1
|
Green DJ, McKnite AM, Hunt JP, Imburgia CE, Kelley W, Watt KM. Amiodarone extraction by continuous renal replacement therapy: results from an ex vivo study. J Artif Organs 2024:10.1007/s10047-024-01475-7. [PMID: 39397084 DOI: 10.1007/s10047-024-01475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Continuous renal replacement therapy (CRRT) is a lifesaving therapy for critically ill patients with acute renal failure. Some patients supported with CRRT suffer from cardiac arrhythmias, which are often treated with amiodarone. While amiodarone is a very effective antiarrhythmic, it has a relatively narrow therapeutic window and a long half-life, making it challenging to dose safely. This is especially true in patients supported with CRRT, where drug pharmacokinetics are likely altered. This ex vivo study measured the extent of amiodarone extraction by the CRRT circuit. Amiodarone was administered to a closed-loop CRRT circuit. Drug was dosed to achieve therapeutic concentrations. Circuits were primed with a human blood-plasma mixture and maintained at physiologic temperature and pH. Serial blood samples were collected over time and drug concentrations were quantified. Amiodarone was heavily extracted by the ex vivo CRRT circuit with only 23% amiodarone remaining in the plasma at 6 h. The relative concentration was significantly greater in the controls than in the CRRT circuits within 2 h (n = 3; p = 0.0059). Amiodarone is heavily adsorbed by CRRT circuit components, suggesting that clinical dosing adjustments are likely required to achieve therapeutic targets.
Collapse
Affiliation(s)
- Danielle J Green
- Division of Pediatric Critical Care, Departments of Pediatrics, University of Utah, PO Box 581289, Salt Lake City, UT, 84158, USA.
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
| | - Autumn M McKnite
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - J Porter Hunt
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Carina E Imburgia
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Walter Kelley
- American Red Cross, Salt Lake City, UT, USA
- Department of Pathology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Kevin M Watt
- Division of Pediatric Critical Care, Departments of Pediatrics, University of Utah, PO Box 581289, Salt Lake City, UT, 84158, USA
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Kim M, Mahmood M, Estes LL, Wilson JW, Martin NJ, Marcus JE, Mittal A, O'Connell CR, Shah A. A narrative review on antimicrobial dosing in adult critically ill patients on extracorporeal membrane oxygenation. Crit Care 2024; 28:326. [PMID: 39367501 PMCID: PMC11453026 DOI: 10.1186/s13054-024-05101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024] Open
Abstract
The optimal dosing strategy of antimicrobial agents in critically ill patients receiving extracorporeal membrane oxygenation (ECMO) is unknown. We conducted comprehensive review of existing literature on effect of ECMO on pharmacokinetics and pharmacodynamics of antimicrobials, including antibacterials, antifungals, and antivirals that are commonly used in critically ill patients. We aim to provide practical guidance to clinicians on empiric dosing strategy for these patients. Finally, we discuss importance of therapeutic drug monitoring, limitations of current literature, and future research directions.
Collapse
Affiliation(s)
- Myeongji Kim
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Maryam Mahmood
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lynn L Estes
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John W Wilson
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph E Marcus
- Department of Medicine, Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, Fort Sam Houston, TX, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ankit Mittal
- Department of Infectious Diseases, AIG Hospitals, Hyderabad, India
| | | | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Yellepeddi VK, Hunt JP, Green DJ, McKnite A, Whelan A, Watt K. A physiologically-based pharmacokinetic modeling approach for dosing amiodarone in children on ECMO. CPT Pharmacometrics Syst Pharmacol 2024; 13:1542-1553. [PMID: 39033462 PMCID: PMC11533098 DOI: 10.1002/psp4.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a cardiopulmonary bypass device commonly used to treat cardiac arrest in children. The American Heart Association guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care recommend using amiodarone as a first-line agent to treat ventricular arrhythmias in children with cardiac arrest. However, there are no dosing recommendations for amiodarone to treat ventricular arrhythmias in pediatric patients on ECMO. Amiodarone has a high propensity for adsorption to the ECMO components due to its physicochemical properties leading to altered pharmacokinetics (PK) in ECMO patients. The change in amiodarone PK due to interaction with ECMO components may result in a difference in optimal dosing in patients on ECMO when compared with non-ECMO patients. To address this clinical knowledge gap, a physiologically-based pharmacokinetic model of amiodarone was developed in adults and scaled to children, followed by the addition of an ECMO compartment. The pediatric model included ontogeny functions of cytochrome P450 (CYP450) enzyme maturation across various age groups. The ECMO compartment was parameterized using the adsorption data of amiodarone obtained from ex vivo studies. Model predictions captured observed concentrations of amiodarone in pediatric patients with ECMO well with an average fold error between 0.5 and 2. Model simulations support an amiodarone intravenous (i.v) bolus dose of 22 mg/kg (neonates), 13 mg/kg (infants), 8 mg/kg (children), and 6 mg/kg (adolescents). This PBPK modeling approach can be applied to explore the dosing of other drugs used in children on ECMO.
Collapse
Affiliation(s)
- Venkata K. Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Molecular PharmaceuticsCollege of Pharmacy, University of UtahSalt Lake CityUtahUSA
| | - John Porter Hunt
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Danielle J. Green
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Division of Pediatric Critical Care, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Autumn McKnite
- Department of Pharmacology and ToxicologyCollege of Pharmacy, University of UtahSalt Lake CityUtahUSA
| | - Aviva Whelan
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Division of Pediatric Critical Care, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Kevin Watt
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Division of Pediatric Critical Care, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
4
|
O'Hanlon CJ, Holford N, Anderson BJ, Greaves M, Blackburn L, Tingle MD, Hannam JA. A pharmacokinetic framework describing antibiotic adsorption to cardiopulmonary bypass devices. CPT Pharmacometrics Syst Pharmacol 2024; 13:1409-1421. [PMID: 38813588 PMCID: PMC11330180 DOI: 10.1002/psp4.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Cardiopulmonary bypass (CPB) can alter pharmacokinetic (PK) parameters and the drug may adsorb to the CPB device, altering exposure. Cefazolin is a beta-lactam antibiotic used for antimicrobial prophylaxis during cardiac surgery supported by CPB. Adsorption of cefazolin could result in therapeutic failure. An ex vivo study was undertaken using CPB devices primed and then dosed with cefazolin and samples were obtained over 1 hour of recirculation. Twelve experimental runs were conducted using different CPB device sizes (neonate, infant, child, and adult), device coatings (Xcoating™, Rheoparin®, PH.I.S.I.O), and priming solutions. The time course of saturable binding, using Bmax (binding capacity), Kd (dissociation constant), and T2off (half-time of dissociation), described cefazolin adsorption. Bmax estimates for the device sizes were neonate 40.0 mg (95% CI 24.3, 67.4), infant 48.6 mg (95% CI 5.97, 80.2), child 77.8 mg (95% CI 54.9, 103), and adult 196 mg (95% CI 191, 199). The Xcoating™ Kd estimate was 139 mg/L (95% CI 27.0, 283) and the T2off estimate was 98.4 min (95% CI 66.8, 129). The Rheoparin® and PH.I.S.I.O coatings had similar binding parameters with Kd and T2off estimates of 0.169 mg/L (95% CI 0.01, 1.99) and 4.94 min (95% CI 0.17, 59.4). The Bmax was small (< 10%) relative to a typical total patient dose during cardiac surgery supported by CPB. A dose adjustment for cefazolin based solely on drug adsorption is not required. This framework could be extended to other PK studies involving CPB.
Collapse
Affiliation(s)
- Conor J. O'Hanlon
- Department of Pharmacology & Clinical PharmacologyUniversity of AucklandAucklandNew Zealand
| | - Nick Holford
- Department of Pharmacology & Clinical PharmacologyUniversity of AucklandAucklandNew Zealand
| | - Brian J. Anderson
- Department of AnaesthesiologyUniversity of AucklandAucklandNew Zealand
- Department of AnaesthesiaAuckland City HospitalAucklandNew Zealand
| | - Mark Greaves
- Department of AnaesthesiaAuckland City HospitalAucklandNew Zealand
| | - Lee Blackburn
- Department of AnaesthesiologyUniversity of AucklandAucklandNew Zealand
| | - Malcolm D. Tingle
- Department of Pharmacology & Clinical PharmacologyUniversity of AucklandAucklandNew Zealand
| | - Jacqueline A. Hannam
- Department of Pharmacology & Clinical PharmacologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
5
|
Chu WY, Nijman M, Stegeman R, Breur JMPJ, Jansen NJG, Nijman J, van Loon K, Koomen E, Allegaert K, Benders MJNL, Dorlo TPC, Huitema ADR. Population Pharmacokinetics and Target Attainment of Allopurinol and Oxypurinol Before, During, and After Cardiac Surgery with Cardiopulmonary Bypass in Neonates with Critical Congenital Heart Disease. Clin Pharmacokinet 2024; 63:1205-1220. [PMID: 39147988 PMCID: PMC11343829 DOI: 10.1007/s40262-024-01401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The CRUCIAL trial (NCT04217421) is investigating the effect of postnatal and perioperative administration of allopurinol on postoperative brain injury in neonates with critical congenital heart disease (CCHD) undergoing cardiac surgery with cardiopulmonary bypass (CPB) shortly after birth. OBJECTIVE This study aimed to characterize the pharmacokinetics (PK) of allopurinol and oxypurinol during the preoperative, intraoperative, and postoperative phases in this population, and to evaluate target attainment of the current dosing strategy. METHODS Nonlinear mixed-effects modeling was used to develop population PK models in 14 neonates from the CRUCIAL trial who received up to five intravenous allopurinol administrations throughout the postnatal and perioperative periods. Target attainment was defined as achieving an allopurinol concentration >2 mg/L in at least two-thirds of the patients during the first 24 h after birth and between the start and 36 h after cardiac surgery with CPB. RESULTS A two-compartment model for allopurinol was connected to a one-compartment model for oxypurinol with an auto-inhibition effect on the conversion, which best described the PK. In a typical neonate weighing 3.5 kg who underwent cardiac surgery at a postnatal age (PNA) of 5.6 days, the clearance (CL) of allopurinol and oxypurinol at birth was 0.95 L/h (95% confidence interval 0.75-1.2) and 0.21 L/h (0.17-0.27), respectively, which subsequently increased with PNA to 2.97 L/h and 0.41 L/h, respectively, before CPB. During CPB, allopurinol and oxypurinol CL decreased to 1.38 L/h (0.9-1.87) and 0.12 L/h (0.05-0.22), respectively. Post-CPB, allopurinol CL increased to 2.21 L/h (1.74-2.83), while oxypurinol CL dropped to 0.05 L/h (0.01-0.1). Target attainment was 100%, 53.8%, and 100% at 24 h postnatally, 24 h after the start of CPB, and 36 h after the end of cardiac surgery, respectively. The combined concentrations of allopurinol and oxypurinol maintained ≥ 90% inhibition of xanthine oxidase (IC90XO) throughout the postnatal and perioperative period. CONCLUSIONS The minimal target concentration of allopurinol was not achieved at every predefined time interval in the CRUCIAL trial; however, the dosing strategy used was deemed adequate, since it yielded concentrations well exceeding the IC90XO. The decreased CL of both compounds during CPB suggests influence of the hypothermia, hemofiltration, and the potential sequestration of allopurinol in the circuit. The reduced CL of oxypurinol after CPB is likely attributable to impaired kidney function.
Collapse
Affiliation(s)
- Wan-Yu Chu
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Maaike Nijman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
- Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Raymond Stegeman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Beatrix Children's Hospital, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas J G Jansen
- Department of Pediatrics, Beatrix Children's Hospital, UMC Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joppe Nijman
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kim van Loon
- Department of Anaesthesiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Erik Koomen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, and Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Clinical Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Clinical Pharmacy, UMC Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Roger C. Understanding antimicrobial pharmacokinetics in critically ill patients to optimize antimicrobial therapy: A narrative review. JOURNAL OF INTENSIVE MEDICINE 2024; 4:287-298. [PMID: 39035618 PMCID: PMC11258509 DOI: 10.1016/j.jointm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 07/23/2024]
Abstract
Effective treatment of sepsis not only demands prompt administration of appropriate antimicrobials but also requires precise dosing to enhance the likelihood of patient survival. Adequate dosing refers to the administration of doses that yield therapeutic drug concentrations at the infection site. This ensures a favorable clinical and microbiological response while avoiding antibiotic-related toxicity. Therapeutic drug monitoring (TDM) is the recommended approach for attaining these goals. However, TDM is not universally available in all intensive care units (ICUs) and for all antimicrobial agents. In the absence of TDM, healthcare practitioners need to rely on several factors to make informed dosing decisions. These include the patient's clinical condition, causative pathogen, impact of organ dysfunction (requiring extracorporeal therapies), and physicochemical properties of the antimicrobials. In this context, the pharmacokinetics of antimicrobials vary considerably between different critically ill patients and within the same patient over the course of ICU stay. This variability underscores the need for individualized dosing. This review aimed to describe the main pathophysiological changes observed in critically ill patients and their impact on antimicrobial drug dosing decisions. It also aimed to provide essential practical recommendations that may aid clinicians in optimizing antimicrobial therapy among critically ill patients.
Collapse
Affiliation(s)
- Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Nîmes, France
- UR UM 103 IMAGINE (Initial Management and prévention of orGan failures IN critically ill patiEnts), Faculty of Medicine, Montpellier University, Montpellier, France
| |
Collapse
|
7
|
Johns K, Eschenauer G, Clark A, Butler S, Dunham S. Antimicrobial Pharmacokinetic Considerations in Extracorporeal Membrane Oxygenation. J Clin Med 2024; 13:3554. [PMID: 38930083 PMCID: PMC11204421 DOI: 10.3390/jcm13123554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Critical illness creates challenges for healthcare providers in determining the optimal treatment of severe disease, particularly in determining the most appropriate selection and dosing of medications. Critically ill patients experience endogenous physiologic changes that alter the pharmacokinetics (PKs) of medications. These alterations can be further compounded by mechanical support modalities such as extracorporeal membrane oxygenation (ECMO). Specific components of the ECMO circuit have the potential to affect drug PKs through drug sequestration and an increase in the volume of distribution. Factors related to the medications themselves also play a role. These PK alterations create problems when trying to properly utilize antimicrobials in this patient population. The literature seeking to identify appropriate antimicrobial dosing regimens is both limited and difficult to evaluate due to patient variability and an inability to determine the exact role of the ECMO circuit in reduced drug concentrations. Lipophilic and highly protein bound medications are considered more likely to undergo significant drug sequestration in an ECMO circuit, and this general trend represents a logical starting point in antimicrobial selection and dosing in patients on ECMO support. This should not be the only consideration, however, as identifying infection and evaluating the efficacy of treatments in this population is challenging. Due to these challenges, therapeutic drug monitoring should be utilized whenever possible, particularly in cases with severe infection or high concern for drug toxicity.
Collapse
Affiliation(s)
- Kevin Johns
- Department of Pharmacy Services, University of Michigan Health, Ann Arbor, MI 48109, USA; (G.E.); (A.C.); (S.B.)
| | - Gregory Eschenauer
- Department of Pharmacy Services, University of Michigan Health, Ann Arbor, MI 48109, USA; (G.E.); (A.C.); (S.B.)
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Angela Clark
- Department of Pharmacy Services, University of Michigan Health, Ann Arbor, MI 48109, USA; (G.E.); (A.C.); (S.B.)
| | - Simona Butler
- Department of Pharmacy Services, University of Michigan Health, Ann Arbor, MI 48109, USA; (G.E.); (A.C.); (S.B.)
| | - Sabrina Dunham
- Department of Pharmacy Services, University of Michigan Health, Ann Arbor, MI 48109, USA; (G.E.); (A.C.); (S.B.)
| |
Collapse
|
8
|
Kriegl L, Hatzl S, Schilcher G, Zollner-Schwetz I, Boyer J, Geiger C, Hoenigl M, Krause R. Antifungals in Patients With Extracorporeal Membrane Oxygenation: Clinical Implications. Open Forum Infect Dis 2024; 11:ofae270. [PMID: 38887481 PMCID: PMC11181180 DOI: 10.1093/ofid/ofae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/05/2024] [Indexed: 06/20/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving technique used in critical care medicine for patients with severe respiratory or cardiac failure. This review examines the treatment and prophylaxis of fungal infections in ECMO patients, proposing specific regimens based on available data for different antifungals (azoles, echinocandins, amphotericin B/liposomal amphotericin B) and invasive fungal infections. Currently, isavuconazole and posaconazole have the most supported data, while modified dosages of isavuconazole are recommended in ECMO. Echinocandins are preferred for invasive candidiasis. However, choosing echinocandins is challenging due to limited and varied data on concentration loss in the ECMO circuit. Caution is likewise advised when using liposomal amphotericin B due to uncertain concentrations and potential ECMO dysfunction based on scarce data. We further conclude with the importance of further research on the impact of ECMO on antifungal drug concentrations to optimize dosing regimens in critically ill patients.
Collapse
Affiliation(s)
- Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Stefan Hatzl
- BioTechMed-Graz, Graz, Austria
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Ines Zollner-Schwetz
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Christina Geiger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
9
|
Dhanani JA, Shekar K, Parmar D, Lipman J, Bristow D, Wallis SC, Won H, Sumi CD, Abdul-Aziz MH, Roberts JA. COVID-19 Drug Treatments Are Prone to Sequestration in Extracorporeal Membrane Oxygenation Circuits: An Ex Vivo Extracorporeal Membrane Oxygenation Study. ASAIO J 2024; 70:546-552. [PMID: 38829573 DOI: 10.1097/mat.0000000000002120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Drug treatments for coronavirus disease 2019 (COVID-19) dramatically improve patient outcomes, and although extracorporeal membrane oxygenation (ECMO) has significant use in these patients, it is unknown whether ECMO affects drug dosing. We used an ex vivo adult ECMO model to measure ECMO circuit effects on concentrations of specific COVID-19 drug treatments. Three identical ECMO circuits used in adult patients were set up. Circuits were primed with fresh human blood (temperature and pH maintained within normal limits). Three polystyrene jars with 75 ml fresh human blood were used as controls. Remdesivir, GS-441524, nafamostat, and tocilizumab were injected in the circuit and control jars at therapeutic concentrations. Samples were taken from circuit and control jars at predefined time points over 6 h and drug concentrations were measured using validated assays. Relative to baseline, mean (± standard deviation [SD]) study drug recoveries in both controls and circuits at 6 h were significantly lower for remdesivir (32.2% [±2.7] and 12.4% [±2.1], p < 0.001), nafamostat (21.4% [±5.0] and 0.0% [±0.0], p = 0.018). Reduced concentrations of COVID-19 drug treatments in ECMO circuits is a clinical concern. Remdesivir and nafamostat may need dose adjustments. Clinical pharmacokinetic studies are suggested to guide optimized COVID-19 drug treatment dosing during ECMO.
Collapse
Affiliation(s)
- Jayesh A Dhanani
- From the University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kiran Shekar
- Adult Intensive Care Services, The Prince Charles Hospital, Chermside, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Dinesh Parmar
- Adult Intensive Care Services, The Prince Charles Hospital, Chermside, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jeffrey Lipman
- From the University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Jamieson Trauma Institute, Royal Brisbane and Womens Hospital
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| | - Debra Bristow
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Steven C Wallis
- From the University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Australia
| | - Hayoung Won
- From the University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Australia
| | - Chandra D Sumi
- From the University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Australia
| | - Mohd H Abdul-Aziz
- From the University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Australia
| | - Jason A Roberts
- From the University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Jamieson Trauma Institute, Royal Brisbane and Womens Hospital
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Department of Pharmacy, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
10
|
Stitt G, Thibault C, Mueller BA, Cies JJ, Daniel JM, Arikan AA, Watt KM. Pharmacokinetic Research in Pediatric Extracorporeal Therapies: Current State and Future Directions. Blood Purif 2024; 53:520-526. [PMID: 39363977 PMCID: PMC11449264 DOI: 10.1159/000534828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Extracorporeal life support (ECLS), including extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT), are life-saving therapies for critically ill children. Despite this, these modalities carry frustratingly high mortality rates. One driver of mortality may be altered drug disposition due to a combination of underlying illness, patient-circuit interactions, and drug-circuit interactions. Children receiving ECMO and/or CRRT routinely receive 20 or more drugs, and data supporting optimal dosing is lacking for most of these medications. The Pediatric Paracorporeal and Extracorporeal Therapies Summit (PPETS) gathered an international group of experts in the fields of ECMO, CRRT, and other ECLS modalities to discuss the current state of these therapies, disseminate innovative support strategies, share clinical experiences, and foster future collaborations. Here, we summarize the conclusions of PPETS and put forward a pathway to optimize pharmacokinetic (PK) research in this population. We must prioritize specific medications for in-depth study to improve drug use in ECLS and patient outcomes. Based on frequency of use, potential for adverse outcomes if dosed inappropriately, and lack of existing PK data, a list of high priority drugs was compiled for future research. Researchers must additionally reconsider study designs, emphasizing pooling of resources through multi-center studies and the use of innovative PK modeling techniques. Finally, the integration of validated PK models into clinical practice must be streamlined to deliver optimal medication use at the bedside. Focusing on the proposed list of highlighted medications and key methodological considerations will maximize the impact of future research.
Collapse
Affiliation(s)
- Gideon Stitt
- Center for Clinical Pharmacology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Céline Thibault
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Montreal, Qc, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Qc, Canada
| | - Bruce A Mueller
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Jeffrey J Cies
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA
- St Christopher’s Hospital for Children, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jennifer Morris Daniel
- Imagine Pediatrics, Houston, TX, USA
- Division of Nephrology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Ayse Akcan Arikan
- Divisions of Critical Care Medicine and Nephrology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Kevin M Watt
- Division of Clinical Pharmacology, Department of Pediatrics, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Pokorná P, Michaličková D, Tibboel D, Berner J. Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy. Antibiotics (Basel) 2024; 13:419. [PMID: 38786147 PMCID: PMC11117356 DOI: 10.3390/antibiotics13050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to characterize the impact of extracorporeal membrane oxygenation (ECMO) on the pharmacokinetics (PK) of meropenem in neonates and children and to provide recommendations for meropenem dosing in this specific population of patients. Therapeutic drug monitoring (152 meropenem plasma concentrations) data from 45 patients (38 received ECMO) with a body weight (BW) of 7.88 (3.62-11.97) kg (median (interquartile range)) and postnatal age of 3 (0-465) days were collected. The population PK analysis was performed using NONMEM V7.3.0. Monte Carlo simulations were performed to assess the probability of target achievement (PTA) for 40% of time the free drug remained above the minimum inhibitory concentration (fT > MIC) and 100% fT > MIC. BW was found to be a significant covariate for the volume of distribution (Vd) and clearance (CL). Additionally, continuous renal replacement therapy (CRRT) was associated with a two-fold increase in Vd. In the final model, the CL and Vd for a typical patient with a median BW of 7.88 kg that was off CRRT were 1.09 L/h (RSE = 8%) and 3.98 L (14%), respectively. ECMO did not affect meropenem PK, while superimposed CRRT significantly increased Vd. We concluded that current dosing regimens provide acceptably high PTA for MIC ≤ 4 mg/L for 40% fT > MIC, but individual dose adjustments are needed for 100% fT > MIC.
Collapse
Affiliation(s)
- Pavla Pokorná
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Physiology and Pharmacology, Karolinska Institute and Karolinska University Hospital, 171 77 Stockholm, Sweden
- Department of Pediatric Surgery, Erasmus Medical Center Sophia Children’s Hospital, 3062 PA Rotterdam, The Netherlands
| | - Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
| | - Dick Tibboel
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Pediatric Surgery, Erasmus Medical Center Sophia Children’s Hospital, 3062 PA Rotterdam, The Netherlands
| | - Jonas Berner
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Physiology and Pharmacology, Karolinska Institute and Karolinska University Hospital, 171 77 Stockholm, Sweden
- Pediatric Perioperative Medicine and Intensive Care, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
12
|
Fratoni AJ, Kois AK, Gluck JA, Nicolau DP, Kuti JL. Imipenem/relebactam pharmacokinetics in critically ill patients supported on extracorporeal membrane oxygenation. J Antimicrob Chemother 2024; 79:1118-1125. [PMID: 38517465 DOI: 10.1093/jac/dkae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) is a life-saving modality but has the potential to alter the pharmacokinetics (PK) of antimicrobials. Imipenem/cilastatin/relebactam is an antibiotic with utility in treating certain multi-drug resistant Gram-negative infections. Herein, we describe the population pharmacokinetics of imipenem and relebactam in critically ill patients supported on ECMO. METHODS Patients with infection supported on ECMO received 4-6 doses of imipenem/cilastatin/relebactam per current prescribing information based on estimated creatinine clearance. Blood samples were collected following the final dose of the antibiotic. Concentrations were determined via LC-MS/MS. Population PK models were fit with and without covariates using Pmetrics. Monte Carlo simulations of 1000 patients assessed joint PTA of fAUC0-24/MIC ≥ 8 for relebactam, and ≥40% fT > MIC for imipenem for each approved dosing regimen. RESULTS Seven patients supported on ECMO were included in PK analyses. A two-compartment model with creatinine clearance as a covariate on clearance for both imipenem and relebactam fitted the data best. The mean ± standard deviation parameters were: CL0, 15.21 ± 6.52 L/h; Vc, 10.13 ± 2.26 L; K12, 2.45 ± 1.16 h-1 and K21, 1.76 ± 0.49 h-1 for imipenem, and 6.95 ± 1.34 L/h, 9.81 ± 2.69 L, 2.43 ± 1.13 h-1 and 1.52 ± 0.67 h-1 for relebactam. Simulating each approved dose of imipenem/cilastatin/relebactam according to creatinine clearance yielded PTAs of ≥90% up to an MIC of 2 mg/L. CONCLUSIONS Imipenem/cilastatin/relebactam dosed according to package insert in patients supported on ECMO is predicted to achieve exposures sufficient to treat susceptible Gram-negative isolates, including Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Abigail K Kois
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Jason A Gluck
- Heart & Vascular Institute, Hartford HealthCare, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
13
|
Khurana N, Watkins K, Ghatak D, Staples J, Hubbard O, Yellepeddi V, Watt K, Ghandehari H. Reducing hydrophobic drug adsorption in an in-vitro extracorporeal membrane oxygenation model. Eur J Pharm Biopharm 2024; 198:114261. [PMID: 38490349 PMCID: PMC11186434 DOI: 10.1016/j.ejpb.2024.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving cardiopulmonary bypass technology for critically ill patients with heart and lung failure. Patients treated with ECMO receive a range of drugs that are used to treat underlying diseases and critical illnesses. However, the dosing guidelines for these drugs used in ECMO patients are unclear. Mortality rate for patients on ECMO exceeds 40% partly due to inaccurate dosing information, caused in part by the adsorption of drugs in the ECMO circuit and its components. These drugs range in hydrophobicity, electrostatic interactions, and pharmacokinetics. Propofol is commonly administered to ECMO patients and is known to have high adsorption rates to the circuit components due to its hydrophobicity. To reduce adsorption onto the circuit components, we used micellar block copolymers (Poloxamer 188TM and Poloxamer 407TM) and liposomes tethered with poly(ethylene glycol) to encapsulate propofol, provide a hydrophilic shell and prevent its adsorption. Size, polydispersity index (PDI), and zeta potential of the delivery systems were characterized by dynamic light scattering, and encapsulation efficiency was characterized using High Performance Liquid Chromatography (HPLC). All delivery systems used demonstrated colloidal stability at physiological conditions for seven days, cytocompatibility with a human leukemia monocytic cell line, i.e., THP-1 cells, and did not activate the complement pathway in human plasma. We demonstrated a significant reduction in adsorption of propofol in an in-vitro ECMO model upon encapsulation in micelles and liposomes. These results show promise in reducing the adsorption of hydrophobic drugs to the ECMO circuits by encapsulation in nanoscale structures tethered with hydrophilic polymers on the surface.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kamiya Watkins
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Debika Ghatak
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Jane Staples
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Oliver Hubbard
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Venkata Yellepeddi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kevin Watt
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Booke H, Friedrichson B, Draheim L, von Groote TC, Frey O, Röhr A, Zacharowski K, Adam EH. No Sequestration of Commonly Used Anti-Infectives in the Extracorporeal Membrane Oxygenation (ECMO) Circuit-An Ex Vivo Study. Antibiotics (Basel) 2024; 13:373. [PMID: 38667049 PMCID: PMC11047533 DOI: 10.3390/antibiotics13040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Patients undergoing extracorporeal membrane oxygenation (ECMO) often require therapy with anti-infective drugs. The pharmacokinetics of these drugs may be altered during ECMO treatment due to pathophysiological changes in the drug metabolism of the critically ill and/or the ECMO therapy itself. This study investigates the latter aspect for commonly used anti-infective drugs in an ex vivo setting. A fully functional ECMO device circulated an albumin-electrolyte solution through the ECMO tubes and oxygenator. The antibiotic agents cefazolin, cefuroxim, cefepime, cefiderocol, linezolid and daptomycin and the antifungal agent anidulafungin were added. Blood samples were taken over a period of four hours and drug concentrations were measured via high-pressure liquid chromatography (HPLC) with UV detection. Subsequently, the study analyzed the time course of anti-infective concentrations. The results showed no significant changes in the concentration of any tested anti-infectives throughout the study period. This ex vivo study demonstrates that the ECMO device itself has no impact on the concentration of commonly used anti-infectives. These findings suggest that ECMO therapy does not contribute to alterations in the concentrations of anti-infective medications in severely ill patients.
Collapse
Affiliation(s)
- Hendrik Booke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Straße 33, 48149 Muenster, Germany
| | - Benjamin Friedrichson
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany; (B.F.); (L.D.); (K.Z.); (E.H.A.)
| | - Lena Draheim
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany; (B.F.); (L.D.); (K.Z.); (E.H.A.)
| | - Thilo Caspar von Groote
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Albert-Schweitzer-Straße 33, 48149 Muenster, Germany
| | - Otto Frey
- Department of Pharmacy, Heidenheim General Hospital, Schloßhaustraße 100, 89522 Heidenheim, Germany; (O.F.); (A.R.)
| | - Anka Röhr
- Department of Pharmacy, Heidenheim General Hospital, Schloßhaustraße 100, 89522 Heidenheim, Germany; (O.F.); (A.R.)
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany; (B.F.); (L.D.); (K.Z.); (E.H.A.)
| | - Elisabeth Hannah Adam
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany; (B.F.); (L.D.); (K.Z.); (E.H.A.)
| |
Collapse
|
15
|
Salem AM, Smith T, Wilkes J, Bailly DK, Heyrend C, Profsky M, Yellepeddi VK, Gopalakrishnan M. Pharmacokinetic Modeling Using Real-World Data to Optimize Unfractionated Heparin Dosing in Pediatric Patients on Extracorporeal Membrane Oxygenation and Evaluate Target Achievement-Clinical Outcomes Relationship. J Clin Pharmacol 2024; 64:30-44. [PMID: 37565528 DOI: 10.1002/jcph.2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Unfractionated heparin (UFH) is a commonly used anticoagulant for pediatric patients undergoing extracorporeal membrane oxygenation (ECMO), but evidence is lacking on the ideal dosing. We aimed to (1) develop a population pharmacokinetic (PK) model for UFH, measured through anti-factor Xa assay; (2) optimize UFH starting infusions and dose titrations through simulations; and (3) explore UFH exposure-clinical outcomes relationship. Data from 218 patients admitted to Utah's Primary Children's Hospital were retrospectively collected. A 1-compartment PK model with time-varying clearance (CL) adequately described UFH PK. Weight on CL and volume of distribution and ECMO circuit change on CL were significant covariates. The typical estimates for initial CL and first-order rate constant to reach steady-state CL were 0.57 L/(h·10 kg) and 0.02/h. Comparable to non-ECMO patients, the typical steady-state CL was 0.81 L/(h·10 kg). Simulations showed that a 75 IU/kg UFH bolus dose followed by starting infusions of 25 and 20 IU/h/kg for patients aged younger than 6 years and 6 years or older, respectively, achieved the therapeutic target in 56.6% of all patients, whereas only 3.1% exceeded the target. The proposed UFH titration schemes achieved the target in more than 90% of patients while less than 0.63% were above the target after 24 and 48 hours of treatment. The median intensive care unit survival time in patients within and below the target at 24 hours was 136 and 66 hours, respectively. In conclusion, PK model of UFH was developed for pediatric patients on ECMO. The proposed UFH dosing scheme attained the anti-factor Xa target rapidly and safely.
Collapse
Affiliation(s)
- Ahmed M Salem
- Center for Translational Medicine, Department of Pharmacy Practice, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Trey Smith
- Department of Pharmacy, Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT, USA
| | - Jacob Wilkes
- Pediatric Analytics, Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT, USA
| | - David K Bailly
- Division of Pediatric Critical Care, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Caroline Heyrend
- Department of Pharmacy, Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT, USA
| | - Michael Profsky
- Mechanical Circulatory Support, Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT, USA
| | - Venkata K Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, Department of Pharmacy Practice, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
16
|
Khurana N, Sünner T, Hubbard O, Imburgia CE, Yellepeddi V, Ghandehari H, Watt KM. Direct and continuous dosing of propofol can saturate Ex vivo ECMO circuit to improve propofol recovery. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2023; 55:194-196. [PMID: 38099634 PMCID: PMC10723571 DOI: 10.1051/ject/2023036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/28/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) is a cardiopulmonary bypass device that provides life-saving complete respiratory and cardiac support in patients with cardiorespiratory failure. The majority of drugs prescribed to patients on ECMO lack a dosing strategy optimized for ECMO patients. Several studies demonstrated that dosing is different in this population because the ECMO circuit components can adsorb drugs and affect drug exposure substantially. Saturation of ECMO circuit components by drug disposition has been posited but has not been proven. In this study, we have attempted to determine if propofol adsorption is saturable in ex vivo ECMO circuits. METHODS We injected ex vivo ECMO circuits with propofol, a drug that is highly adsorbed to the ECMO circuit components. Propofol was injected as a bolus dose (50 μg/mL) and a continuous infusion dose (6 mg/h) to investigate the saturation of the ECMO circuit. RESULTS After the bolus dose, only 27% of propofol was recovered after 30 minutes which is as expected. However, >80% propofol was recovered after the infusion dose which persisted even when the infusion dose was discontinued. CONCLUSION Our results suggest that if ECMO circuits are dosed directly with propofol, drug adsorption can be eliminated as a cause for altered drug exposure. Field of Research: Artificial Lung/ECMO.
Collapse
Affiliation(s)
- Nitish Khurana
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah Salt Lake City Utah 84112 USA
| | - Till Sünner
- Philipps Universität Marburg, Institut für Pharmazeutische Technologie und Biopharmazie Robert-Koch-Straße 4 35037 Marburg Germany
| | - Oliver Hubbard
- Department of Biomedical Engineering, College of Engineering, University of Utah 36 S. Wasatch Salt Lake City Utah 84112 USA
| | - Carina E. Imburgia
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah 295 Chipeta Way Salt Lake City Utah 84108 USA
| | - Venkata Yellepeddi
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah Salt Lake City Utah 84112 USA
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah 295 Chipeta Way Salt Lake City Utah 84108 USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah Salt Lake City Utah 84112 USA
- Department of Biomedical Engineering, College of Engineering, University of Utah 36 S. Wasatch Salt Lake City Utah 84112 USA
| | - Kevin M. Watt
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah 295 Chipeta Way Salt Lake City Utah 84108 USA
| |
Collapse
|
17
|
Honeycutt CC, McDaniel CG, McKnite A, Hunt JP, Whelan A, Green DJ, Watt KM. Meropenem extraction by ex vivo extracorporeal life support circuits. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2023; 55:159-166. [PMID: 38099629 PMCID: PMC10723574 DOI: 10.1051/ject/2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/28/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Meropenem is a broad-spectrum carbapenem-type antibiotic commonly used to treat critically ill patients infected with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. As many of these patients require extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapy (CRRT), it is important to understand how these extracorporeal life support circuits impact meropenem pharmacokinetics. Based on the physicochemical properties of meropenem, it is expected that ECMO circuits will minimally extract meropenem, while CRRT circuits will rapidly clear meropenem. The present study seeks to determine the extraction of meropenem from ex vivo ECMO and CRRT circuits and elucidate the contribution of different ECMO circuit components to extraction. METHODS Standard doses of meropenem were administered to three different configurations (n = 3 per configuration) of blood-primed ex vivo ECMO circuits and serial sampling was conducted over 24 h. Similarly, standard doses of meropenem were administered to CRRT circuits (n = 4) and serial sampling was conducted over 4 h. Meropenem was administered to separate tubes primed with circuit blood to serve as controls to account for drug degradation. Meropenem concentrations were quantified, and percent recovery was calculated for each sample. RESULTS Meropenem was cleared at a similar rate in ECMO circuits of different configurations (n = 3) and controls (n = 6), with mean (standard deviation) recovery at 24 h of 15.6% (12.9) in Complete circuits, 37.9% (8.3) in Oxygenator circuits, 47.1% (8.2) in Pump circuits, and 20.6% (20.6) in controls. In CRRT circuits (n = 4) meropenem was cleared rapidly compared with controls (n = 6) with a mean recovery at 2 h of 2.36% (1.44) in circuits and 93.0% (7.1) in controls. CONCLUSION Meropenem is rapidly cleared by hemodiafiltration during CRRT. There is minimal adsorption of meropenem to ECMO circuit components; however, meropenem undergoes significant degradation and/or plasma metabolism at physiological conditions. These ex vivo findings will advise pharmacists and physicians on the appropriate dosing of meropenem.
Collapse
Affiliation(s)
| | | | - Autumn McKnite
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy Salt Lake City Utah USA
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - J. Porter Hunt
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - Aviva Whelan
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
- Division of Critical Care, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - Danielle J. Green
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
- Division of Critical Care, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - Kevin M. Watt
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
- Division of Critical Care, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| |
Collapse
|
18
|
Dubinsky SDJ, Watt KM, Imburgia CE, Mcknite AM, Hunt JP, Rice C, Rower JE, Edginton AN. Anakinra Removal by Continuous Renal Replacement Therapy: An Ex Vivo Analysis. Crit Care Explor 2023; 5:e1010. [PMID: 38107537 PMCID: PMC10723863 DOI: 10.1097/cce.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES Patients with sepsis are at significant risk for multiple organ dysfunction, including the lungs and kidneys. To manage the morbidity associated with kidney impairment, continuous renal replacement therapy (CRRT) may be required. The extent of anakinra pharmacokinetics in CRRT remains unknown. The objectives of this study were to investigate the anakinra-circuit interaction and quantify the rate of removal from plasma. DESIGN The anakinra-circuit interaction was evaluated using a closed-loop ex vivo CRRT circuit. CRRT was performed in three phases based on the method of solute removal: 1) hemofiltration, 2) hemodialysis, and 3) hemodiafiltration. Standard control samples of anakinra were included to assess drug degradation. SETTING University research laboratory. PATIENTS None. INTERVENTIONS Anakinra was administered to the CRRT circuit and serial prefilter blood samples were collected along with time-matched control and hemofiltrate samples. Each circuit was run in triplicate to assess inter-run variability. Concentrations of anakinra in each reference fluid were measured by enzyme-linked immunosorbent assay. Transmembrane filter clearance was estimated by the product of the sieving coefficient/dialysate saturation constant and circuit flow rates. MEASUREMENTS AND MAIN RESULTS Removal of anakinra from plasma occurred within minutes for each CRRT modality. Average drug remaining (%) in plasma following anakinra administration was lowest with hemodiafiltration (34.9%). The average sieving coefficient was 0.34, 0.37, and 0.41 for hemodiafiltration, hemofiltration, and hemodialysis, respectively. Transmembrane clearance was fairly consistent across each modality with the highest during hemodialysis (5.53 mL/min), followed by hemodiafiltration (4.99 mL/min), and hemofiltration (3.94 mL/min). Percent drug remaining within the control samples (93.1%) remained consistent across each experiment, indicating negligible degradation within the blood. CONCLUSIONS The results of this analysis are the first to demonstrate that large molecule therapeutic proteins such as anakinra, are removed from plasma with modern CRRT technology. Current dosing recommendations for patients with severe renal impairment may result in subtherapeutic anakinra concentrations in those receiving CRRT.
Collapse
Affiliation(s)
- Samuel D J Dubinsky
- University of Waterloo, School of Pharmacy, Faculty of Science, Waterloo, ON, Canada
| | - Kevin M Watt
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, UT
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT
| | - Carina E Imburgia
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, UT
| | - Autumn M Mcknite
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT
| | - J Porter Hunt
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, UT
| | - Cassandra Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT
| | - Joseph E Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT
| | - Andrea N Edginton
- University of Waterloo, School of Pharmacy, Faculty of Science, Waterloo, ON, Canada
| |
Collapse
|
19
|
Tonetti T, Zanella A, Pérez-Torres D, Grasselli G, Ranieri VM. Current knowledge gaps in extracorporeal respiratory support. Intensive Care Med Exp 2023; 11:77. [PMID: 37962702 PMCID: PMC10645840 DOI: 10.1186/s40635-023-00563-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Extracorporeal life support (ECLS) for acute respiratory failure encompasses veno-venous extracorporeal membrane oxygenation (V-V ECMO) and extracorporeal carbon dioxide removal (ECCO2R). V-V ECMO is primarily used to treat severe acute respiratory distress syndrome (ARDS), characterized by life-threatening hypoxemia or ventilatory insufficiency with conventional protective settings. It employs an artificial lung with high blood flows, and allows improvement in gas exchange, correction of hypoxemia, and reduction of the workload on the native lung. On the other hand, ECCO2R focuses on carbon dioxide removal and ventilatory load reduction ("ultra-protective ventilation") in moderate ARDS, or in avoiding pump failure in acute exacerbated chronic obstructive pulmonary disease. Clinical indications for V-V ECLS are tailored to individual patients, as there are no absolute contraindications. However, determining the ideal timing for initiating extracorporeal respiratory support remains uncertain. Current ECLS equipment faces issues like size and durability. Innovations include intravascular lung assist devices (ILADs) and pumpless devices, though they come with their own challenges. Efficient gas exchange relies on modern oxygenators using hollow fiber designs, but research is exploring microfluidic technology to improve oxygenator size, thrombogenicity, and blood flow capacity. Coagulation management during V-V ECLS is crucial due to common bleeding and thrombosis complications; indeed, anticoagulation strategies and monitoring systems require improvement, while surface coatings and new materials show promise. Moreover, pharmacokinetics during ECLS significantly impact antibiotic therapy, necessitating therapeutic drug monitoring for precise dosing. Managing native lung ventilation during V-V ECMO remains complex, requiring a careful balance between benefits and potential risks for spontaneously breathing patients. Moreover, weaning from V-V ECMO is recognized as an area of relevant uncertainty, requiring further research. In the last decade, the concept of Extracorporeal Organ Support (ECOS) for patients with multiple organ dysfunction has emerged, combining ECLS with other organ support therapies to provide a more holistic approach for critically ill patients. In this review, we aim at providing an in-depth overview of V-V ECMO and ECCO2R, addressing various aspects of their use, challenges, and potential future directions in research and development.
Collapse
Affiliation(s)
- Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S.Orsola, Bologna, Italy
| | - Alberto Zanella
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - David Pérez-Torres
- Servicio de Medicina Intensiva, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - V Marco Ranieri
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S.Orsola, Bologna, Italy
| |
Collapse
|
20
|
Urbánek K, Šantavý P, Zuščich O, Kubíčková V, Michaličková D, Slanař O, Šíma M. Population pharmacokinetic model-based dosing proposal for ampicillin prophylaxis in cardiac surgery patients with cardiopulmonary bypass. J Chemother 2023; 35:614-622. [PMID: 36715134 DOI: 10.1080/1120009x.2023.2170895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
The aim of this study was to describe and quantify pharmacokinetics of ampicillin used prophylactically in cardiac surgery both with and without cardiopulmonary bypass (CPB) using population pharmacokinetic analysis in order to propose an optimal dosing strategy. Adult patients undergoing cardiac surgery and treated with prophylactic dose of 2 g ampicillin were enrolled to this prospective study. Blood samples were collected according to the study protocol and ampicillin plasma concentrations were measured using HPLC/UV system. A three-stage population pharmacokinetic model using nonlinear mixed-effects modelling approach was developed. Totally 273 blood samples obtained from 20 patients undergoing cardiac surgery with the use of the CPB and 20 patients without CPB use were analyzed. Two-comparmental model best fits ampicillin concentration-time data. Mean ± SD body weight-normalized ampicillin central and peripheral volume of distribution was 0.12 ± 0.02 L/kg and 0.15 ± 0.03 L/kg, respectively, while mean ± SD ampicillin clearance in typical patient with eGFR of 1.5 mL/s/1.73 m2 was 1.17 ± 0.05 L/h. The use of CPB did not significantly affect the pharmacokinetics of ampicillin. When administering 2 g of ampicillin before surgery, an additional dose should be administered to reach the PK/PD target of fT > MIC = 50% if the operation lasts longer than 430 min in patients with moderate to severe renal impairment, 320 min in patients with mild renal impairment, 220 min in patients with normal renal function status or 140 min in patients with an augmented renal clearance.
Collapse
Affiliation(s)
- Karel Urbánek
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Petr Šantavý
- Department of Cardiac Surgery, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Ondřej Zuščich
- Department of Cardiac Surgery, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Vendula Kubíčková
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Danica Michaličková
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
21
|
Duceppe MA, Kanji S, Do AT, Ruo N, Cavayas YA, Albert M, Robert-Halabi M, Zavalkoff S, Benichou L, Samoukovic G, Williamson DR. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Pediatric Patients During Extracorporeal Membrane Oxygenation: A Systematic Review. Paediatr Drugs 2023; 25:515-535. [PMID: 37450191 DOI: 10.1007/s40272-023-00582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Adequate dosing of antimicrobials is critical to properly treat infections and limit development of resistance and adverse effects. Limited guidance exist for antimicrobial dosing adjustments in patients requiring extracorporeal membrane oxygenation (ECMO) therapy, particularly in the pediatric population. A systematic review was conducted to delineate the pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in critically ill neonates and children requiring ECMO therapy. METHODS Medline, EMBASE, Global Health and All EBM Reviews databases were queried. Grey literature was examined. All clinical studies reporting PK/PD parameters of antimicrobials in critically ill pediatric patients treated with ECMO were included, except for case reports and congress abstracts. Two independent reviewers applied the inclusion and exclusion criteria. Reviewers were then paired to independently extract data and evaluate the methodological quality of studies using the ROBINS-I tool and the compliance with ClinPK reporting guidelines. Patient and study characteristics, key PK/PD findings, details of ECMO circuits and co-treatments were summarized qualitatively. Broad dosing recommendations were formulated based on the available data for specific antimicrobials. RESULTS Twenty-nine clinical studies were included; most were observational and uncontrolled. Patient characteristics and co-treatments were often missing. The effect of ECMO on PK/PD parameters of antimicrobials varied depending on the drugs and population studied. It was only possible to formulate dosing recommendations for a few antimicrobials given the paucity of data, its overall low quality and heterogeneity in reporting. CONCLUSION Limited data exists on the PK/PD of antimicrobials during ECMO therapy in the pediatric population. Rigorously designed population PK studies are required to establish empiric dosing guidelines for antimicrobials in patients requiring this therapeutic modality. The use of therapeutic drug monitoring for antimicrobials in pediatric patients on ECMO should be encouraged to optimize dosing. TRIAL REGISTRY PROSPERO registration number: CRD42018099992 (Registered: July 24th 2018).
Collapse
Affiliation(s)
- Marc-Alexandre Duceppe
- Department of Pharmacy, McGill University Health Centre, 1001 Décarie, Local C-RC 6004, Montreal, QC, Canada, H4A 3J1.
| | - Salmaan Kanji
- Department of Pharmacy, The Ottawa Hospital, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Anh Thu Do
- Department of Pharmacy, McGill University Health Centre, 1001 Décarie, Local C-RC 6004, Montreal, QC, Canada, H4A 3J1
| | - Ni Ruo
- Department of Pharmacy, McGill University Health Centre, 1001 Décarie, Local C-RC 6004, Montreal, QC, Canada, H4A 3J1
| | - Yiorgos Alexandros Cavayas
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, QC, Canada
- Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, QC, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Martin Albert
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, QC, Canada
- Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, QC, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Maxime Robert-Halabi
- Department of Medicine, Division of Cardiology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Samara Zavalkoff
- Department of Pediatrics, Division of Pediatric Critical Care, McGill University Health Centre, Montreal, QC, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laura Benichou
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Gordan Samoukovic
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Surgery, Division of Critical Care, McGill University Health Centre, Montreal, QC, Canada
| | - David R Williamson
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacy, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| |
Collapse
|
22
|
Lyster H, Shekar K, Watt K, Reed A, Roberts JA, Abdul-Aziz MH. Antifungal Dosing in Critically Ill Patients on Extracorporeal Membrane Oxygenation. Clin Pharmacokinet 2023; 62:931-942. [PMID: 37300631 PMCID: PMC10338597 DOI: 10.1007/s40262-023-01264-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/12/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is an established advanced life support system, providing temporary cardiac and/or respiratory support in critically ill patients. Fungal infections are associated with increased mortality in patients on ECMO. Antifungal drug dosing for critically ill patients is highly challenging because of altered pharmacokinetics (PK). PK changes during critical illness; in particular, the drug volume of distribution (Vd) and clearance can be exacerbated by ECMO. This article discusses the available literature to inform adequate dosing of antifungals in this patient population. The number of antifungal PK studies in critically ill patients on ECMO is growing; currently available literature consists of case reports and studies with small sample sizes providing inconsistent findings, with scant or no data for some antifungals. Current data are insufficient to provide definitive empirical drug dosing guidance and use of dosing strategies derived from critically patients not on ECMO is reasonable. However, due to high PK variability, therapeutic drug monitoring should be considered where available in critically ill patients receiving ECMO to prevent subtherapeutic or toxic antifungal exposures.
Collapse
Affiliation(s)
- Haifa Lyster
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
- University of Portsmouth, Portsmouth, UK
| | - Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Kevin Watt
- School of Pharmacy, University of Waterloo, 10 Victoria St S. Kitchener, Waterloo, ON, N2G 1C5, Canada
- Department of Paediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna Reed
- Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
- Imperial College London, London, SW3 6NP, UK
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.
- Herston Infectious Diseases (HeIDI), Metro North Health, Brisbane, QLD, Australia.
- Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| | - Mohd-Hafiz Abdul-Aziz
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Peitz GJ, Murry DJ. The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics (Basel) 2023; 12:500. [PMID: 36978367 PMCID: PMC10044059 DOI: 10.3390/antibiotics12030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is becoming increasingly utilized to support critically ill patients who experience life-threatening cardiac or pulmonary compromise. The provision of this intervention poses challenges related to its complications and the optimization of medication therapy. ECMO's mechanical circulatory support is facilitated via various devices and equipment that have been shown to sequester lipophilic- and protein-bound medications, including anti-infectives. Since infectious outcomes are dependent on achieving specific anti-infectives' pharmacodynamic targets, the understanding of these medications' pharmacokinetic parameters in the setting of ECMO is important to clinicians. This narrative, non-systematic review evaluated the findings of the most recent and robust pharmacokinetic analyses for commonly utilized anti-infectives in the setting of ECMO. The data from available literature indicates that anti-infective pharmacokinetic parameters are similar to those observed in other non-ECMO critically ill populations, but considerable variability in the findings was observed between patients, thus prompting further evaluation of therapeutic drug monitoring in this complex population.
Collapse
Affiliation(s)
- Gregory J. Peitz
- Nebraska Medicine, Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Ren X, Ai Y, Zhang L, Zhao C, Li L, Ma X. Sedation and analgesia requirements during venovenous extracorporeal membrane oxygenation in acute respiratory distress syndrome patients. Perfusion 2023; 38:313-319. [PMID: 34743615 DOI: 10.1177/02676591211052160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The purpose of this study is to describe sedation and analgesia management, and identify the factors associated with increased demand for medication in acute respiratory distress syndrome (ARDS) patients receiving venovenous extracorporeal membrane oxygenation (VV-ECMO). METHODS This retrospective, single-center study included consecutive adult ARDS patients who received VV-ECMO for at least 24 hours from January 2018 to December 2020 in a comprehensive intensive care unit. The electronic medical records were retrospectively reviewed to collect data. RESULTS Forty-two adult patients meeting the inclusion criteria were included in the study. Midazolam, sufentanil, and remifentanil were main sedatives and analgesics used in the patient population. The morphine equivalents, representative of the demand for opioids, was 512.9 (IQR, 294.5, 798.2) mg/day. The midazolam equivalents, representative of benzodiazepine requirement, was 279.6 (IQR, 208.8, 384.5) mg/day. The levels of serum creatinine, total bilirubin, lactic acid, SOFA score, and APACHE Ⅱ score at cannulation were found to be associated with opiate or benzodiazepine requirements. Multiple linear regression analysis revealed a linear correlation between midazolam equivalents and morphine equivalents (p < 0.001). In addition, there was a negative linear correlation between Acute Physiology and Chronic Health Evaluation Ⅱ (APACHE Ⅱ) score and midazolam equivalents (p = 0.024). CONCLUSIONS The sedation and analgesia requirements of ARDS patients receiving VV-ECMO often increase simultaneously. More large-scale studies are needed to confirm the risk factors for increased sedation and analgesia needs in patients supported on VV-ECMO.
Collapse
Affiliation(s)
- Xingshu Ren
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Li Li
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Xinhua Ma
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Abstract
Fungal infections are common and frequently associated with clinical failure in patients receiving extracorporeal membrane oxygenation (ECMO). Antifungal drugs have physicochemical characteristics associated with a higher likelihood of sequestration onto ECMO circuitry potentially leading to a subtherapeutic drug concentration. The percentage of sequestration of the antifungal drugs-caspofungin, posaconazole, and voriconazole-was determined using an ex vivo ECMO model. The circuits were primed with whole human blood, sodium chloride 0.9%, and human albumin solution. Serial 2 ml samples were taken at baseline, 0.5, 1, 2, 6, 12, and 24 hours after drug addition, paired with non-ECMO controls stored in a water bath at 37°C. Mean loss from the blood-primed ECMO circuits and controls at 24 hours relative to baseline were 80% and 61% for caspofungin ( p = ns), 64% and 11% for posaconazole ( p < 0.005), and 27% and 19% for voriconazole ( p < 0.05). Calculated AUC 0-24 showed a 44% for caspofungin ( p = ns), 30.6% posaconazole ( p < 0.005), and 9% loss for voriconazole ( p = 0.003) compared with the controls, suggesting therapeutic concentrations of these antifungal agents cannot be guaranteed with standard dosing in patients on ECMO. Posaconazole exhibited the greatest loss to the ECMO circuit correlating with both high lipophilicity and protein binding of the drug.
Collapse
|
26
|
Ruiz-Ramos J, Gras-Martín L, Ramírez P. Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12030475. [PMID: 36978342 PMCID: PMC10044431 DOI: 10.3390/antibiotics12030475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Critically ill patients suffering from severe infections are prone to pathophysiological pharmacokinetic changes that are frequently associated with inadequate antibiotic serum concentrations. Minimum inhibitory concentrations (MICs) of the causative pathogens tend to be higher in intensive care units. Both pharmacokinetic changes and high antibiotic resistance likely jeopardize the efficacy of treatment. The use of extracorporeal circulation devices to support hemodynamic, respiratory, or renal failure enables pharmacokinetic changes and makes it even more difficult to achieve an adequate antibiotic dose. Besides a clinical response, antibiotic pharmacokinetic optimization is important to reduce the selection of strains resistant to common antibiotics. In this review, we summarize the present knowledge regarding pharmacokinetic changes in critically ill patients and we discuss the effects of extra-corporeal devices on antibiotic treatment together with potential solutions.
Collapse
Affiliation(s)
- Jesus Ruiz-Ramos
- Pharmacy Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Laura Gras-Martín
- Pharmacy Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Paula Ramírez
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
27
|
Cutuli SL, Cascarano L, Lazzaro P, Tanzarella ES, Pintaudi G, Grieco DL, De Pascale G, Antonelli M. Antimicrobial Exposure in Critically Ill Patients with Sepsis-Associated Multi-Organ Dysfunction Requiring Extracorporeal Organ Support: A Narrative Review. Microorganisms 2023; 11:microorganisms11020473. [PMID: 36838438 PMCID: PMC9965524 DOI: 10.3390/microorganisms11020473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Sepsis is a leading cause of disability and mortality worldwide. The pathophysiology of sepsis relies on the maladaptive host response to pathogens that fosters unbalanced organ crosstalk and induces multi-organ dysfunction, whose severity was directly associated with mortality. In septic patients, etiologic interventions aiming to reduce the pathogen load via appropriate antimicrobial therapy and the effective control of the source infection were demonstrated to improve clinical outcomes. Nonetheless, extracorporeal organ support represents a complementary intervention that may play a role in mitigating life-threatening complications caused by sepsis-associated multi-organ dysfunction. In this setting, an increasing amount of research raised concerns about the risk of suboptimal antimicrobial exposure in critically ill patients with sepsis, which may be worsened by the concomitant delivery of extracorporeal organ support. Accordingly, several strategies have been implemented to overcome this issue. In this narrative review, we discussed the pharmacokinetic features of antimicrobials and mechanisms that may favor drug removal during renal replacement therapy, coupled plasma filtration and absorption, therapeutic plasma exchange, hemoperfusion, extracorporeal CO2 removal and extracorporeal membrane oxygenation. We also provided an overview of evidence-based strategies that may help the physician to safely prescribe effective antimicrobial doses in critically ill patients with sepsis-associated multi-organ dysfunction who receive extracorporeal organ support.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-063-015-4490
| | - Laura Cascarano
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Paolo Lazzaro
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Eloisa Sofia Tanzarella
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Gabriele Pintaudi
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, Rome, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
28
|
Bourgoin P, Lecomte J, Oualha M, Berthomieu L, Pereira T, Davril E, Lamoureux F, Joram N, Chenouard A, Duflot T. Population Pharmacokinetics of Levosimendan and its Metabolites in Critically Ill Neonates and Children Supported or Not by Extracorporeal Membrane Oxygenation. Clin Pharmacokinet 2023; 62:335-348. [PMID: 36631687 DOI: 10.1007/s40262-022-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Levosimendan (LVSMD) is a calcium-sensitizer inotropic and vasodilator agent whose use might have a beneficial effect on the weaning of venoarterial extracorporeal membrane oxygenation (VA-ECMO). In light of LVSMD pharmacological characteristics, we hypothesized that ECMO may induce major pharmacokinetic (PK) modifications for LVSMD and its metabolites. OBJECTIVE The aim of this study was to investigate the PK of LVSMD and its metabolites, and to assess the effects of ECMO on PK parameters. METHODS We conducted a multicentric, prospective study (NCT03681379). Twenty-seven infusions of LVSMD were performed, allowing for the collection of 255 blood samples. Non-linear mixed-effects modeling software (MONOLIX®) was used to develop a parent-metabolite PK model of LVSMD and its metabolites. RESULTS Most patients received a 0.2 µg/kg/min infusion of LVSMD over 24 h. After elimination of non-reliable samples or concentrations below the limit of quantification, 166, 101 and 85 samples were considered for LVSMD, OR-1855 and OR-1896, respectively, of which 81, 53 and 41, respectively, were drawn under ECMO conditions. Parent-metabolite PK modeling revealed that a two-compartment model with first-order elimination best described LVSMD PK. Use of a transit compartment allowed for an explanation of the delayed appearance of circulating OR-1855 and OR-1896, with the latter following a first-order elimination. Patient weight influenced the central volume of distribution and elimination of LVSMD. ECMO support increased the elimination rate of LVSMD by 78%, and ECMO also slowed down the metabolite formation rate by 85% for OR-1855, which in turn is converted to the active metabolite OR-1896, 14% slower than without ECMO. Simulated data revealed that standard dosing may not be appropriate for patients under ECMO, with a decrease in the steady-state concentration of LVSMD and lower exposure to the active metabolite OR-1896. CONCLUSIONS ECMO altered PK parameters for LVSMD and its metabolites. An infusion of LVSMD over 48 h, instead of 24 h, with a slightly higher dose may promote synthesis of the active metabolite OR-1896, which is responsible for the long-term efficacy of LVSMD. Further trials evaluating ECMO effects using a PK/pharmacodynamic approach may be of interest. REGISTRATION ClinicalTrials.gov identifier number NCT03681379.
Collapse
Affiliation(s)
- Pierre Bourgoin
- Pediatric Intensive Care Unit, CHU Nantes, 44093, Nantes, France. .,Department of Anesthesiology, CHU Nantes, 44093, Nantes, France.
| | - Jules Lecomte
- Department of Anesthesiology, CHU Nantes, 44093, Nantes, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, CHU Necker Enfants Malades, 75015, Paris, France
| | - Lionel Berthomieu
- Pediatric Intensive Care Unit, CHU Toulouse, 31059, Toulouse, France
| | - Tony Pereira
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Emeline Davril
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Fabien Lamoureux
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France.,Department of Pharmacology, CHU Rouen, 76000, Rouen, France
| | - Nicolas Joram
- Pediatric Intensive Care Unit, CHU Nantes, 44093, Nantes, France
| | - Alexis Chenouard
- Pediatric Intensive Care Unit, CHU Nantes, 44093, Nantes, France
| | - Thomas Duflot
- INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France.,Department of Pharmacology, CHU Rouen, 76000, Rouen, France.,CHU Rouen, CIC-CRB U1404, 76000, Rouen, France
| |
Collapse
|
29
|
van Saet A, Tibboel D. The influence of cardiopulmonary bypass on pediatric pharmacokinetics. Expert Opin Drug Metab Toxicol 2023; 19:333-344. [PMID: 37334571 DOI: 10.1080/17425255.2023.2227556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
INTRODUCTION Every year thousands of children undergo surgery for congenital heart disease. Cardiac surgery requires the use of cardiopulmonary bypass, which can have unexpected consequences for pharmacokinetic parameters. AREAS COVERED We describe the pathophysiological properties of cardiopulmonary bypass that may influence pharmacokinetic parameters, with a focus on literature published in the last 10 years. We performed a PubMed database search with the keywords 'Cardiopulmonary bypass' AND 'Pediatric' AND 'Pharmacokinetics'. We searched related articles on PubMed and checked the references of articles for relevant studies. EXPERT OPINION Interest in the influence of cardiopulmonary bypass on pharmacokinetics has increased over the last 10 years, especially due to the use of population pharmacokinetic modeling. Unfortunately, study design usually limits the amount of information that can be obtained with sufficient power and the best way to model cardiopulmonary bypass is yet unknown. More information is needed on the pathophysiology of pediatric heart disease and cardiopulmonary bypass. Once adequately validated, PK models should be integrated in the patient electronic database integrating covariates and biomarkers influencing PK, making it possible to predict real-time drug concentrations and guide further clinical management for the individual patient at the bedside.
Collapse
Affiliation(s)
- Annewil van Saet
- Department of Anesthesiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Intensive Care and Pediatric Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Bakdach D, Elajez R, Bakdach AR, Awaisu A, De Pascale G, Ait Hssain A. Pharmacokinetics, Pharmacodynamics, and Dosing Considerations of Novel β-Lactams and β-Lactam/β-Lactamase Inhibitors in Critically Ill Adult Patients: Focus on Obesity, Augmented Renal Clearance, Renal Replacement Therapies, and Extracorporeal Membrane Oxygenation. J Clin Med 2022; 11:6898. [PMID: 36498473 PMCID: PMC9738279 DOI: 10.3390/jcm11236898] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Dose optimization of novel β-lactam antibiotics (NBLA) has become necessary given the increased prevalence of multidrug-resistant infections in intensive care units coupled with the limited number of available treatment options. Unfortunately, recommended dose regimens of NBLA based on PK/PD indices are not well-defined for critically ill patients presenting with special situations (i.e., obesity, extracorporeal membrane oxygenation (ECMO), augmented renal clearance (ARC), and renal replacement therapies (RRT)). This review aimed to discuss and summarize the available literature on the PK/PD attained indices of NBLA among critically ill patients with special circumstances. DATA SOURCES PubMed, MEDLINE, Scopus, Google Scholar, and Embase databases were searched for studies published between January 2011 and May 2022. STUDY SELECTION AND DATA EXTRACTION Articles relevant to NBLA (i.e., ceftolozane/tazobactam, ceftazidime/avibactam, cefiderocol, ceftobiprole, imipenem/relebactam, and meropenem/vaborbactam) were selected. The MeSH terms of "obesity", "augmented renal clearance", "renal replacement therapy", "extracorporeal membrane oxygenation", "pharmacokinetic", "pharmacodynamic" "critically ill", and "intensive care" were used for identification of articles. The search was limited to adult humans' studies that were published in English. A narrative synthesis of included studies was then conducted accordingly. DATA SYNTHESIS Available evidence surrounding the use of NBLA among critically ill patients presenting with special situations was limited by the small sample size of the included studies coupled with high heterogeneity. The PK/PD target attainments of NBLA were reported to be minimally affected by obesity and/or ECMO, whereas the effect of renal functionality (in the form of either ARC or RRT) was more substantial. CONCLUSION Critically ill patients presenting with special circumstances might be at risk of altered NBLA pharmacokinetics, particularly in the settings of ARC and RRT. More robust, well-designed trials are still required to define effective dose regimens able to attain therapeutic PK/PD indices of NBLA when utilized in those special scenarios, and thus aid in improving the patients' outcomes.
Collapse
Affiliation(s)
- Dana Bakdach
- Department of Clinical Pharmacy, Critical Care, Hamad Medical Corporation, Doha 3050, Qatar
| | - Reem Elajez
- Department of Pharmacy, Infectious Diseases, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Rahman Bakdach
- School of Medicine, Jordan University of Science and Technology, Irbid 3030, Jordan
| | - Ahmed Awaisu
- Clinical Pharmacy and Practice, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Gennaro De Pascale
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ali Ait Hssain
- Department of Medicine, Critical Care Services, Hamad Medical Corporation, P.O. Box 305, Doha 3050, Qatar
| |
Collapse
|
31
|
Yalcin N, Sürmelioğlu N, Allegaert K. Population pharmacokinetics in critically ill neonates and infants undergoing extracorporeal membrane oxygenation: a literature review. BMJ Paediatr Open 2022; 6:10.1136/bmjpo-2022-001512. [PMID: 36437518 PMCID: PMC9639121 DOI: 10.1136/bmjpo-2022-001512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) increases circulating blood volume, causes capillary leak and temporarily alters kidney function. Consequently, pharmacokinetics (PK) can be affected. When applied to neonates and infants, additional dose adjustments are a major concern, as the volume of distribution (Vd) is already generally greater for water-soluble drugs and the clearance (Cl) of drugs eliminated by glomerular filtration is reduced. A systematic search was performed on MEDLINE (1994-2022) using a combination of the following search terms: "pharmacokinetics", "extracorporeal membrane oxygenation" and "infant, newborn" using Medical Subject Headings search strategy. Nine out of 18 studies on 11 different drugs (vancomycin, meropenem, fluconazole, gentamicin, midazolam, phenobarbital, theophylline, clonidine, morphine, cefotaxime and cefepime) recommended dose increase/decrease by determining PK parameters. In other studies, it has been suggested to adjust the dose intervals. While the elimination half-life (t1/2) and Vd mostly increased for all drugs, the Cl of the drugs has been shown to have variability except for midazolam and morphine. There are a limited number of population PK studies in neonates and infants undergoing ECMO circuits. Despite some divergences, the general pattern suggests an increase in Vd and t1/2, an increased, stable or decreased Cl, and an increase in variability. Consequently, and if possible, therapeutic drug monitoring and target concentration intervention are strongly recommended to determine appropriate exposure and doses for neonates and infants undergoing ECMO support.
Collapse
Affiliation(s)
- Nadir Yalcin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nursel Sürmelioğlu
- Department of Clinical Pharmacy, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Child and Youth Institute, KU Leuven, Leuven, Belgium.,Deparment of Clinical Pharmacy, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Patel JS, Kooda K, Igneri LA. A Narrative Review of the Impact of Extracorporeal Membrane Oxygenation on the Pharmacokinetics and Pharmacodynamics of Critical Care Therapies. Ann Pharmacother 2022; 57:706-726. [PMID: 36250355 DOI: 10.1177/10600280221126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Extracorporeal membrane oxygenation (ECMO) utilization is increasing on a global scale, and despite technological advances, minimal standardized approaches to pharmacotherapeutic management exist. This objective was to create a comprehensive review for medication dosing in ECMO based on the most current evidence. Data Sources: A literature search of PubMed was performed for all pertinent articles prior to 2022. The following search terms were utilized: ECMO, pharmacokinetics, pharmacodynamics, sedation, analgesia, antiepileptic, anticoagulation, antimicrobial, antifungal, nutrition. Retrospective cohort studies, case-control studies, case series, case reports, and ex vivo investigations were reviewed. Study Selection and Data Extraction: PubMed (1975 through July 2022) was the database used in the literature search. Non-English studies were excluded. Search terms included both drug class categories, specific drug names, ECMO, and pharmacokinetics. Data Synthesis: Medications with high protein binding (>70%) and high lipophilicity (logP > 2) are associated with circuit sequestration and the potential need for dose adjustment. Volume of distribution changes with ECMO may also impact dosing requirements of common critical care medications. Lighter sedation targets and analgosedation may help reduce sedative and analgesia requirements, whereas higher antiepileptic dosing is recommended. Vancomycin is minimally affected by the ECMO circuit and recommendations for dosing in critically ill adults are reasonable. Anticoagulation remains challenging as optimal aPTT goals have not been established. Relevance to Patient Care and Clinical Practice: This review describes the anticipated impacts of ECMO circuitry on sedatives, analgesics, anticoagulation, antiepileptics, antimicrobials, antifungals, and nutrition support and provides recommendations for drug therapy management. Conclusions: Medication pharmacokinetic/pharmacodynamic parameters should be considered when determining the potential impact of the ECMO circuit on attainment of therapeutic effect and target serum drug concentrations, and should guide therapy choices and/or dose adjustments when data are not available.
Collapse
Affiliation(s)
| | - Kirstin Kooda
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
33
|
Zou D, Ji M, Du T, Wang Q, Zhang H, Yu H, Hou N. The application of antimicrobials in VAP patients requiring ECMO supportive treatment. Front Pharmacol 2022; 13:918175. [PMID: 36210821 PMCID: PMC9538395 DOI: 10.3389/fphar.2022.918175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Dongna Zou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Du
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, China
| | - Qian Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haiwen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hengcai Yu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Ning Hou,
| |
Collapse
|
34
|
Cefepime Extraction by Extracorporeal Life Support Circuits. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2022; 54:212-222. [PMID: 36742220 PMCID: PMC9891479 DOI: 10.1182/ject-212-222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Extracorporeal life support (ECLS) devices are lifesaving for critically ill patients with multi-organ dysfunction. Despite this, patients supported with ECLS are at high risk for ECLS-related complications, including nosocomial infections, and mortality rates are high in this patient population. The high mortality rates are suspected to be, in part, a result of significantly altered drug disposition by the ECLS circuit, resulting in suboptimal antimicrobial dosing. Cefepime is commonly used in critically ill patients with serious infections. Cefepime dosing is not routinely guided by therapeutic drug monitoring and treatment success is dependent upon the percentage of time of the dosing interval that the drug concentration remains above the minimum inhibitory concentration of the organism. This ex vivo study measured the extraction of cefepime by continuous renal replacement therapy (CRRT) and extracorporeal membrane oxygenation (ECMO) circuits. Cefepime was studied in four closed-loop CRRT circuit configurations and a single closed-loop ECMO circuit configuration. Circuits were primed with a physiologic human blood-plasma mixture and the drug was dosed to achieve therapeutic concentrations. Serial blood samples were collected over time and concentrations were quantified using validated assays. In ex vivo CRRT experiments, cefepime was rapidly cleared by dialysis, hemofiltration, and hemodiafiltration, with greater than 96% cefepime eliminated from the circuit by 2 hours. In the ECMO circuits, the mean recovery of cefepime was similar in both circuit and standard control. Mean (standard deviation) recovery of cefepime in the ECMO circuits (n = 6) was 39.2% (8.0) at 24 hours. Mean recovery in the standard control (n = 3) at 24 hours was 52.2% (1.5). Cefepime is rapidly cleared by dialysis, hemofiltration, and hemodiafiltration in the CRRT circuit but minimally adsorbed by either the CRRT or ECMO circuits. Dosing adjustments are needed for patients supported with CRRT.
Collapse
|
35
|
Imburgia CE, Rower JE, Green DJ, Mcknite AM, Kelley WE, Reilly CA, Watt KM. Remdesivir and GS-441524 Extraction by Ex Vivo Extracorporeal Life Support Circuits. ASAIO J 2022; 68:1204-1210. [PMID: 34799526 PMCID: PMC9110562 DOI: 10.1097/mat.0000000000001616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with severe, COVID-related multi-organ failure often require extracorporeal life support (ECLS) such as extracorporeal membrane oxygenation (ECMO) or continuous renal replacement therapy (CRRT). An ECLS can alter drug exposure via multiple mechanisms. Remdesivir (RDV) and its active metabolite GS-441524 are likely to interact with ECLS circuits, resulting in lower than expected exposures. We evaluated circuit-drug interactions in closed loop, ex vivo ECMO and CRRT circuits. We found that mean (standard deviation) recovery of RDV at 6 hours after dosing was low in both the ECMO (33.3% [2.0]) and CRRT (3.5% [0.4]) circuits. This drug loss appears to be due primarily to drug adsorption by the circuit materials and potentially due to metabolism in the blood. GS-441524 recovery at 6 hours was high in the ECMO circuit 75.8% (16.5); however, was not detectable at 6 hours in the CRRT circuit. Loss in the CRRT circuit appears to be due primarily to efficient hemodiafiltration. The extent of loss for both molecules, especially in CRRT, suggests that in patients supported with ECMO and CRRT, RDV dosing adjustments are needed.
Collapse
Affiliation(s)
- Carina E Imburgia
- From the Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Joseph E Rower
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
- University of Utah, Center for Human Toxicology, Salt Lake City, Utah
| | - Danielle J Green
- From the Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Autumn M Mcknite
- University of Utah, Center for Human Toxicology, Salt Lake City, Utah
| | - Walter E Kelley
- Biomedical Department, American Red Cross, Salt Lake City, Utah
- Department of Pathology, University of Arizona, Tucson, Arizona, USA
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
- University of Utah, Center for Human Toxicology, Salt Lake City, Utah
| | - Kevin M Watt
- From the Department of Pediatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
36
|
Machado DS, Garros D, Montuno L, Avery LK, Kittelson S, Peek G, Moynihan KM. Finishing Well: Compassionate Extracorporeal Membrane Oxygenation Discontinuation. J Pain Symptom Manage 2022; 63:e553-e562. [PMID: 35031504 DOI: 10.1016/j.jpainsymman.2021.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Extracorporeal Membrane Oxygenation (ECMO) is associated with significant mortality. Provision of high-quality end-of-life (EOL) care for patients supported on ECMO entails specific physiological, pharmacological, and technical considerations. Limited guidance exists for clinicians on delivery of optimal EOL care on ECMO. In this article, we review the unique aspects of EOL care as they apply to ECMO support and propose a pragmatic, interdisciplinary framework for compassionate ECMO discontinuation in children and adults. The goal of compassionate ECMO discontinuation (CED) is to allow natural death from the underlying disease process while delivering high-quality EOL care to ensure a good death experience for patients and their families. The CED approach includes: 1) a family meeting to define goal-concordant EOL care and prepare families and patients for the dying process; 2) clinical preparation, including symptom management and discontinuation of other life-sustaining therapies; 3) technical aspects which necessarily vary according to patient factors and the circuit and cannulation strategy; and 4) bereavement support. The proposed CED considerations and checklist may serve as tools aiding provision of comprehensive, quality, individualized patient- and family-centered care for children and adults dying despite ECMO support. A structured CED may enhance EOL experiences for patients, family, and staff by providing a respectful and dignified death experience. Future research is required to determine feasibility and effectiveness of the framework, which must be adapted to the patient and institutional setting.
Collapse
Affiliation(s)
- Desiree S Machado
- Department of Pediatrics, Division of Pediatric Critical Care Medicine (D.S.M., L.K.A.), University of Florida, Gainesville, Florida, USA.
| | - Daniel Garros
- Department of Pediatrics, Division of Pediatric Critical Care Medicine & John Dossetor Health Ethics Centre (D.G.), Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Lauriedale Montuno
- Mother of Mila Grace Montuno, Bereavement Coordinator (L.M.), Conquering CHD Organization
| | - Leslie K Avery
- Department of Pediatrics, Division of Pediatric Critical Care Medicine (D.S.M., L.K.A.), University of Florida, Gainesville, Florida, USA
| | - Sheri Kittelson
- Department of Internal Medicine, Division of Palliative Care (S.K.), University of Florida, Gainesville, Florida, USA
| | - Giles Peek
- Department of Surgery, Congenital Heart Center (G.P.), University of Florida, Gainesville, Florida, USA
| | - Katie M Moynihan
- Department of Cardiology, Division of Cardiovascular Critical Care (K.M.M.), Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics (K.M.M.), Harvard Medical School, Boston, Massachusetts, USA; Kids Critical Care Research (K.M.M.), Children's Hospital Westmead, Sydney, Australia
| |
Collapse
|
37
|
Lescroart M, Pressiat C, Péquignot B, Tran N, Hébert JL, Alsagheer N, Gambier N, Ghaleh B, Scala-Bertola J, Levy B. Impaired Pharmacokinetics of Amiodarone under Veno-Venous Extracorporeal Membrane Oxygenation: From Bench to Bedside. Pharmaceutics 2022; 14:974. [PMID: 35631560 PMCID: PMC9147299 DOI: 10.3390/pharmaceutics14050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Adjusting drug therapy under veno-venous extracorporeal membrane oxygenation (VV ECMO) is challenging. Although impaired pharmacokinetics (PK) under VV ECMO have been reported for sedative drugs and antibiotics, data about amiodarone are lacking. We evaluated the pharmacokinetics of amiodarone under VV ECMO both in vitro and in vivo. METHODS In vitro: Amiodarone concentration decays were compared between closed-loop ECMO and control stirring containers over a 24 h period. In vivo: Potassium-induced cardiac arrest in 10 pigs with ARDS, assigned to either control or VV ECMO groups, was treated with 300 mg amiodarone injection under continuous cardiopulmonary resuscitation. Pharmacokinetic parameters Cmax, Tmax AUC and F were determined from both direct amiodarone plasma concentrations observation and non-linear mixed effects modeling estimation. RESULTS An in vitro study revealed a rapid and significant decrease in amiodarone concentrations in the closed-loop ECMO circuitry whereas it remained stable in control experiment. In vivo study revealed a 32% decrease in the AUC and a significant 42% drop of Cmax in the VV ECMO group as compared to controls. No difference in Tmax was observed. VV ECMO significantly modified both central distribution volume and amiodarone clearance. Monte Carlo simulations predicted that a 600 mg bolus of amiodarone under VV ECMO would achieve the amiodarone bioavailability observed in the control group. CONCLUSIONS This is the first study to report decreased amiodarone bioavailability under VV ECMO. Higher doses of amiodarone should be considered for effective amiodarone exposure under VV ECMO.
Collapse
Affiliation(s)
- Mickaël Lescroart
- Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Hôpital Brabois, 54000 Nancy, France; (B.P.); (B.L.)
- Groupe Choc, Équipe 2, INSERM U 1116, Faculté de Médecine, 54000 Nancy, France
- Faculté de Médecine, Université de Lorraine, 54000 Nancy, France;
| | - Claire Pressiat
- Laboratoire de Pharmacologie, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, 94000 Créteil, France;
- Team 3, INSERM U955, Université Paris Est Créteil, Université Paris-Est, 94010 Créteil, France
- UMR S955, DHU A-TVB, Université Paris-Est Créteil (UPEC), Université Paris-Est, 94000 Créteil, France
| | - Benjamin Péquignot
- Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Hôpital Brabois, 54000 Nancy, France; (B.P.); (B.L.)
- Groupe Choc, Équipe 2, INSERM U 1116, Faculté de Médecine, 54000 Nancy, France
- Faculté de Médecine, Université de Lorraine, 54000 Nancy, France;
| | - N’Guyen Tran
- Faculté de Médecine, Université de Lorraine, 54000 Nancy, France;
- École de Chirurgie, Faculté de Médecine, Université de Lorraine, 54000 Nancy, France
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital Pitié-Salpêtrière, CHU Pitié-Salpêtrière, AP-HP, Université de la Sorbonne, Boulevard de L’Hôpital, 75013 Paris, France;
| | - Nassib Alsagheer
- Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Service de Pharmacologie Clinique et Toxicologie, Université de Lorraine, 54000 Nancy, France; (N.A.); (N.G.); (J.S.-B.)
| | - Nicolas Gambier
- Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Service de Pharmacologie Clinique et Toxicologie, Université de Lorraine, 54000 Nancy, France; (N.A.); (N.G.); (J.S.-B.)
- CNRS, IMoPA, Université de Lorraine, 54000 Nancy, France
| | - Bijan Ghaleh
- U955-IMRB, Inserm, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94000 Créteil, France;
| | - Julien Scala-Bertola
- Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Service de Pharmacologie Clinique et Toxicologie, Université de Lorraine, 54000 Nancy, France; (N.A.); (N.G.); (J.S.-B.)
- CNRS, IMoPA, Université de Lorraine, 54000 Nancy, France
| | - Bruno Levy
- Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Hôpital Brabois, 54000 Nancy, France; (B.P.); (B.L.)
- Groupe Choc, Équipe 2, INSERM U 1116, Faculté de Médecine, 54000 Nancy, France
- Faculté de Médecine, Université de Lorraine, 54000 Nancy, France;
| |
Collapse
|
38
|
Gomez F, Veita J, Laudanski K. Antibiotics and ECMO in the Adult Population-Persistent Challenges and Practical Guides. Antibiotics (Basel) 2022; 11:338. [PMID: 35326801 PMCID: PMC8944696 DOI: 10.3390/antibiotics11030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an emerging treatment modality associated with a high frequency of antibiotic use. However, several covariables emerge during ECMO implementation, potentially jeopardizing the success of antimicrobial therapy. These variables include but are not limited to: the increased volume of distribution, altered clearance, and adsorption into circuit components, in addition to complex interactions of antibiotics in critical care illness. Furthermore, ECMO complicates the assessment of antibiotic effectiveness as fever, or other signs may not be easily detected, the immunogenicity of the circuit affects procalcitonin levels and other inflammatory markers while disrupting the immune system. We provided a review of pharmacokinetics and pharmacodynamics during ECMO, emphasizing practical application and review of patient-, illness-, and ECMO hardware-related factors.
Collapse
Affiliation(s)
- Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65021, USA;
| | - Jesyree Veita
- Society for Healthcare Innovation, Philadelphia, PA 19146, USA;
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19146, USA
- Leonard Davis Institute for HealthCare Economics, University of Pennsylvania, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19146, USA
| |
Collapse
|
39
|
Roberts JA, Bellomo R, Cotta MO, Koch BCP, Lyster H, Ostermann M, Roger C, Shekar K, Watt K, Abdul-Aziz MH. Machines that help machines to help patients: optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software. Intensive Care Med 2022; 48:1338-1351. [PMID: 35997793 PMCID: PMC9467945 DOI: 10.1007/s00134-022-06847-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
Intensive care unit (ICU) patients with end-organ failure will require specialised machines or extracorporeal therapies to support the failing organs that would otherwise lead to death. ICU patients with severe acute kidney injury may require renal replacement therapy (RRT) to remove fluid and wastes from the body, and patients with severe cardiorespiratory failure will require extracorporeal membrane oxygenation (ECMO) to maintain adequate oxygen delivery whilst the underlying pathology is evaluated and managed. The presence of ECMO and RRT machines can further augment the existing pharmacokinetic (PK) alterations during critical illness. Significant changes in the apparent volume of distribution (Vd) and drug clearance (CL) for many important drugs have been reported during ECMO and RRT. Conventional antimicrobial dosing regimens rarely consider the impact of these changes and consequently, are unlikely to achieve effective antimicrobial exposures in critically ill patients receiving ECMO and/or RRT. Therefore, an in-depth understanding on potential PK changes during ECMO and/or RRT is required to inform antimicrobial dosing strategies in patients receiving ECMO and/or RRT. In this narrative review, we aim to discuss the potential impact of ECMO and RRT on the PK of antimicrobials and antimicrobial dosing requirements whilst receiving these extracorporeal therapies. The potential benefits of therapeutic drug monitoring (TDM) and dosing software to facilitate antimicrobial therapy for critically ill patients receiving ECMO and/or RRT are also reviewed and highlighted.
Collapse
Affiliation(s)
- Jason A. Roberts
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD 4029 Australia ,Herston Infectious Diseases (HeIDI), Metro North Health, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.121334.60000 0001 2097 0141Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Rinaldo Bellomo
- grid.1008.90000 0001 2179 088XDepartment of Critical Care, The University of Melbourne, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia ,grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Melbourne, Australia ,grid.416153.40000 0004 0624 1200Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia
| | - Menino O. Cotta
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD 4029 Australia
| | - Birgit C. P. Koch
- grid.5645.2000000040459992XDepartment of Hospital Pharmacy, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Haifa Lyster
- Pharmacy Department, Royal Brompton and Harefield Hospitals, London, SW3 6NP UK ,Cardiothoracic Transplant Unit, Royal Brompton and Harefield Hospitals, London, SW3 6NP UK
| | - Marlies Ostermann
- grid.425213.3Department of Critical Care, King’s College London, Guy’s and St Thomas Hospital, London, SE1 7EH UK
| | - Claire Roger
- Department of Anaesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Place du Professeur Robert Debré, 30 029 Nîmes cedex 9, France ,grid.121334.60000 0001 2097 0141UR UM 103 IMAGINE, Faculty of Medicine, University of Montpellier, Nîmes, France
| | - Kiran Shekar
- grid.415184.d0000 0004 0614 0266Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, The University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Faculty of Health, Queensland University of Technology, Brisbane, QLD Australia ,grid.1033.10000 0004 0405 3820Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD Australia
| | - Kevin Watt
- grid.46078.3d0000 0000 8644 1405School of Pharmacy, University of Waterloo, 10 Victoria St S. Kitchener, Waterloo, ON N2G 1C5 Canada ,grid.223827.e0000 0001 2193 0096Department of Paediatrics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Mohd H. Abdul-Aziz
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD 4029 Australia
| |
Collapse
|
40
|
Zhang Y, Hu H, Zhang Q, Ou Q, Zhou H, Sha T, Zeng Z, Wu J, Lu J, Chen Z. Effects of ex vivo Extracorporeal Membrane Oxygenation Circuits on Sequestration of Antimicrobial Agents. Front Med (Lausanne) 2021; 8:748769. [PMID: 34926498 PMCID: PMC8671752 DOI: 10.3389/fmed.2021.748769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives: Our ex vivo study was designed to determine the sequestration of teicoplanin, tigecycline, micafungin, meropenem, polymyxin B, caspofungin, cefoperazone sulbactam, and voriconazole in extracorporeal membrane oxygenation (ECMO) circuits. Methods: Simulated closed-loop ECMO circuits were prepared using 2 types of blood-primed ECMO. After the circulation was stabilized, the study drugs were injected into the circuit. Blood samples were collected at 2, 5, 15, 30 min, 1, 3, 6, 12, and 24 h after injection. Drug concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. Control groups were stored at 4°C after 3, 6, 12, and 24 h immersing in a water bath at 37°C to observe spontaneous drug degradation. Results: Twenty-six samples were analyzed. The average drug recoveries from the ECMO circuits and control groups at 24 h relative to baseline were 67 and 89% for teicoplanin, 100 and 145% for tigecycline, 67 and 99% for micafungin, 45 and 75% for meropenem, 62 and 60% for polymyxin B, 83 and 85% for caspofungin, 79 and 98% for cefoperazone, 75 and 87% for sulbactam, and 60 and 101% for voriconazole, respectively. Simple linear regression showed no significant correlation between lipophilicity (r2 = 0.008, P = 0.225) or the protein binding rate (r2 = 0.168, P = 0.479) of drugs and the extent of drug loss in the ECMO circuits. Conclusions: In the two ECMO circuits, meropenem and voriconazole were significantly lost, cefoperazone was slightly lost, while tigecycline and caspofungin were not lost. Drugs with high lipophilicity were lost more in the Maquet circuit than in the Sorin circuit. This study needs more in vivo studies with larger samples for further confirmation, and it suggests that therapeutic drug concentration monitoring should be strongly considered during ECMO.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huayou Zhou
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Sha
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingrui Lu
- Department of Mass Spectrometry, The Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Lin XB, Hu XG, Xia YZ, Liu XM, Liang T, Chen X, Cai CJ. Voriconazole pharmacokinetics in a critically ill patient during extracorporeal membrane oxygenation. J Chemother 2021; 34:272-276. [PMID: 34904531 DOI: 10.1080/1120009x.2021.2014725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pharmacokinetics (PK) of several drugs including antimicrobials might be highly altered during extracorporeal membrane oxygenation (ECMO) therapy. We present the change of voriconazole (VRC) PK during ECMO in a critically ill patient who received intravenous VRC at a maintenance dose of 200 mg every 12 h for empirical antifungal therapy. Two PK profiles were drawn before and after the initiation of ECMO therapy. Though the trough levels (both C0 and C12) with ECMO were slightly lower than that without ECMO (12.58 and 12.84 vs. 14.02 μg/mL), the peak levels and the area under the concentration-time curve from 0 h to 6 h (AUC0-6) were comparable (16.36 vs. 16.06 μg/mL and 90.78 vs. 91.45 μg·h/mL, respectively), indicating that VRC plasma exposure during ECMO therapy did not greatly decrease in our patient. The circuit factors including the type of membrane should be taken into account to further identify the effects of ECMO on the PK of VRC.
Collapse
Affiliation(s)
- Xiao-Bin Lin
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Guang Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Zhe Xia
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Man Liu
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Liang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang-Jie Cai
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Wohlford GF, Wickramaratne N, Wallace Van Tassell B, Halquist MS, Xu H, Withers CP, Blakey A, Letts H, Blocher C, Mangino M, Quader M. Effect of Extracorporeal Membrane Oxygenation Support on the Plasma Levels of Commonly Utilized Catecholamines. ASAIO J 2021; 67:e204-e206. [PMID: 33587466 DOI: 10.1097/mat.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- George F Wohlford
- From the School of Pharmacy, Department of Pharmacotherapy, Virginia Commonwealth University, Richmond, Virginia
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Niluka Wickramaratne
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Benjamin Wallace Van Tassell
- From the School of Pharmacy, Department of Pharmacotherapy, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew S Halquist
- From the School of Pharmacy, Department of Pharmacotherapy, Virginia Commonwealth University, Richmond, Virginia
| | - Haoxuan Xu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - C Price Withers
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Adam Blakey
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Holly Letts
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Charles Blocher
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Martin Mangino
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Mohammed Quader
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
43
|
Kuntz MT, Pereira LM, Matte GS, Connor K, Staffa SJ, DiNardo JA, Nasr VG. Sequestration of Midazolam, Fentanyl, and Morphine by an Ex Vivo Cardiopulmonary Bypass Circuit. ASAIO J 2021; 67:1342-1348. [PMID: 34415712 DOI: 10.1097/mat.0000000000001506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cardiopulmonary bypass (CPB) circuits can significantly sequester intravenous anesthetics. Adsorption of medications by our institution's standard circuit (Terumo CAPIOX FX05 oxygenator; noncoated polyvinylchloride tubing) has not been described. We prepared ex vivo CPB circuits with and without oxygenators. Medication combinations studied included midazolam (0.5 mg), fentanyl (50 µg), midazolam (0.5 mg) with morphine (0.5 mg), and midazolam (0.5 mg) with fentanyl (50 µg). Medications were administered after obtaining baseline samples. Samples were drawn at 2, 5, 15, 30, 60, 120, and 180 minutes, and analyzed for concentration of injected medications. Midazolam demonstrated no sequestration after 180 minutes. Fentanyl concentration at 180 minutes was lower with an oxygenator (52.7 ± 12.5 vs. 110.9 ± 12.0 ng/ml, P = 0.00432). More fentanyl was found in solution after 180 minutes when given with midazolam compared to fentanyl given alone in the presence of an oxygenator (101 ± 22.3 vs. 52.7 ± 12.5 ng/ml, P = 0.044). Less midazolam was present after 180 minutes when given with morphine compared to midazolam given alone in the absence of an oxygenator (1264.9 ± 425.6 vs. 2124 ± 254 ng/ml, P = 0.037). We successfully characterized the adsorption of various combinations of midazolam, fentanyl, and morphine to our CPB circuit, showing that fentanyl and midazolam behave differently based on other medications present.
Collapse
Affiliation(s)
- Michael T Kuntz
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Luis M Pereira
- Pharmacometrics Research Core, Pharmacokinetics Laboratory, Boston Children's Hospital, Boston, Massachusetts
| | - Gregory S Matte
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Kevin Connor
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Steven J Staffa
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - James A DiNardo
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viviane G Nasr
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Sukeishi A, Itohara K, Yonezawa A, Sato Y, Matsumura K, Katada Y, Nakagawa T, Hamada S, Tanabe N, Imoto E, Kai S, Hirai T, Yanagita M, Ohtsuru S, Terada T, Ito I. Population pharmacokinetic modeling of GS-441524, the active metabolite of remdesivir, in Japanese COVID-19 patients with renal dysfunction. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 11:94-103. [PMID: 34793625 PMCID: PMC8646568 DOI: 10.1002/psp4.12736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
Remdesivir, a prodrug of the nucleoside analog GS‐441524, plays a key role in the treatment of coronavirus disease 2019 (COVID‐19). However, owing to limited information on clinical trials and inexperienced clinical use, there is a lack of pharmacokinetic (PK) data in patients with COVID‐19 with special characteristics. In this study, we aimed to measure serum GS‐441524 concentrations and develop a population PK (PopPK) model. Remdesivir was administered at a 200 mg loading dose on the first day followed by 100 mg from day 2, based on the package insert, in patients with an estimated glomerular filtration rate (eGFR) greater than or equal to 30 ml/min. In total, 190 concentrations from 37 Japanese patients were used in the analysis. The GS‐441524 trough concentrations were significantly higher in the eGFR less than 60 ml/min group than in the eGFR greater than or equal to 60 ml/min group. Extracorporeal membrane oxygenation in four patients hardly affected the total body clearance (CL) and volume of distribution (Vd) of GS‐441524. A one‐compartment model described serum GS‐441524 concentration data. The CL and Vd of GS‐441524 were significantly affected by eGFR readjusted by individual body surface area and age, respectively. Simulations proposed a dose regimen of 200 mg on day 1 followed by 100 mg once every 2 days from day 2 in patients with an eGFR of 30 ml/min or less. In conclusion, we successfully established a PopPK model of GS‐441524 using retrospectively obtained serum GS‐441524 concentrations in Japanese patients with COVID‐19, which would be helpful for optimal individualized therapy of remdesivir.
Collapse
Affiliation(s)
- Asami Sukeishi
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Katsuyuki Matsumura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yoshiki Katada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Hamada
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shinichi Kai
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Shigeru Ohtsuru
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Isao Ito
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
A personalised approach to antibiotic pharmacokinetics and pharmacodynamics in critically ill patients. Anaesth Crit Care Pain Med 2021; 40:100970. [PMID: 34728411 DOI: 10.1016/j.accpm.2021.100970] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 01/01/2023]
Abstract
Critically ill patients admitted to intensive care unit (ICU) with severe infections, or those who develop nosocomial infections, have poor outcomes with substantial morbidity and mortality. Such patients commonly have suboptimal antibiotic exposures at routinely used antibiotic doses related to an increased volume of distribution and altered clearance due to their underlying altered physiology. Furthermore, the use of extracorporeal devices such as renal replacement therapy and extracorporeal membrane oxygenation in these group of patients also has the potential to alter in vivo drug concentrations. Moreover, ICU patients are likely to be infected with less-susceptible pathogens. Therefore, one potential contributing cause to the poor outcomes observed in critically ill patients may be related to subtherapeutic antibiotic exposures. Newer concepts include the clinician considering optimised dosing based on a blood antibiotic exposure defined by pharmacokinetic modelling and therapeutic drug monitoring, combined with a knowledge of the antibiotic penetration into the site of infection, thereby achieving optimal bacterial killing. Such optimised dosing is likely to improve patient outcomes. The aim of this review is to highlight key aspects of antibiotic pharmacokinetics and pharmacodynamics (PK/PD) in critically ill patients and provide a PK/PD approach to tailor antibiotic dosing to the individual patient.
Collapse
|
46
|
De Bie FR, Russo FM, Van Brantegem P, Coons BE, Moon JK, Yang Z, Pang C, Senra JC, Omann C, Annaert P, Allegaert K, Davey MG, Flake AW, Deprest J. Pharmacokinetics and pharmacodynamics of sildenafil in fetal lambs on extracorporeal support. Biomed Pharmacother 2021; 143:112161. [PMID: 34537676 DOI: 10.1016/j.biopha.2021.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Maternal transplacental administration of sildenafil is being considered for a variety of fetal conditions. Clinical translation also requires evaluation of fetal safety in a higher species, such as the fetal lamb. Experiments with the pregnant ewe are curtailed by minimal transplacental transfer as well as limited access to the fetus. The EXTra-uterine Environment for Neonatal Development (EXTEND) model renders the isolated fetal lamb readily accessible and allows for direct fetal administration of sildenafil. METHODS Five fetal lambs were placed on extracorporeal support in the EXTEND device and received continuous intravenous (IV) sildenafil (0.3-0.5-0.7 mg/kg/24hr) for a duration of one to seven days. Plasma sildenafil concentrations were sampled at regular intervals to establish the pharmacokinetic profile using population pharmacokinetic modeling. Serial Doppler ultrasound examination, continuous non-invasive hemodynamic monitoring and blood gas analysis were done to evaluate the pharmacodynamic effects and fetal response. FINDINGS The target concentration range (47-500 ng/mL) was attained with all doses. Sildenafil induced an immediate and temporary reduction of pulmonary vascular resistance, mean arterial pressure and circuit flow, without change in fetal lactate levels and acid-base status. The duration of the systemic effects increased with the dose. INTERPRETATION Immediate temporary pulmonary vascular and systemic hemodynamic changes induced by sildenafil were biochemically well tolerated by fetal lambs on extracorporeal support, with the 0.5 mg/kg/24 h dose balancing rapid attainment of target concentrations with short-lived systemic effects. RESEARCH IN CONTEXT None. SEARCH STRATEGY BEFORE UNDERTAKING THE STUDY A literature review was conducted searching online databases (Medline, Embase and Cochrane), using search terms: fetal OR prenatal OR antenatal AND sildenafil, without time-limit and excluding human studies. Where relevant, investigators were contacted in order to avoid duplication of work. EVIDENCE BEFORE THIS STUDY Prenatal therapy with sildenafil, a phosphodiesterase-5 inhibitor with vasodilatory and anti-remodeling effects on vascular smooth muscle cells, has been considered for a variety of fetal conditions. One multicenter clinical trial investigating the benefit of sildenafil in severe intrauterine growth restriction (the STRIDER-trial) was halted early due to excess mortality in the sildenafil-exposed arm at one treatment site. Such findings demonstrate the importance of extensive preclinical safety assessment in relevant animal models. Transplacentally administered sildenafil leads to decreased pulmonary arterial muscularization, preventing or reducing the occurrence of pulmonary hypertension in rat and rabbit fetuses with diaphragmatic hernia (DH). Validation of these results in a higher and relevant animal model, e.g. fetal lambs, is the next step to advance clinical translation. We recently demonstrated that, in contrast to humans, transplacental transfer of sildenafil in sheep is minimal, precluding the in vivo study of fetal effects at target concentrations using the conventional pregnant ewe model. ADDED VALUE OF THIS STUDY We therefore used the extracorporeal support model for fetal lambs, referred to as the EXTra-uterine Environment for Neonatal Development (EXTEND) system, bypassing placental and maternal metabolism, to investigate at what dose the target concentrations are reached, and what the fetal hemodynamic impact and response are. Fetal hemodynamic and metabolic tolerance to sildenafil are a crucial missing element on the road to clinical translation. This is therefore the first study investigating the pharmacokinetics, hemodynamic and biochemical effects of clinical-range concentrations of sildenafil in fetal lambs, free from placental and maternal interference. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE We demonstrated self-limiting pulmonary vasodilation, a decrease of both systemic arterial pressures and circuit flows, induced by clinical range concentrations of sildenafil, without the development of fetal acidosis. This paves the way for further investigation of prenatal sildenafil in fetal lambs on extracorporeal support. A dose of 0.5 mg/kg/24 h offered the best trade-off between rapid achievement of target concentrations and shortest duration of systemic effects. This is also the first study using the EXTEND as a model for pharmacotherapy during pregnancy.
Collapse
Affiliation(s)
- Felix R De Bie
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States; MyFetUZ, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | - Francesca M Russo
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | | | - Barbara E Coons
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - James K Moon
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Zexuan Yang
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Chengcheng Pang
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Janaina C Senra
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Camilla Omann
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Karel Allegaert
- MyFetUZ, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium; Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marcus G Davey
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Alan W Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Jan Deprest
- MyFetUZ, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Cheng V, Abdul-Aziz MH, Roberts JA. Applying Antimicrobial Pharmacokinetic Principles for Complex Patients: Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation and Renal Replacement Therapy. Curr Infect Dis Rep 2021. [DOI: 10.1007/s11908-021-00757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Fillâtre P, Lemaitre F, Nesseler N, Schmidt M, Besset S, Launey Y, Maamar A, Daufresne P, Flecher E, Le Tulzo Y, Tadie JM, Tattevin P. Impact of extracorporeal membrane oxygenation (ECMO) support on piperacillin exposure in septic patients: a case-control study. J Antimicrob Chemother 2021; 76:1242-1249. [PMID: 33569597 DOI: 10.1093/jac/dkab031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES To describe the impact of extracorporeal membrane oxygenation (ECMO) devices on piperacillin exposure in ICU patients. METHODS This observational, prospective, multicentre, case-control study was performed in the ICUs of two tertiary care hospitals in France. ECMO patients with sepsis treated with piperacillin/tazobactam were enrolled. Control patients were matched according to SOFA score and creatinine clearance. The pharmacokinetics of piperacillin were described based on a population pharmacokinetic model, calculating the proportion of time the piperacillin plasma concentration was above 64 mg/L (i.e. 4× MIC breakpoint for Pseudomonas aeruginosa). RESULTS Forty-two patients were included. Median (IQR) age was 60 years (49-66), SOFA score was 11 (9-14) and creatinine clearance was 47 mL/min (5-95). There was no significant difference in the proportion of time piperacillin concentrations were ≥64 mg/L in patients treated with ECMO and controls during the first administration (P = 0.184) or at steady state (P = 0.309). Following the first administration, 36/42 (86%) patients had trough piperacillin concentrations <64 mg/L. Trough concentrations at steady state were similar in patients with ECMO and controls (P = 0.535). Creatinine clearance ≥40 mL/min was independently associated with piperacillin trough concentration <64 mg/L at steady state [OR = 4.3 (95% CI 1.1-17.7), P = 0.043], while ECMO support was not [OR = 0.5 (95% CI 0.1-2.1), P = 0.378]. CONCLUSIONS ECMO support has no impact on piperacillin exposure. ICU patients with sepsis are frequently underexposed to piperacillin, which suggests that therapeutic drug monitoring should be strongly recommended for severe infections.
Collapse
Affiliation(s)
- P Fillâtre
- St Brieuc Hospital, Réanimation Polyvalente, F-22000 St Brieuc, France
| | - F Lemaitre
- Univ Rennes, Rennes University Hospital, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - N Nesseler
- Rennes University Hospital, Service de Réanimation de Chirurgie Cardiothoracique et de Chirurgie Vasculaire, F-35000 Rennes, France.,Univ Rennes, Inra, Inserm, Institut NUMECAN - UMR_A 1341, UMR_S 1241, CIC 1414, F35000 Rennes, France
| | - M Schmidt
- Sorbonne Université, Institute of Cardiometabolism and Nutrition, APHP, Pitié-Salpêtrière Hospital, Medical Intensive Care Unit, Paris, France
| | - S Besset
- Louis Mourier Hospital, Médecine Intensive-Réanimation, AP-HP, F92700 Colombes, France
| | - Y Launey
- Univ Rennes, Inra, Inserm, Institut NUMECAN - UMR_A 1341, UMR_S 1241, CIC 1414, F35000 Rennes, France.,Rennes University Hospital, Surgical Critical Care Unit, Department of Anaesthesia, Critical Care and Perioperative Medicine, F-35033 Rennes, France
| | - A Maamar
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| | - P Daufresne
- Rennes University Hospital, Haematology Unit, F-35033 Rennes, France
| | - E Flecher
- Rennes University Hospital, Department of Thoracic and Cardiovascular Surgery, F-35033 Rennes, France.,Univ Rennes, Inserm U1099, Signal and Image Treatment Laboratory (LTSI), F-35033 Rennes, France
| | - Y Le Tulzo
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| | - J M Tadie
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| | - P Tattevin
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| |
Collapse
|
49
|
Duceppe MA, Kanji S, Do AT, Ruo N, Cavayas YA, Albert M, Robert-Halabi M, Zavalkoff S, Dupont P, Samoukovic G, Williamson DR. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 2021; 81:1307-1329. [PMID: 34224115 DOI: 10.1007/s40265-021-01557-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Adequate dosing of antimicrobials is critical to properly treat infections and limit development of resistance and adverse effects. Limited guidance exists for antimicrobial dosing adjustments in patients requiring extracorporporeal membrane oxygenation (ECMO) therapy. A systematic review was conducted to delineate the pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in critically ill adult patients requiring ECMO. METHODS Medline, EMBASE, Global Health, and All EBM Reviews databases were searched. Grey literature was examined. All studies reporting PK/PD parameters of antimicrobials in critically ill adults treated with ECMO were included, except for case reports and congress abstracts. Ex vivo studies were included. Two independent reviewers applied the inclusion and exclusion criteria. Reviewers were then paired to independently abstract data and evaluate methodological quality of studies using the ROBINS-I tool and the compliance with ClinPK guidelines. Patients' and studies' characteristics, key PK/PD findings, details of ECMO circuits and co-treatments were summarized qualitatively. Dosing recommendations were formulated based on data from controlled studies. RESULTS Thirty-two clinical studies were included; most were observational and uncontrolled. Fourteen ex vivo studies were analysed. Information on patient characteristics and co-treatments was often missing. The effect of ECMO on PK/PD parameters of antimicrobials varied depending on the studied drugs. Few dosing recommendations could be formulated given the lack of good quality data. CONCLUSION Limited data exist on the PK/PD of antimicrobials during ECMO therapy. Rigorously designed and well powered populational PK studies are required to establish empiric dosing guidelines for antimicrobials in patients requiring ECMO support. PROSPERO REGISTRATION NUMBER CRD42018099992 (Registered: July 24th 2018).
Collapse
Affiliation(s)
- Marc-Alexandre Duceppe
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada.
| | - Salmaan Kanji
- Department of Pharmacy, The Ottawa Hospital, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Faculté de Pharmacie, Université de Montréal, Montreal, Canada
| | - Anh Thu Do
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Ni Ruo
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Yiorgos Alexandros Cavayas
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Martin Albert
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Maxime Robert-Halabi
- Department of Medicine, Division of Cardiology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Samara Zavalkoff
- Department of Pediatrics, Division of Pediatric Critical Care, McGill University Health Centre, Montreal, Canada.,Faculty of Medicine, McGill University, Montreal, Canada
| | - Patrice Dupont
- Bibliothèque de la santé, Université de Montréal, Montreal, Canada
| | - Gordan Samoukovic
- Faculty of Medicine, McGill University, Montreal, Canada.,Department of Surgery, Division of Critical Care, McGill University Health Centre, Montreal, Canada
| | - David R Williamson
- Faculté de Pharmacie, Université de Montréal, Montreal, Canada.,Department of Pharmacy, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| |
Collapse
|
50
|
Kalaria SN, Kishk OA, Gopalakrishnan M, Bagdure DN. Evaluation of an ex-vivo neonatal extracorporeal membrane oxygenation circuit on antiepileptic drug sequestration. Perfusion 2021; 37:812-818. [PMID: 34192981 DOI: 10.1177/02676591211028183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antiepileptic dosing information used to manage neonatal patients receiving extracorporeal membrane oxygenation (ECMO) is limited. The objective of this study is to quantify the extent of sequestration of various antiepileptic drugs using an ex-vivo neonatal ECMO circuit. Two neonatal closed-loop ECMO circuits were prepared using a Rotaflow centrifugal pump, custom polyvinylchloride tubing and a Quadrox-i Neonatal membrane oxygenator. After 5 minutes of circuit priming and stabilization with normal saline/albumin or expired human whole blood, single boluses of levetiracetam (200 mg), lacosamide (20 mg), and phenytoin (200 mg) were injected into the circuit. To account for spontaneous drug degradation, two polyvinylchloride beakers were filled with normal saline/albumin or expired human whole blood and equivalent antiepileptic drug doses were prepared. Simultaneous pharmacokinetic samples were collected from the control solution and the pre-centrifugal pump, pre-oxygenator, and post-oxygenator sampling ports from each circuit. Similar drug recovery profiles were observed among the three sampling sites investigated. Percent drug sequestration after a 24-hour circuit flow period was relatively similar between the two different circuits and ranged between 5.5%-13.2% for levetiracetam, 18.4%-22.3% for lacosamide, and 24.5%-30.2% for phenytoin. A comparison at 12 and 24 hours demonstrated similar percent drug sequestration across all three drugs in each circuit. Percent drug sequestrations for levetiracetam and lacosamide were less than 20% and for phenytoin were as high as 30% based on the sampling following single bolus dose administration into a neonatal ECMO circuit. Careful consideration of patient clinical status should be taken in consideration when optimizing antiepileptic therapy in neonates receiving ECMO.
Collapse
Affiliation(s)
- Shamir N Kalaria
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, MD, USA.,Department of Pharmacy Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Omayma A Kishk
- Department of Pharmacy Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Dayanand N Bagdure
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|