then addresses evidence that the traditional understanding of this relationship is incomplete or misleading. In the process, there is a brief discussion of the evolutionary rationale for the development and retention of OSA in light of blood sugar dysregulation, as an adaptive mechanism in response to environmental stressors, followed by a brief overview of the general concepts of epigenetics. Finally, this paper presents the results of a literature search on the epigenetic marks and changes in gene expression found in OSA and diabetes. (While some of these marks will also correlate with obesity and heart disease, that is beyond the scope of this project). We conclude with an exploration of alternative explanations for the etiology of these interlinking diseases.
Collapse
Affiliation(s)
- N. R. C. Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
20
|
miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms. J Physiol Biochem 2022; 78:19-37. [DOI: 10.1007/s13105-021-00867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
|
21
|
Sadashiv, Sharma P, Dwivedi S, Tiwari S, Singh PK, Pal A, Kumar S. Micro (mi) RNA and Diabetic Retinopathy. Indian J Clin Biochem 2022; 37:267-274. [DOI: 10.1007/s12291-021-01018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
|
22
|
Circular RNA mediated gene regulation in chronic diabetic complications. Sci Rep 2021; 11:23766. [PMID: 34887449 PMCID: PMC8660871 DOI: 10.1038/s41598-021-02980-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic diabetic complications affect multiple organs causing widespread organ damage. Although there are some commonalities, the phenotype of such changes show tissue specific variation. Given this, we examined whether differences in circular RNA (circRNA) mediated gene regulatory mechanisms contribute to changes in gene expression at the basal level and in diabetes. CircRNAs are single-stranded RNA with covalently closed loop structures and act as miRNA sponges, factors of RNA splicing, scaffolding for proteins, regulators of transcription, and modulators of the expression of parental genes, among other roles. We examined heart and retinal tissue from Streptozotocin-induced diabetic mice with established diabetes related tissue damage and tissue from non-diabetic controls. A custom array analysis was performed and the data were analysed. Two major circRNA mediated processes were uniquely upregulated in diabetic heart tissue, namely, positive regulation of endothelial cell migration and regulation of mitochondria: mitochondrial electron transport. In the retina, circRNAs regulating extracellular matrix protein production and endothelial to mesenchymal transition (EndMT) were found to be upregulated. The current study identified regulatory and potential pathogenetic roles of specific circRNA in diabetic retinopathy and cardiomyopathy. Understanding such novel mechanisms, may in the future, be useful to develop RNA based treatment strategies.
Collapse
|
23
|
Ding H, Yao J, Xie H, Wang C, Chen J, Wei K, Ji Y, Liu L. MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway. Front Physiol 2021; 12:709123. [PMID: 34658906 PMCID: PMC8514870 DOI: 10.3389/fphys.2021.709123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus, which is associated with fibrosis and microRNAs (miRs). This study estimated the mechanism of miR-195-5p in endothelial mesenchymal transition (EndMT) and myocardial fibrosis in DCM. After the establishment of DCM rat models, miR-195-5p was silenced by miR-195-5p antagomir. The cardiac function-related indexes diastolic left ventricular anterior wall (LVAW, d), systolic LVAW (d), diastolic left ventricular posterior wall (LVPW, d), systolic LVPW (d), left ventricular ejection fraction (LVEF), and fractional shortening (FS) were measured and miR-195-5p expression in myocardial tissue was detected. Myocardial fibrosis, collagen deposition, and levels of fibrosis markers were detected. Human umbilical vein endothelial cells (HUVECs) were exposed to high glucose (HG) and miR-195-5p was silenced. The levels of fibrosis proteins, endothelial markers, fibrosis markers, EndMT markers, and transforming growth factor beta 1 (TGF-β1)/Smads pathway-related proteins were measured in HUVECs. The interaction between miR-195-5p and Smad7 was verified. In vivo, miR-195-5p was highly expressed in the myocardium of DCM rats. Diastolic and systolic LVAW, diastolic and systolic LVPW were increased and LVEF and FS were decreased. Inhibition of miR-195-5p reduced cardiac dysfunction, myocardial fibrosis, collagen deposition, and EndMT, promoted CD31 and VE-cadehrin expressions, and inhibited α-SMA and vimentin expressions. In vitro, HG-induced high expression of miR-195-5p and the expression changes of endothelial markers CD31, VE-cadehrin and fibrosis markers α-SMA and vimentin were consistent with those in vivo after silencing miR-195-5p. In mechanism, miR-195-5p downregulation blocked EndMT by inhibiting TGF-β1-smads pathway. Smad7 was the direct target of miR-195-5p and silencing miR-195-5p inhibited EndMT by promoting Smad7 expression. Collectively, silencing miR-195-5p inhibits TGF-β1-smads-snail pathway by targeting Smad7, thus inhibiting EndMT and alleviating myocardial fibrosis in DCM.
Collapse
Affiliation(s)
- Huaisheng Ding
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jianhui Yao
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Hongxiang Xie
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Chengyu Wang
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jing Chen
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Kaiyong Wei
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Yangyang Ji
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Lihong Liu
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| |
Collapse
|
24
|
Sardu C, Trotta MC, Pieretti G, Gatta G, Ferraro G, Nicoletti GF, D' Onofrio N, Balestrieri ML, D' Amico M, Abbatecola A, Ferraraccio F, Panarese I, Paolisso G, Marfella R. MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetol 2021; 58:1381-1393. [PMID: 34009437 DOI: 10.1007/s00592-021-01743-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUNDS Obese pre-diabetics over express cytokines that influence myocardial function via microRNAs (miRs) expression. OBJECTIVES To evaluate inflammatory/oxidative stress, miRs' expression and cardiovascular function in obese pre-diabetics assigned to metformin therapy vs. placebo vs. normo-glycemics at 12 months of follow-up. MATERIALS AND METHODS Eighty-three obese patients after abdominoplastic surgery were divided in pre-diabetics (n 55), normo-glycemics (n 28), and assigned to hypocaloric diet. Pre-diabetics were assigned to metformin (n 23) or to placebo (n 22) plus hypocaloric diet. RESULTS Obese pre-diabetics in metformin vs. placebo, and obese pre-diabetics with placebo vs. normoglycemics, had significant differences about IMT, MPI, and LVM (p < 0.05). Obese pre-diabetics in metformin vs. placebo showed significant reduction in serum miR-195 and miR-27 (p < 0.05). Obese pre-diabetics in metformin vs. normoglycemics showed higher expression of serum miR-195 and miR-27 (p < 0.05). Finally, we found inverse relation between IMT and insulin, HOMA-IR, miR-195, miR-27; between LVEF and Insulin, HOMA-IR, miR-195 and miR-27. We found inverse correlation between LVM and sirtuin-1, Insulin, HOMA-IR, miR-195 and miR-27, and direct correlation with interleukin-6. MPI inversely linked to miR-195 and miR-27. CONCLUSIONS In obese pre-diabetics', metformin significantly reduces inflammation/oxidative stress, and miR-195 and miR-27, with reduction in LVM, IMT.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gorizio Pieretti
- Department of Plastic Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianluca Gatta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Ferraro
- Department of Plastic Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Nunzia D' Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Michele D' Amico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Abbatecola
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy
| | - Franca Ferraraccio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Iacopo Panarese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Raffaele Marfella
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
25
|
Taxifolin and Sorghum Ethanol Extract Protect against Hepatic Insulin Resistance via the miR-195/IRS1/PI3K/AKT and AMPK Signalling Pathways. Antioxidants (Basel) 2021; 10:antiox10091331. [PMID: 34572963 PMCID: PMC8465682 DOI: 10.3390/antiox10091331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to evaluate the effects of taxifolin and sorghum ethanol extract on free fatty acid (FFA)-induced hepatic insulin resistance. FFA treatment decreased glucose uptake by 16.2% compared with that in the control, whereas taxifolin and sorghum ethanol extract increased the glucose uptake. Additionally, taxifolin and sorghum ethanol extract increased the expression of p-PI3K, p-IRS1, p-AKT, p-AMPK, and p-ACC in FFA-induced hepatocytes. Furthermore, FFA treatment increased the expression of miR-195. However, compared with the FFA treatment, treatment with taxifolin and sorghum ethanol extract decreased miR-195 expression in a dose-dependent manner. Taxifolin and sorghum ethanol extract enhanced p-IRS1, p-PI3K, p-AMPK, p-AKT, and p-ACC expression by suppressing miR-195 levels in miR-195 mimic- or inhibitor-transfected cells. These results indicate that taxifolin and sorghum ethanol extract attenuate insulin resistance by regulating miR-195 expression, which suggests that taxifolin and sorghum ethanol extract may be useful antidiabetic agents.
Collapse
|
26
|
Fu SH, Lai MC, Zheng YY, Sun YW, Qiu JJ, Gui F, Zhang Q, Liu F. MiR-195 inhibits the ubiquitination and degradation of YY1 by Smurf2, and induces EMT and cell permeability of retinal pigment epithelial cells. Cell Death Dis 2021; 12:708. [PMID: 34267179 PMCID: PMC8282777 DOI: 10.1038/s41419-021-03956-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin-eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.
Collapse
Affiliation(s)
- Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Mei-Chen Lai
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Yun-Yao Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Ya-Wen Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China.
| |
Collapse
|
27
|
Nebbioso M, Lambiase A, Armentano M, Tucciarone G, Sacchetti M, Greco A, Alisi L. Diabetic retinopathy, oxidative stress, and sirtuins: an in depth look in enzymatic patterns and new therapeutic horizons. Surv Ophthalmol 2021; 67:168-183. [PMID: 33864872 DOI: 10.1016/j.survophthal.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. DR represents the most common microvascular complication of diabetes, and its incidence is constantly rising. The complex interactions between inflammation, oxidative stress, and the production of free oxygen radicals caused by prolonged exposure to hyperglycemia determine the development of DR. Sirtuins (SIRTs) are a recently discovered class of 7 histone deacetylases involved in cellular senescence, regulation of cell cycle, metabolic pathways, and DNA repair. SIRTs participate in the progress of several pathologies such as cancer, neurodegeneration, and metabolic diseases. In DR sirtuins 1,3,5, and 6 play an important role as they regulate the activation of the inflammatory response, insulin sensibility, and both glycolysis and gluconeogenesis. A wide spectrum of direct and indirect activators of SIRTs pathways (e.g., antagomiR, resveratrol, or glycyrrhizin) is currently being developed to treat the inflammatory cascade occurring in DR. We focus on the main metabolic and inflammatory pathways involving SIRTs and DR, as well as recent evidence on SIRTs activators that may be employed as novel therapeutic approaches to DR.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy.
| | - Marta Armentano
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Giosuè Tucciarone
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Marta Sacchetti
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Ludovico Alisi
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
28
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
29
|
Trotta MC, Gesualdo C, Platania CBM, De Robertis D, Giordano M, Simonelli F, D'Amico M, Drago F, Bucolo C, Rossi S. Circulating miRNAs in diabetic retinopathy patients: Prognostic markers or pharmacological targets? Biochem Pharmacol 2021; 186:114473. [PMID: 33607073 DOI: 10.1016/j.bcp.2021.114473] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
In this study we analyzed the expression of circulating miRNAs, in the serum of diabetic retinopathy (DR) patients. Five miRNAs (hsa-miR-195-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-27b-3p and hsa-miR-451a) were validated as biomarkers for stratification of DR stages, from the early non-proliferative (NPDR) to the late proliferative (PDR) phase. Furthermore, circulating levels of these miRNAs correlated with retinal hyper-reflective spots (HRS), assessed by optical coherence tomography (OCT). The number of HRS increased with worsening of DR stages. On the contrary, no significant vascular density differences between NPDR and PDR patients were detected by angio-OCT (OCTA). A post-hoc bioinformatics analysis associated these five miRNAs to target genes belonging to the "Tumor Necrosis Factor alfa signaling" pathway, and several molecules were predicted to modify miRNAs expression. In conclusion, correlation between specific circulating miRNAs and intraretinal hyper-reflective spots was demonstrated, confirming that these miRNAs were validated as prognostic biomarkers, and also as potential pharmacological targets, warranting further clinical evaluation to explore novel therapeutics for diabetic retinopathy.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Domenico De Robertis
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology, CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology, CERFO, University of Catania, Catania, Italy.
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
30
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
31
|
Alzahrani S, Ajwah SM, Alsharif SY, Said E, El-Sherbiny M, Zaitone SA, Al-Shabrawey M, Elsherbiny NM. Isoliquiritigenin downregulates miR-195 and attenuates oxidative stress and inflammation in STZ-induced retinal injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2375-2385. [PMID: 32699958 DOI: 10.1007/s00210-020-01948-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus that leads to significant vision loss. Isoliquiritigenin (ISL) is a bioactive flavonoid found in the root of licorice with reported anti-oxidant and anti-inflammatory activities. In the present study, we evaluated the effect of ISL administration on diabetes-induced retinal injury. Diabetes was induced in male Sprague-Dawley rats using single intraperitoneal streptozotocin (STZ, 50 mg/kg) injection. Diabetic rats showed up-regulated retinal miR-195, reduced retinal levels of SIRT-1, and increased levels of oxidative stress, nuclear factor-κB (NF-κB), inflammatory cytokines, and endothelin-1. Moreover, histopathological and electron microscopy studies revealed distorted retinal layers and reduced number of ganglion cells. Oral administration of ISL (20 mg/kg/day) to diabetic rats for 8 weeks improved diabetes-induced retinal injury via down-regulation of miR-195, restoration of retinal SIRT-1 level, attenuation of oxidative stress, inflammation, and endothelial damage as well as preservation of retinal normal histology and ultrastructure. In conclusion, our results showed that ISL could be a promising therapeutic intervention to prevent the development and progression of DR. It also suggested that the miR-195/SIRT-1/NF-κB pathway may contribute to ISL treatment-induced beneficial effects.
Collapse
Affiliation(s)
- Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadeem M Ajwah
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
- College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Department of Ophthalmology, Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA, USA
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
32
|
Wang H. MicroRNA, Diabetes Mellitus and Colorectal Cancer. Biomedicines 2020; 8:biomedicines8120530. [PMID: 33255227 PMCID: PMC7760221 DOI: 10.3390/biomedicines8120530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrinological disorder that is due to either the pancreas not producing enough insulin, or the body does not respond appropriately to insulin. There are many complications of DM such as retinopathy, nephropathy, and peripheral neuropathy. In addition to these complications, DM was reported to be associated with different cancers. In this review, we discuss the association between DM and colorectal cancer (CRC). CRC is the third most commonly diagnosed cancer worldwide that mostly affects older people, however, its incidence and mortality are rising among young people. We discuss the relationship between DM and CRC based on their common microRNA (miRNA) biomarkers. miRNAs are non-coding RNAs playing important functions in cell differentiation, development, regulation of cell cycle, and apoptosis. miRNAs can inhibit cell proliferation and induce apoptosis in CRC cells. miRNAs also can improve glucose tolerance and insulin sensitivity. Therefore, investigating the common miRNA biomarkers of both DM and CRC can shed a light on how these two diseases are correlated and more understanding of the link between these two diseases can help the prevention of both DM and CRC.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
33
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 481] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
34
|
Yarahmadi A, Shahrokhi SZ, Mostafavi-Pour Z, Azarpira N. MicroRNAs in diabetic nephropathy: From molecular mechanisms to new therapeutic targets of treatment. Biochem Pharmacol 2020; 189:114301. [PMID: 33203517 DOI: 10.1016/j.bcp.2020.114301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Despite considerable investigation in diabetic nephropathy (DN) pathogenesis and possible treatments, current therapies still do not provide competent prevention from disease progression to end-stage renal disease (ESRD) in most patients. Therefore, investigating exact molecular mechanisms and important mediators underlying DN may help design better therapeutic approaches for proper treatment. MicroRNAs (MiRNAs) are a class of small non-coding RNAs that play a crucial role in post-transcriptional regulation of many gene expression within the cells and present an excellent opportunity for new therapeutic approaches because their profile is often changed during many diseases, including DN. This review discusses the most important signaling pathways involved in DN and changes in miRNAs profile in each signaling pathway. We also suggest possible approaches for miRNA derived interventions for designing better treatment of DN.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
35
|
Luo R, Li L, Hu Y, Xiao F. LncRNA H19
inhibits high glucose‐induced inflammatory responses of human retinal epithelial cells by targeting
miR
‐19b to increase
SIRT1
expression. Kaohsiung J Med Sci 2020; 37:101-110. [PMID: 33022863 DOI: 10.1002/kjm2.12302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/17/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rong Luo
- Department of Ophthalmology Jiangxi Provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Lan Li
- Department of Ophthalmology Jiangxi Provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Yu‐Xiang Hu
- Department of Ophthalmology Jiangxi Provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Fan Xiao
- Department of Ophthalmology Jiangxi Provincial People's Hospital Affiliated to Nanchang University Nanchang China
| |
Collapse
|
36
|
Anasagasti A, Lara-López A, Milla-Navarro S, Escudero-Arrarás L, Rodríguez-Hidalgo M, Zabaleta N, González Aseguinolaza G, de la Villa P, Ruiz-Ederra J. Inhibition of MicroRNA 6937 Delays Photoreceptor and Vision Loss in a Mouse Model of Retinitis Pigmentosa. Pharmaceutics 2020; 12:pharmaceutics12100913. [PMID: 32987664 PMCID: PMC7598722 DOI: 10.3390/pharmaceutics12100913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare retinal conditions, including retinitis pigmentosa (RP), caused by monogenic mutations in 1 out of more than 250 genes. Despite recent advancements in gene therapy, there is still a lack of an effective treatment for this group of retinal conditions. MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNAs that inhibit gene expression. Control of miRNAs-mediated protein expression has been described as a widely used mechanism for post-transcriptional regulation in many physiological and pathological processes in different organs, including the retina. Our main purpose was to test the hypothesis that modulation of a group of miRNAs can protect photoreceptor cells from death in the rd10 mouse model of retinitis pigmentosa. For this, we incorporated modulators of three miRNAs in adeno-associated viruses (AAVs), which were administered through sub-retinal injections. The results obtained indicate that inhibition of the miR-6937-5p slows down the visual deterioration of rd10 mice, reflected by an increased electroretinogram (ERG) wave response under scotopic conditions and significant preservation of the outer nuclear layer thickness. This work contributes to broadening our knowledge on the molecular mechanisms underlying retinitis pigmentosa and supports the development of novel therapeutic approaches for RP based on miRNA modulation.
Collapse
Affiliation(s)
- Ander Anasagasti
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
- Viralgen Vector Core, 20009 San Sebastián, Spain
| | - Araceli Lara-López
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
| | - Santiago Milla-Navarro
- Visual Neurophysiology, IRYCIS, University of Alcala, 28801 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
| | - Leire Escudero-Arrarás
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
| | - María Rodríguez-Hidalgo
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
| | - Nerea Zabaleta
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain; (N.Z.); (G.G.A.)
| | - Gloria González Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain; (N.Z.); (G.G.A.)
| | - Pedro de la Villa
- Visual Neurophysiology, IRYCIS, University of Alcala, 28801 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
- RETICS OFTARED, 28040 Madrid, Spain
| | - Javier Ruiz-Ederra
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
- RETICS OFTARED, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-943-006128
| |
Collapse
|
37
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
38
|
Greco M, Chiefari E, Accattato F, Corigliano DM, Arcidiacono B, Mirabelli M, Liguori R, Brunetti FS, Pullano SA, Scorcia V, Fiorillo AS, Foti DP, Brunetti A. MicroRNA-1281 as a Novel Circulating Biomarker in Patients With Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11:528. [PMID: 32849308 PMCID: PMC7417427 DOI: 10.3389/fendo.2020.00528] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023] Open
Abstract
Objective: Recently, the role of circulating miRNAs as non-invasive biomarkers for the identification and monitoring of diabetes microvascular complications has emerged. Herein, we aimed to: identify circulating miRNAs differentially expressed in patients with and without diabetic retinopathy (DR); examine their predictive value; and understand their pathogenic impact. Methods: Pooled serum samples from randomly selected matched patients with type 2 diabetes, either with or without DR, were used for initial serum miRNA profiling. Validation of the most relevant miRNAs was thereafter conducted by RT-qPCR in an extended sample of patients with DR and matched controls. Results: Following miRNA profiling, 43 miRNAs were significantly up- or down-regulated in patients with DR compared with controls. After individual validation, 5 miRNAs were found significantly overexpressed in patients with DR. One of them, miR-1281, was the most up-regulated and appeared to be specifically related to DR. Furthermore, secreted levels of miR-1281 were increased in high glucose-cultured retinal cells, and there was evidence of a potential link between glucose-induced miR-1281 up-regulation and DR. Conclusion: Our findings suggest miR-1281 as a circulating biomarker of DR. Also, they highlight the pathogenic significance of miR-1281, providing insights for a new potential target in treating DR.
Collapse
Affiliation(s)
- Marta Greco
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Francesca Accattato
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | | | - Biagio Arcidiacono
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Rossella Liguori
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Salvatore A. Pullano
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Antonino S. Fiorillo
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| |
Collapse
|
39
|
Khakdan S, Delfan M, Heydarpour Meymeh M, Kazerouni F, Ghaedi H, Shanaki M, Kalaki-Jouybari F, Gorgani-Firuzjaee S, Rahimipour A. High-intensity interval training (HIIT) effectively enhances heart function via miR-195 dependent cardiomyopathy reduction in high-fat high-fructose diet-induced diabetic rats. Arch Physiol Biochem 2020; 126:250-257. [PMID: 30320520 DOI: 10.1080/13813455.2018.1511599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aims: Regarding the fact that up-regulation of miR-195 in diabetic hearts has a potential role in diabetic cardiomyopathy, the present study investigated whether continuous endurance training (CET) and high-intensity interval training (HIIT) reduces miR-195 expression and which exercise is effective in this regard.Methods: Diabetes was induced by high-fat high-fructose diet (HFHFD). Then, the rats were sub-divided into three categories; sedentary (HFHFD + SED), continuous endurance training (HFHFD + CET), and high-intensity interval training group (HFHFD + HIIT). After eight weeks of running, expression of miR-195 and myocardial function were evaluated.Results: HIIT effectively decreases the expression of miR-195 and increases the expression of Sirt1 and BCL-2 in diabetic rats compared with CET. Our results showed that HIIT compared with CET increases left ventricular ejection fraction (LVEF%) and fractional shortening (FS%).Conclusions: Our results indicated that exercise, especially HIIT is an appropriate strategy for reducing miR-195 and improving myocardial function in diabetic rats compared with CET.
Collapse
Affiliation(s)
- Soheyla Khakdan
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
| | - Maryam Heydarpour Meymeh
- Department of English Language, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kalaki-Jouybari
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Rahimipour
- Department of Medical Laboratory Sciences, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Ying Y, Jiang C, Zhang M, Jin J, Ge S, Wang X. Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model. Aging (Albany NY) 2020; 11:2822-2835. [PMID: 31076562 PMCID: PMC6535073 DOI: 10.18632/aging.101954] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Diabetic cardiomyopathy increases the risk of heart failure independent of coronary artery disease and hypertension. Phloretin (PHL) shows anti-inflammatory effects in macrophages. In this study, we explored the protective effects of PHL on high glucose (HG)-induced injury in diabetic cardiomyopathy in vivo and in vitro. Using streptozotocin-induced diabetic mouse model and incubating cardiac cells line under a HG environment, PHL were evaluated of the activities of anti-inflammation and anti-fibrosis. In the study, PHL treatment ameliorated cardiomyocyte inflammation injury, and reduced fibrosis in vivo and in vitro. PHL also improved cardiac biochemical criterions after 8 weeks of induction of diabetes in C57BL/6 mice. Molecular docking results indicated that silent information regulator 2 homolog 1 (SIRT1) bound to PHL directly and that SIRT1 expression was upregulated in the PHL-treated group in HG-induced H9C2 cells. Protective effect of PHL was been eliminated in silence SIRT1 H9C2 cells. Taken together, these results suggested that PHL suppressed HG-induced cardiomyocyte injury via restoring SIRT1 expression.
Collapse
Affiliation(s)
- Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzho, Zhejiang 310012, China
| | - Cheng Jiang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzho, Zhejiang 310012, China
| | - Meiling Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzho, Zhejiang 310012, China
| | - Jiye Jin
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzho, Zhejiang 310012, China
| | - Shuyu Ge
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzho, Zhejiang 310012, China
| | - Xiaodong Wang
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzho, Zhejiang 310012, China
| |
Collapse
|
41
|
Luo R, Jin H, Li L, Hu YX, Xiao F. Long Noncoding RNA MEG3 Inhibits Apoptosis of Retinal Pigment Epithelium Cells Induced by High Glucose via the miR-93/Nrf2 Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1813-1822. [PMID: 32473920 DOI: 10.1016/j.ajpath.2020.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in developed nations. Though plasma microRNA-93 (miR-93) is associated with the risk of DR, the function and regulatory mechanism of miR-93 during DR remains unclear. Blood samples were collected from 12 DR patients and 12 healthy controls. Primary human retinal pigment epithelium (RPE) cells and ARPE-19 cells were cultured in 5 mmol/L or 33 mmol/L d-glucose medium. Long noncoding (lnc) RNA MEG3 and miR-93 expression was detected by real-time quantitative PCR. The effect of MEG3 and miR-93 on high glucose (HG)-induced apoptosis was detected by MTT and flow cytometry. IL-6 and tumor necrosis factor-α levels were detected by enzyme-linked immunosorbent assay. The relationships among MEG3, miR-93, and Nrf2 (also known as NFE2L2) were explored via dual-luciferase reporter assay. lncRNA MEG3 and Nrf2 were decreased and miR-93 was increased in blood samples of DR patients and HG-treated human RPE and ARPE-19 cells. Overexpression of miR-93 inhibited cell proliferation and promoted apoptosis, whereas overexpression of Nrf2 or MEG3 promoted proliferation and suppressed apoptosis and inflammation. In addition, MEG3 targeted miR-93 and down-regulated miR-93. Moreover, miR-93 directly targeted Nrf2 and negatively regulated Nrf2. This study suggests that lncRNA MEG3 depresses HG-induced apoptosis and inflammation of RPE via miR-93/Nrf2 axis, providing a novel perspective on the genesis and development of DR.
Collapse
Affiliation(s)
- Rong Luo
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Han Jin
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Lan Li
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Yu-Xiang Hu
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Fan Xiao
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China.
| |
Collapse
|
42
|
Friedrich J, Steel DHW, Schlingemann RO, Koss MJ, Hammes HP, Krenning G, Klaassen I. microRNA Expression Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients and Differences from Patients Treated with Anti-VEGF Therapy. Transl Vis Sci Technol 2020; 9:16. [PMID: 32821513 PMCID: PMC7409134 DOI: 10.1167/tvst.9.6.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose microRNAs (miRNAs) mediate the pathological mechanisms of diabetic retinopathy. In this study, we compared miRNA expression profiles in the vitreous between patients with proliferative diabetic retinopathy (PDR) and patients with a macular hole as non-diabetic controls, and between PDR patients treated with anti-vascular endothelial growth factor (VEGF) therapy and untreated PDR patients. Methods Vitreous samples of non-diabetic and PDR patients were screened for miRNAs with quantitative polymerase chain reaction (qPCR) panels. miRNA candidates were validated in vitreous samples of a second, independent cohort. In addition, the effect of anti-VEGF therapy was investigated in the vitreous of a third study population consisting of PDR patients who had not received anti-VEGF therapy and PDR patients who had received preoperative anti-VEGF therapy. Results During screening, seven miRNAs were found to be significantly higher in the vitreous of PDR patients, whereas two miRNAs were found to be significantly lower compared with non-diabetic controls. Validating the expression of these miRNAs in a second cohort resulted in the identification of six miRNAs that were expressed at significantly higher rates in the vitreous of PDR patients: hsa-miR-20a-5p, hsa-miR-23b-3p, hsa-miR-142-3p, hsa-miR-185-5p, hsa-miR-326, and hsa-miR-362-5p. Among these six miRNAs, hsa-miR-23b-3p levels were lower in the anti-VEGF-treated group of PDR patients compared with untreated PDR patients. Conclusions In this study, we identified six miRNAs that are expressed more highly in PDR patients and one miRNA that is expressed at a lower levels in anti-VEGF-treated PDR patients. Translational Relevance miRNAs identified in the vitreous of PDR patients may improve our understanding of the mechanisms leading to PDR.
Collapse
Affiliation(s)
- Julian Friedrich
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - David H W Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne and Sunderland Eye Infirmary, Sunderland, United Kingdom
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Michael J Koss
- Augenzentrum Nymphenburger Höfe, Munich, Germany.,Augenklinik Herzog Carl Theodor, Munich, Germany
| | - Hans-Peter Hammes
- Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Guido Krenning
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences and Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Tu Y, Zhu M, Wang Z, Wang K, Chen L, Liu W, Shi Q, Zhao Q, Sun Y, Wang X, Song E, Liu X. Melatonin inhibits Müller cell activation and pro-inflammatory cytokine production via upregulating the MEG3/miR-204/Sirt1 axis in experimental diabetic retinopathy. J Cell Physiol 2020; 235:8724-8735. [PMID: 32324260 DOI: 10.1002/jcp.29716] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR) is the most common ocular complication caused by diabetes mellitus and is the main cause of visual impairment in working-age people. Reactive gliosis and pro-inflammatory cytokine production by Müller cells contribute to the progression of DR. Melatonin is a strong anti-inflammatory hormone, mediating the cytoprotective effect of a variety of retinal cells against hyperglycemia. In this study, melatonin inhibited the gliosis activation and inflammatory cytokine production of Müller cells in both in vitro and in vivo models of DR. The melatonin membrane blocker, Luzindole, invalidated the melatonin-mediated protective effect on Müller cells. Furthermore, melatonin inhibited Müller cell activation and pro-inflammatory cytokine production by upregulating the long noncoding RNA maternally expressed gene 3/miR-204/sirtuin 1 axis. In conclusion, our study suggested that melatonin treatment could be a novel therapeutic strategy for DR.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kun Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, China
| | - Qin Shi
- Jinqiao Clinic, Shanghai Pudong New Area Public Benefit Hospital, Shanghai, China
| | - Qingliang Zhao
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yake Sun
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyu Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
44
|
Liu X, Zhang Y, Liang H, Zhang Y, Xu Y. microRNA-499-3p inhibits proliferation and promotes apoptosis of retinal cells in diabetic retinopathy through activation of the TLR4 signaling pathway by targeting IFNA2. Gene 2020; 741:144539. [PMID: 32160960 DOI: 10.1016/j.gene.2020.144539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are involved in the physiological and pathophysiological processes of diabetes and its microvascular and macrovascular complications. Hence, the aim of the study was to investigate whether miR-499-3p played an important role in diabetic retinopathy. Diabetic retinopathy was developed in rats by intraperitoneal injection of streptozocin (STZ), followed by collection of retinal tissues and preparation of retinal cells. Immunohistochemical staining was used to detect expression of interferon alpha 2 (IFNA2). RT-qPCR was used to determine the expression of miR-499-3p. Bioinformatics website and dual luciferase reporter gene assay were used to validate the targeting relationship between miR-499-3p and IFNA2. Gain- and loss-of-function assays were performed to explore the functional roles of aberrantly expressed miR-499-3p and IFNA2 in retinal cell proliferation by MTT, and apoptosis by flow cytometry. In retinal tissues and cells of diabetic rats, IFNA2 expression was reduced, and miR-499-3p expression increased to activate the toll-like receptor 4 (TLR4) signaling pathway. IFNA2 was a target gene of miR-499-3p and negatively regulated by miR-499-3p. Further, downregulated miR-499-3p promoted retinal cell proliferation while suppressing apoptosis to alleviate diabetic retinopathy. All in all, miR-499-3p promoted retinopathy by enhancing activation of the TLR4 signaling pathway, which provides a new therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Endocrinology (2(nd) Ward), Linyi People's Hospital, Linyi 276000, PR China
| | - Yuanyuan Zhang
- Department of Endocrinology (2(nd) Ward), Linyi People's Hospital, Linyi 276000, PR China
| | - Hongwei Liang
- Department of Healthcare, Linyi People's Hospital, Linyi 276000, PR China
| | - Yusong Zhang
- Department of Image, Linyi People's Hospital, Linyi 276000, PR China
| | - Yanchao Xu
- Department of Endocrinology (2(nd) Ward), Linyi People's Hospital, Linyi 276000, PR China.
| |
Collapse
|
45
|
Shen Y, Zhang W, Lee L, Hong M, Lee M, Chou G, Yu L, Sui Y, Chou B. RETRACTED: Down-regulated microRNA-195-5p and up-regulated CXCR4 attenuates the heart function injury of heart failure mice via inactivating JAK/STAT pathway. Int Immunopharmacol 2020; 82:106225. [PMID: 32155465 DOI: 10.1016/j.intimp.2020.106225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the integrity of the images in Figure 6, which appear to contain suspected image duplications, as detailed here: https://pubpeer.com/publications/A31DE9EEF13ED6B88BCC86A9CAC8D9 and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Most of these image duplications involve either pasting portions of one image into another, or rotating/flipping the image. Numerous additional suspected image duplications were detected within Figures 2A and 7A. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yuhua Shen
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518106, Guangdong, China
| | - Wen Zhang
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518106, Guangdong, China
| | - Lijun Lee
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Mianming Hong
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Minfei Lee
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Guohui Chou
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Li Yu
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Yuqing Sui
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Baihua Chou
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China.
| |
Collapse
|
46
|
Liu J, Chen S, Biswas S, Nagrani N, Chu Y, Chakrabarti S, Feng B. Glucose-induced oxidative stress and accelerated aging in endothelial cells are mediated by the depletion of mitochondrial SIRTs. Physiol Rep 2020; 8:e14331. [PMID: 32026628 PMCID: PMC7002531 DOI: 10.14814/phy2.14331] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic complications cause significant morbidity and mortality. Dysfunction of vascular endothelial cells (ECs), caused by oxidative stress, is a main mechanism of cellular damage. Oxidative stress accelerates EC senescence and DNA damage. In this study, we examined the role of mitochondrial sirtuins (SIRTs) in glucose-induced oxidative stress, EC senescence, and their regulation by miRNAs. Human retinal microvascular endothelial cells (HRECs) were exposed to 5 mmol/L (normoglycemia; NG) or 25 mmol/L glucose (hyperglycemia; HG) with or without transfection of miRNA antagomirs (miRNA-1, miRNA-19b, and miRNA-320; specific SIRT-targeting miRNAs). Expressions of SIRT3, 4 and 5 and their targeting miRNAs were examined using qRT-PCR and ELISAs were used to study SIRT proteins. Cellular senescence was investigated using senescence-associated β-gal stain; while, oxidative stress and mitochondrial alterations were examined using 8-OHdG staining and cytochrome B expressions, respectively. A streptozotocin-induced diabetic mouse model was also used and animal retinas and hearts were collected at 2 months of diabetes. In HRECs, HG downregulated the mRNAs of SIRTs, while SIRT-targeting miRNAs were upregulated. ELISA analyses confirmed such downregulation of SIRTs at the protein level. HG additionally caused early senescence, endothelial-to-mesenchymal transition and oxidative DNA damage in ECs. These changes were prevented by the transfection of specific miRNA antagomirs and by resveratrol. Retinal and cardiac tissues from diabetic mice also showed similar reductions of mitochondrial SIRTs. Collectively, these findings demonstrate a novel mechanism in which mitochondrial SIRTs regulate glucose-induced cellular aging through oxidative stress and how these SIRTs are regulated by specific miRNAs. Identifying such mechanisms may lead to the discovery of novel treatments for diabetic complications.
Collapse
Affiliation(s)
- Jieting Liu
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
- Mudanjiang Medical UniversityHeilongjiangPR China
| | - Shali Chen
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Saumik Biswas
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Niharika Nagrani
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Yanhui Chu
- Mudanjiang Medical UniversityHeilongjiangPR China
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Biao Feng
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
47
|
Gui F, You Z, Fu S, Wu H, Zhang Y. Endothelial Dysfunction in Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11:591. [PMID: 33013692 PMCID: PMC7499433 DOI: 10.3389/fendo.2020.00591] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is a diabetic complication which affects retinal function and results in severe loss of vision and relevant retinal diseases. Retinal vascular dysfunction caused by multifactors, such as advanced glycosylation end products and receptors, pro-inflammatory cytokines and chemokines, proliferator-activated receptor-γ disruption, growth factors, oxidative stress, and microRNA. These factors promote retinal endothelial dysfunction, which results in the development of DR. In this review, we summarize the contributors in the pathophysiology of DR for a better understanding of the molecular and cellular mechanism in the development of DR with a special emphasis on retinal endothelial dysfunction.
Collapse
|
48
|
Wang(a) J, Wang S, Wang(b) J, Xiao M, Guo Y, Tang Y, Zhang J, Gu J. Epigenetic Regulation Associated With Sirtuin 1 in Complications of Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:598012. [PMID: 33537003 PMCID: PMC7848207 DOI: 10.3389/fendo.2020.598012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023] Open
Abstract
Diabetes mellitus (DM) has been one of the largest health concerns of the 21st century due to the serious complications associated with the disease. Therefore, it is essential to investigate the pathogenesis of DM and develop novel strategies to reduce the burden of diabetic complications. Sirtuin 1 (SIRT1), a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase, has been reported to not only deacetylate histones to modulate chromatin function but also deacetylate numerous transcription factors to regulate the expression of target genes, both positively and negatively. SIRT1 also plays a crucial role in regulating histone and DNA methylation through the recruitment of other nuclear enzymes to the chromatin. Furthermore, SIRT1 has been verified as a direct target of many microRNAs (miRNAs). Recently, numerous studies have explored the key roles of SIRT1 and other related epigenetic mechanisms in diabetic complications. Thus, this review aims to present a summary of the rapidly growing field of epigenetic regulatory mechanisms, as well as the epigenetic influence of SIRT1 on the development and progression of diabetic complications, including cardiomyopathy, nephropathy, and retinopathy.
Collapse
Affiliation(s)
- Jie Wang(a)
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Jie Wang(b)
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
49
|
Ban E, Jeong S, Park M, Kwon H, Park J, Song EJ, Kim A. Accelerated wound healing in diabetic mice by miRNA-497 and its anti-inflammatory activity. Biomed Pharmacother 2020; 121:109613. [DOI: 10.1016/j.biopha.2019.109613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
|
50
|
Shao J, Fan G, Yin X, Gu Y, Wang X, Xin Y, Yao Y. A novel transthyretin/STAT4/miR-223-3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy. Mol Cell Endocrinol 2019; 498:110541. [PMID: 31415795 DOI: 10.1016/j.mce.2019.110541] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs without protein-coding functions that negatively regulate target genes and play important roles in physiological and pathological processes. The aim of this work was to reveal a novel miRNA/gene pathway in diabetic retinopathy (DR). A microarray was used to screen miRNAs in samples from nondiabetic controls and patients with DR, and miR-223-3p was screened as a potential candidate. Quantitative real-time PCR (qRT-PCR) revealed that the level of miR-223-3p was frequently overexpressed in DR samples and human retinal endothelial cells (hRECs) in hyperglycemia, but it was decreased in hyperglycemia after the addition of transthyretin (TTR). In addition, according to cell proliferation, tube formation, and wound healing assays, the downregulation of miR-223-3p suppressed cell migration and proliferation, whereas miR-223-3p upregulation showed the opposite effects. Furthermore, luciferase assays identified F-box and WD repeat domain-containing 7 (FBXW7) as a target mRNA of miR-223-3p. High glucose conditions facilitated the recruitment of signal transducer and activator of transcription 4 (STAT4) and promoted the transcription of miR-223-3p. In hRECs, in a hyperglycemic environment, TTR inhibited STAT4 expression, downregulated the level of miR-223-3p, and finally promoted FBXW7 expression. This study found a novel mechanism whereby TTR might affect neovascularization through a newly identified STAT4/miR-223-3p/FBXW7 cascade in DR.
Collapse
Affiliation(s)
- Jun Shao
- Department of Ophthalmology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, PR China
| | - Guangming Fan
- Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Xiaowen Yin
- Department of Ophthalmology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, PR China
| | - Yu Gu
- Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Xiaolu Wang
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi Institute of Translational Medicine, Wuxi, 214023, Jiangsu, PR China
| | - Yu Xin
- Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, PR China.
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, PR China.
| |
Collapse
|