1
|
Shao H, Zhang X, Li Y, Gao Y, Wang Y, Shao X, Dai L. Epidemiology and drug resistance analysis of bloodstream infections in an intensive care unit from a children's medical center in Eastern China for six consecutive years. Int Microbiol 2024; 27:1345-1355. [PMID: 38233723 PMCID: PMC11452477 DOI: 10.1007/s10123-024-00481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Children in the intensive care unit (ICU) who suffer from severe basic diseases and low immunity are usually in critical condition. It is crucial to assist clinicians in selecting the appropriate empirical antibiotic therapies for clinical infection control. METHODS We retrospectively analyzed data from 281 children with bloodstream infection (BSI). Comparisons of basic data, pathogenic information, and drug resistance of the main bacteria were conducted. RESULTS We detected 328 strains, including Gram-positive bacteria (223, 68%), mainly coagulase-negative Staphylococci (CoNS); Gram-negative bacteria (91, 27.7%); and fungi (14, 4.3%). The results of the binary logistic regression analysis showed that the main basic disease was an independent risk factor for death. Compared with Escherichia coli, Klebsiella pneumoniae exhibited a higher proportion of extended-spectrum β-lactamases (ESBLs), and its resistance to some β-lactamides and quinolones antibiotics were lower. Twenty-seven isolates of multidrug-resistant (MDR) bacteria were detected, of which carbapenem-resistant Acinetobacter baumannii (CRAB) accounted for the highest proportion (13, 48.2%). CONCLUSIONS CoNS was the principal pathogen causing BSI in children in the ICU of children, and Escherichia coli was the most common Gram-negative pathogen. The main basic disease was an independent risk factor for death. It is necessary to continuously monitor patients with positive blood cultures, pay special attention to detected MDR bacteria, and strengthen the management of antibiotics and prevention and control of nosocomial infections.
Collapse
Affiliation(s)
- Huijiang Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
| | - Xin Zhang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yang Li
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yuanyuan Gao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
| | - Yunzhong Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China.
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Ling Dai
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China.
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
2
|
Fararjeh A, Jaradat DMM, Al-Karablieh N, Al-Fawares O, Obeidat AIM, Bashabsheh RHF, Al-Khreshieh RO. Evaluation of synergism effect of human glucose-dependent insulinotropic polypeptide (GIP) on Klebsiella pneumoniae carbapenemases (KPC) producer isolated from clinical samples. Microb Pathog 2024; 194:106823. [PMID: 39059698 DOI: 10.1016/j.micpath.2024.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Antibiotic resistance is increasing among Gram-negative bacteria, prompting the development of new antibiotics as well as alternative treatment approaches. Klebsiella pneumoniae Carbapenemases (KPC) has become a major concern in the treatment of infections, since KPC-producing bacteria are resistant to a number of β -lactam and non β-lactam antibiotics in addition to hydrolyzing carbapenemases. The aim of this study is to examine the synergistic effect of human Glucose-dependent Insulinotropic Polypeptide (GIP) on KPC producer. The K. pneumoniae isolates were identified by using biochemical tests and PCR genotyping. The disc diffusion method was used to assess the antimicrobial susceptibility of each isolate, and the modified Hodge test (MHT) was used to find carbapenemases. Agar well diffusion and minimum inhibitory concentration (MIC) assays were used to validate the synergistic effect of GIP against Klebsiella species. MIC values of chosen antimicrobial compounds demonstrated a considerable synergism impact when combined with human GIP, particularly against KPC strains. The antibacterial activity of the antimicrobial compounds was boosted by 4-16 times due to human GIP, reducing the MIC values. The fractional inhibitory concentration (FIC) ranged from 0.032 to 0.25 for examined antibiotics. Thus, GIP can be considered an antibacterial adjuvant with the potential to supplement the current antibiotic spectrum.
Collapse
Affiliation(s)
- AbdulFattah Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan.
| | - Da'san M M Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan.
| | - Nehaya Al-Karablieh
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan; Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan
| | - O'la Al-Fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Abeer I M Obeidat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Raghad H F Bashabsheh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan; Histopathology department, Jordanian Royal Medical services, Amman, Jordan
| | - Rozan O Al-Khreshieh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
3
|
Ruiz-Santana S, Dearriba-Reyes J, Saavedra P, Iglesias-Llorente L, Alonso-Acero L, Hernández-Socorro CR, Sánchez-Ramírez C. Prediction of Concomitant Nosocomial Infection in Patients Previously Colonized Colorectally by Multidrug-Resistant Bacteria in an SDD Setting. Antibiotics (Basel) 2024; 13:717. [PMID: 39200017 PMCID: PMC11350885 DOI: 10.3390/antibiotics13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Antibiotic resistance is a worldwide concern. This study retrospectively analyzed patients admitted to the ICU of a tertiary hospital over a period of 7 months who were rectally colonized by multidrug-resistant microorganisms. The incidence of concomitant nosocomial infections was estimated, thus providing the risk of a colonizing microorganism producing a nosocomial infection. METHODS Infections with the same microorganism (concomitant) or different microorganisms (non-concomitant) were analyzed in order to adjust the empirical antibiotic treatment. Patients with rectal colonization by at least one multidrug-resistant bacterium (MDRB) on admission or after ICU admission were included. All patients had complete selective digestive decontamination (SDD) prophylaxis. For univariate analysis, categorical variables are expressed as frequencies and percentages and continuous variables as means and standard deviations, or as medians and interquartile ranges. For multivariate analysis, the model is summarized with p-values and hazard ratios with 95% confidence intervals. Survival analysis was conducted using the Kaplan-Meier method, which was performed to evaluate the time elapsed from colonization to infection by the same bacteria. Statistical significance was considered at p < 0.05. RESULTS Of the 130 patients with MDRB bacterial colonization analyzed, 98 remained free of infection, while 22 developed non-concomitant infections and 10 had infections concomitant to rectal colonizing bacteria. OXA-48-producing bacteria and MDR-Pseudomonas spp. incidences were 18.9% (95% CI: 7.96-35.2) and 44.4% (CI: 13.7-78.8), respectively. CONCLUSIONS OXA-48-producing bacteria and MDR-Pseudomonas spp. were the only bacteria associated with the development of infections concomitant to rectal colonization in an SDD setting. The incidence of MDRB infections was low.
Collapse
Affiliation(s)
- Sergio Ruiz-Santana
- Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - José Dearriba-Reyes
- Department of Medical and Surgical Sciences, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - Pedro Saavedra
- Department of Mathematics, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - Laura Iglesias-Llorente
- Department of Microbiology, Hospital Universitario de Gran Canaria Dr. Negrín, E-35010 Las Palmas de Gran Canaria, Spain; (L.I.-L.); (L.A.-A.)
| | - Laura Alonso-Acero
- Department of Microbiology, Hospital Universitario de Gran Canaria Dr. Negrín, E-35010 Las Palmas de Gran Canaria, Spain; (L.I.-L.); (L.A.-A.)
| | - Carmen-Rosa Hernández-Socorro
- Department of Radiology, Hospital Universitario de Gran Canaria Dr. Negrín, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| | - Catalina Sánchez-Ramírez
- Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, University de Las Palmas de Gran Canaria, E-35010 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
4
|
Hui K, Hong C, Xiong Y, Xia J, Huang W, Xia A, Xu S, Chen Y, Zhang Z, Chen H. LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis. Infect Drug Resist 2024; 17:2701-2710. [PMID: 38974318 PMCID: PMC11225988 DOI: 10.2147/idr.s464906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction This study aims to establish a comprehensive, multi-level approach for tackling tropical diseases by proactively anticipating and managing Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) within the initial 14 days of Intensive Care Unit (ICU) admission. The primary objective is to amalgamate a diverse array of indicators and pathogenic microbial data to pinpoint pivotal predictive variables, enabling effective intervention specifically tailored to the context of tropical diseases. Methods A focused analysis was conducted on 1733 patients admitted to the ICU between December 2016 and July 2019. Utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) regression, disease severity and laboratory indices were scrutinized. The identified variables served as the foundation for constructing a predictive model designed to forecast the occurrence of PICS. Results Among the subjects, 13.79% met the diagnostic criteria for PICS, correlating with a mortality rate of 38.08%. Key variables, including red-cell distribution width coefficient of variation (RDW-CV), hemofiltration (HF), mechanical ventilation (MV), Norepinephrine (NE), lactic acidosis, and multiple-drug resistant bacteria (MDR) infection, were identified through LASSO regression. The resulting predictive model exhibited a robust performance with an Area Under the Curve (AUC) of 0.828, an accuracy of 0.862, and a specificity of 0.977. Subsequent validation in an independent cohort yielded an AUC of 0.848. Discussion The acquisition of RDW-CV, HF requirement, MV requirement, NE requirement, lactic acidosis, and MDR upon ICU admission emerges as a pivotal factor for prognosticating PICS onset in the context of tropical diseases. This study highlights the potential for significant improvements in clinical outcomes through the implementation of timely and targeted interventions tailored specifically to the challenges posed by tropical diseases.
Collapse
Affiliation(s)
- Kangping Hui
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Chengying Hong
- Department of Critical Care Medicine, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yihan Xiong
- Neurology Department, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jinquan Xia
- Department of Clinical Medical Research Center, the Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| | - Wei Huang
- Department of Clinical Microbiology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| | - Andi Xia
- Department of Critical Care Medicine, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| | - Shunyao Xu
- Department of Critical Care Medicine, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yuting Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| | - Zhongwei Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Huaisheng Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People’s Republic of China
| |
Collapse
|
5
|
Neves CS, Moura LCRV, Da Costa Lima JL, Maciel MAV. Clinical outcomes of intensive care unit patients infected with multidrug-resistant gram-negative bacteria treated with ceftazidime/avibactam and ceftolozane/tazobactam. Braz J Microbiol 2024; 55:333-341. [PMID: 38133795 PMCID: PMC10920575 DOI: 10.1007/s42770-023-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
In intensive care units (ICUs), infection rates range from 18 to 54%, which is five to ten times higher than those observed in other hospital units, with a mortality rate of 9% to 60%. In recent decades, the susceptibility pattern has changed and Gram-Negative Bacteria (GNB) have become a threat due to their high frequency of multidrug resistance associated with a scarcity of therapeutic options. However, the drugs Ceftolozane/Tazobactam (C/T) and Ceftazidime/Avibactam (C/A) are demonstrating good clinical and microbiological response in the treatment of severe nosocomial infections. Therefore, this study aims to evaluate the clinical outcome of patients with severe infections caused by Multidrug-Resistant (MDR) GNB treated with C/T and C/A. Our study evaluates a total of 131 patients who received treatment with C/T and C/A due to infections caused by MDR GNB within the period from 2018 to 2021. The main infections were urinary tract (46,6%) and respiratory (26,7%) infections. Pseudomonas aeruginosa was the prevailing agent in the sample evaluation (34.3%), followed by Klebsiella pneumoniae (30,1%). About 54,9% of patients showed a favorable response, with culture negativation in 66,4% of the samples, with no discrepancy in negativations when comparing ages: 67,7% in young and 66% in elderly patients. Among the patients, 62,6% received monotherapy with C/T and C/A with a better response observed with monotherapy compared to combination therapy (58,6% vs 41,4%). The overall mortality rate was 45%, with MDR GNB infections responsible for 33,9% of these deaths, and the others (66,1%) due to factors such as oncological, hematological, and degenerative neurological diseases. In regards to hematological aspect, 35,1% of patients showed changes, with 28,2% of them presenting anemia, 4,5% thrombocytopenia, and 2,5% thrombocytosis. Concerning the use of invasive devices, higher mortality was observed in patients on mechanical ventilation (52%). In this manner, it was possible to observe that therapy with C/T and C/A yielded a favorable clinical outcome in patients with severe infections caused by MDR GNB in the study. These drugs also demonstrated good tolerability regardless of age or the presence of preexisting comorbidities and were deemed safe when assessing adverse effects. Our data also demonstrate the importance of determining the mechanism of resistance to carbapenems so that these drugs can be used more effectively and rationally.
Collapse
|
6
|
Wu Z, Huang T, Sathishkumar G, He X, Wu H, Zhang K, Rao X, Kang ET, Xu L. Phytic Acid-Promoted Exfoliation of Black Phosphorus Nanosheets for the Fabrication of Photothermal Antibacterial Coatings. Adv Healthc Mater 2024; 13:e2302058. [PMID: 37972607 DOI: 10.1002/adhm.202302058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Medical device-associated infections (MDAI) caused by planktonic pathogens are of serious concern worldwide due to the emergence of drug resistance resulting from continuous overuse or misuse of antibiotics. Therefore, the design of non-antibiotics-based treatment for MDAI is of crucial importance. Black phosphorus (BP), a novel 2D material, has recently received much attention owing to its remarkable physical, chemical, mechanical, and functional features. However, the intricacy of the fabrication process has severely hampered the development of BP in prospective applications. In this study, a simple and eco-friendly liquid-phase exfoliation method of phytic acid (PA)-promoted exfoliation of BP nanosheets (PA@BP NSs) is developed for their potential application in antibacterial photothermal therapy. To impart the antimicrobial effects, the polydimethylsiloxane surfaces are functionalized with quaternized polymer (polyquaternium-2 or PQ) and PA@BP NSs, leading to the formation of PA-BP-PQ composite coatings. In addition to the contact-killing antibacterial effect of the cationic PQ, the PA-BP-PQ coating exhibits remarkable near-infrared irradiation-triggered bactericidal effects with low cytotoxicity both in vitro and in vivo. This study proposes a simple liquid-phase exfoliation technique for the fabrication of BP NSs and a one-step approach for the construction of PA-BP-PQ composite coatings for bi-modal (contact-killing and photothermal) antimicrobial therapy.
Collapse
Affiliation(s)
- Ziyi Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Tao Huang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gnanasekar Sathishkumar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Huajun Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xi Rao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117576, Singapore
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| |
Collapse
|
7
|
Albahar F, Alhamad H, Abu Assab M, Abu-Farha R, Alawi L, Khaleel S. The Impact of Antifungal Stewardship on Clinical and Performance Measures: A Global Systematic Review. Trop Med Infect Dis 2023; 9:8. [PMID: 38251205 PMCID: PMC10820751 DOI: 10.3390/tropicalmed9010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Antimicrobial stewardship programs (ASP) have been proposed as an opportunity to optimize antifungal use. The antifungal resistance is a significant and emerging threat. The literature on antifungal stewardship (AFS) and its influence on performance and clinical outcome measures is scarce. This study aimed to examine global evidence of the impact of AFS on patients and performance measures. METHODS The "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) was used for the flow of identification, screening, eligibility, and inclusion. PubMed and MEDLINE were searched using the term ''antifungal stewardship'' on 15 February 2023. Search terms included antifungal stewardship, antimicrobial stewardship, candida, candidemia, candiduria, and invasive fungal disease. Of the 1366 records, 1304 were removed since they did not describe an antifungal stewardship intervention. Among the 62 full texts assessed, 21 articles were excluded since they were non-interventional studies and did not include the outcome of interest. Thus, 41 articles were eligible for systematic review. Eligible studies were those that described an AFS program and evaluated clinical or performance measures. RESULTS Of the 41 included studies, the primary performance measure collected was antifungal consumption (22 of 41), and mortality (22 of 41), followed by length of stay (11 of 41) and cost (9 of 41). Most studies were single-center, quasi-experimental, with varying interventions across studies. The principal finding from most of the studies in this systematic review is a reduction in mortality expressed in different units and the use of antifungal agents (13 studies out of 22 reporting mortality). Antifungal consumption was significantly blunted or reduced following stewardship initiation (10 of 22). Comparing studies was impossible due to a lack of standard units, making conducting a meta-analysis unfeasible, which would be a limitation of our study. CONCLUSION It has been shown that AFS interventions may improve antifungal consumption and other performance measures. According to available published studies, antifungal consumption and mortality appear to be the possible performance measures to evaluate the impact of AFS.
Collapse
Affiliation(s)
- Fares Albahar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan; (H.A.); (M.A.A.)
| | - Hamza Alhamad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan; (H.A.); (M.A.A.)
| | - Mohammad Abu Assab
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan; (H.A.); (M.A.A.)
| | - Rana Abu-Farha
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, P.O. Box 541350, Amman 11937, Jordan;
| | - Lina Alawi
- Department of Physiology and Pharmacology, Faculty of Medicine and Health Sciences, An Najah National University, Nablus P.O. Box 7, Palestine;
| | - Sara Khaleel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al Zaytoonah University, P.O. Box 130, Amman 11733, Jordan;
| |
Collapse
|
8
|
Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA. The increasing importance of novel deep eutectic solvents as potential effective antimicrobials and other medicinal properties. World J Microbiol Biotechnol 2023; 39:330. [PMID: 37792153 DOI: 10.1007/s11274-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelhamid Khodja
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mustafa Khamis
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
9
|
Gan L, Feng Y, Du B, Fu H, Tian Z, Xue G, Yan C, Cui X, Zhang R, Cui J, Zhao H, Feng J, Xu Z, Fan Z, Fu T, Du S, Liu S, Zhang Q, Yu Z, Sun Y, Yuan J. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae. Nat Commun 2023; 14:3215. [PMID: 37270557 PMCID: PMC10239455 DOI: 10.1038/s41467-023-39028-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Our previous studies have shown that high alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the intestinal microbiome could be one of the causes of non-alcoholic fatty liver disease (NAFLD). Considering antimicrobial resistance of K. pneumoniae and dysbacteriosis caused by antibiotics, phage therapy might have potential in treatment of HiAlc Kpn-induced NAFLD, because of the specificity targeting the bacteria. Here, we clarified the effectiveness of phage therapy in male mice with HiAlc Kpn-induced steatohepatitis. Comprehensive investigations including transcriptomes and metabolomes revealed that treatment with HiAlc Kpn-specific phage was able to alleviate steatohepatitis caused by HiAlc Kpn, including hepatic dysfunction and expression of cytokines and lipogenic genes. In contrast, such treatment did not cause significantly pathological changes, either in functions of liver and kidney, or in components of gut microbiota. In addition to reducing alcohol attack, phage therapy also regulated inflammation, and lipid and carbohydrate metabolism. Our data suggest that phage therapy targeting gut microbiota is an alternative to antibiotics, with potential efficacy and safety, at least in HiAlc Kpn-caused NAFLD.
Collapse
Affiliation(s)
- Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Hanyu Fu
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Shuheng Du
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Shiyu Liu
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Qun Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, 100020, Beijing, China.
| |
Collapse
|
10
|
García-García J, Diez-Echave P, Yuste ME, Chueca N, García F, Cabeza-Barrera J, Fernández-Varón E, Gálvez J, Colmenero M, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Morón R. Gut Microbiota Composition Can Predict Colonization by Multidrug-Resistant Bacteria in SARS-CoV-2 Patients in Intensive Care Unit: A Pilot Study. Antibiotics (Basel) 2023; 12:antibiotics12030498. [PMID: 36978365 PMCID: PMC10044413 DOI: 10.3390/antibiotics12030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The SARS-CoV-2 infection has increased the number of patients entering Intensive Care Unit (ICU) facilities and antibiotic treatments. Concurrently, the multi-drug resistant bacteria (MDRB) colonization index has risen. Considering that most of these bacteria are derived from gut microbiota, the study of its composition is essential. Additionally, SARS-CoV-2 infection may promote gut dysbiosis, suggesting an effect on microbiota composition. This pilot study aims to determine bacteria biomarkers to predict MDRB colonization risk in SARS-CoV-2 patients in ICUs. Seventeen adult patients with an ICU stay >48 h and who tested positive for SARS-CoV-2 infection were enrolled in this study. Patients were assigned to two groups according to routine MDRB colonization surveillance: non-colonized and colonized. Stool samples were collected when entering ICUs, and microbiota composition was determined through Next Generation Sequencing techniques. Gut microbiota from colonized patients presented significantly lower bacterial diversity compared with non-colonized patients (p < 0.05). Microbiota in colonized subjects showed higher abundance of Anaerococcus, Dialister and Peptoniphilus, while higher levels of Enterococcus, Ochrobactrum and Staphylococcus were found in non-colonized ones. Moreover, LEfSe analysis suggests an initial detection of Dialister propionicifaciens as a biomarker of MDRB colonization risk. This pilot study shows that gut microbiota profile can become a predictor biomarker for MDRB colonization in SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Jorge García-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Eugenia Yuste
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Medicina Intensiva, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Natalia Chueca
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERInfec), 18016 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERInfec), 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERInfec), 28029 Madrid, Spain
| | - Jose Cabeza-Barrera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Emilio Fernández-Varón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Colmenero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Medicina Intensiva, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
- Correspondence: (M.C.); (M.E.R.-C.)
| | - Maria Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (M.C.); (M.E.R.-C.)
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| |
Collapse
|
11
|
Optimization of Therapy and the Risk of Probiotic Use during Antibiotherapy in Septic Critically Ill Patients: A Narrative Review. Medicina (B Aires) 2023; 59:medicina59030478. [PMID: 36984479 PMCID: PMC10056847 DOI: 10.3390/medicina59030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Optimizing the entire therapeutic regimen in septic critically ill patients should be based not only on improving antibiotic use but also on optimizing the entire therapeutic regimen by considering possible drug–drug or drug–nutrient interactions. The aim of this narrative review is to provide a comprehensive overview on recent advances to optimize the therapeutic regimen in septic critically ill patients based on a pharmacokinetics and pharmacodynamic approach. Studies on recent advances on TDM-guided drug therapy optimization based on PK and/or PD results were included. Studies on patients <18 years old or with classical TDM-guided therapy were excluded. New approaches in TDM-guided therapy in septic critically ill patients based on PK and/or PD parameters are presented for cefiderocol, carbapenems, combinations beta-lactams/beta-lactamase inhibitors (piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam), plazomicin, oxazolidinones and polymyxins. Increased midazolam toxicity in combination with fluconazole, nephrotoxic synergism between furosemide and aminoglycosides, life-threatening hypoglycemia after fluoroquinolone and insulin, prolonged muscle weakness and/or paralysis after neuromuscular blocking agents and high-dose corticosteroids combinations are of interest in critically ill patients. In the real-world practice, the use of probiotics with antibiotics is common; even data about the risk and benefits of probiotics are currently spares and inconclusive. According to current legislation, probiotic use does not require safety monitoring, but there are reports of endocarditis, meningitis, peritonitis, or pneumonia associated with probiotics in critically ill patients. In addition, probiotics are associated with risk of the spread of antimicrobial resistance. The TDM-guided method ensures a true optimization of antibiotic therapy, and particular efforts should be applied globally. In addition, multidrug and drug–nutrient interactions in critically ill patients may increase the likelihood of adverse events and risk of death; therefore, the PK and PD particularities of the critically ill patient require a multidisciplinary approach in which knowledge of clinical pharmacology is essential.
Collapse
|
12
|
Antimicrobial Activity of Novel Deep Eutectic Solvents. Sci Pharm 2023. [DOI: 10.3390/scipharm91010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Herein, we utilized several deep eutectic solvents (DES) that were based on hydrogen donors and hydrogen acceptors for their antibacterial application. These DES were tested for their bactericidal activities against Gram-positive (Streptococcus pyogenes, Bacillus cereus, Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) bacteria. Using lactate dehydrogenase assays, DES were evaluated for their cytopathic effects towards human cells. Results from antibacterial tests revealed that DES prepared from the combination of methyl-trioctylammonium chloride and glycerol (DES-4) and DES prepared form methyl-trioctylammonium chloride and fructose (DES-11) at a 2 µL dose showed broad-spectrum antibacterial behavior and had the highest bactericidal activity. Moreover, DES-4 showed 40% and 68% antibacterial activity against P. aeruginosa and E. coli K1, respectively. Similarly, DES-11 eliminated 65% and 61% E. coli K1 and P. aeruginosa, respectively. Among Gram-positive bacteria, DES-4 showed important antibacterial activity, inhibiting 75% of B. cereus and 51% of S. pneumoniae. Likewise, DES-11 depicted 70% B. cereus and 50% S. pneumoniae bactericidal effects. Finally, the DES showed limited cytotoxic properties against human cell lines with the exception of the DES prepared from Methyltrioctylammonium chloride and Citric acid (DES-10), which had 88% cytotoxic effects. These findings suggest that DES depict potent antibacterial efficacies and cause minimal damage to human cells. It can be concluded that the selected DES in this study could be utilized as valuable and novel antibacterial drugs against bacterial infections. In future work, the mechanisms for bactericides and the cytotoxicity effects of these DES will be investigated.
Collapse
|
13
|
Russo A, Fusco P, Morrone HL, Trecarichi EM, Torti C. New advances in management and treatment of multidrug-resistant Klebsiella pneumoniae. Expert Rev Anti Infect Ther 2023; 21:41-55. [PMID: 36416713 DOI: 10.1080/14787210.2023.2151435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The management of multidrug-resistant (MDR) Klebsiella pneumoniae (KP) represents a major challenge in the field of infectious diseases. It is associated with a high rate of nosocomial infections with a mortality rate that reaches approximately 50%, even when using an effective antimicrobial therapy. Therefore, combined actions addressing infection control and antibiotic stewardship are required to delay the emergence of resistance. Since new antimicrobial agents targeting MDR-GNB bacteria have been produced during the last years and are now available for physicians to treat MDR, it is fundamental to choose appropriate antimicrobial therapy for K. pneumoniae infection. AREAS COVERED The PubMed database was searched to review the most significant recent literature on the topic, including data from articles coming from endemic areas and from the current European and American Guidelines. EXPERT OPINION We explore the most effective strategies for prevention of MDR-KP spread and the currently available treatment options, focusing on comparing old strategies and new compounds. We reviewed data concerning newly developed drugs that could play an important role in the future; we also propose a treatment algorithm that could be useful for physicians in daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Paolo Fusco
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Helen Linda Morrone
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
14
|
Rawson TM, Antcliffe DB, Wilson RC, Abdolrasouli A, Moore LSP. Management of Bacterial and Fungal Infections in the ICU: Diagnosis, Treatment, and Prevention Recommendations. Infect Drug Resist 2023; 16:2709-2726. [PMID: 37168515 PMCID: PMC10166098 DOI: 10.2147/idr.s390946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023] Open
Abstract
Bacterial and fungal infections are common issues for patients in the intensive care unit (ICU). Large, multinational point prevalence surveys have identified that up to 50% of ICU patients have a diagnosis of bacterial or fungal infection at any one time. Infection in the ICU is associated with its own challenges. Causative organisms often harbour intrinsic and acquired mechanisms of drug-resistance, making empiric and targeted antimicrobial selection challenging. Infection in the ICU is associated with worse clinical outcomes for patients. We review the epidemiology of bacterial and fungal infection in the ICU. We discuss risk factors for acquisition, approaches to diagnosis and management, and common strategies for the prevention of infection.
Collapse
Affiliation(s)
- Timothy M Rawson
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Hammersmith Hospital, London, UK
- Centre for Antimicrobial Optimisation, Imperial College London, Imperial College London, London, UK
- David Price Evan’s Group in Infectious Diseases and Global Health, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Correspondence: Timothy M Rawson, Health Protection Research Unit in Healthcare Associated Infections & Antimicrobial Resistance, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom, Email
| | - David B Antcliffe
- Centre for Antimicrobial Optimisation, Imperial College London, Imperial College London, London, UK
- Division Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Richard C Wilson
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Hammersmith Hospital, London, UK
- Centre for Antimicrobial Optimisation, Imperial College London, Imperial College London, London, UK
- David Price Evan’s Group in Infectious Diseases and Global Health, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | | | - Luke S P Moore
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Hammersmith Hospital, London, UK
- Chelsea & Westminster NHS Foundation Trust, London, UK
- North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
15
|
Ghotaslou R, Salahi B, Naderi G, Alizadeh N. High Frequency of blaOXA-48like
Producing Klebsiella pneumoniae Isolated from Nosocomial Infection in Azerbaijan, Iran. Infect Chemother 2023; 55:90-98. [PMID: 37021426 PMCID: PMC10079451 DOI: 10.3947/ic.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is one of the significant agents of hospital-acquired infections. In recent years, carbapenem-resistant K. pneumoniae (CRKP) isolates have been found in numerous epidemics of nosocomial infections. This study aimed to determine carbapenem resistance mechanisms and molecular epidemiological of CRKP infections in Azerbaijan, Iran. MATERIALS AND METHODS A total of 50 non-duplicated CRKP from January 2020 to December 2020 were isolated form Sina and Imam Reza Hospitals in Tabriz, Iran. Antimicrobial susceptibility testing was performed by the disk-diffusion method. The carbapenem resistance mechanisms were determined by the phenotypic and PCR procedures. CRKP isolates were typed by the Random Amplified Polymorphic DNA PCR (RAPD-PCR) technique. RESULTS Amikacin was the most effective antibiotics against CRKP isolates. AmpC overproduction was observed in five CRKP isolates. Efflux pump activity was found in one isolate by the phenotypic method. Carba NP test could find carbapenemases genes in 96% of isolates. The most common carbapenemases gene in CRKP isolates were blaOXA-48-like (76%) followed by blaNDM (50%), blaIMP (22%), blaVIM (10%), and blaKPC (10%). The outer membrane protein genes (OmpK36 and OmpK35) were identified in 76% and 82% of CRKP isolates, respectively. RAPD-PCR analysis yielded 37 distinct RAPD-types. Most blaOXA-48-like positive CRKP isolates were obtained from patients hospitalized in intensive care unit (ICU) wards with urinary tract infections. CONCLUSION The blaOXA-48-like is the main carbapenemase among CRKP isolates in this area. Most blaOXA-48-like producer CRKP strains were collected from the ICU ward and urine samples. To control infections due to CRKP, a strict control program in hospital settings is required.
Collapse
Affiliation(s)
- Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Central Laboratory of the Province, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Salahi
- Razi Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Alizadeh
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran .
| |
Collapse
|
16
|
Brink AJ, Coetzee J, Richards GA, Feldman C, Lowman W, Tootla HD, Miller MGA, Niehaus AJ, Wasserman S, Perovic O, Govind CN, Schellack N, Mendelson M. Best practices: Appropriate use of the new β-lactam/β-lactamase inhibitor combinations, ceftazidime-avibactam and ceftolozane-tazobactam in South Africa. S Afr J Infect Dis 2022; 37:453. [PMID: 36338193 PMCID: PMC9634826 DOI: 10.4102/sajid.v37i1.453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023] Open
Abstract
Antibiotic stewardship of hospital-acquired infections because of difficult-to-treat resistant (DTR) Gram-negative bacteria is a global challenge. Their increasing prevalence in South Africa has required a shift in prescribing in recent years towards colistin, an antibiotic of last resort. High toxicity levels and developing resistance to colistin are narrowing treatment options further. Recently, two new β-lactam/β-lactamase inhibitor combinations, ceftazidime-avibactam and ceftolozane-tazobactam were registered in South Africa, bringing hope of new options for management of these life-threatening infections. However, with increased use in the private sector, increasing levels of resistance to ceftazidime-avibactam are already being witnessed, putting their long-term viability as treatment options of last resort, in jeopardy. This review focuses on how these two vital new antibiotics should be stewarded within a framework that recognises the resistance mechanisms currently predominant in South Africa's multi-drug and DTR Gram-negative bacteria. Moreover, the withholding of their use for resistant infections that can be treated with currently available antibiotics is a critical part of stewardship, if these antibiotics are to be conserved in the long term.
Collapse
Affiliation(s)
- Adrian J Brink
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jennifer Coetzee
- Division of Microbiology, Ampath National Reference Laboratory, Centurion, South Africa
| | - Guy A Richards
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Warren Lowman
- Department of Clinical Microbiology, Pathcare/Vermaak Pathologists, Gauteng, South Africa, South Africa
- Department Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology and Infection Prevention and Control, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Hafsah D Tootla
- Division of Medical Microbiology, National Health Laboratory Service, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Malcolm G A Miller
- Division of Critical Care, Department of Anaesthesia and Perioperative Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abraham J Niehaus
- Department of Medical Microbiology, Ampath Laboratory Services, Cape Town, South Africa
| | - Sean Wasserman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Olga Perovic
- National Institute for Communicable Disease, National Health Laboratory Services, Johannesburg, South Africa
- School of Pathology, Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chetna N Govind
- Department of Medical Microbiology, Lancet Laboratories, KwaZulu-Natal, Durban, South Africa
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marc Mendelson
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Identification of natural inhibitor against L1 β-lactamase present in Stenotrophomonas maltophilia. J Mol Model 2022; 28:342. [PMID: 36197525 PMCID: PMC9533269 DOI: 10.1007/s00894-022-05336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Antibiotic resistance is threatening the medical industry in treating microbial infections. Many organisms are acquiring antibiotic resistance because of the continuous use of the same drug. Gram-negative organisms are developing multi-drug resistance properties (MDR) due to chromosomal level changes that occurred as a part of evolution or some intrinsic factors already present in the organism. Stenotrophomonas maltophilia falls under the category of multidrug-resistant organism. WHO has also urged to evaluate the scenario and develop new strategies for making this organism susceptible to otherwise resistant antibiotics. Using novel compounds as drugs can ameliorate the issue to some extent. The β-lactamase enzyme in the bacteria is responsible for inhibiting several drugs currently being used for treatment. This enzyme can be targeted to find an inhibitor that can inhibit the enzyme activity and make the organism susceptible to β-lactam antibiotics. Plants produce several secondary metabolites for their survival in adverse environments. Several phytoconstituents have antimicrobial properties and have been used in traditional medicine for a long time. The computational technologies can be exploited to find the best compound from many compounds. Virtual screening, molecular docking, and dynamic simulation methods are followed to get the best inhibitor for L1 β-lactamase. IMPPAT database is screened, and the top hit compounds are studied for ADMET properties. Finally, four compounds are selected to set for molecular dynamics simulation. After all the computational calculations, withanolide R is found to have a better binding and forms a stable complex with the protein. This compound can act as a potent natural inhibitor for L1 β-lactamase.
Collapse
|
18
|
Weinelt FA, Stegemann MS, Theloe A, Pfäfflin F, Achterberg S, Weber F, Dübel L, Mikolajewska A, Uhrig A, Kiessling P, Huisinga W, Michelet R, Hennig S, Kloft C. Evaluation of a Meropenem and Piperacillin Monitoring Program in Intensive Care Unit Patients Calls for the Regular Assessment of Empirical Targets and Easy-to-Use Dosing Decision Tools. Antibiotics (Basel) 2022; 11:antibiotics11060758. [PMID: 35740164 PMCID: PMC9219867 DOI: 10.3390/antibiotics11060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
The drug concentrations targeted in meropenem and piperacillin/tazobactam therapy also depend on the susceptibility of the pathogen. Yet, the pathogen is often unknown, and antibiotic therapy is guided by empirical targets. To reliably achieve the targeted concentrations, dosing needs to be adjusted for renal function. We aimed to evaluate a meropenem and piperacillin/tazobactam monitoring program in intensive care unit (ICU) patients by assessing (i) the adequacy of locally selected empirical targets, (ii) if dosing is adequately adjusted for renal function and individual target, and (iii) if dosing is adjusted in target attainment (TA) failure. In a prospective, observational clinical trial of drug concentrations, relevant patient characteristics and microbiological data (pathogen, minimum inhibitory concentration (MIC)) for patients receiving meropenem or piperacillin/tazobactam treatment were collected. If the MIC value was available, a target range of 1–5 × MIC was selected for minimum drug concentrations of both drugs. If the MIC value was not available, 8–40 mg/L and 16–80 mg/L were selected as empirical target ranges for meropenem and piperacillin, respectively. A total of 356 meropenem and 216 piperacillin samples were collected from 108 and 96 ICU patients, respectively. The vast majority of observed MIC values was lower than the empirical target (meropenem: 90.0%, piperacillin: 93.9%), suggesting empirical target value reductions. TA was found to be low (meropenem: 35.7%, piperacillin 50.5%) with the lowest TA for severely impaired renal function (meropenem: 13.9%, piperacillin: 29.2%), and observed drug concentrations did not significantly differ between patients with different targets, indicating dosing was not adequately adjusted for renal function or target. Dosing adjustments were rare for both drugs (meropenem: 6.13%, piperacillin: 4.78%) and for meropenem irrespective of TA, revealing that concentration monitoring alone was insufficient to guide dosing adjustment. Empirical targets should regularly be assessed and adjusted based on local susceptibility data. To improve TA, scientific knowledge should be translated into easy-to-use dosing strategies guiding antibiotic dosing.
Collapse
Affiliation(s)
- Ferdinand Anton Weinelt
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany; (F.A.W.); (L.D.); (F.W.); (R.M.); (S.H.)
- Graduate Research Training Program PharMetrX, Freie Universitaet Berlin/Universität Potsdam, 12169 Berlin, Germany
| | - Miriam Songa Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; (M.S.S.); (F.P.); (S.A.); (A.M.); (A.U.)
- Antimicrobial Stewardship, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Anja Theloe
- Pharmacy Department, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany;
| | - Frieder Pfäfflin
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; (M.S.S.); (F.P.); (S.A.); (A.M.); (A.U.)
- Antimicrobial Stewardship, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Stephan Achterberg
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; (M.S.S.); (F.P.); (S.A.); (A.M.); (A.U.)
| | - Franz Weber
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany; (F.A.W.); (L.D.); (F.W.); (R.M.); (S.H.)
- Graduate Research Training Program PharMetrX, Freie Universitaet Berlin/Universität Potsdam, 12169 Berlin, Germany
| | - Lucas Dübel
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany; (F.A.W.); (L.D.); (F.W.); (R.M.); (S.H.)
| | - Agata Mikolajewska
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; (M.S.S.); (F.P.); (S.A.); (A.M.); (A.U.)
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany; (M.S.S.); (F.P.); (S.A.); (A.M.); (A.U.)
| | | | - Wilhelm Huisinga
- Institute of Mathematics, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany;
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany; (F.A.W.); (L.D.); (F.W.); (R.M.); (S.H.)
| | - Stefanie Hennig
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany; (F.A.W.); (L.D.); (F.W.); (R.M.); (S.H.)
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Certara, Inc., Princeton, NJ 08540, USA
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany; (F.A.W.); (L.D.); (F.W.); (R.M.); (S.H.)
- Correspondence: ; Tel.: +49-30-838-50676
| |
Collapse
|
19
|
Yan M, Zheng B, Li Y, Lv Y. Antimicrobial Susceptibility Trends Among Gram-Negative Bacilli Causing Bloodstream Infections: Results from the China Antimicrobial Resistance Surveillance Trial (CARST) Program, 2011-2020. Infect Drug Resist 2022; 15:2325-2337. [PMID: 35517902 PMCID: PMC9064452 DOI: 10.2147/idr.s358788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The antimicrobial resistance profiles of gram-negative bacilli causing bloodstream infections have changed over time, while comprehensive and real-time surveillance data are limited in China. This study aimed to review the antimicrobial susceptibility trends among main gram-negative bacilli isolated from blood specimens in China. Methods From 2011 to 2020, a total of 4352 non-duplicate isolates were collected from 21 tertiary hospitals in 18 provinces or cities across China. Antimicrobial susceptibility testing was conducted by the agar dilution method recommended by the Clinical and Laboratory Standards Institute (CLSI), and the results were interpreted using CLSI criteria. Results During this 10-year surveillance period, meropenem and imipenem were the most effective agents against Escherichia coli (resistance remaining <5%). The proportion of ESBL-producing isolates in carbapenem-susceptible E. coli displayed a decreasing trend (from 72.9% to 51.2%). The resistance rates of Klebsiella pneumoniae to meropenem and imipenem increased from 3.3% and 1.6% in the 2011-12 period to 15.0% and 15.4% in the 2019-20 period, respectively. Carbapenems and amikacin were the most active agents against Enterobacter cloacae. The resistance rates of Pseudomonas aeruginosa to meropenem and imipenem increased from 13.1% and 17.7% in the 2015-16 period to 24.5% and 21.0% in the 2019-20 period, respectively. Few agents showed activity against Acinetobacter baumannii. The frequency of imipenem-non-susceptible A. baumannii remained stable (remaining ~70%). Conclusion The rapid spread of carbapenem-resistant K. pneumoniae has been serious in recent years. Conversely, the prevalence of ESBL-producing isolates was decreased. Carbapenems are still effective against gram-negative bacilli causing BSIs, except for A. baumannii. More attention should be given to A. baumannii, considering its high resistance against different classes of antimicrobials.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, People’s Republic of China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, People’s Republic of China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, People’s Republic of China
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, People’s Republic of China
| |
Collapse
|
20
|
Sun L, Sun L, Li X, Hu X, Wang X, Nie T, Zhang Y, You X. A Novel Tigecycline Adjuvant ML-7 Reverses the Susceptibility of Tigecycline-Resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 11:809542. [PMID: 35071055 PMCID: PMC8766836 DOI: 10.3389/fcimb.2021.809542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
The increasing incidence of tigecycline resistance undoubtedly constitutes a serious threat to global public health. The combination therapies had become the indispensable strategy against this threat. Herein, 11 clinical tigecycline-resistant Klebsiella pneumoniae which mainly has mutations in ramR, acrR, or macB were collected for tigecycline adjuvant screening. Interestingly, ML-7 hydrochloride (ML-7) dramatically potentiated tigecycline activity. We further picked up five analogs of ML-7 and evaluated their synergistic activities with tigecycline by using checkerboard assay. The results revealed that ML-7 showed certain synergy with tigecycline, while other analogs exerted attenuated synergistic effects among tigecycline-resistant isolates. Thus, ML-7 was selected for further investigation. The results from growth curves showed that ML-7 combined with tigecycline could completely inhibit the growth of bacteria, and the time-kill analysis revealed that the combination exhibited synergistic bactericidal activities for tigecycline-resistant isolates during 24 h. The ethidium bromide (EtBr) efflux assay demonstrated that ML-7 could inhibit the functions of efflux pump. Besides, ML-7 disrupted the proton motive force (PMF) via increasing ΔpH, which in turn lead to the inhibition of the functions of efflux pump, reduction of intracellular ATP levels, as well as accumulation of ROS. All of which promoted the death of bacteria. And further transcriptomic analysis revealed that genes related to the mechanism of ML-7 mainly enriched in ABC transporters. Taken together, these results revealed the potential of ML-7 as a novel tigecycline adjuvant to circumvent tigecycline-resistant Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lilan Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin Microbiol Rev 2021; 35:e0000621. [PMID: 34851134 DOI: 10.1128/cmr.00006-21] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella oxytoca is actually a complex of nine species-Klebsiella grimontii, Klebsiella huaxiensis, Klebsiella michiganensis, K. oxytoca, Klebsiella pasteurii, Klebsiella spallanzanii, and three unnamed novel species. Phenotypic tests can assign isolates to the complex, but precise species identification requires genome-based analysis. The K. oxytoca complex is a human commensal but also an opportunistic pathogen causing various infections, such as antibiotic-associated hemorrhagic colitis (AAHC), urinary tract infection, and bacteremia, and has caused outbreaks. Production of the cytotoxins tilivalline and tilimycin lead to AAHC, while many virulence factors seen in Klebsiella pneumoniae, such as capsular polysaccharides and fimbriae, have been found in the complex; however, their association with pathogenicity remains unclear. Among the 5,724 K. oxytoca clinical isolates in the SENTRY surveillance system, the rates of nonsusceptibility to carbapenems, ceftriaxone, ciprofloxacin, colistin, and tigecycline were 1.8%, 12.5%, 7.1%, 0.8%, and 0.1%, respectively. Resistance to carbapenems is increasing alarmingly. In addition to the intrinsic blaOXY, many genes encoding β-lactamases with varying spectra of hydrolysis, including extended-spectrum β-lactamases, such as a few CTX-M variants and several TEM and SHV variants, have been found. blaKPC-2 is the most common carbapenemase gene found in the complex and is mainly seen on IncN or IncF plasmids. Due to the ability to acquire antimicrobial resistance and the carriage of multiple virulence genes, the K. oxytoca complex has the potential to become a major threat to human health.
Collapse
|
22
|
Barnsteiner S, Baty F, Albrich WC, Babouee Flury B, Gasser M, Plüss-Suard C, Schlegel M, Kronenberg A, Kohler P. Antimicrobial resistance and antibiotic consumption in intensive care units, Switzerland, 2009 to 2018. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2021; 26. [PMID: 34794535 PMCID: PMC8603405 DOI: 10.2807/1560-7917.es.2021.26.46.2001537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Intensive care units (ICU) constitute a high-risk setting for antimicrobial resistance (AMR). Aim We aimed to describe secular AMR trends including meticillin-resistant Staphylococcus aureus (MRSA), glycopeptide-resistant enterococci (GRE), extended-spectrum cephalosporin-resistant Escherichia coli (ESCR-EC) and Klebsiella pneumoniae (ESCR-KP), carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CRPA) from Swiss ICU. We assessed time trends of antibiotic consumption and identified factors associated with CRE and CRPA. Methods We analysed patient isolate and antibiotic consumption data of Swiss ICU sent to the Swiss Centre for Antibiotic Resistance (2009–2018). Time trends were assessed using linear logistic regression; a mixed-effects logistic regression was used to identify factors associated with CRE and CRPA. Results Among 52 ICU, MRSA decreased from 14% to 6% (p = 0.005; n = 6,465); GRE increased from 1% to 3% (p = 0.011; n = 4,776). ESCR-EC and ESCR-KP increased from 7% to 15% (p < 0.001, n = 10,648) and 5% to 11% (p = 0.002; n = 4,052), respectively. CRE, mostly Enterobacter spp., increased from 1% to 5% (p = 0.008; n = 17,987); CRPA remained stable at 27% (p = 0.759; n = 4,185). Antibiotic consumption in 58 ICU increased from 2009 to 2013 (82.5 to 97.4 defined daily doses (DDD)/100 bed-days) and declined until 2018 (78.3 DDD/100 bed-days). Total institutional antibiotic consumption was associated with detection of CRE in multivariable analysis (odds ratio per DDD: 1.01; 95% confidence interval: 1.0–1.02; p = 0.004). Discussion In Swiss ICU, antibiotic-resistant Enterobacterales have been steadily increasing over the last decade. The emergence of CRE, associated with institutional antibiotic consumption, is of particular concern and calls for reinforced surveillance and antibiotic stewardship in this setting.
Collapse
Affiliation(s)
- Stefanie Barnsteiner
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Florent Baty
- Lung Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Baharak Babouee Flury
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Medical Research Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Michael Gasser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Matthias Schlegel
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andreas Kronenberg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | -
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Imipenem/Relebactam Ex Vivo Clearance during Continuous Renal Replacement Therapy. Antibiotics (Basel) 2021; 10:antibiotics10101184. [PMID: 34680765 PMCID: PMC8532761 DOI: 10.3390/antibiotics10101184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Purpose of this study: determination of adsorption and transmembrane clearances (CLTM) of imipenem and relebactam in ex vivo continuous hemofiltration (CH) and continuous hemodialysis (CHD) models. These clearances were incorporated into a Monte Carlo Simulation (MCS), to develop drug dosing recommendations for critically ill patients requiring continuous renal replacement therapy (CRRT); (2) Methods: A validated ex vivo bovine blood CH and CHD model using two hemodiafilters. Imipenem/relebactam and urea CLTM at different ultrafiltrate/dialysate flow rates were evaluated in both CH and CHD. MCS was performed to determine dose recommendations for patients receiving CRRT; (3) Results: Neither imipenem nor relebactam adsorbed to the CRRT apparatus. The CLTM of imipenem, relebactam, and urea approximated the effluent rates (ultrafiltrate/dialysate flow rates). The types of hemodiafilter and effluent rates did not influence CLTM except in a dialysis flow rate of 1 L/h and 6 L/h in the CHD with relebactam (p < 0.05). Imipenem and relebactam 200 mg/100 mg every 6 h were sufficient to meet the standard time above the MIC pharmacodynamic targets in the modeled CRRT regimen of 25 kg/mL/h. (4) Conclusions: Imipenem and relebactam are not removed by adsorption to the CRRT apparatus, but readily cross the hemodiafilter membrane in CH and CHD. Dosage adjustment of imipenem/relebactam is likely required for critically ill patients receiving CRRT.
Collapse
|
24
|
Levochkina M, McQuillan L, Awan N, Barton D, Maczuzak J, Bianchine C, Trombley S, Kotes E, Wiener J, Wagner A, Calcagno J, Maza A, Nierstedt R, Ferimer S, Wagner A. Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome. J Clin Med 2021; 10:jcm10194365. [PMID: 34640381 PMCID: PMC8509449 DOI: 10.3390/jcm10194365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) induces immune dysfunction that can be captured clinically by an increase in the neutrophil-to-lymphocyte ratio (NLR). However, few studies have characterized the temporal dynamics of NLR post-TBI and its relationship with hospital-acquired infections (HAI), resource utilization, or outcome. We assessed NLR and HAI over the first 21 days post-injury in adults with moderate-to-severe TBI (n = 196) using group-based trajectory (TRAJ), changepoint, and mixed-effects multivariable regression analysis to characterize temporal dynamics. We identified two groups with unique NLR profiles: a high (n = 67) versus a low (n = 129) TRAJ group. High NLR TRAJ had higher rates (76.12% vs. 55.04%, p = 0.004) and earlier time to infection (p = 0.003). In changepoint-derived day 0–5 and 6–20 epochs, low lymphocyte TRAJ, early in recovery, resulted in more frequent HAIs (p = 0.042), subsequently increasing later NLR levels (p ≤ 0.0001). Both high NLR TRAJ and HAIs increased hospital length of stay (LOS) and days on ventilation (p ≤ 0.05 all), while only high NLR TRAJ significantly increased odds of unfavorable six-month outcome as measured by the Glasgow Outcome Scale (GOS) (p = 0.046) in multivariable regression. These findings provide insight into the temporal dynamics and interrelatedness of immune factors which collectively impact susceptibility to infection and greater hospital resource utilization, as well as influence recovery.
Collapse
Affiliation(s)
- Marina Levochkina
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Leah McQuillan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David Barton
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - John Maczuzak
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Claudia Bianchine
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Shannon Trombley
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Emma Kotes
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Joshua Wiener
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Audrey Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Jason Calcagno
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Andrew Maza
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Ryan Nierstedt
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Stephanie Ferimer
- Division of Pediatric Rehabilitation Medicine, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA;
| | - Amy Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
25
|
Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, Skariah S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere 2021; 6:e00202-21. [PMID: 34011686 PMCID: PMC8265635 DOI: 10.1128/msphere.00202-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last decades, there has been a dramatic global increase in multidrug-resistant (MDR) pathogens particularly among Gram-negative bacteria (GNB). Pseudomonas aeruginosa is responsible for various health care-associated infections, while MDR P. aeruginosa causes significant morbidity and mortality. Middle East and North Africa (MENA) represent an unexplored geographical region for the study of drug resistance since many of these countries are at crossroads of high volume of travel, diverse expatriate populations, as well as high antibiotic consumption despite attempts to implement antimicrobial stewardship programs. This minireview analyzes epidemiology, microbiological, and genomic characteristics of MDR P. aeruginosa in the MENA region. Published data on MDR P. aeruginosa prevalence, antimicrobial resistance patterns, and genetic profiles from studies published during the past 10 years from 19 MENA countries have been included in this minireview. There is wide variation in the epidemiology of MDR P. aeruginosa in the MENA region in terms of prevalence, antimicrobial characteristics, as well as genetic profiles. Overall, there is high prevalence of MDR P. aeruginosa seen in the majority of the countries in the MENA region with similarities between neighboring countries, which might reflect comparable population and antibiotic-prescribing cultures. Isolates from critical care units are significantly resistant particularly from certain countries such as Saudi Arabia, Egypt, Libya, Syria, and Lebanon with high-level resistance to cephalosporins, carbapenems, and aminoglycosides. Colistin susceptibility patterns remains high apart from countries with high-level antibiotic resistance such as Saudi Arabia, Syria, and Egypt.
Collapse
Affiliation(s)
- Mahmood Al-Orphaly
- Department of Medical Education, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Hamad Abdel Hadi
- Department of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | | | - Hissa Al-Hail
- Department of Medical Education, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Bincy Gladson Samuel
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
26
|
Profiling of Potential Antibacterial Compounds of Lactic Acid Bacteria against Extremely Drug Resistant (XDR) Acinetobacter baumannii. Molecules 2021; 26:molecules26061727. [PMID: 33808805 PMCID: PMC8003687 DOI: 10.3390/molecules26061727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
A total of 20 of isolates of lactic acid bacteria (LAB) were selected and screened for antagonistic activity against clinical strains of 30 clinical isolates of extremely drug-resistant (XDR) Acinetobacter baumannii using the well diffusion assay method. Results showed that 50% of the highly LAB strains possessed inhibitory activity against (up to 66%) of the XDR A. baumannii strains tested. The supernatant of the twenty LAB strains was subjected to gas chromatography mass spectrometry (GCMS) revealed that the common compound found in the active isolates against XDR A. baumannii was 3-Isobutyl-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, a known potential diketopiperazine group. The molecular docking study against potential antibacterial targets with selected ligands was performed to predict the binding mode of interactions, which is responsible for antibacterial activity. The docking analysis of the potent compounds supported the potential antibacterial activity exhibiting high inhibition constant and binding affinity in silico.
Collapse
|
27
|
Russo A. Spotlight on New Antibiotics for the Treatment of Pneumonia. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2020; 14:1179548420982786. [PMID: 33424231 PMCID: PMC7755939 DOI: 10.1177/1179548420982786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/28/2020] [Indexed: 11/15/2022]
Abstract
In the last years, the presence of multidrug-resistant (MDR) Gram-negative (like Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) and Gram-positive bacteria (mostly methicillin-resistant Staphylococcus aureus) was worldwide reported, limiting the options for an effective antibiotic therapy. For these reasons, inappropriate antimicrobial therapy and delayed prescription can lead to an unfavorable outcome, especially in patients with pneumonia. New antibiotics approved belong to classes of antimicrobials, like beta-lactams with or without beta-lactamase inhibitors, aminoglycosides, oxazolidinones, quinolones, and tetracyclines, or based on new mechanisms of action. These new compounds show many advantages, including a broad spectrum of activity against MDR pathogens, good lung penetration, safety and tolerability, and finally the possibility of intravenous and/or oral formulations. However, the new antibiotics under development represent an important possible armamentarium against difficult-to-treat strains. The safety and clinical efficacy of these future drugs should be tested in clinical practice. In this review, there are reported characteristics of newly approved antibiotics that represent potential future options for the treatment of respiratory tract infections, including those caused by multidrug-resistant bacteria. Finally, the characteristics of the drugs under development are briefly reported.
Collapse
Affiliation(s)
- Alessandro Russo
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Papa A, Lopetuso LR, Minordi LM, Di Veronica A, Neri M, Rapaccini G, Gasbarrini A, Papa V. A modern multidisciplinary approach to the treatment of enterocutaneous fistulas in Crohn's disease patients. Expert Rev Gastroenterol Hepatol 2020; 14:857-865. [PMID: 32673498 DOI: 10.1080/17474124.2020.1797484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Enterocutaneous fistulas (ECFs) is a manifestation of penetrating Crohn's disease (CD) that is challenging to treat and has considerable morbidity and mortality rates. AREAS COVERED This review aims to explore the practical and updated principles for the optimal treatment of ECFs in CD patients. EXPERT OPINION Optimal ECF management requires a multidisciplinary approach. Treatment first includes fluid resuscitation and electrolyte rebalancing with control of sepsis by means of antibiotics and, when indicated, drainage of infected collections. Subsequent therapeutic steps include nutritional support, control of the fistula output and treatment of peristomal skin. Anti-TNF-α therapy seems to have limited utility only after sepsis is resolved and intestinal stenosis excluded. However, ECFs heal in only approximately one-third of cases without surgical intervention. Thus, correct surgical timing combined with adequate nutritional support, sepsis resolution and skin care is considered the appropriate preoperative setting.
Collapse
Affiliation(s)
- Alfredo Papa
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma, Italy.,Università Cattolica del Sacro Cuore , Roma, Italia
| | - Loris Riccardo Lopetuso
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma, Italy.,Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy
| | - Laura Maria Minordi
- Dipartimento di Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS , Roma, Italia
| | - Alessandra Di Veronica
- Dipartimento di Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS , Roma, Italia
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy
| | - Gianludovico Rapaccini
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma, Italy.,Università Cattolica del Sacro Cuore , Roma, Italia
| | - Antonio Gasbarrini
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma, Italy.,Università Cattolica del Sacro Cuore , Roma, Italia
| | - Valerio Papa
- Università Cattolica del Sacro Cuore , Roma, Italia.,Dipartimento di Chirurgia, Fondazione Policlinico Universitario A. Gemelli IRCCS , Roma, Italia
| |
Collapse
|
29
|
Delannoy M, Agrinier N, Charmillon A, Degand N, Dellamonica J, Leone M, Pulcini C, Novy E. Implementation of antibiotic stewardship programmes in French ICUs in 2018: a nationwide cross-sectional survey. J Antimicrob Chemother 2020; 74:2106-2114. [PMID: 30934049 DOI: 10.1093/jac/dkz113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Antibiotic stewardship programmes have a pivotal role in ICUs, but the level of implementation of these programmes at the regional or national level is not well known. OBJECTIVES The aim of our study was to assess the level of implementation of antibiotic stewardship programmes in French ICUs. METHODS We conducted a nationwide cross-sectional survey from January to March 2018 using an online questionnaire sent as an E-mail link to ICU specialists (one questionnaire per ICU). RESULTS Overall, 113 out of 206 (55%) ICUs participated. Access to local epidemiology regarding bacterial resistance and antibiotic consumption data was reported in 84% and 65% of ICUs, respectively. Local guidelines for antibiotic use were available in 54% of ICUs. The duration of empirical antibiotic therapy was limited in 46% of cases, following the recommendation of an external expert in 33%. An antibiotic stewardship programme leader was reported at the hospital level by 94% of respondents, being an infectious disease physician in 80%. His/her role in the ICU was mostly to discuss specific cases (50%) and to provide advice on antibiotic prescriptions (26%). Regarding microbiological diagnosis, blood cultures were not processed at night or during weekends in 57%. Molecular biology and MS techniques were available in 62% and 59% of cases, respectively. Therapeutic drug monitoring of β-lactams was available in 46% of cases. Forty-three percent of respondents knew the expression 'antimicrobial/antibiotic stewardship'. CONCLUSIONS Antibiotic stewardship programmes are not optimally implemented in French ICUs. Improvement efforts and regular monitoring of the level of implementation are needed.
Collapse
Affiliation(s)
- M Delannoy
- Université de Lorraine, CHRU-Nancy, Département d'Anesthésie-Réanimation Brabois, Nancy, France
| | - N Agrinier
- Université de Lorraine, APEMAC, Nancy, France.,CHRU-Nancy, INSERM, Université de Lorraine, CIC, Epidémiologie Clinique, Nancy, France
| | - A Charmillon
- Université de Lorraine, CHRU-Nancy, Infectious Diseases Department, Nancy, France
| | - N Degand
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet 2, Laboratoire de Bactériologie, Nice, France
| | - J Dellamonica
- Université Nice Cote d'Azur, CHU de Nice, Service de médecine Intensive Réanimation, Archet 1 CS 23079, Nice, France.,INSERM 1065 C3M, Nice, France
| | - M Leone
- Aix Marseille Université, APHM, Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - C Pulcini
- Université de Lorraine, APEMAC, Nancy, France.,Université de Lorraine, CHRU-Nancy, Infectious Diseases Department, Nancy, France
| | - E Novy
- Université de Lorraine, CHRU-Nancy, Département d'Anesthésie-Réanimation Brabois, Nancy, France
| |
Collapse
|
30
|
Zahar JR, Blot S, Nordmann P, Martischang R, Timsit JF, Harbarth S, Barbier F. Screening for Intestinal Carriage of Extended-spectrum Beta-lactamase-producing Enterobacteriaceae in Critically Ill Patients: Expected Benefits and Evidence-based Controversies. Clin Infect Dis 2020; 68:2125-2130. [PMID: 30312366 DOI: 10.1093/cid/ciy864] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
The rising burden of intensive care unit (ICU)-acquired infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) strengthens the requirement for efficient prevention strategies. The detection of intestinal carriage of ESBL-E through active surveillance cultures (ASC) and the implementation of contact precautions (CP) in carriers are currently advocated in most high-income countries, to prevent cross-transmission and subsequent ESBL-E infections in critically-ill patients. Yet, recent studies have challenged the benefit of ASC and CP in controlling the spread of ESBL-E in ICUs with high compliance to standard hygiene precautions and no ongoing outbreak of ESBL-producing Klebsiella pneumoniae or Enterobacter spp. Besides, given their debated performance to positively predict which patients are at risk of ESBL-E infections, ASC results appear of limited value to rationalize the empirical use of carbapenems in the ICU, emphasizing the urgent need for novel anticipatory and diagnostic approaches. This Viewpoint article summarizes the available evidence on these issues.
Collapse
Affiliation(s)
- Jean-Ralph Zahar
- Infection Control Unit, Avicenne University Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny.,INSERM, Infection Antimicrobial Modelling Evolution, UMR 1137, Paris Diderot, Sorbonne Paris Cité University, France
| | - Stijn Blot
- Department of Internal Medicine, Ghent University, Belgium.,Burns, Trauma and Critical Care Research Centre, Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, INSERM European Unit.,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg.,Institute for Microbiology, University of Lausanne and University Hospital Centre
| | - Romain Martischang
- Infection Control Program and World Health Organization Collaborating Center, Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Switzerland
| | - Jean-François Timsit
- INSERM, Infection Antimicrobial Modelling Evolution, UMR 1137, Paris Diderot, Sorbonne Paris Cité University, France.,Medical and Infectious Diseases Intensive Care Unit, Bichat-Claude Bernard Hospital, APHP, Paris
| | - Stephan Harbarth
- Infection Control Program and World Health Organization Collaborating Center, Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Switzerland
| | - François Barbier
- Medical Intensive Care Unit, La Source Hospital, Orléans, France
| |
Collapse
|
31
|
Garret C, Canet E, Corvec S, Boutoille D, Péron M, Archambeaud I, Le Thuaut A, Lascarrou JB, Douane F, Lerhun M, Regenet N, Coron E, Reignier J. Impact of prior antibiotics on infected pancreatic necrosis microbiology in ICU patients: a retrospective cohort study. Ann Intensive Care 2020; 10:82. [PMID: 32542577 PMCID: PMC7295875 DOI: 10.1186/s13613-020-00698-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Recent guidelines advise against prophylactic antibiotics in patients with necrotizing pancreatitis, advocating instead a step-up drainage and necrosectomy strategy with antibiotics as dictated by microbiological findings. However, prompt antibiotic therapy is recommended in patients with sepsis or septic shock, a possible presentation of infected pancreatic necrosis (IPN). Consequently, in many critically ill patients with IPN, pancreatic samples are collected only after broad-spectrum antibiotic therapy initiation. Whether this prior antibiotic exposure alters the microbiological findings is unknown. The main objective was to determine whether prior antibiotic exposure sterilized the samples collected during procedures for suspected IPN in patients admitted to the intensive care unit (ICU) for acute pancreatitis with suspected IPN. We retrospectively studied 56 consecutive ICU patients admitted with suspected IPN. We collected details on the microbiological samples and antimicrobials used. A definite diagnosis of IPN was given when bacteria were identified in pancreatic samples. Results In all, 137 pancreatic samples were collected, including 91 (66.4%) after antibiotic therapy initiation. IPN was confirmed in 48 (86%) patients. The proportion of positive samples was 74 (81.3%) in antibiotic-exposed patients and 32/46 (69.5%) in unexposed patients (p = 0.58). Of the 74 positive samples from exposed patients, 62 (84%) had organisms susceptible to the antibiotics used. One-third of samples contained more than one organism. Among patients with IPN, 37.5% had positive blood cultures. Multidrug- or extensively drug-resistant bacteria were identified at some point in half the patients. Enterobacter cloacae complex was more frequent in the exposed group (p = 0.02), as were Gram-negative anaerobic bacteria (p = 0.03). Conclusion Antibiotic exposure before sampling did not seem to affect culture positivity of pancreatic samples to confirm IPN, but may affect microbiological findings. Our results suggest that, in patients with sepsis and suspected IPN, antibiotics should be started immediately and pancreatic samples obtained as soon as possible thereafter. In other situations, antibiotics can be withheld until the microbiological results of pancreatic samples are available, to ensure accurate targeting of the spectrum to bacterial susceptibility patterns. ClinicalTrials.gov number NCT03253861
Collapse
Affiliation(s)
- Charlotte Garret
- Service de Médecine Intensive et Réanimation, Centre Hospitalier Universitaire de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France.
| | - Emmanuel Canet
- Service de Médecine Intensive et Réanimation, Centre Hospitalier Universitaire de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Stéphane Corvec
- Service de Bactériologie-Hygiène Hospitalière, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | | | - Matthieu Péron
- Service de Maladies Infectieuses et Tropicales, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Isabelle Archambeaud
- Service de Maladies Infectieuses et Tropicales, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Aurélie Le Thuaut
- Institut des Maladies de l'appareil Digestif, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Jean-Baptiste Lascarrou
- Service de Médecine Intensive et Réanimation, Centre Hospitalier Universitaire de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Frédéric Douane
- Département de Biostatistiques, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Marc Lerhun
- Service de Maladies Infectieuses et Tropicales, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Nicolas Regenet
- Service de Maladies Infectieuses et Tropicales, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Emmanuel Coron
- Service de Maladies Infectieuses et Tropicales, CHU de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| | - Jean Reignier
- Service de Médecine Intensive et Réanimation, Centre Hospitalier Universitaire de Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France
| |
Collapse
|
32
|
Glushchenko OE, Prianichnikov NA, Olekhnovich EI, Manolov AI, Tyakht AV, Starikova EV, Odintsova VE, Kostryukova ES, Ilina EI. VERA: agent-based modeling transmission of antibiotic resistance between human pathogens and gut microbiota. Bioinformatics 2020; 35:3803-3811. [PMID: 30825306 DOI: 10.1093/bioinformatics/btz154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION The resistance of bacterial pathogens to antibiotics is one of the most important issues of modern health care. The human microbiota can accumulate resistance determinants and transfer them to pathogenic microbiota by means of horizontal gene transfer. Thus, it is important to develop methods of prediction and monitoring of antibiotics resistance in human populations. RESULTS We present the agent-based VERA model, which allows simulation of the spread of pathogens, including the possible horizontal transfer of resistance determinants from a commensal microbiota community. The model considers the opportunity of residents to stay in the town or in a medical institution, have incorrect self-treatment, treatment with several antibiotics types and transfer and accumulation of resistance determinants from commensal microorganism to a pathogen. In this model, we have also created an assessment of optimum observation frequency of infection spread among the population. Investigating model behavior, we show a number of non-linear dependencies, including the exponential nature of the dependence of the total number of those infected on the average resistance of a pathogen. As the model infection, we chose infection with Shigella spp., though it could be applied to a wide range of other pathogens. AVAILABILITY AND IMPLEMENTATION Source code and binaries VERA and VERA.viewer are freely available for download at github.com/lpenguin/microbiota-resistome. The code is written in Java, JavaScript and R for Linux platform. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Oksana E Glushchenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,Moscow State University, Moscow, Russia
| | - Nikita A Prianichnikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Evgenii I Olekhnovich
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Alexander I Manolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Alexander V Tyakht
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,ITMO University, Saint Petersburg, Russia
| | - Elizaveta V Starikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Vera E Odintsova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena S Kostryukova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena I Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To describe recent data about Acinetobacter baumannii pneumonia epidemiology and the therapeutic options including adjunctive nebulized therapy. RECENT FINDINGS A. baumannii is a major cause of nosocomial pneumonia in certain geographic areas affecting mainly debilitated patients, with prolonged hospitalization and broad-spectrum antimicrobials. Inappropriate empirical treatment has clearly been associated with increased mortality in A. baumannii pneumonia. Carbapenems may not be considered the treatment of choice in areas with high rates of carbapenem-resistant A. baumannii. Nowadays, polymyxins are the antimicrobials with the greatest level of in-vitro activity. Colistin is the antimicrobial most widely used although polymyxin B is associated with less renal toxicity. It is clear that lung concentrations of polymyxins are suboptimal in a substantial proportion of patients. This issue has justified the use of combination therapy or adjunctive nebulized antibiotics. Current evidence does not allow us to recommend combination therapy for A. baumannii pneumonia. Regarding nebulized antibiotics, it seems reasonable to use in patients who are nonresponsive to systemic antibiotics or A. baumannii isolates with colistin minimum inhibitory concentrations close to the susceptibility breakpoints. Cefiderocol, a novel cephalosporin active against A. baumannii, may represent an attractive therapeutic option if ongoing clinical trials confirm preliminary results. SUMMARY The optimal treatment for multidrug-resistant A. baumannii pneumonia has not been established. New therapeutic options are urgently needed. Well designed, randomized controlled trials must been conducted to comprehensively evaluate the effectiveness and safety of nebulized antibiotics for the treatment of A. baumannii pneumonia.
Collapse
|
34
|
Zhou C, Jiang M, Du J, Bai H, Shan G, Kwok RTK, Chau JHC, Zhang J, Lam JWY, Huang P, Tang BZ. One stone, three birds: one AIEgen with three colors for fast differentiation of three pathogens. Chem Sci 2020; 11:4730-4740. [PMID: 34122928 PMCID: PMC8159167 DOI: 10.1039/d0sc00256a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023] Open
Abstract
Visually identifying pathogens favors rapid diagnosis at the point-of-care testing level. Here, we developed a microenvironment-sensitive aggregation-induced emission luminogen (AIEgen), namely IQ-Cm, for achieving fast discrimination of Gram-negative bacteria, Gram-positive bacteria and fungi by the naked-eye. With a twisted donor-acceptor and multi-rotor structure, IQ-Cm shows twisted intramolecular charge transfer (TICT) and AIE properties with sensitive fluorescence color response to the microenvironment of pathogens. Driven by the intrinsic structural differences of pathogens, IQ-Cm with a cationic isoquinolinium moiety and a membrane-active coumarin unit as the targeting and interacting groups selectively locates in different sites of three pathogens and gives three naked-eye discernible emission colors. Gram-negative bacteria are weak pink, Gram-positive bacteria are orange-red and fungi are bright yellow. Therefore, based on their distinctive fluorescence response, IQ-Cm can directly discriminate the three pathogens at the cell level under a fluorescence microscope. Furthermore, we demonstrated the feasibility of IQ-Cm as a visual probe for fast diagnosis of urinary tract infections, timely monitoring of hospital-acquired infection processes and fast detection of molds in the food field. This simple visualization strategy based on one single AIEgen provides a promising platform for rapid pathogen detection and point-of-care diagnosis.
Collapse
Affiliation(s)
- Chengcheng Zhou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Meijuan Jiang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Jian Du
- Urinary Surgery, The First Affiliated Hospital of Soochow University Pinghai Road Suzhou 215006 China
| | - Haotian Bai
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Guogang Shan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jun Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangzhou International Campus, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
35
|
Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions-a viewpoint of experts. Intensive Care Med 2020; 46:236-244. [PMID: 32025778 PMCID: PMC7224113 DOI: 10.1007/s00134-019-05871-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Antimicrobial de-escalation (ADE) is defined as the discontinuation of one or more components of combination empirical therapy, and/or the change from a broad-spectrum to a narrower spectrum antimicrobial. It is most commonly recommended in the intensive care unit (ICU) patient who is treated with broad-spectrum antibiotics as a strategy to reduce antimicrobial pressure of empirical broad-spectrum therapy and prevent antimicrobial resistance, yet this has not been convincingly demonstrated in a clinical setting. Even if it appears beneficial, ADE may have some unwanted side effects: it has been associated with prolongation of antimicrobial therapy and could inappropriately be used as a justification for unrestricted broadness of empirical therapy. Also, exposing a patient to multiple, sequential antimicrobials could have unwanted effects on the microbiome. For these reasons, ADE has important shortcomings to be promoted as a quality indicator for appropriate antimicrobial use in the ICU. Despite this, ADE clearly has a role in the management of infections in the ICU. The most appropriate use of ADE is in patients with microbiologically confirmed infections requiring longer antimicrobial therapy. ADE should be used as an integral part of an ICU antimicrobial stewardship approach in which it is guided by optimal specimen quality and relevance. Rapid diagnostics may further assist in avoiding unnecessary initiation of broad-spectrum therapy, which in turn will decrease the need for subsequent ADE.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW We reviewed recent data about epidemiology of Acinetobacter baumannii, resistance mechanisms, and therapeutic options for severe infections caused by multidrug-resistant strains. RECENT FINDINGS A. baumannii is a major cause of nosocomial infections affecting mainly to debilitating patients in the ICU, although the spread to regular wards and to long-term care facilities is increasing. It is characterized by its great persistence in the environment and to have an extraordinary capability to develop resistance to all antimicrobials.Carbapenems may not be considered the treatment of choice in areas with high rates of carbapenem-resistant A. baumannii. Nowadays, polymyxins are the antimicrobials with the greatest level of in-vitro activity against A. baumannii. Colistin is the most widely used in clinical practice although polymyxin B seems to be associated with less renal toxicity. Colistin is administered intravenously as its inactive prodrug colistimethate. A loading dose of 9 million IU and subsequently high, extended-interval maintenance doses (4.5 million IU/12 h) are recommended. Combination therapy instead of monotherapy increases the rates of microbiological eradication although no clinical study has demonstrated a reduction in clinical outcomes (mortality or length of stay). SUMMARY The optimal treatment for multidrug-resistant A. baumannii nosocomial infections has not been established. There are no compelling data to recommend combination therapy for severe A. baumannii infections.
Collapse
|
37
|
Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018-2019. Discoveries (Craiova) 2019; 7:e102. [PMID: 32309620 PMCID: PMC7086080 DOI: 10.15190/d.2019.15] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial resistance to existent antibiotherapy is a perpetual internationally-recognized problem. Year after year, there is a continuous need for novel antibacterial drugs and this research and development efforts recently resulted in few new drugs or combination of drugs proposed for the use into the clinic. This review focuses on the novel US FDA approved antibacterial agents in the last two years (2018-2019). Plazomicin, eravacycline, sarecycline, omadacycline, rifamycin (2018) and imipenem, cilastatin and relebactam combination, pretomanid, lefamulin, cefiderocol (2019) are new therapeutic options. Plazomicin aminoglycoside antibiotic targets Enterobacteriaceae infections, being mainly used for the complicated urinary tract infections. The fully synthetic fluorocycline eravacycline gained approval for the complicated intra-abdominal infections. The tetracycline-derived antibiotic sarecycline might be a useful strategy for the management of non-nodular moderate to severe acne, while the other tetracycline-derived antibiotic approved, omadacycline, may be used for the patients with acute bacterial skin and skin structure infections and community-acquired bacterial pneumonia. The already-known RNA-synthesis suppressor rifamycin is now also approved for noninvasive Escherichia Coli-caused travelers' diarrhea. Two combinatorial strategies were approved for complicated urinary tract infections, complicated intra-abdominal infections (imipenem, cilastatin and relebactam) and lung tuberculosis (pretomanid in combination with bedaquiline and linezolid). Lefamulin is a semisynthetic pleuromutilin antibiotic for community-acquired bacterial pneumonia, while cefiderocol, a cephalosporin antibiotic is the last antibacterial drug approved in 2019, for the use in complicated urinary tract infections. Despite of these new developments, there is an ongoing need and urgency to develop novel antibiotic strategies and drugs to overrun the bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Stefan Andrei
- Department of Anesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Université Paris Sud XI, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Gabriela Droc
- Department of Anesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gabriel Stefan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Davila Teaching Hospital of Nephrology, Bucharest, Romania
| |
Collapse
|
38
|
Boutrot M, Azougagh K, Guinard J, Boulain T, Barbier F. Antibiotics with activity against intestinal anaerobes and the hazard of acquired colonization with ceftriaxone-resistant Gram-negative pathogens in ICU patients: a propensity score-based analysis. J Antimicrob Chemother 2019; 74:3095-3103. [DOI: 10.1093/jac/dkz279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Intestinal colonization resistance is mainly exerted by commensal anaerobes.
Objectives
To assess whether exposure to non-carbapenem antibiotics with activity against intestinal anaerobes (namely, piperacillin/tazobactam, amoxicillin/clavulanate and metronidazole) may promote the acquisition of gut colonization with ceftriaxone-resistant Gram-negative bacteria (CFR-GNB) in ICU patients.
Patients and methods
All patients with a first stay >3 days in a single surgical ICU over a 30 month period were retrospectively included. Rectal carriage of CFR-GNB (i.e. ESBL-producing Enterobacteriaceae, AmpC-hyperproducing Enterobacteriaceae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and CFR Acinetobacter baumannii) was routinely screened for at admission then weekly. The impact of anti-anaerobe antibiotics was investigated in propensity score (PS)-matched cohorts of patients exposed and not exposed to these drugs and through PS-based inverse probability of treatment weighting on the whole study cohort, treating in-ICU death or discharge as competing risks for CFR-GNB acquisition.
Results
Among the 352 included patients [median ICU stay 16 (9–30) days, in-ICU mortality 12.2%], 120 (34.1%) acquired one or more CFR-GNB, mostly AmpC-hyperproducing Enterobacteriaceae (17.6%) and P. aeruginosa (14.8%). Exposure to anti-anaerobe antibiotics was the main predictor of CFR-GNB acquisition in both the PS-matched cohorts [adjusted HR (aHR) 3.92, 95% CI 1.12–13.7, P = 0.03] and the whole study cohort (aHR 4.30, 95% CI 1.46–12.63, P = 0.01). Exposure to other antimicrobials—especially ceftriaxone and imipenem/meropenem—exerted no independent impact on the likelihood of CFR-GNB acquisition.
Conclusions
Exposure to non-carbapenem antibiotics with activity against intestinal anaerobes may predispose to CFR-GNB acquisition in ICU patients. Restricting the use of these drugs appears to be an antibiotic stewardship opportunity.
Collapse
Affiliation(s)
- Maxime Boutrot
- Surgical Intensive Care Unit, La Source Hospital, CHR Orléans, Orléans, France
| | - Khalid Azougagh
- Surgical Intensive Care Unit, La Source Hospital, CHR Orléans, Orléans, France
| | - Jérôme Guinard
- Department of Microbiology, La Source Hospital, CHR Orléans, Orléans, France
| | - Thierry Boulain
- Medical Intensive Care Unit, La Source Hospital, CHR Orléans, Orléans, France
| | - François Barbier
- Medical Intensive Care Unit, La Source Hospital, CHR Orléans, Orléans, France
| |
Collapse
|
39
|
Sharma R, Shultz SR, Robinson MJ, Belli A, Hibbs ML, O'Brien TJ, Semple BD. Infections after a traumatic brain injury: The complex interplay between the immune and neurological systems. Brain Behav Immun 2019; 79:63-74. [PMID: 31029794 DOI: 10.1016/j.bbi.2019.04.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious global health issue, being the leading cause of death and disability for individuals under the age of 45, and one of the largest causes of global neurological disability. In addition to the brain injury itself, it is increasingly appreciated that a TBI may also alter the systemic immune response in a way that renders TBI patients more vulnerable to infections in the acute post-injury period. Such infections pose an additional challenge to the patient, increasing rates of mortality and morbidity, and worsening neurological outcomes. Hospitalization, surgical interventions, and a state of immunosuppression induced by injury to the central nervous system (CNS), may all contribute to the high rate of infections seen in the population with TBI. Ongoing research to better understand the immunomodulators that underlie TBI-induced immunosuppression may aid in the development of effective therapeutic strategies to improve the recovery trajectory for patients. This review first describes the clinical scenario, posing the question of whether TBI patients are more susceptible to infections such as pneumonia, and if so, why? We then consider how cross-talk between the injured brain and the systemic immune system occurs, and further, how the additional immune challenge of an acquired infection can contribute to ongoing neuroinflammation and neurodegeneration after a TBI. Experimental models combining TBI with infection are discussed, as well as current treatment options available for this double-barreled insult. The aims of this review are to summarize current understanding of the bidirectional relationship between the CNS and the immune system when faced with a mechanical trauma combined with a concomitant infection, and to highlight key outstanding questions that remain in the field.
Collapse
Affiliation(s)
- Rishabh Sharma
- Department of Neuroscience, Central Clinical School at the Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School at the Alfred Hospital, Monash University, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Central Clinical School at the Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Antonio Belli
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School at the Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School at the Alfred Hospital, Monash University, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School at the Alfred Hospital, Monash University, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
40
|
Minichmayr IK, Roberts JA, Frey OR, Roehr AC, Kloft C, Brinkmann A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J Antimicrob Chemother 2019; 73:1330-1339. [PMID: 29425283 DOI: 10.1093/jac/dkx526] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background Optimal antibiotic exposure is a vital but challenging prerequisite for achieving clinical success in ICU patients. Objectives To develop and externally validate a population pharmacokinetic model for continuous-infusion meropenem in critically ill patients and to establish a nomogram based on a routinely available marker of renal function. Methods A population pharmacokinetic model was developed in NONMEM® 7.3 based on steady-state meropenem concentrations (CSS) collected during therapeutic drug monitoring. Different serum creatinine-based markers of renal function were compared for their influence on meropenem clearance (the Cockcroft-Gault creatinine clearance CLCRCG, the CLCR bedside estimate according to Jelliffe, the Chronic Kidney Disease Epidemiology Collaboration equation and the four-variable Modification of Diet in Renal Disease equation). After validation of the pharmacokinetic model with independent data, a dosing nomogram was developed, relating renal function to the daily doses required to achieve selected target concentrations (4/8/16 mg/L) in 90% of the patients. Probability of target attainment was determined for efficacy (CSS ≥8 mg/L) and potentially increased likelihood of adverse drug reactions (CSS >32 mg/L). Results In total, 433 plasma concentrations (3.20-48.0 mg/L) from 195 patients (median/P0.05 - P0.95 at baseline: weight 77.0/55.0-114 kg, CLCRCG 63.0/19.6-168 mL/min) were used for model building. We found that CLCRCG best described meropenem clearance (CL = 7.71 L/h, CLCRCG = 80 mL/min). The developed model was successfully validated with external data (n = 171, 73 patients). According to the nomogram, daily doses of 910/1480/2050/2800/3940 mg were required to reach a target CSS = 8 mg/L in 90% of patients with CLCRCG = 20/50/80/120/180 mL/min, respectively. A low probability of adverse drug reactions (<0.5%) was associated with these doses. Conclusions A dosing nomogram was developed for continuous-infusion meropenem based on renal function in a critically ill population.
Collapse
Affiliation(s)
- Iris K Minichmayr
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany.,Graduate Research Training program PharMetrX, Freie Universitaet Berlin, Berlin, Germany, and Universitaet Potsdam, Potsdam, Germany
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, and Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia.,Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Otto R Frey
- Department of Pharmacy and Department of Anaesthesia and Intensive Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany
| | - Anka C Roehr
- Department of Pharmacy and Department of Anaesthesia and Intensive Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Alexander Brinkmann
- Department of Pharmacy and Department of Anaesthesia and Intensive Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany
| |
Collapse
|
41
|
Abstract
Delayed antimicrobial prescriptions and inappropriate treatment can lead to poor outcomes in pneumonia. In nosocomial infections, especially in countries reporting high rates of antimicrobial resistance, the presence of multidrug-resistant gram-negative and gam-positive bacteria can limit options for adequate antimicrobial treatment. New antibiotics, belonging to known classes of antimicrobials or characterized by novel mechanisms of actions, have recently been approved or are under development. Advantages of the new compounds include enhanced spectrum of activity against resistant bacteria, high lung penetration, good tolerability, and possibility for intravenous to oral sequential therapy. This article reviews characteristics of newly approved and investigational compounds.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Colugna Street, Udine 33100, Italy.
| | - Elda Righi
- Infectious Diseases Clinic, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Colugna Street, Udine 33100, Italy
| | - Alessandro Russo
- Infectious Diseases Clinic, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Colugna Street, Udine 33100, Italy
| | - Alessia Carnelutti
- Infectious Diseases Clinic, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Colugna Street, Udine 33100, Italy
| |
Collapse
|
42
|
ESBL-colonization at ICU admission: impact on subsequent infection, carbapenem-consumption, and outcome. Infect Control Hosp Epidemiol 2019; 40:408-413. [PMID: 30786948 DOI: 10.1017/ice.2019.5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) predicts the risk for subsequent infection and impacts carbapenem-consumption and outcome in intensive care unit (ICU) patients. DESIGN Prospective cohort study. SETTING The 2 ICUs in the University Hospital Basel in Switzerland. PATIENTS All patients admitted to the 2 ICUs providing mechanical ventilation and an expected ICU stay >48 hours. METHODS Patients were routinely screened for ESBL-PE carriage by rectal swab on admission. Competing risk regression analyses were applied to calculate hazard ratios (HRs) for infection with ESBL-PE and mortality. Length of hospital stay, length of ICU stay, and duration of carbapenem exposure were compared using the Mann-Whitney U test. RESULTS Among 302 patients, 24 (8.0%) were colonized with ESBL-PE on ICU admission. Infections with ESBL-PE occurred in 4 patients, of whom 3 (75%) were identified as ESBL-PE colonized on admission. ESBL-PE colonization on admission was associated with subsequent ESBL-PE infection (hazard ratio [HR], 25.52; 95% confidence interval [CI], 2.40-271.41; P = .007) and exposure to carbapenems (HR, 2.42; 95% CI, 1.01-5.79; P = .047), whereas duration of carbapenem exposure did not differ in relation to ESBL-PE colonization (median, 7 days [IQR, 3-8 days] vs median, 6 days [IQR 3-9 days]; P = 0.983). Patients colonized with ESBL-PE were not at increased risk for death overall (HR, 1.00; 95% CI, 0.44-2.30; P = .993) or death attributable to infection (HR, 1.20; 95% CI, 0.28-5.11; P = .808). CONCLUSIONS Screening strategies for detection of ESBL-PE colonization on ICU admission may allow the identification of patients at highest risk for ESBL-PE infection and the correct allocation of empiric carbapenem treatment.
Collapse
|
43
|
Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805092. [PMID: 30536445 DOI: 10.1002/adma.201805092] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/24/2018] [Indexed: 05/07/2023]
Abstract
Antibiotic-resistant bacteria have emerged as a severe threat to human health. As effective antibacterial therapies, supramolecular materials display unprecedented advantages because of the flexible and tunable nature of their noncovalent interactions with biomolecules and the ability to incorporate various active agents in their platforms. Herein, supramolecular antibacterial materials are discussed using a format that focuses on their fundamental active elements and on recent advances including material selection, fabrication methods, structural characterization, and activity performance.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchong Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
44
|
De Waele JJ, Dhaese S. Antibiotic stewardship in sepsis management: toward a balanced use of antibiotics for the severely ill patient. Expert Rev Anti Infect Ther 2019; 17:89-97. [DOI: 10.1080/14787210.2019.1568239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan J. De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Gent, Belgium
| | - Sofie Dhaese
- Department of Critical Care Medicine, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
45
|
Waele JJD. What every intensivist should know about the management of peritonitis in the intensive care unit. Rev Bras Ter Intensiva 2019; 30:9-14. [PMID: 29742214 PMCID: PMC5885225 DOI: 10.5935/0103-507x.20180007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
46
|
Bassetti M, Russo A, Righi E, Dolso E, Merelli M, D’Aurizio F, Sartor A, Curcio F. Role of procalcitonin in bacteremic patients and its potential use in predicting infection etiology. Expert Rev Anti Infect Ther 2018; 17:99-105. [DOI: 10.1080/14787210.2019.1562335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matteo Bassetti
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Alessandro Russo
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elda Righi
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elisabetta Dolso
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Maria Merelli
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Federica D’Aurizio
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Assunta Sartor
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Francesco Curcio
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| |
Collapse
|
47
|
De Waele J, Van Eeckhout C, Vanhaelewyn P, Carlier M, Verstraete AG, Stove V. Persistence of piperacillin concentrations after treatment discontinuation: in cauda venenum? Intensive Care Med 2018; 45:130-131. [PMID: 30483837 DOI: 10.1007/s00134-018-5479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Affiliation(s)
- J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - C Van Eeckhout
- Department of Critical Care Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - P Vanhaelewyn
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Carlier
- Department of Critical Care Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - A G Verstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - V Stove
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
48
|
Novickij V, Zinkevičienė A, Perminaitė E, Čėsna R, Lastauskienė E, Paškevičius A, Švedienė J, Markovskaja S, Novickij J, Girkontaitė I. Non-invasive nanosecond electroporation for biocontrol of surface infections: an in vivo study. Sci Rep 2018; 8:14516. [PMID: 30266920 PMCID: PMC6162327 DOI: 10.1038/s41598-018-32783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive infections caused by drug-resistant bacteria are frequently responsible for fatal sepsis, morbidity and mortality rates. In this work, we propose a new methodology based on nanosecond high frequency electric field bursts, which enables successful eradication of bacteria in vivo. High frequency (15 kHz) 15–25 kV/cm 300–900 ns pulsing bursts were used separately and in combination with acetic acid (0.1–1%) to treat Pseudomonas aeruginosa in a murine model. Acetic acid 1% alone was effective resulting in almost 10-fold reduction of bacteria viability, however combination of nanosecond electric field and acetic acid 1% treatment was the most successful showing almost full eradication (0.01% survival compared to control) of the bacteria in the contaminated area. The short duration of the pulses (sub-microsecond) and high frequency (kHz range) of the burst enabled reduction of the muscle contractions to barely detectable level while the proposed applicators ensured predominantly topical treatment, without electroporation of deeper tissues. The results of our study have direct application for treatment of wounds and ulcers when chemical treatment is no longer effective.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Emilija Perminaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Robertas Čėsna
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | | | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Vilnius, Lithuania
| | | | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
49
|
Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistantKlebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Anti Infect Ther 2018; 16:749-761. [DOI: 10.1080/14787210.2018.1522249] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Matteo Bassetti
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elda Righi
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Alessia Carnelutti
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Elena Graziano
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Alessandro Russo
- Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| |
Collapse
|
50
|
Woerther PL, Lepeule R, Burdet C, Decousser JW, Ruppé É, Barbier F. Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: What impact on intestinal colonisation resistance? Int J Antimicrob Agents 2018; 52:762-770. [PMID: 30176355 DOI: 10.1016/j.ijantimicag.2018.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 12/31/2022]
Abstract
The ongoing pandemic of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) is responsible for a global rise in carbapenem consumption that may hasten the dissemination of carbapenemase-producing Enterobacteriaceae (CPE). Hence, carbapenem sparing through the use of alternative β-lactams is increasingly considered as a potential option in patients with ESBL-E infections. However, at the individual level, this strategy implies an in-depth understanding of how carbapenems and their alternatives impair the gut microbiota, especially the anaerobic bacteria and the colonisation resistance (CR) that it confers. In this review, we sought to appraise the impact of carbapenems and their main alternatives for ESBL-E infections (namely β-lactam/β-lactamase inhibitor combinations, cephamycins and temocillin) on the gut ecosystem and the resulting hazard for acquisition of CPE. Although limited, the available evidence challenges our perception of the ecological side effects of these antimicrobials and highlights knowledge gaps regarding antibiotic-induced alterations in intestinal CR. These alterations may depend not only on anti-anaerobic properties but also on a panel of parameters with marked interindividual variability, such as baseline characteristics of the gut microbiota or the degree of biliary excretion for the considered drug. In the current context of ESBL-E dissemination and increasing opportunities for carbapenem-sparing initiatives, large, comparative, high-quality studies based on new-generation sequencing tools are more than ever warranted to better define the positioning of alternative β-lactams in antimicrobial stewardship programmes.
Collapse
Affiliation(s)
- Paul-Louis Woerther
- Department of Microbiology and Infection Control, Henri-Mondor Hospital, APHP, Créteil, France; EA 7380 Dynamyc, EnvA, UPEC, Paris-Est University, Créteil, France.
| | - Raphaël Lepeule
- Department of Microbiology and Infection Control, Henri-Mondor Hospital, APHP, Créteil, France
| | - Charles Burdet
- Diderot-Paris 7 University, Paris, France; INSERM, IAME, UMR 1137, Sorbonne-Paris Cité University, Paris, France; Department of Biostatistics, Epidemiology and Clinical Research, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Jean-Winoc Decousser
- Department of Microbiology and Infection Control, Henri-Mondor Hospital, APHP, Créteil, France; EA 7380 Dynamyc, EnvA, UPEC, Paris-Est University, Créteil, France
| | - Étienne Ruppé
- Diderot-Paris 7 University, Paris, France; INSERM, IAME, UMR 1137, Sorbonne-Paris Cité University, Paris, France; Department of Bacteriology, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - François Barbier
- Medical Intensive Care Unit, La Source Hospital, CHR Orléans, Orléans, France
| |
Collapse
|