1
|
Ray S, Palui R. Immunotherapy in type 1 diabetes: Novel pathway to the future ahead. World J Diabetes 2024; 15:2022-2035. [DOI: 10.4239/wjd.v15.i10.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024] Open
Abstract
Since the discovery of insulin over 100 years ago, the focus of research in the management of type 1 diabetes (T1D) has centered around glycemic control and management of complications rather than the prevention of autoimmune destruction of pancreatic β cells. Fortunately, in recent years, there has been significant advancement in immune-targeted pharmacotherapy to halt the natural progression of T1D. The immune-targeted intervention aims to alter the underlying pathogenesis of T1D by targeting different aspects of the immune system. The immunotherapy can either antagonize the immune mediators like T cells, B cells or cytokines (antibody-based therapy), or reinduce self-tolerance to pancreatic β cells (antigen-based therapy) or stem-cell treatment. Recently, the US Food and Drug Administration approved the first immunotherapy teplizumab to be used only in stage 2 of T1D. However, the window of opportunity to practically implement this approved molecule in the selected target population is limited. In this Editorial, we briefly discuss the various promising recent developments in the field of immunotherapy research in T1D. However, further studies of these newer therapeutic agents are needed to explore their true potential for prevention or cure of T1D.
Collapse
Affiliation(s)
- Sayantan Ray
- Department of Endocrinology, All India Institute of Medical Sciences, Bhubaneswar 751019, India
| | - Rajan Palui
- Department of Endocrinology, The Mission Hospital, Durgapur 713212, India
| |
Collapse
|
2
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
3
|
Lin C, Hu S, Cai X, Lv F, Yang W, Liu G, Yang X, Ji L. The opportunities and challenges of the disease-modifying immunotherapy for type 1 diabetes: A systematic review and meta-analysis. Pharmacol Res 2024; 203:107157. [PMID: 38531504 DOI: 10.1016/j.phrs.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
There are multiple disease-modifying immunotherapies showing the potential of preventing or delaying the progression of type 1 diabetes (T1D). We designed and performed this systematic review and meta-analysis to gain an overview of what a role immunotherapy plays in the treatment of T1D. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to December 2023. We included clinical trials of immunotherapy conducted in patients with T1D that reported the incidence of hypoglycemia or changes from baseline in at least one of following outcomes: 2 h and 4 h mixed-meal-stimulated C-peptide area under the curve (AUC), fasting C-peptide, daily insulin dosage, glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG). The results were computed as the weighted mean differences (WMDs) or odds ratios (ORs) and 95% confidence intervals (CIs) in random-effect model. In all, 34 clinical trials were included. When compared with control groups, 2 h C-peptide AUC was marginally higher in patient treated with nonantigen-based immunotherapies (WMD, 0.04nmol/L, 95% CI, 0.00-0.09 nmol/L, P=0.05), which was mainly driven by the effects of T cell-targeted therapy. A greater preservation in 4 h C-peptide AUC was observed in patients with nonantigen-based immunotherapies (WMD, 0.10nmol/L, 95% CI, 0.04-0.16 nmol/L, P=0.0007), which was mainly driven by the effects of tumor necrosis factor α (TNF-α) inhibitor and T cell-targeted therapy. After excluding small-sample trials, less daily insulin dosage was observed in patient treated with nonantigen-based immunotherapies when compared with control groups (WMD, -0.07units/kg/day, 95% CI, -0.11 to -0.03units/kg/day, P=0.0004). The use of antigen-based immunotherapies was also associated with a lower daily insulin dosage versus control groups (WMD, -0.11units/kg/day, 95% CI, -0.23 to -0.00units/kg/day, P=0.05). However, changes of HbA1c or FPG were comparable between nonantigen-based immunotherapies or antigen-based immunotherapies and control groups. The risk of hypoglycemia was not increased in patients treated with nonantigen-based immunotherapies or patients treated with antigen-based immunotherapies when compared with control groups. In conclusion, nonantigen-based immunotherapies were associated with a preservation of 2 h and 4 h C-peptide AUC in patients with T1D when compared with the controls, which was mainly driven by the effects of TNF-a inhibitor and T cell-targeted therapy. Both nonantigen-based immunotherapies and antigen-based immunotherapies tended to reduce the daily insulin dosage in patients with T1D when compared with the controls. However, they did not contribute to a substantial improvement in HbA1c or FPG. Both nonantigen-based immunotherapies and antigen-based immunotherapies were well tolerated with not increased risk of hypoglycemia in patients with T1D.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Geling Liu
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiaolin Yang
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
4
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
5
|
Roy SS, Keshri USP, Alam MS, Wasnik A. Effect of Immunotherapy on C-peptide Levels in Patients With Type I Diabetes Mellitus: A Systematic Review of Randomized Controlled Trials. Cureus 2024; 16:e58981. [PMID: 38800168 PMCID: PMC11127502 DOI: 10.7759/cureus.58981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 diabetes mellitus is an autoimmune condition characterized by insulin deficiency resulting from loss of function of beta cells in the pancreas, leading to hyperglycemia and associated long-term systemic complications and even death. Immunotherapy demonstrates beta cell function-preserving potential; however, its impact on C-peptide levels, a definitive biomarker of beta cell function, and endogenous insulin secretion remain unclear. A systematic review of various immunotherapeutic interventions is hence needed for a comprehensive assessment of their effectiveness as well as identifying research gaps and influencing future research and clinical decisions. An extensive literature search was done in PubMed, Scopus, and Cochrane Library databases using precise keywords and filters to identify relevant studies. Three independent reviewers assessed eligibility according to predetermined eligibility criteria, and data was extracted. The Cochrane risk of bias assessment tool (RoB 2.0) was used to evaluate the quality and validity of the included studies. A senior reviewer resolved discrepancies and differences of opinion between independent reviewers. A total of 11 studies were included, with 1464 study participants. Both Phase II and III trials were included. Within the included studies, four studies assessed the anti-CD3 monoclonal antibody otelixizumab as an intervention. Another anti-CD3 monoclonal antibody, teplizumab, was assessed as an intervention in four studies, whereas two studies assessed the anti-CD20 antibody rituximab and one study assessed abatacept as its interventional drug. Otelixizumab demonstrated benefits at higher doses but was associated with adverse effects like Ebstein-Barr virus reactivation and cytomegalovirus infection, while at lower doses it failed to show a significant difference in C-peptide levels or glycosylated hemoglobin (HbA1c). Teplizumab, on the other hand, showed promise in reducing C-peptide loss and exogenous insulin requirements and was associated with adverse events such as rash, lymphopenia, urinary tract infection, and cytokine release syndrome. However, these reactions were only associated with therapy initiation, and they subsided on their own. Rituximab improved C-peptide responses, and abatacept therapy demonstrated reduced loss of C-peptide, improved C-peptide levels, and lowered HbA1c. Teplizumab, rituximab, otelixizumab, and abatacept show potential for preserving beta cell function by reducing C-peptide loss in patients with type I diabetes mellitus. However, careful monitoring of adverse reactions, particularly viral infections and cytokine release syndrome, is necessary for the safe implementation of these therapies.
Collapse
Affiliation(s)
| | | | - Md Shadab Alam
- Department of Pharmacology, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Apoorva Wasnik
- Department of Community Medicine, Rajendra Institute of Medical Sciences, Ranchi, IND
| |
Collapse
|
6
|
Nassar M, Chaudhuri A, Ghanim H, Dandona P. Glucagon-like peptide-1 receptor agonists as a possible intervention to delay the onset of type 1 diabetes: A new horizon. World J Diabetes 2024; 15:133-136. [PMID: 38464377 PMCID: PMC10921167 DOI: 10.4239/wjd.v15.i2.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that destroys insulin-producing beta cells in the pancreas, leading to insulin deficiency and hyper-glycemia. The management of T1D primarily focuses on exogenous insulin replacement to control blood glucose levels. However, this approach does not address the underlying autoimmune process or prevent the progressive loss of beta cells. Recent research has explored the potential of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as a novel intervention to modify the disease course and delay the onset of T1D. GLP-1RAs are medications initially developed for treating type 2 diabetes. They exert their effects by enhancing glucose-dependent insulin secretion, suppressing glucagon secretion, and slowing gastric emptying. Emerging evidence suggests that GLP-1RAs may also benefit the treatment of newly diagnosed patients with T1D. This article aims to highlight the potential of GLP-1RAs as an intervention to delay the onset of T1D, possibly through their potential immunomodulatory and anti-inflammatory effects and preservation of beta-cells. This article aims to explore the potential of shifting the paradigm of T1D management from reactive insulin replacement to proactive disease modification, which should open new avenues for preventing and treating T1D, improving the quality of life and long-term outcomes for individuals at risk of T1D.
Collapse
Affiliation(s)
- Mahmoud Nassar
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| | - Ajay Chaudhuri
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| | - Husam Ghanim
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| | - Paresh Dandona
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States
| |
Collapse
|
7
|
Liu Y, Li W, Chen Y, Wang X. Anti-CD3 monoclonal antibodies in treatment of type 1 diabetes: a systematic review and meta-analysis. Endocrine 2024; 83:322-329. [PMID: 37658243 DOI: 10.1007/s12020-023-03499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
PURPOSE This meta-analysis aimed to assess the efficacy and safety of anti-CD3 monoclonal antibodies (mAbs) for type 1 diabetes. METHODS We searched PubMed, Embase and Cochrane until 23 February 2023 for randomized controlled trials that compared anti-CD3 mAbs with placebo in type 1 diabetes. The primary outcome was the area under the curve (AUC) of C-peptide, daily insulin dose or HbA1c. RESULTS Totally 12 trials that included 1870 participants were eligible for inclusion in the review. Compared with the control group, anti-CD3 mAbs increased AUC of C-peptide at 1 year (P = 0.0005, MD 0.14, 95% CI [0.06, 0.22], I2 = 94%), and 2 years (P = 0.0003, MD 0.20, 95% CI [0.09, 0.30], I2 = 88%). The use of anti-CD3 mAbs decreased insulin use at 1 year (P = 0.001, MD -0.09, 95% CI [-0.15, -0.04], I2 = 90%), and 2 years (P < 0.00001, MD -0.18, 95% CI [-0.25, -0.12], I2 = 86%). But there was no statistically significant effect on HbA1c levels. Vomiting, nausea, rash, pyrexia and headache were reported more frequently with anti-CD3 mAbs than with placebo. However, incidence of total adverse events and serious adverse events was similar when comparing anti-CD3 mAbs with placebo. CONCLUSIONS Our results suggest that anti-CD3 mAbs were a potential therapy for improving AUC of C-peptide and insulin use in type 1 diabetes.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixia Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Wang
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Agarwal G, Patel M. Review on Monoclonal Antibodies (mAbs) as a Therapeutic Approach for Type 1 Diabetes. Curr Diabetes Rev 2024; 20:e310823220578. [PMID: 37653635 DOI: 10.2174/1573399820666230831153249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Monoclonal antibodies have been successfully utilized in a variety of animal models to treat auto-immune illnesses for a long time. Immune system responses will either be less active or more active depending on how the immune system is operating abnormally. Immune system hypoactivity reduces the body's capacity to fight off various invading pathogens, whereas immune system hyperactivity causes the body to attack and kill its own tissues and cells. For maximal patient compliance, we will concentrate on a variety of antibody therapies in this study to treat Type 1 diabetes (an autoimmune condition). T-cells are responsible for the auto-immune condition known as T1D, which causes irregularities in the function of β-cells in the pancreas. As a result, for the treatment and prevention of T1D, immunotherapies that selectively restore continuous beta cellspecific self-tolerance are needed. Utilizing monoclonal antibodies is one way to specifically target immune cell populations responsible for the auto-immune-driven disease (mAb). Numerous mAbs have demonstrated clinical safety and varied degrees of success in modulating autoimmunity, including T1D. A targeted cell population is exhausted by mAb treatments, regardless of antigenic specificity. One drawback of this treatment is the loss of obtained protective immunity. Immune effector cell function is regulated by nondepleting monoclonal antibodies (mAb). The antigenfocused new drug delivery system is made possible by the adaptability of mAbs. For the treatment of T1D and T-cell-mediated autoimmunity, different existing and potential mAb therapy methods are described in this article.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Faculty of Pharmacy, Panipat Institute of Engineering and Technology Panipat, Haryana, India
| | - Mayank Patel
- Neuropharmacology division, Department of Pharmacology, ISF College of Pharmacy, Moga, (Pb.) 142001, India
| |
Collapse
|
9
|
Chen CY, Vander Kooi A, Cavedon A, Cai X, Hoggatt J, Martini PG, Miao CH. Induction of long-term tolerance to a specific antigen using anti-CD3 lipid nanoparticles following gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102043. [PMID: 37920545 PMCID: PMC10618827 DOI: 10.1016/j.omtn.2023.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
Development of factor VIII (FVIII) inhibitors is a serious complication in the treatment of hemophilia A (HemA) patients. In clinical trials, anti-CD3 antibody therapy effectively modulates the immune response of allograft rejection or autoimmune diseases without eliciting major adverse effects. In this study, we delivered mRNA-encapsulated lipid nanoparticles (LNPs) encoding therapeutic anti-CD3 antibody (αCD3 LNPs) to overcome the anti-FVIII immune responses in HemA mice. It was found that αCD3 LNPs encoding the single-chain antibodies (Fc-scFv) can efficiently deplete CD3+ and CD4+ effector T cells, whereas αCD3 LNPs encoding double-chain antibodies cannot. Concomitantly, mice treated with αCD3 (Fc-scFv) LNPs showed an increase in the CD4+CD25+Foxp3+ regulatory T cell percentages, which modulated the anti-FVIII immune responses. All T cells returned to normal levels within 2 months. HemA mice treated with αCD3 LNPs prior to hydrodynamic injection of liver-specific FVIII plasmids achieved persistent FVIII gene expression without formation of FVIII inhibitors. Furthermore, transgene expression was increased and persistent following secondary plasmid challenge, indicating induction of long-term tolerance to FVIII. Moreover, the treated mice maintained their immune competence against other antigens. In conclusion, our study established a potential new strategy to induce long-term antigen-specific tolerance using an αCD3 LNP formulation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Xiaohe Cai
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Carol H. Miao
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Thakkar S, Chopra A, Nagendra L, Kalra S, Bhattacharya S. Teplizumab in Type 1 Diabetes Mellitus: An Updated Review. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:22-30. [PMID: 38187075 PMCID: PMC10769466 DOI: 10.17925/ee.2023.19.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/01/2023] [Indexed: 01/09/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune condition characterized by the irreversible destruction of the β cells of the pancreas, which leads to a lifelong dependency on exogenous insulin. Despite the advancements in insulin delivery methods, the suboptimal outcomes of these methods have triggered the search for therapies that may prevent or reverse the disease. Given the autoimmune aetiology of T1DM, therapies counteracting the immune-mediated destruction of the β-cells are the obvious target. Although several treatment strategies have been attempted to target cellular, humoral and innate immunity, very few have had a clinically meaningful impact. Of all the available immunomodulatory agents, cluster of differentiation (CD) 3 antibodies have exhibited the most promising preclinical and clinical results. Muromonab-CD3, which also happened to be a murine CD3 antibody, was the first monoclonal antibody approved for clinical use and was primarily indicated for graft rejection. The adverse effects associated with muromonab-CD3 led to its withdrawal. Teplizumab, a newer CD3 antibody, has a better side-effect profile because of its humanized nature and non-Fc-receptor-binding domain. In November 2022, teplizumab became the first immunomodulatory agent to be licensed by the US Food and Drug Administration for delaying the onset of T1DM in high-risk adults and children over 8 years old. The mechanism seems to be enhancing regulatory T-cell activity and promoting immune tolerance. This article reviews the mechanism of action and the clinical trials of teplizumab in individuals with T1DM or at risk of developing the disease.
Collapse
Affiliation(s)
- Simran Thakkar
- Department of Endocrinology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Aditi Chopra
- Department of Endocrinology, Manipal Hospital, Bengaluru, India
| | | | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | | |
Collapse
|
11
|
Desouter AK, Keymeulen B, Demeester S, Van de Velde U, De Pauw P, Van Dalem A, Lapauw B, De Block C, Gillard P, Pipeleers DG, Gorus FK. Baseline plasma proinsulin response to glucose for predicting therapeutic response to otelixizumab in recent-onset type 1 diabetes. Diabetes Res Clin Pract 2023; 205:110974. [PMID: 37884063 DOI: 10.1016/j.diabres.2023.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIMS In recent-onset type 1 diabetes, clamp-derived C-peptide predicts good response to anti-CD3. Elevated proinsulin and proinsulin/C-peptide ratio (PI/CP) suggest increased metabolic/inflammatory beta cell burden. We reanalyzed trial data to compare the ability of baseline acutely glucose-stimulated proinsulin, C-peptide and PI/CP to predict functional outcome. METHODS Eighty recent-onset type 1 diabetes patients participated in the placebo-controlled otelixizumab (GSK; NCT00627146) trial. Hyperglycemic clamps were performed at baseline, 6, 12 and 18 months, involving 3 h of induced euglycemia, followed by acutely raising and maintaining glycemia to ≥ 10 mmol/l for 140 min. Plasma proinsulin, C-peptide and PI/CP were determined after acute (minute 0 at 10 mmol/l; PI0, CP0, PI/CP0) and sustained glucose stimulation (AUC between minutes 60-140). Outcome was assessed as change in AUC60-140 C-peptide from baseline. RESULTS In multiple linear regression, higher baseline (≥median [P50]) PI0 independently predicted preservation of beta cell function in response to anti-CD3 and interacted significantly with IAA. During follow-up, anti-CD3 tempered a further increase in PI/CP0, but not in PI0. CP0 outperformed PI0 and PI/CP0 for post-treatment monitoring. CONCLUSIONS In recent-onset type 1 diabetes, elevated acutely glucose-stimulated proinsulin may complement or replace acutely or sustainedly stimulated C-peptide release for identifying good responders to anti-CD3, but not as outcome measure.
Collapse
Affiliation(s)
- Aster K Desouter
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Simke Demeester
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Pieter De Pauw
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Annelien Van Dalem
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bruno Lapauw
- Department of Endocrinology, University Hospital Ghent-UGent, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, University of Antwerp-Antwerp University Hospital, Drie Eikestraat 655, 2650 Edegem, Belgium.
| | - Pieter Gillard
- Department of Endocrinology, University Hospital Leuven-KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Frans K Gorus
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
12
|
Sassi G, Licata G, Ventriglia G, Wouters A, Lemaitre P, Seurinck R, Mori A, Grieco GE, Bissenova S, Ellis D, Caluwaerts S, Rottiers P, Vandamme N, Mathieu C, Dotta F, Gysemans C, Sebastiani G. A Plasma miR-193b-365 Signature Combined With Age and Glycemic Status Predicts Response to Lactococcus lactis-Based Antigen-Specific Immunotherapy in New-Onset Type 1 Diabetes. Diabetes 2023; 72:1470-1482. [PMID: 37494666 PMCID: PMC10545562 DOI: 10.2337/db22-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Immunomodulation combined with antigen therapy holds great promise to arrest autoimmune type 1 diabetes, but clinical translation is hampered by a lack of prognostic biomarkers. Low-dose anti-CD3 plus Lactococcus lactis bacteria secreting proinsulin and IL-10 reversed new-onset disease in nonobese diabetic (NOD) mice, yet some mice were resistant to the therapy. Using miRNA profiling, six miRNAs (i.e., miR-34a-5p, miR-125a-3p, miR-193b-3p, miR-328, miR-365-3p, and miR-671-3p) were identified as differentially expressed in plasma of responder versus nonresponder mice before study entry. After validation and stratification in an independent cohort, plasma miR-193b-3p and miR-365-3p, combined with age and glycemic status at study entry, had the best power to predict, with high sensitivity and specificity, poor response to the therapy. These miRNAs were highly abundant in pancreas-infiltrating neutrophils and basophils with a proinflammatory and activated phenotype. Here, a set of miRNAs and disease-associated parameters are presented as a predictive signature for the L. lactis-based immunotherapy outcome in new-onset type 1 diabetes, hence allowing targeted recruitment of trial participants and accelerated trial execution. ARTICLE HIGHLIGHTS Low-dose anti-CD3 combined with oral gavage of genetically modified Lactococcus lactis bacteria secreting human proinsulin and IL-10 holds great promise to arrest autoimmune type 1 diabetes, but the absence of biomarkers predicting therapeutic success hampers clinical translation. A set of cell-free circulation miRNAs together with age and glycemia at baseline predicts a poor response after L. lactis-based immunotherapy in nonobese mice with new-onset diabetes. Pancreas-infiltrating neutrophils and basophils are identified as potential cellular sources of discovered miRNAs. The prognostic signature could guide targeted recruitment of patients with newly diagnosed type 1 diabetes in clinical trials with the L. lactis-based immunotherapy.
Collapse
Affiliation(s)
- Gabriele Sassi
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Amber Wouters
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Pierre Lemaitre
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Alessia Mori
- Tuscany Centre for Precision Medicine, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Samal Bissenova
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | | | | | - Niels Vandamme
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, Leuven–Ghent, Ghent, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
- Tuscany Centre for Precision Medicine, Siena, Italy
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| |
Collapse
|
13
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
14
|
Krishnamurthy B, Lacorcia M, Kay TWH, Thomas HE, Mannering SI. Monitoring immunomodulation strategies in type 1 diabetes. Front Immunol 2023; 14:1206874. [PMID: 37346035 PMCID: PMC10279879 DOI: 10.3389/fimmu.2023.1206874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease. Short-term treatment with agents targeting T cells, B cells and inflammatory cytokines to modify the disease course resulted in a short-term pause in disease activity. Lessons learnt from these trials will be discussed in this review. It is expected that effective disease-modifying agents will become available for use in earlier stages of T1D. Progress has been made to analyze antigen-specific T cells with standardization of T cell assay and discovery of antigen epitopes but there are many challenges. High-dimensional profiling of gene, protein and TCR expression at single cell level with innovative computational tools should lead to novel biomarker discovery. With this, assays to detect, quantify and characterize the phenotype and function of antigen-specific T cells will continuously evolve. An improved understanding of T cell responses will help researchers and clinicians to better predict disease onset, and progression, and the therapeutic efficacy of interventions to prevent or arrest T1D.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
15
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Dutta D, Nagendra L, Raizada N, Bhattacharya S, Sharma M. Verapamil improves One-Year C-Peptide Levels in Recent Onset Type-1 Diabetes: A Meta-Analysis. Indian J Endocrinol Metab 2023; 27:192-200. [PMID: 37583402 PMCID: PMC10424102 DOI: 10.4103/ijem.ijem_122_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 08/17/2023] Open
Abstract
Meta-analysis studying the role of verapamil in improving C-peptide in people with recent-onset type-1 diabetes (T1DM) has not been conducted to date. We undertook this meta-analysis to address this knowledge gap. Electronic databases were systematically reviewed for RCTs having individuals with T1DM receiving verapamil in the treatment arm and placebo in the control arm over the standard of care. The primary outcome was to evaluate changes in the C-peptide area under the curve (AUC) at a one-year follow-up. Secondary outcomes were to assess alterations in C-peptide AUC, glycated hemoglobin (HbA1c), blood pressure, heart rate, and side effects at different time intervals over a one-year follow-up. From the initially screened 27 articles, data from two RCTs (112 patients) satisfied the inclusion criteria and were analyzed. Compared to placebo, C-peptide AUC in individuals receiving verapamil was not different at three months [MD 0.17 nmol/L (95%CI: -0.05-0.38); P = 0.13; I2 = 86%] but significantly higher at 1-year [MD 0.27 nmol/L (95%CI: 0.19-0.35); P < 0.01; I2 = 12%]. The verapamil arm showed similar changes in HbA1C at three months [MD 0.23% (95%CI: -0.43-0.90); P = 0.49; I2 = 88%] and 1-year [MD 0.18% (95% CI: -0.74 - 1.10); P = 0.70; I2 = 89%] compared to placebo. Occurrence of treatment-emergent adverse events [Risk ratio (RR) 1.90 (95%CI: 0.52-6.91); P = 0.33; I2 = 63%], serious adverse events [RR 1.40 (95%CI: 0.50-3.93); P = 0.53], constipation [RR4.11 (95%CI: 0.93-18.13); P = 0.06; I2 = 0%], headache [RR0.48 (95%CI: 0.16-1.43); P = 0.19; I2 = 0%], severe hypoglycemia [RR 0.87 (95%CI: 0.06 - 13.51); P = 0.92] were comparable across groups. Verapamil was well tolerated, and its use over one year was associated with significant improvements in C-peptide AUC though the HbA1c remained unchanged.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology, Center for Endocrinology Diabetes Arthritis and Rheumatism (CEDAR) Superspeciality Healthcare, Dwarka, New Delhi, India
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Nishant Raizada
- Department of Endocrinology, University College of Medical Sciences, New Delhi, India
| | - Saptarshi Bhattacharya
- Department of Endocrinology, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, India
| | - Meha Sharma
- Department of Rheumatology, Center for Endocrinology Diabetes Arthritis and Rheumatism (CEDAR) Superspeciality Healthcare, Dwarka, New Delhi, India
| |
Collapse
|
17
|
Roep BO. The need and benefit of immune monitoring to define patient and disease heterogeneity, mechanisms of therapeutic action and efficacy of intervention therapy for precision medicine in type 1 diabetes. Front Immunol 2023; 14:1112858. [PMID: 36733487 PMCID: PMC9887285 DOI: 10.3389/fimmu.2023.1112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
The current standard of care for type 1 diabetes patients is limited to treatment of the symptoms of the disease, insulin insufficiency and its complications, not its cause. Given the autoimmune nature of type 1 diabetes, immunology is critical to understand the mechanism of disease progression, patient and disease heterogeneity and therapeutic action. Immune monitoring offers the key to all this essential knowledge and is therefore indispensable, despite the challenges and costs associated. In this perspective, I attempt to make this case by providing evidence from the past to create a perspective for future trials and patient selection.
Collapse
|
18
|
Ye S, Hua S, Zhou M. Transient B-cell depletion and regulatory T-cells mediation in combination with adenovirus mediated IGF-1 prevents and reverses autoimmune diabetes in NOD mice. Autoimmunity 2022; 55:529-537. [PMID: 36226521 DOI: 10.1080/08916934.2022.2128782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 diabetes (T1D) is one of the T cells mediated autoimmune diseases, although B cells also play an important role in the development. Both T cell and B cell targeted immunotherapies exhibited efficacies in preventing and reversing the T1D. Current study was performed to investigate the protective effects of anti-CD20/CD3 bi-specific antibody (bsAb) in combination with adenovirus mediated mouse insulin-like growth factor 1 (Adv-mIGF-1) gene on T1D in non-obese diabetes (NOD) mice. To simultaneously restore the proportion of Th cells and block the interaction of B cells as well as mediate T cell populations, the NOD model mice were randomly assigned to four groups received the saline, anti-CD20/CD3 bsAb and Adv-mIGF-1 gene alone or combination, respectively. After 16-consecutive weeks intervention, the ELISA, RT-PCR, western blot and histopathological analysis were performed to assess the pancreatic tissues and serum samples to evaluate the treatment effects. Chronic treatment of combination therapy improved T1D morbidity by improving the compartment and function of the CD4+Foxp3+ Tregs, reversing the secretion of insulin, controlling the blood glucose levels (BGLs) and alleviating insulitis as well as cell apoptosis in the NOD model mice. Moreover, current combination therapy also accelerated the proliferation and differentiation of pancreatic β cells via suppressing the apoptosis-related factors, including caspase-3, caspase-8 and Fas, and activating the Bcl-2-related anti-apoptotic pathway. Furthermore, the cytokeratin-19 (CK-19) and pancreatic duodenal homoplasmic box-1 (PDX-1), as two important stem cell markers of pancreas were both significantly improved by treatment of combination therapy. On conclusions, chronic treatment of anti-CD20/CD3 bsAb in combination with Adv-mIGF-1 gene exerts synergistic protection on T1D in the NOD mice.
Collapse
Affiliation(s)
- Shujun Ye
- Department of Pharmacy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| | - Saimei Hua
- Department of Pharmacy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| | - Meiyang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
19
|
Hofelich A, Marcus BA, Achenbach P. Früherkennung und Prävention des Typ-1-Diabetes. DIABETOL STOFFWECHS 2022. [DOI: 10.1055/a-0894-1860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Nagy G, Szekely TE, Somogyi A, Herold M, Herold Z. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes 2022; 13:835-850. [PMID: 36312000 PMCID: PMC9606789 DOI: 10.4239/wjd.v13.i10.835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
It has been 100 years since the first successful clinical use of insulin, yet it remains the only treatment option for type 1 diabetes mellitus (T1DM) patients. Advances in diabetes care, such as insulin analogue therapies and new devices, including continuous glucose monitoring with continuous subcutaneous insulin infusion have improved the quality of life of patients but have no impact on the pathogenesis of the disease. They do not eliminate long-term complications and require several lifestyle sacrifices. A more ideal future therapy for T1DM, instead of supplementing the insufficient hormone production (a consequence of β-cell destruction), would also aim to stop or slow down the destructive autoimmune process. The discovery of the autoimmune nature of type 1 diabetes mellitus has presented several targets by which disease progression may be altered. The goal of disease-modifying therapies is to target autoimmune mechanisms and prevent β-cell destruction. T1DM patients with better β-cell function have better glycemic control, reduced incidence of long-term complications and hypoglycemic episodes. Unfortunately, at the time symptomatic T1DM is diagnosed, most of the insulin secreting β cells are usually lost. Therefore, to maximize the salvageable β-cell mass by disease-modifying therapies, detecting autoimmune markers in an early, optimally presymptomatic phase of T1DM is of great importance. Disease-modifying therapies, such as immuno- and regenerative therapies are expected to take a relevant place in diabetology. The aim of this article was to provide a brief insight into the pathogenesis and course of T1DM and present the current state of disease-modifying therapeutic interventions that may impact future diabetes treatment.
Collapse
Affiliation(s)
- Geza Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Tekla Evelin Szekely
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| |
Collapse
|
21
|
LeFevre JD, Cyriac SL, Tokmic A, Pitlick JM. Anti-CD3 monoclonal antibodies for the prevention and treatment of type 1 diabetes: A literature review. Am J Health Syst Pharm 2022; 79:2099-2117. [PMID: 36056809 DOI: 10.1093/ajhp/zxac244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells, resulting in a loss of insulin production. Patients with T1D carry a substantial disease burden as well as substantial short-term and long-term risks associated with inadequate glycemic control. Currently, treatment mainly consists of insulin, which only treats the symptoms of T1D and not the root cause. Thus, disease-modifying agents such as anti-CD3 monoclonal antibodies (mAbs) that target the autoimmune destruction of beta cells in T1D would provide significant relief and health benefits for patients with T1D. This review summarizes the clinical evidence regarding the safety and efficacy of anti-CD3 mAbs in the prevention and treatment of T1D. SUMMARY A total of 27 studies reporting or evaluating data from clinical trials involving otelixizumab and teplizumab were included in the review. Anti-CD3 mAbs have shown significant benefits in both patients at high risk for T1D and those with recent-onset T1D. In high-risk populations, anti-CD3 mAbs delayed time to diagnosis, preserved C-peptide levels, and improved metabolic parameters. In recent-onset T1D, anti-CD3 mAbs preserved C-peptide levels and reduced insulin needs for extended periods. Anti-CD3 mAb therapy appears to be safe, with primarily transient and self-limiting adverse effects and no negative long-term effects. CONCLUSION Anti-CD3 mAbs are promising disease-modifying treatments for T1D. Their role in T1D may introduce short-term and long-term benefits with the potential to mitigate the significant disease burden; however, more evidence is required for an accurate assessment.
Collapse
Affiliation(s)
- James D LeFevre
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Sneha L Cyriac
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Adna Tokmic
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Jamie M Pitlick
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| |
Collapse
|
22
|
den Hollander NHM, Roep BO. From Disease and Patient Heterogeneity to Precision Medicine in Type 1 Diabetes. Front Med (Lausanne) 2022; 9:932086. [PMID: 35903316 PMCID: PMC9314738 DOI: 10.3389/fmed.2022.932086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) remains a devastating disease that requires much effort to control. Life-long daily insulin injections or an insulin pump are required to avoid severe complications. With many factors contributing to disease onset, T1D is a complex disease to cure. In this review, the risk factors, pathophysiology and defect pathways are discussed. Results from (pre)clinical studies are highlighted that explore restoration of insulin production and reduction of autoimmunity. It has become clear that treatment responsiveness depends on certain pathophysiological or genetic characteristics that differ between patients. For instance, age at disease manifestation associated with efficacy of immune intervention therapies, such as depleting islet-specific effector T cells or memory B cells and increasing immune regulation. The new challenge is to determine in whom to apply which intervention strategy. Within patients with high rates of insulitis in early T1D onset, therapy depleting T cells or targeting B lymphocytes may have a benefit, whereas slow progressing T1D in adults may be better served with more sophisticated, precise and specific disease modifying therapies. Genetic barcoding and immune profiling may help determining from which new T1D endotypes patients suffer. Furthermore, progressed T1D needs replenishment of insulin production besides autoimmunity reversal, as too many beta cells are already lost or defect. Recurrent islet autoimmunity and allograft rejection or necrosis seem to be the most challenging obstacles. Since beta cells are highly immunogenic under stress, treatment might be more effective with stress reducing agents such as glucagon-like peptide 1 (GLP-1) analogs. Moreover, genetic editing by CRISPR-Cas9 allows to create hypoimmunogenic beta cells with modified human leukocyte antigen (HLA) expression that secrete immune regulating molecules. Given the differences in T1D between patients, stratification of endotypes in clinical trials seems essential for precision medicines and clinical decision making.
Collapse
Affiliation(s)
- Nicoline H M den Hollander
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Graduate School, Utrecht University, Utrecht, Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Mignogna C, Maddaloni E, D'Onofrio L, Buzzetti R. Investigational therapies targeting CD3 for prevention and treatment of type 1 diabetes. Expert Opin Investig Drugs 2021; 30:1209-1219. [PMID: 34936848 DOI: 10.1080/13543784.2022.2022119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Immunotherapies for type 1 diabetes mellitus (T1D) have been the focus of intense research over the past few decades; nevertheless, the results of clinical trials have not matched expectations. However, thanks to the recent and promising results on T1D prevention, among all the different immune-intervention tested strategies, clinical evidence on anti-CD3 monoclonal antibodies (mAb) deserve particular attention and in-depth evaluation. AREAS COVERED In this narrative review, we introduce the role of T-cells and their co-receptor CD3 in the pathogenesis of T1D and examine the potential of anti-CD3 mAbs as a treatment for preventing or curing T1D. We discuss pre-clinical studies, phase II/III clinical trials, testing the anti-CD3 mAb teplizumab in subjects at T1D high risk, and testing teplizumab and otelixizumab in T1D recent onset patients. In this work we discuss the current evidence gathered on anti-CD3 therapy to offer insights on the treatment strengths, limitations and unmet needs. EXPERT OPINION Recent phase II clinical trials with teplizumab in recent-onset T1D seem encouraging, but benefits associated with the use of anti-CD3 mAb in recent-onset T1D are still controversial. A better patient selection, based on immunological profiles and specific biomarkers, is crucial to improve clinical outcomes in T1D immunotherapies.
Collapse
Affiliation(s)
- Carmen Mignogna
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | |
Collapse
|
24
|
Seetharaman R, Pawar S, Advani M. One hundred years since insulin discovery: An update on current and future perspectives for pharmacotherapy of diabetes mellitus. Br J Clin Pharmacol 2021; 88:1598-1612. [PMID: 34608666 DOI: 10.1111/bcp.15100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus was considered a fatal malady until the discovery, extraction and commercial availability of insulins. Numerous other classes of drugs ranging from sulfonylureas to sodium-glucose co-transporter-2 inhibitors were then marketed. However, with the prevalence of diabetes mellitus increasing every year, many more drugs and therapies are under investigation. This review article aimed to summarize the significant developments in the pharmacotherapy of diabetes mellitus and outline the progress made by the recent advances, 100 years since insulins were first extracted successfully. Insulin analogues and insulin delivery pumps have further improved glycaemic control in diabetes mellitus. Cardiovascular and renal outcome trials have changed the landscape of diabetology, with some of these drugs also efficacious in nondiabetics. Newer drug delivery systems are being evaluated to improve the efficacy and reduce the dosing frequency and adverse effects of antidiabetics. Some newer drugs with novel mechanisms of action targeting type 1 and type 2 diabetes have also shown promise in recent clinical trials. These drugs include dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1-agonists, glucokinase activators, anti-CD3 monoclonal antibodies and glimins. Their efficacy needs to be evaluated in larger studies.
Collapse
Affiliation(s)
- Rajmohan Seetharaman
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Sion, Mumbai, India
| | - Sudhir Pawar
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Sion, Mumbai, India
| | - Manjari Advani
- Department of Pharmacology, Lokmanya Tilak Municipal Medical College & General Hospital, Sion, Mumbai, India
| |
Collapse
|
25
|
Erdem N, Montero E, Roep BO. Breaking and restoring immune tolerance to pancreatic beta-cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:397-403. [PMID: 34183540 DOI: 10.1097/med.0000000000000646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) results from the loss of immune tolerance to pancreatic beta-cells leading to their destruction. Immune intervention therapies tested in T1D so far delayed progression but failed to restore tolerance, which partly explains their lack of durable clinical efficacy. RECENT FINDINGS The role of beta-cells and islets themselves in dialogue with their micro- and macro-environment including the immune system and the intestinal microbiome is increasingly evident. Indeed, islets can both maintain and break immune tolerance. Some recent immune therapies in cancer that block immune regulation also break tolerance. Induction of immune tolerance requires activating immune activation too, whereas immune suppression precludes this process. Immunotherapy alone my not suffice without engaging islets to restore tolerance and preserve beta-cell function. SUMMARY New insight into the role of islet tissue and its interaction with its environment in preserving or breaking tolerance has contributed to understand the development of islet autoimmunity and T1D. Knowing which factors in islets and the immune system contribute to maintaining, breaking, and restoring the balance in the immune system is critical to prevent initiation and reverse disease progression, and guides the design of novel tolerogenic strategies for durable therapeutic intervention and remission that target both the immune system and distressed islets.
Collapse
Affiliation(s)
- Neslihan Erdem
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Enrique Montero
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
| | - Bart O Roep
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
- Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
Collapse
|
27
|
Dosisfindungsstudie mit Otelixizumab. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1317-5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Wiedeman AE, Speake C, Long SA. The many faces of islet antigen-specific CD8 T cells: clues to clinical outcome in type 1 diabetes. Immunol Cell Biol 2021; 99:475-485. [PMID: 33483981 PMCID: PMC8248166 DOI: 10.1111/imcb.12437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
Immune monitoring enables a better understanding of disease processes and response to therapy, but has been challenging in the setting of chronic autoimmunity because of unknown etiology, variable and protracted kinetics of the disease process, heterogeneity across patients and the complexity of immune interactions. To begin to parse this complexity, we focus here on type 1 diabetes (T1D) and CD8 T cells as a cell type that has features that are associated with different stages of disease, rates of progression and response to therapy. Specifically, we discuss the current understanding of the role of autoreactive CD8 T cells in disease outcome, which implicates particular CD8 functional subsets, rather than unique antigens or total number of autoreactive T cells. Next, we discuss how autoreactive CD8 T‐cell features can be reflected in measures of global CD8 T cells, and then pull these concepts together by highlighting immune therapies recently shown to modulate both CD8 T cells and disease progression. We end by discussing outstanding questions about the role of specific subsets of autoreactive CD8 T cells in disease progression and how they may be optimally modulated to treat and prevent T1D.
Collapse
Affiliation(s)
- Alice E Wiedeman
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Cate Speake
- Interventional Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Sarah Alice Long
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| |
Collapse
|
29
|
Ke Q, Kroger CJ, Clark M, Tisch RM. Evolving Antibody Therapies for the Treatment of Type 1 Diabetes. Front Immunol 2021; 11:624568. [PMID: 33679717 PMCID: PMC7930374 DOI: 10.3389/fimmu.2020.624568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease resulting in reduced insulin production due to dysfunction/destruction of pancreatic β cells. Currently, there continues to be a need for immunotherapies that selectively reestablish persistent β cell-specific self-tolerance for the prevention and remission of T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target specific immune cell populations inducing autoimmune-driven pathology. Several mAb have proven to be clinically safe and exhibit varying degrees of efficacy in modulating autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a targeted cell population regardless of antigenic specificity. However, this treatment strategy can prove detrimental resulting in the loss of acquired protective immunity. Nondepleting mAb have also been applied to modulate the function of immune effector cells. Recent studies have begun to define novel mechanisms associated with mAb-based immunotherapy that alter the function of targeted effector cell pools. These results suggest short course mAb therapies may have persistent effects for regaining and maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties permits the development of novel strategies to target multiple antigens and/or deliver therapeutic drugs by a single mAb molecule. Here, we discuss current and potential future therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|