1
|
Nakano M, Nakamura Y, Urano T, Miyazaki A, Suzuki T, Watanabe K, Takahashi J, Shiraki M. Associations of Homocysteine Metabolism With the Risk of Spinal Osteoarthritis Progression in Postmenopausal Women. J Clin Endocrinol Metab 2021; 106:3428-3438. [PMID: 34375425 DOI: 10.1210/clinem/dgab591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT Although homocysteine accumulation is a reported risk factor for several age-related disorders, little is known about its relationship with osteoarthritis (OA). OBJECTIVE We investigated for associations of homocysteine and C677T polymorphism in methylenetetrahydrofolate reductase (MTHFR), which is involved in homocysteine clearance, with the development and progression of spinal OA through a combined cross-sectional and longitudinal cohort study. METHODS A total of 1306 Japanese postmenopausal outpatients participating in the Nagano Cohort Study were followed for a mean 9.7-year period. Cross-sectional multiple logistic regression for spinal OA prevalence at registration by serum homocysteine level was performed with adjustment for confounders. In addition to Kaplan-Meier analysis, multivariate Cox regression was employed to examine the independent risk of MTHFR C677T variant for spinal OA progression. RESULTS Multivariate regression analysis revealed a significant association between homocysteine and spinal OA prevalence (odds ratio 1.38; 95% CI 1.14-1.68). Kaplan-Meier curves showed a gene dosage effect of the T allele in MTHFR C677T polymorphism on the accelerated progression of spinal OA severity (P = 0.003). A statistically significant independent risk of the T allele for spinal OA advancement was validated by Cox regression analysis. Respective adjusted hazard ratios for the CT/TT and TT genotypes were 1.68 (95% CI, 1.16-2.42) and 1.67 (95% CI, 1.23-2.28). CONCLUSION Circulating homocysteine and C677T variant in MTHFR are associated with the prevalence rate and ensuing progression, respectively, of spinal OA. These factors may represent potential interventional targets to prevent OA development and improve clinical outcomes.
Collapse
Affiliation(s)
- Masaki Nakano
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Tomohiko Urano
- Department of Geriatric Medicine, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
| | - Akiko Miyazaki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Takako Suzuki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
- Department of Human Nutrition, Faculty of Human Nutrition, Tokyo Kasei Gakuin University, 22 Sanban-cho, Chiyoda-ku, Tokyo 102-8341, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kohnodai, Ichikawa, Chiba 272-0827, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Masataka Shiraki
- Research Institute and Practice for Involutional Diseases, 1610-1 Meisei, Misato, Azumino, Nagano 399-8101, Japan
| |
Collapse
|
2
|
Ratajczak AE, Szymczak-Tomczak A, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Does Folic Acid Protect Patients with Inflammatory Bowel Disease from Complications? Nutrients 2021; 13:nu13114036. [PMID: 34836291 PMCID: PMC8618862 DOI: 10.3390/nu13114036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023] Open
Abstract
Folic acid, referred to as vitamin B9, is a water-soluble substance, which participates in the synthesis of nucleic acids, amino acids, and proteins. Similarly to B12 and B6, vitamin B9 is involved in the metabolism of homocysteine, which is associated with the MTHFR gene. The human body is not able to synthesize folic acid; thus, it must be supplemented with diet. The most common consequence of folic acid deficiency is anemia; however, some studies have also demonstrated the correlation between low bone mineral density, hyperhomocysteinemia, and folic acid deficiency. Patients with inflammatory bowel disease (IBD) frequently suffer from malabsorption and avoid certain products, such as fresh fruits and vegetables, which constitute the main sources of vitamin B9. Additionally, the use of sulfasalazine by patients may result in folic acid deficiency. Therefore, IBD patients present a higher risk of folic acid deficiency and require particular supervision with regard to anemia and osteoporosis prevention, which are common consequences of IBD.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | | | - Iwona Krela-Kaźmierczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| |
Collapse
|
3
|
Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019; 49:144-164. [PMID: 30391754 DOI: 10.1016/j.arr.2018.10.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
There are numerous theories of aging, a process which still seems inevitable. Aging leads to cancer and multi-systemic disorders as well as chronic diseases. Decline in age- associated cellular functions leads to neurodegeneration and cognitive decline that affect the quality of life. Accumulation of damage, mutations, metabolic changes, failure in cellular energy production and clearance of altered proteins over the lifetime, and hyperhomocysteinemia, ultimately result in tissue degeneration. The decline in renal functions, nutritional deficiencies, deregulation of methionine cycle and deficiencies of homocysteine remethylation and transsulfuration cofactors cause elevation of homocysteine with advancing age. Abnormal accumulation of homocysteine is a risk factor of cardiovascular, neurodegenerative and chronic kidney disease. Moreover, approximately 50% of people, aged 65 years and older develop hypertension and are at a high risk of developing cardiovascular insufficiency and incurable neurodegenerative disorders. Increasing evidence suggests inverse relation between cognitive impairment, cerebrovascular and cardiovascular events and renal function. Oxidative stress, inactivation of nitric oxide synthase pathway and mitochondria dysfunction associated with impaired homocysteine metabolism lead to aging tissue degeneration. In this review, we examine impact of high homocysteine levels on changes observed with aging that contribute to development and progression of age associated diseases.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| | - S Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| |
Collapse
|
4
|
Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 2018; 14:2029-2049. [PMID: 30464484 PMCID: PMC6225907 DOI: 10.2147/tcrm.s138000] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a bone disorder with remarkable changes in bone biologic material and consequent bone structural distraction, affecting millions of people around the world from different ethnic groups. Bone fragility is the worse outcome of the disease, which needs long term therapy and medical management, especially in the elderly. Many involved genes including environmental factors have been introduced as the disease risk factors so far, of which genes should be considered as effective early diagnosis biomarkers, especially for the individuals from high-risk families. In this review, a number of important criteria involved in osteoporosis are addressed and discussed.
Collapse
Affiliation(s)
- Farkhondeh Pouresmaeili
- Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Behnam Kamalidehghan
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
- Medical Genetics Center, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran,
| | - Maryam Kamarehei
- Department of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran,
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Homocystinuria is a congenital metabolic disorder in which cystathionine β-synthase deficiency results in a prominent increase in homocysteine (serum levels > 100 μM), causing mental retardation, atherosclerotic cerebral infarction, and osteoporosis accompanied by fragility fractures. Encountering a case with excessive homocysteinemia such as that seen in hereditary homocystinuria is unlikely during usual medical examinations. However, in individuals who have vitamin B or folate deficiency, serum homocysteine concentrations are known to increase. These individuals may also have a polymorphism in methylenetetrahydrofolate reductase, MTHFR (C677T: TT type), which regulates homocysteine metabolism. These changes in homocysteine levels may elicit symptoms resembling those of homocystinuria (e.g., Alzheimer's disease, atherosclerosis, osteoporosis). RECENT FINDINGS High serum homocysteine has been shown to have detrimental effects on neural cells, vascular endothelial cells, osteoblasts, and osteoclasts. Homocysteine is also known to increase oxidative stress, disrupt cross-linking of collagen molecules, and increase levels of advanced glycation end products, which results in reduced bone strength through a mechanism that goes beyond low bone density and increased bone resorption. Therefore, high serum homocysteine may be regarded as a factor that can reduce both bone mass and impair bone quality. In this review, we outline the epidemiology and pathophysiology of osteoporosis associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
6
|
Liu SY, Huang Q, Gu X, Zhang B, Shen W, Tian P, Zeng Y, Qin LZ, Ye LX, Ni ZM, Wang Q. Association of Bone Turnover Levels with MTHFR Gene Polymorphisms among Pregnant Women in Wuhan, China. Curr Med Sci 2018; 38:602-609. [PMID: 30128868 DOI: 10.1007/s11596-018-1920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/01/2018] [Indexed: 11/28/2022]
Abstract
Pregnancy is a critical stimulator of bone mineral resorption. We used to find the MTHFR gene polymorphisms are related with blood lead levels among pregnant women. Pregnancy-stimulated bone turnover may be associated with MTHFR gene polymorphisms too. In this article, we aimed to determine the relationship between MTHFR gene polymorphisms and bone turnover rates among the pregnant women. The participants including pregnant and non-pregnant women were selected and recruited during their routine prenatal or physical examination from July to October in 2012. A total of 1000 participants, including 250 pregnant women in the first, second, and third trimesters and 250 non-pregnant women, were enrolled in the study. Finally, after excluding 27 participants unable to provide blood samples, 973 eligible participants (i.e., 234,249, and 248 pregnant women in the first, second, and third trimesters, respectively, and 242 non-pregnant women) were included in the research. The MTHFR gene 1298CC homozygote carriers were more susceptible to yield higher plasma homocysteine levels than the 1298AA/AC carriers, with standardized coefficients of 0.086 (P<0.05) and 0.104 (P<0.01) of all the participants and the pregnant women, respectively. The MTHFR gene 1793AA homozygote carriers more likely showed higher plasma osteocalcin levels (standardized β=0.091,P<0.01) than the 1793GG/GA carriers among all the subjects. Plasma homocysteine levels were positively correlated with blood lead levels among the participants and the pregnant women with standardized coefficients of 0.320 (P<0.01) and 0.179 (P<0.01), respectively. Plasma osteocalcin levels were positively associated with blood lead levels among pregnant and non-pregnant women with standardized coefficients of 0.084 (P<0.05) and 0.125 (P<0.01), respectively. In conclusion, homocysteine and osteocalcin contents in plasma are associated with the MTHFR gene A1298C polymorphism and blood lead levels among pregnant women. The MTHFR gene A1298C polymorphism-related homocysteine is a possible risk factor for increased blood lead levels among Chinese women.
Collapse
Affiliation(s)
- Shu-Yun Liu
- Department of Epidemiology and Biostatistics, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue Gu
- Department of Epidemiology and Biostatistics, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Wuhan Women and Children Medical Care Center, Wuhan, 430016, China
| | - Wei Shen
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Tian
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Zeng
- Department of Epidemiology and Biostatistics, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Zhi Qin
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin-Xiang Ye
- Department of Epidemiology and Biostatistics, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze-Min Ni
- Women and Children Medical Center of Jiang-an District, Wuhan, 430017, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Kim JO, Han SH, Lee YH, Ahn TK, Lim JJ, Chung YS, Shin DE, Lee WS, Han IB, Kim NK. Association of Plasminogen Activator Inhibitor-1 (PAI-1) Gene Polymorphisms with Osteoporotic Vertebral Compression Fractures (OVCFs) in Postmenopausal Women. Int J Mol Sci 2016; 17:E2062. [PMID: 27941685 PMCID: PMC5187862 DOI: 10.3390/ijms17122062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and osteoporotic fractures are strongly associated with mortality and morbidity, both in developing and developed countries. Menopause accelerates bone loss due to estrogen deficiency and age-related linear bone loss. We investigated plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms in postmenopausal women with osteoporotic vertebral compression fractures (OVCFs). In this case-control study, 355 postmenopausal women were genotyped for the presence of PAI-1 gene polymorphisms -844A > G, -675 4G > 5G, 43G > A, 9785A > G, and 11053T > G. Genetic polymorphisms of PAI-1 were analyzed by the polymerization chain reaction restriction fragment length polymorphism assay, and their association with disease status and folate and homocysteine levels was determined in 158 OVCF patients and 197 control subjects. The PAI-1 -675 5G5G (adjusted odds ratio (AOR), 3.302; p = 0.017) and 43GA + AA (AOR, 2.087; p = 0.042) genotype frequencies showed significant association with the increased prevalence of OVCFs in postmenopausal women. In addition, we performed gene-environment interaction studies and demonstrated an association between PAI-1 gene polymorphisms and OVCF prevalence. Our novel finding is the identification of several PAI-1 genetic variants that increase susceptibility to OVCF. Our findings suggest that polymorphisms in PAI-1 may contribute to OVCF, and that they can be developed as biomarkers for evaluating OVCF risk.
Collapse
Affiliation(s)
- Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea.
| | - Soo Hong Han
- Department of Orthopedics, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
| | - Yeon Ho Lee
- Department of Orthopedics, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
| | - Tae Keun Ahn
- Department of Orthopedics, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
| | - Jae Joon Lim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
| | - Young Sun Chung
- Department of Neurosurgery, Konkuk University Chungju Hospital, Chungju 27376, Korea.
| | - Dong Eun Shin
- Department of Orthopedics, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea.
| | - In Bo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea.
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea.
| |
Collapse
|
8
|
ZOFKOVA I, NEMCIKOVA P, KUKLIK M. Polymorphisms Associated With Low Bone Mass and High Risk of Atraumatic Fracture. Physiol Res 2015; 64:621-31. [DOI: 10.33549/physiolres.932973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a serious disease characterized by high morbidity and mortality due to atraumatic fractures. In the pathogenesis of osteoporosis, except environment and internal factors, such as hormonal imbalance and genetic background, are also in play. In this study candidate genes for osteoporosis were classified according to metabolic or hormonal pathways, which regulate bone mineral density and bone quality (estrogen, RANKL/RANK/OPG axis, mevalonate, the canonical circuit and genes regulating the vitamin D system). COL1A1 and/or COL1A2 genes, which encode formation of the procollagen 1 molecule, were also studied. Mutations in these genes are well-known causes of the inborn disease ‘osteogenesis imperfecta’. In addition to this, polymorphisms in COL1A1 and/or COL1A2 have been found to be associated with parameters of bone quality in adult subjects. The authors discuss the perspectives for the practical utilization of pharmacogenetics (identification of single candidate genes using PCR) and pharmacogenomics (using genome wide association studies (GWAS) to choose optimal treatment for osteoporosis). Potential predictors of antiresorptive therapy efficacy include the following well established genes: ER, FDPS, Cyp19A1, VDR, Col1A1, and Col1A2, as well as the gene for the canonical (Wnt) pathway. Unfortunately, the positive outcomes seen in most association studies have not been confirmed by other researchers. The controversial results could be explained by the use of different methodological approaches in individual studies (different sample size, homogeneity of investigated groups, ethnic differences, or linkage disequilibrium between genes). The key pitfall of association studies is the low variability (7-10 %) of bone phenotypes associated with the investigated genes. Nevertheless, the identification of new genes and the verification of their association with bone density and/or quality (using both PCR and GWAS), remain a great challenge in the optimal prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- I. ZOFKOVA
- Institute of Endocrinology, Prague, Czech Republic
| | | | | |
Collapse
|
9
|
Zhang J, Lv Y, Zhang W, Ding H, Liu R, Zhao Y, Zhang G, Tian Z. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity. Talanta 2015; 146:41-8. [PMID: 26695232 DOI: 10.1016/j.talanta.2015.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yanlin Lv
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hui Ding
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Rongji Liu
- Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yongsheng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guangjin Zhang
- Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| |
Collapse
|
10
|
Association between the methylenetetrahydrofolate reductase c.677C>T polymorphism and bone mineral density: an updated meta-analysis. Mol Genet Genomics 2015; 291:169-80. [PMID: 26231982 DOI: 10.1007/s00438-015-1101-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Many studies have reported an association between the methylenetetrahydrofolate reductase (MTHFR) c.677C>T polymorphism and reduced bone mineral density (BMD), but results have been inconsistent. We, therefore, performed a meta-analysis to further explore this association. Twenty-one studies, comprising 33,045 subjects, analyzed the association of MTHFR c.677C>T with femoral neck BMD. Significant association with reduced BMD was observed in Caucasians (recessive model: WMD = -0.004 g/cm(2), 95 % CI -0.008 to -0.006), post-menopausal women (recessive model: WMD = -0.005 g/cm(2), 95 % CI -0.007 to -0.003), men (dominant model: WMD = -0.004 g/cm(2), 95 % CI -0.005 to -0.004; recessive model: WMD = -0.004 g/cm(2), 95 % CI -0.005 to -0.004; TT vs. CC: WMD = -0.006 g/cm(2), 95 % CI -0.006 to -0.006; CT vs. CC: WMD = -0.003 g/cm(2), 95 % CI -0.003 to -0.003), and cohort studies (recessive model: WMD = -0.003 g/cm(2), 95 % CI -0.006 to -0.001). Twenty-two studies, which included 32,271 subjects, analyzed the MTHFR c.677C>T association with lumbar spine BMD. Significant association with reduced BMD was observed in Caucasians, women, post-menopausal women, men, and cohort studies. Seven studies, comprising 6806 subjects, analyzed the MTHFR c.677C>T association with total hip BMD, but no significant association was observed in any population. Nine studies involving 5591 subjects analyzed the association with total body BMD. Significant association with reduced BMD was observed in overall and women subgroup analyses. In summary, this meta-analysis indicates that the MTHFR c.677C>T polymorphism is associated with reduced BMD in lumbar spine and femoral neck in Caucasians, post-menopausal women, and men, and with total body BMD in women. In addition, our results suggest that new studies examining the association between MTHFR c.677C>T polymorphism and BMD of lumbar spine and femoral neck in Asians is warranted, because I (2) > 75.0 % was observed.
Collapse
|
11
|
Ma DH, Kim D, Seo E, Lee SJ, Ahn KH. Ratiometric fluorescence detection of cysteine and homocysteine with a BODIPY dye by mimicking the native chemical ligation. Analyst 2015; 140:422-7. [DOI: 10.1039/c4an01791a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ratiometric fluorescence detection of cysteine and homocysteine over glutathione has been realized with a BODIPY-based probe.
Collapse
Affiliation(s)
- Dong Hee Ma
- Department of Chemistry and Center for Electro-Photo Behaviors in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Dokyoung Kim
- Department of Chemistry and Center for Electro-Photo Behaviors in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Eunseok Seo
- Division of Integrative Biosciences and Biotechnology (IBB)
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sang-Joon Lee
- Division of Integrative Biosciences and Biotechnology (IBB)
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry and Center for Electro-Photo Behaviors in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|
12
|
Cook FJ, Mumm S, Whyte MP, Wenkert D. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism. J Bone Miner Res 2014; 29:922-8. [PMID: 24014470 DOI: 10.1002/jbmr.2095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/26/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this enigmatic disorder and identify some at-risk women.
Collapse
Affiliation(s)
- Fiona J Cook
- Division of Endocrinology, Brody School of Medicine, Greenville, NC, USA
| | | | | | | |
Collapse
|
13
|
Pandey SK, Singh A, Polipalli SK, Gupta S, Kapoor S. Association of Methylene Tetrahydrofolate Reductase Polymorphism with BMD and Homocysteine in Premenopausal North Indian Women. J Clin Diagn Res 2014; 7:2908-11. [PMID: 24551672 DOI: 10.7860/jcdr/2013/6670.3722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/27/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Osteoporosis (OP) is a common nutrigenomic disease associated with various genetic components. Observational studies have indicated that mildly elevated homocysteine was a strong risk factor for osteoporotic fractures. Yet there is no clear biologic mechanism for an effect of homocysteine on bone.The aim of this study was to investigate the association of MTHFR C677T and A1298C polymorphisms, and to verify the association of these polymorphisms with bone mineral density and homocysteine in premenopausal women of northern India. MATERIAL AND METHODS We included 402 north Indian patients with altered BMD, both Osteopenic (OPN) and Osteoporosis, and normal controls. Genotype identification for MTHFR C677T and A1298C polymorphisms were analyzed by PCR-RFLP method, correlated with Bone Mineral Density (BMD), Homocysteine (Hcy), Folate and Vitamin B12. RESULTS The study groups did not differ in terms of age, weight and body mass indices. Prevalence of Genotype frequencies (GFs) for MTHFRC677T OP were (n: 402): CC 361 (89.8%), CT 25 (6.22%), TT 16 (3.98%) and that for MTHFR A1298C were (n: 402) AA 353(87.81%), AC 29(7.21%), CC 20(4.98%). Folate was significantly lower in the OP group than those in both the other groups, while there was no significant difference in Hcy in the OP group relative to OPN, as compared to controls. CONCLUSION The GFs for MTHFR C677T and A1298C polymorphisms were not different between both groups. In conclusion, polymorphism of the MTHFR 677T is associated with small differences in BMD with folate levels. Further, more investigations should be done in larger studies for other epigenetic pathways, that may increase the risk of Osteoporosis.
Collapse
Affiliation(s)
| | - Ankur Singh
- Senior Research Associate, Department of Pediatrics MAMC , New Delhi, India
| | - Sunil Kumar Polipalli
- Cytogeneticist, Genetic Lab, Department of Pediatrics, MAMC & LNHospital , New Delhi, India
| | - Sangeeta Gupta
- Professor, Department of Obestrics & Gynaecology, MAMC , New Delhi, India
| | - Seema Kapoor
- Professor, Department of Pediatrics, MAMC , New Delhi, India
| |
Collapse
|
14
|
Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis. J Biomed Res 2013; 24:417-23. [PMID: 23554658 PMCID: PMC3596689 DOI: 10.1016/s1674-8301(10)60056-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 09/29/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022] Open
Abstract
Osteoporosis is a condition characterized by low bone mineral density (BMD) and micro-architectural changes in the bone tissue. The risk of osteoporosis is partly determined by genetic factors. The role of C677T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene has been investigated in postmenopausal osteoporosis. However, the relationship between MTHFR polymorphism and BMD is still controversial. We carried out a meta-analysis of 5,833 subjects to evaluate the association of MTHFR and BMD in postmenopausal women. Databases of MEDLINE, Web of Science, Scopus and CNKI were retrieved for all publications relating to MTHFR polymorphism and BMD in postmenopausal women. Five eligible studies were selected for meta-analysis. All these articles studied the association of MTHFR polymorphism and BMD of the femoral neck and lumbar spine in postmenopausal women. Our analysis suggested that postmenopausal women with the TT genotype had lower femoral neck BMD than the women with the CC/CT genotype, and the weighted mean difference (WMD) was -0.01 g/cm(2) [95% confidence interval (CI): (-0.01, -0.01), P < 0.01]. However, BMD of the lumbar spine of postmenopausal women with the TT genotype was not significantly different from that of women with the CC/CT genotype. In the random effects model, the WMD between the TT and TC/CC genotype was -0.01 g/cm(2) [95% CI: (-0.04, 0.01), P = 0.32]. The C677T polymorphism of the MTHFR gene is associated with BMD of the femoral neck in postmenopausal women. Women with the TT genotype of the MTHFR gene have lower BMD, suggesting that the TT genotype may be a risk factor for postmenopausal osteoporosis.
Collapse
|
15
|
Bai R, Liu W, Zhao A, Zhao Z, Jiang D. Quantitative assessment of the associations between MTHFR C677T and A1298C polymorphisms and risk of fractures: a meta-analysis. Mol Biol Rep 2012; 40:2419-30. [DOI: 10.1007/s11033-012-2322-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023]
|
16
|
Wang H, Liu C. Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis. Osteoporos Int 2012; 23:2625-34. [PMID: 22187009 DOI: 10.1007/s00198-011-1885-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/08/2011] [Indexed: 11/26/2022]
Abstract
UNLABELLED This meta-analysis investigated the association of C677T polymorphism in MTHFR gene with bone mineral density (BMD) and fracture risk. The results suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was modestly associated with BMD of lumbar spine, femoral neck, total hip, and total body, respectively. INTRODUCTION The methylenetetrahydrofolate reductase (MTHFR) gene has been implicated in the regulation of BMD and, thus, may serve as a potential risk factor for the development of fracture. However, results have been inconsistent. In this study, a meta-analysis was performed to clarify the association of C677T polymorphism in MTHFR gene with BMD and fracture risk. METHODS Published literature from PubMed and EMBASE were searched for eligible publications. Pooled odds ratio (OR) or weighted mean difference (WMD) and 95% confidence interval (CI) were calculated using a fixed- or random-effects model. RESULTS Twenty studies (3,525 cases and 17,909 controls) were included in this meta-analysis. The TT genotype of C677T polymorphism was marginally associated with an increased risk of fracture under recessive model (TT vs. TC + CC: OR = 1.23, 95% CI 1.04-1.47). Using this model, similar results were found among East Asians (OR = 1.40, 95% CI 1.07-1.83), female subpopulation (1.27, 95% CI 1.04-1.55), cohort studies (OR = 1.24, 95% CI 1.08-1.44), and subjects younger than aged 60 years (OR = 1.51, 95% CI 1.10-2.07). In addition, under homogeneous co-dominant model, there was a modest association of C677T polymorphism with BMD of lumbar spine (WMD = -0.017 g/cm(2); 95%CI, -0.030-(-0.005) g/cm(2)), femoral neck (WMD = -0.010 g/cm(2); 95% CI -0.017-(-0.003) g/cm(2)), total hip (WMD = -0.013 g/cm(2), 95% CI -0.022-(-0.004) g/cm(2)), and total body (WMD = -0.020 g/cm(2); 95% CI -0.027-(-0.013) g/cm(2)), respectively. CONCLUSIONS This meta-analysis suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was modestly associated with BMD of lumbar spine, femoral neck, total hip, and total body, respectively.
Collapse
Affiliation(s)
- H Wang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, China
| | | |
Collapse
|
17
|
Das P, Mandal AK, Chandar NB, Baidya M, Bhatt HB, Ganguly B, Ghosh SK, Das A. New chemodosimetric reagents as ratiometric probes for cysteine and homocysteine and possible detection in living cells and in blood plasma. Chemistry 2012; 18:15382-93. [PMID: 23060260 DOI: 10.1002/chem.201201621] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Indexed: 12/24/2022]
Abstract
In this work, we have rationally designed and synthesized two new reagents (L(1) and L(2)), each bearing a pendant aldehyde functionality. This aldehyde group can take part in cyclization reactions with β- or γ-amino thiols to yield the corresponding thiazolidine and thiazinane derivatives, respectively. The intramolecular charge-transfer (ICT) bands of these thiazolidine and thiazinane derivatives are distinctly different from those of the molecular probes (L(1) and L(2)). Such changes could serve as a potential platform for using L(1) and L(2) as new colorimetric/fluorogenic as well as ratiometric sensors for cysteine (Cys) and homocysteine (Hcy) under physiological conditions. Both reagents proved to be specific towards Cys and Hcy even in the presence of various amino acids, glucose, and DNA. Importantly, these two chemodosimetric reagents could be used for the quantitative detection of Cys present in blood plasma by using a pre-column HPLC technique. Such examples are not common in contemporary literature. MTT assay studies have revealed that these probes have low cytotoxicity. Confocal laser scanning micrographs of cells demonstrated that these probes could penetrate cell membranes and could be used to detect intracellular Cys/Hcy present within living cells. Thus, the results presented in this article not only demonstrate the efficiency and specificity of two ratiometric chemodosimeter molecules for the quantitative detection of Cys and Hcy, but also provide a strategy for developing reagents for analysis of these vital amino acids in biological samples.
Collapse
Affiliation(s)
- Priyadip Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang J, Hu X, Zhang Q, Cao H, Wang J, Liu B. Homocysteine level and risk of fracture: A meta-analysis and systematic review. Bone 2012; 51:376-82. [PMID: 22749888 DOI: 10.1016/j.bone.2012.05.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
Abstract
AIMS Previous studies have reported inconsistent findings regarding the association between elevated plasma Hcy levels and fracture risk. We investigated this association between homocysteine (Hcy) levels in patients with fracture and unaffected controls by conducting a meta-analysis and systematic review. METHODS We conducted a systematic literature search (up to April 2012) of the PubMed database and Embase. We selected observational studies that evaluated Hcy levels in subjects with fracture compared to unaffected controls. We also included randomized clinical trials (RCTs) on the effect of Hcy-lowering therapy in fracture patients. Criteria for inclusion were the assessment of baseline Hcy and risk of fracture as an outcome. The results were presented as relative risk (RR) and corresponding 95% confidence intervals (CI) comparing fracture patients to the control subjects or the highest Hcy quartile group to the lowest Hcy quartile group. RESULTS Nine studies with 14,863 participants were identified and analyzed. The pooled RR from a random effect model of participants with all fractures compared with the control subjects was 1.59 (95% CI 1.30-1.96). The pooled RR from a random model for hip fractures in the highest Hcy quartile group compared with the lowest Hcy quartile group was 1.67 (95% CI 1.17-2.38). The effect of Hcy-lowering therapy on fracture was tested in two clinical trials, but clinically important end points were not reported in a consistent way. CONCLUSIONS This meta-analysis and systematic review suggested that Hcy significantly increased the risk of fracture, and the increase was independent of risk factors.
Collapse
Affiliation(s)
- Jun Yang
- Department of Surgery, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
19
|
Enneman AW, van der Velde N, de Jonge R, Heil SG, Stolk L, Hofman A, Rivadeneira F, Zillikens MC, Uitterlinden AG, van Meurs JBJ. The association between plasma homocysteine levels, methylation capacity and incident osteoporotic fractures. Bone 2012; 50:1401-5. [PMID: 22465697 DOI: 10.1016/j.bone.2012.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND An elevated level of plasma homocysteine (Hcy) is a known risk factor for osteoporotic fractures. In addition, Hcy is related to DNA-methylation metabolism. To determine whether the association between Hcy and fractures is explained by an altered methylation capacity, we investigated the associations between levels of s-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) and fracture risk. METHODS We studied 503 females aged 55 years and over from the Rotterdam Study (RS) in whom plasma Hcy, SAM and SAH levels were measured. Bone mineral density (BMD) at the hip was assessed using DXA. Incident fractures were recorded over a mean period of 7.0 years. Cox proportional hazards analysis and linear regression were used to assess relationships between plasma metabolite levels, incident osteoporotic fractures and BMD. RESULTS Over a total of 3502 person-years of follow-up, 103 subjects sustained at least one osteoporotic fracture. Whereas incidence of osteoporotic fractures was associated with quartiles of Hcy (p=0.047), it was not associated with quartiles of SAM, SAH or SAM/SAH-ratio (all p for trend>0.6). Stepwise linear regression showed that SAM/SAH-ratio, but not Hcy, was independently associated with hip BMD (β=0.073, p=0.025). CONCLUSION Since SAM, SAH and SAM/SAH-ratio were not associated with osteoporotic fractures, alterations in methylation capacity most likely do not appear to be an important factor in the association between Hcy and fractures.
Collapse
Affiliation(s)
- A W Enneman
- Erasmus MC, Department of Internal Medicine, Postbus 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) polymorphisms with osteoporotic vertebral compression fracture (OVCF) in postmenopausal Korean women. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0202-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Association of vascular endothelial growth factor gene polymorphisms with osteoporotic vertebral compression fractures in postmenopausal women. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Karasik D, Hsu YH, Zhou Y, Cupples LA, Kiel DP, Demissie S. Genome-wide pleiotropy of osteoporosis-related phenotypes: the Framingham Study. J Bone Miner Res 2010; 25:1555-63. [PMID: 20200953 PMCID: PMC3153998 DOI: 10.1002/jbmr.38] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genome-wide association studies offer an unbiased approach to identify new candidate genes for osteoporosis. We examined the Affymetrix 500K + 50K SNP GeneChip marker sets for associations with multiple osteoporosis-related traits at various skeletal sites, including bone mineral density (BMD, hip and spine), heel ultrasound, and hip geometric indices in the Framingham Osteoporosis Study. We evaluated 433,510 single-nucleotide polymorphisms (SNPs) in 2073 women (mean age 65 years), members of two-generational families. Variance components analysis was performed to estimate phenotypic, genetic, and environmental correlations (rho(P), rho(G), and rho(E)) among bone traits. Linear mixed-effects models were used to test associations between SNPs and multivariable-adjusted trait values. We evaluated the proportion of SNPs associated with pairs of the traits at a nominal significance threshold alpha = 0.01. We found substantial correlation between the proportion of associated SNPs and the rho(P) and rho(G) (r = 0.91 and 0.84, respectively) but much lower with rho(E) (r = 0.38). Thus, for example, hip and spine BMD had 6.8% associated SNPs in common, corresponding to rho(P) = 0.55 and rho(G) = 0.66 between them. Fewer SNPs were associated with both BMD and any of the hip geometric traits (eg, femoral neck and shaft width, section moduli, neck shaft angle, and neck length); rho(G) between BMD and geometric traits ranged from -0.24 to +0.40. In conclusion, we examined relationships between osteoporosis-related traits based on genome-wide associations. Most of the similarity between the quantitative bone phenotypes may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in defining the best phenotypes to be used in genetic studies of osteoporosis.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA 02131, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Agueda L, Urreizti R, Bustamante M, Jurado S, Garcia-Giralt N, Díez-Pérez A, Nogués X, Mellibovsky L, Grinberg D, Balcells S. Analysis of three functional polymorphisms in relation to osteoporosis phenotypes: replication in a Spanish cohort. Calcif Tissue Int 2010; 87:14-24. [PMID: 20390408 DOI: 10.1007/s00223-010-9361-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/24/2010] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a complex disease involving many putative genetic factors. Association analysis of functional SNPs in candidate genes is an important tool for their identification. However, this approach is affected by limited power, population stratification, and other drawbacks that lead to discordant results. Replication in independent cohorts is essential. We performed association analyses of three functional polymorphisms previously associated with bone phenotypes--namely, Ala222Val in MTHFR, Ile1062Val in LRP6, and -13910C>T in LCT--in a cohort of 944 postmenopausal Spanish women, all of them with lumbar spine (LS) bone mineral density (BMD) data and most with femoral neck (FN) BMD and fracture data. We found significant differences between genotypes only for the MTHFR polymorphism and vertebral factures, with an OR of 2.27 (95% CI 1.17-4.38) for the TT vs. CC/CT genotypes, P = 0.018. We present genotype and allele frequency data for LCT -13910C>T for a Spanish population, where the T allele (conferring lactase persistence) has a frequency of 38.6%. Genotype frequencies were consistent with observed clines in Europe and with the prevalence of lactase nonpersistence. The LCT -13910C>T polymorphism was significantly associated with height and weight, such that T allele carriers were 0.88 cm taller (95% CI 0.08-1.59 cm, P = 0.032, adjusted by age) than CC individuals and TT homozygotes were 1.91 kg heavier than CC/CT individuals (95% CI 0.11-3.71 kg, P = 0.038, adjusted by age). In conclusion, no significant association was observed between the studied polymorphisms and LS BMD or FN BMD in postmenopausal Spanish women, and only MTHFR Ala222Val was associated with vertebral fractures.
Collapse
Affiliation(s)
- Lídia Agueda
- Department of Genetics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 2010; 46:1226-37. [PMID: 20149904 PMCID: PMC4852133 DOI: 10.1016/j.bone.2010.01.382] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/20/2010] [Accepted: 01/29/2010] [Indexed: 12/25/2022]
Abstract
There are both theoretical and empirical underpinnings that provide evidence that the musculoskeletal system develops, functions, and ages as a whole. Thus, the risk of osteoporotic fracture can be viewed as a function of loading conditions and the ability of the bone to withstand the load. Both bone loss (osteoporosis) and muscle wasting (sarcopenia) are the two sides of the same coin, an involution of the musculoskeletal system. Skeletal loads are dominated by muscle action; both bone and muscle share environmental, endocrine and paracrine influences. Muscle also has an endocrine function by producing bioactive molecules, which can contribute to homeostatic regulation of both bone and muscle. It also becomes clear that bone and muscle share genetic determinants; therefore the consideration of pleiotropy is an important aspect in the study of the genetics of osteoporosis and sarcopenia. The aim of this review is to provide an additional evidence for existence of the tight genetic co-regulation of muscles and bones, starting early in development and still evident in aging. Recently, important papers were published, including those dealing with the cellular mechanisms and anatomic substrate of bone mechanosensitivity. Further evidence has emerged suggesting that the relationship between skeletal muscle and bone parameters extends beyond the general paradigm of bone responses to mechanical loading. We provide insights into several pathways and single genes, which apparently have a biologically plausible pleiotropic effect on both bones and muscles; the list is continuing to grow. Understanding the crosstalk between muscles and bones will translate into a conceptual framework aimed at studying the pleiotropic genetic relationships in the etiology of complex musculoskeletal disease. We believe that further progress in understanding the common genetic etiology of osteoporosis and sarcopenia will provide valuable insight into important biological underpinnings for both musculoskeletal conditions. This may translate into new approaches to reduce the burden of both conditions, which are prevalent in the elderly population.
Collapse
Affiliation(s)
- David Karasik
- Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA 02131, USA.
| | | |
Collapse
|
25
|
Nissen N, Madsen JS, Bladbjerg EM, Beck Jensen JE, Jørgensen NR, Langdahl B, Abrahamsen B, Brixen K. No association between hip geometry and four common polymorphisms associated with fracture: the Danish osteoporosis prevention study. Calcif Tissue Int 2009; 84:276-85. [PMID: 19225709 DOI: 10.1007/s00223-009-9219-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
Both osteoporosis and hip geometry are independently associated with fracture risk. There is a significant genetic contribution to the risk of osteoporosis, and evidence provided by twin studies has suggested that hip geometry may also in part be genetically programmed. Polymorphisms in a number of genes, including those coding for methylene-tetrahydrofolate reductase (MTHFR c.677C > T), the purinergic P2X(7) receptor (Glu496Ala and Ile568Asn), and the low-density lipoprotein receptor-related protein 5 (LRP5 exon 9 [c.266A > G]), have been associated with an increased fracture incidence and/or reduced bone mineral density (BMD). The aim of the present study was to test whether these polymorphisms influence hip structural geometry in perimenopausal women. The four polymorphisms were genotyped in 800 healthy recently perimenopausal women never using hormone replacement therapy. BMD of the femoral neck was measured using a Hologic QDR-2000 densitometer and femoral neck axis length, neck width, neck shaft angle, and femoral head diameter were measured from the screen images. Genotype frequencies were compatible with Hardy-Weinberg equilibrium. No significant differences between homozygotes for the minor allele and carriers of the common allele regarding parameters of hip geometry were demonstrated. According to the anthropometric characteristics of the subjects, only body height in the MTHFR TT genotype group was significantly different from the combined CT/CC genotype group (P < 0.05). The geometric dimensions of the proximal femur in perimenopausal women are not associated with the MTHFR c.677C > T, P2X(7) (Glu496Ala), P2X(7) (Ile568Asn), and LRP5 exon 9 (c.266A > G) polymorphisms.
Collapse
Affiliation(s)
- N Nissen
- Department of Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, 5000, Odense C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Breuil V, Quincey D, Testa J, Roux CH, Albert C, Mroueh Z, Chami-Stemman H, Brocq O, Grisot C, Euller-Ziegler L, Carle GF. Gene polymorphisms and osteoporotic fractures: a study in postmenopausal French women. Joint Bone Spine 2009; 76:317-9. [PMID: 19299182 DOI: 10.1016/j.jbspin.2008.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
|
27
|
Abstract
Bone tissue quality is determined not only by multiple architectural variables, but also by the mechanical properties of collagen type 1. Homocysteinuria is a genetic disease whose manifestations include severe hyperhomocysteinemia and decreased bone strength. The effects of smaller homocysteine elevations on bone tissue are difficult to demonstrate in clinical studies. Studies in animals and in humans suggest that homocysteine may weaken collagen crosslinks and, if present in large amounts, interfere with bone remodeling. Whether routine homocysteine assays should be performed to detect bone frailty remains unclear. In clinical practice, the focus should be on identifying patients with potential causes of homocysteine elevation (e.g., medications), who should then be given vitamin D and folic acid supplementation if needed. This approach may improve not only bone health, but also vascular and general health.
Collapse
Affiliation(s)
- Régis Levasseur
- Service de Rhumatologie et Pôle ostéo-articulaire, CHU d'Angers, Inserm U922, Faculté de Médecine d'Angers, 49933 Angers Cedex, France.
| |
Collapse
|
28
|
Urano W, Furuya T, Inoue E, Taniguchi A, Urano T, Kotake S, Sekita C, Inoue S, Hara M, Momohara S, Kamatani N, Yamanaka H. Associations between methotrexate treatment and methylenetetrahydrofolate reductase gene polymorphisms with incident fractures in Japanese female rheumatoid arthritis patients. J Bone Miner Metab 2009; 27:574-83. [PMID: 19333678 DOI: 10.1007/s00774-009-0073-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 01/06/2009] [Indexed: 01/22/2023]
Abstract
Several case reports have described associations between pathological nonvertebral fractures and low-dose methotrexate (MTX) in rheumatoid arthritis (RA) patients. Furthermore, a significant association between the C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene and incident fractures has been reported in postmenopausal women. We attempted to determine whether MTX use and MTHFR polymorphisms are associated with incident fracture risk in Japanese female RA patients. DNA samples, laboratory data, and clinical data were obtained from 731 female RA patients more than 50 years old as part of the Institute of Rheumatology Rheumatoid Arthritis (IORRA) observational cohort study. Genotyping of the MTHFR polymorphisms C677T and A1298C was performed using TaqMan SNP Genotyping Assays. MTX use, MTHFR polymorphisms, and other potential risk factors predictive of fracture were analyzed by Cox proportional hazards regression models, including time-dependent covariates. During 78 months from October 2000 to March 2007, 25 and 90 patients developed vertebral and nonvertebral fractures, respectively. Patients with nonvertebral fractures were more likely to take MTX (P = 0.011; odds ratio, 1.77; 95% confidence interval, 1.13-2.76) compared to patients without fractures. Although the C677T and A1298C polymorphisms were not significantly associated with incident fracture risk, MTX use, age, disease duration, and Japanese health assessment questionnaire score were significantly (P < 0.05) and independently associated with nonvertebral fracture incidence. Our results suggest that MTX use is associated with a nonvertebral fracture risk, whereas MTHFR polymorphism status does not appear to be a clinically useful marker for predicting fracture risk in Japanese female RA patients.
Collapse
Affiliation(s)
- Wako Urano
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo, 162-0054, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Steer CD, Emmett PM, Lewis SJ, Smith GD, Tobias JH. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with spinal BMD in 9-year-old children. J Bone Miner Res 2009; 24:117-24. [PMID: 18715139 PMCID: PMC2742728 DOI: 10.1359/jbmr.080814] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The C677T MTHFR polymorphism has been associated with lumbar spine and hip BMD. In older adults, the genetic effect has been reported in women only. However, in younger adults, this influence may only be present in men. This study is the first to investigate associations between the C677T MTHFR polymorphism and bone phenotypes in children. Regression analyses were used to study the relationship between MTHFR genotype and bone phenotypes derived from total body DXA scans in children 9.9 yr of age from the Avon Longitudinal Study of Parents and Children (ALSPAC). A total of 5816 children had both genetic and DXA data for the total body less head region (TBLH) and 3196 for the spine. A strong association was observed between the C677T MTHFR genotype and spine BMD (p < 0.001; 0.10 SD decrease per T allele). There was some evidence that this genetic effect was stronger in boys compared with girls (p = 0.04 for sex interaction). In contrast, there was no association between the C677T MTHFR genotype and TBLH BMD. The association between MTHFR genotype and spine BMD was attenuated particularly in girls by high maternal dietary intakes of vitamin B(6) and folate during pregnancy but not by child dietary intakes at 7 yr. To the extent that these findings reflect known influences of C677T MTHFR genotype on plasma homocysteine levels, our results suggest that the latter is an important regulator of spinal BMD in childhood.
Collapse
Affiliation(s)
- Colin D Steer
- Department of Community Based Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Strontium ranelate decreases plasma homocysteine levels in postmenopausal osteoporotic women. Rheumatol Int 2008; 29:263-6. [PMID: 18818926 DOI: 10.1007/s00296-008-0693-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
We analyzed the effect of strontium ranelate treatment on plasma homocysteine (Hcy) levels in postmenopausal osteoporotic women. Forty-nine postmenopausal women diagnosed with osteoporosis with a mean age of 54.07 +/- 7.5 years (range 40-70) who visited our menopause clinic were participated in this prospective study. Patients with bone mineral density (BMD) at least 2.5 SD below the average value in young adults (T score < -2.5) were considered to have osteoporosis. Patients received strontium ranelate 2 g/day (Servier) orally with additional calcium supplements. Fasting plasma Hcy levels were assessed at baseline, 3, 6 and 12 months of the therapy with strontium ranelate. The mean plasma Hcy level (10.45 micromol/l) after 3 months of therapy was significantly lower compared to the basal plasma Hcy level (12.61 micromol/l) (P = 0.002). The plasma homocysteine level (10.54 micromol/l) of the 43 patients that were present at the 6 months of the therapy was also significantly lower compared to the basal plasma Hcy level (P = 0.005). At the end of the 12 months of the study, there were 42 patients. The plasma homocysteine level (10.107 micromol/l) at 12 months of therapy was also significantly lower compared to the basal Hcy level (P < 0.001). Strontium ranelate 2 g/day treatment for 1 year significantly decreases plasma Hcy levels in postmenopausal women with osteoporosis. Since the increased Hcy levels could lead to an increase risk of osteoporosis and fracture risk, this effect of strontium ranelate on Hcy level may cause additional benefit in terms of reducing the risk of fracture.
Collapse
|
31
|
Tranah GJ, Taylor BC, Lui LY, Zmuda JM, Cauley JA, Ensrud KE, Hillier TA, Hochberg MC, Li J, Rhees BK, Erlich HA, Sternlicht MD, Peltz G, Cummings SR. Genetic variation in candidate osteoporosis genes, bone mineral density, and fracture risk: the study of osteoporotic fractures. Calcif Tissue Int 2008; 83:155-66. [PMID: 18787887 PMCID: PMC2699257 DOI: 10.1007/s00223-008-9165-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/19/2008] [Indexed: 10/21/2022]
Abstract
Candidate osteoporosis gene variants were examined for associations with fracture risk and bone mineral density (BMD). A total of 9,704 white women were recruited at four U.S. clinical centers and enrolled into the Study of Osteoporotic Fractures, a longitudinal cohort study. Genotyping of 31 polymorphisms from 18 candidate osteoporosis genes was performed in 6,752 women. Incident radiographic fractures were identified at the third and eighth examinations compared with the baseline examination. BMD was measured at the total hip by dual-energy X-ray absorptiometry. Analyses were adjusted for age, clinic site, and self-reported ethnicity. During a mean follow-up of 14.5 years, a total of 849 hip, 658 vertebral, and 2,496 nonhip/nonvertebral fractures occurred in 6,752 women. Women carrying the ALOX15_G48924T T/T genotype had a higher rate of hip fracture (hazard ratio [HR] = 1.33;95% confidence interval [95% CI] = 1.00-1.77) compared with the G/G genotype. Compared with those carrying the PRL_T228C T/T genotype, women with either the C/C (HR = 0.80; 95% CI = 0.67-0.95) or C/T (HR = 0.81; 95% CI = 0.68-0.97) genotype had a lower rate of nonvertebral/nonhip fractures. Women carrying the BMP2_A125611G G/G genotype had a higher rate of vertebral fracture (odds ratio [OR] = 1.51; 95% CI = 1.03-2.23) compared with the A/A genotype. Women with the ESR1_C1335G G/G genotype had a higher rate of vertebral fracture (OR = 1.64; 95% CI = 1.07-2.50) compared with the C/C genotype. Compared with those with the MMP2_C595T C/C genotype, women with the C/T (OR = 0.79; 95% CI = 0.65-0.96) or T/T (OR = 0.44; 95% CI = 0.27-0.72) genotype had a lower rate of vertebral fracture. In conclusion, polymorphisms in several candidate genes were associated with hip, vertebral, and nonhip/nonvertebral fractures but not with total hip BMD in this large population based cohort study.
Collapse
Affiliation(s)
- Gregory J. Tranah
- CPMC Research Institute, San Francisco, CA 94120, USA e-mail:
- California Pacific Medical Center Research Institute, San Francisco Coordinating Center UCSF, 185 Berry Street, Lobby 4, Suite 5700, San Francisco, CA 94107-1728, USA
| | - Brent C. Taylor
- Center for Chronic Disease Outcomes Research, Minneapolis VA Medical Center, Minneapolis, MN 55417, USA
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li-Yung Lui
- CPMC Research Institute, San Francisco, CA 94120, USA e-mail:
| | - Joseph M. Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburg, PA 15261, USA
| | - Jane A. Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburg, PA 15261, USA
| | - Kristine E. Ensrud
- Center for Chronic Disease Outcomes Research, Minneapolis VA Medical Center, Minneapolis, MN 55417, USA
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Teresa A. Hillier
- Kaiser Permanente Center for Health Research Northwest/Hawaii, Portland, OR 97227, USA
| | - Marc C. Hochberg
- Department of Medicine and Epidemiology and Preventative Medicine, University of Maryland School of Medicine University, Baltimore, MD 21201, USA
| | - Jia Li
- Department of Human Genetics, Roche Molecular Systems, Alameda, CA 94501-1145, USA
| | - Brian K. Rhees
- Department of Human Genetics, Roche Molecular Systems, Alameda, CA 94501-1145, USA
| | - Henry A. Erlich
- Department of Human Genetics, Roche Molecular Systems, Alameda, CA 94501-1145, USA
| | - Mark D. Sternlicht
- Department of Anatomy, University of California, San Francisco, CA 94107, USA
| | - Gary Peltz
- Department of Genetics and Genomics, Roche Palo Alto, Palo Alto, CA 94304, USA
| | - Steven R. Cummings
- CPMC Research Institute, San Francisco, CA 94120, USA e-mail:
- Department of Epidemiology, University of California, San Francisco, CA 94107, USA
| |
Collapse
|
32
|
Alterations in Bone Mineral Density in Marfan Syndrome and Homocystinuria. Clin Rev Bone Miner Metab 2008. [DOI: 10.1007/s12018-008-9018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Abstract
The risk of osteoporotic fracture can be viewed as a function of loading conditions and the ability of the bone to withstand the load. Skeletal loads are dominated by muscle action. Recently, it has become clear that bone and muscle share genetic determinants. Involution of the musculoskeletal system manifests as bone loss (osteoporosis) and muscle wasting (sarcopenia). Therefore, the consideration of pleiotropy is an important aspect in the study of the genetics of osteoporosis and sarcopenia. This Perspective will provide the evidence for a shared genetic influence on bone and muscle. We will start with an overview of accumulating evidence that physical exercise produces effects on the adult skeleton, seeking to unravel some of the contradictory findings published thus far. We will provide indications that there are pleiotropic relationships between bone structure/mass and muscle mass/function. Finally, we will offer some insights and practical recommendations as to the value of studying shared genetic factors and will explore possible directions for future research. We consider several related questions that together comprise the general paradigm of bone responses to mechanical loading and the relationship between muscle strength and bone parameters, including the genetic factors that modulate these responses. We believe that further progress in understanding the common genetic etiology of osteoporosis and sarcopenia will provide valuable insight into important biological underpinnings for both conditions and may translate into new approaches to reduce the burdens of both conditions through improved diagnosis, prevention, and early targeted treatment.
Collapse
|
34
|
High-throughput multiplex single-nucleotide polymorphism (SNP) analysis in genes involved in methionine metabolism. Biochem Genet 2008; 46:406-23. [PMID: 18427977 DOI: 10.1007/s10528-008-9159-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Hyperhomocysteinemia is a well-known independent marker factor for atherothrombotic diseases and may result from acquired and genetic influences. Several polymorphisms are suspected to be associated with hyperhomocysteinemia, but data are limited and inconsistent. High-throughput genotyping technologies, such as GenomeLab SNPStream, are now available. Moreover, an appropriate selection of SNPs to be analyzed could represent a strong resource to define the role of genetic risk factors. We developed a multiplex PCR-oligonucleotide extension approach by GenomeLab platform. We selected 72 SNPs based on their putative function and frequency in the candidate genes AHCY, BHMT, BHMT2, CBS, ENOSF1, FOLH1, MTHFD1, MTHFR, MTR, MTRR, NNMT, PON1, PON2, SLC19A1, SHMT1, TCN2, and TYMS. We were able to analyze 57 of the SNPs (79%). For MTHFR C677T and A1298C and MTR A2756G SNPs, we compared data obtained with an electronic microchip technology and found 99.2% concordance. We also performed a haplotype analysis. This approach could represent a useful tool to investigate the genotype-phenotype correlation and the association of these genes with hyperhomocysteinemia and correlated diseases.
Collapse
|
35
|
Herrmann M, Peter Schmidt J, Umanskaya N, Wagner A, Taban-Shomal O, Widmann T, Colaianni G, Wildemann B, Herrmann W. The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review. Clin Chem Lab Med 2008; 45:1621-32. [PMID: 18067447 DOI: 10.1515/cclm.2007.362] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyperhomocysteinemia (HHCY) has been suggested as a new risk factor for osteoporosis. Recent epidemiological, clinical and experimental studies provide a growing body of data, which is reviewed in this article. Epidemiological and (randomized) clinical trials suggest that HHCY increases fracture risk, but has minor effects on bone mineral density. Measurement of biochemical bone turnover markers indicates a shift of bone metabolism towards bone resorption. Animal studies confirm these observations showing a reduced bone quality and stimulation of bone resorption in hyperhomocysteinemic animals. Homocysteine (HCY) has been found to accumulate in bone by collagen binding. Cell culture studies demonstrate that high HCY levels stimulate osteoclasts but not osteoblasts, indicating again a shift of bone metabolism towards bone resorption. Regarding B-vitamins, only a few in vivo studies with equivocal results have been published. However, two large cell culture studies confirm the results obtained with exogenous HCY administration. In addition, HHCY seems to have adverse affects on extracellular bone matrix by disturbing collagen crosslinking. In conclusion, existing data suggest that HHCY (and possibly B-vitamin deficiencies) adversely affects bone quality by a stimulation of bone resorption and disturbance of collagen crosslinking.
Collapse
Affiliation(s)
- Markus Herrmann
- ANZAC Research Institute, University of Sydney, Sydney NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Salari P, Larijani B, Abdollahi M. Association of hyperhomocysteinemia with osteoporosis: a systematic review. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/14750708.5.2.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Cho K, Demissie S, Dupuis J, Cupples LA, Kathiresan S, Beck TJ, Karasik D, Kiel DP. Polymorphisms in the endothelial nitric oxide synthase gene and bone density/ultrasound and geometry in humans. Bone 2008; 42:53-60. [PMID: 17980690 PMCID: PMC2386517 DOI: 10.1016/j.bone.2007.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/18/2007] [Accepted: 09/19/2007] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), produced by endothelial cells, is a signaling molecule synthesized from l-arginine by nitric oxide synthases (NOS). NO is known to reduce the ratio of receptor activator of nuclear factor KappaB (RANKL)/osteoprotegerin (OPG), leading to decreased osteoclastogenesis and a reduction in bone resorption. Endothelial nitric oxide synthase (eNOS or NOS3) is the predominant constitutive isoform of nitric NOS within bone. Recently, a NOS3 polymorphism, Glu298Asp, previously implicated in osteoporosis, failed to demonstrate an association with bone mineral density (BMD), although there was some indication of an association with selected geometry indices. Since a single polymorphism does not capture all of the potential variants in a given gene, we investigated a broader coverage of the NOS3 gene with bone density/ultrasound and geometry indices in a sample of unrelated individuals from the Framingham Offspring Study. Our results indicated that the Glu298Asp polymorphism was not associated with BMD but suggested some haplotype-based associations in the linkage disequilibrium (LD) region that included the Glu298Asp polymorphism with several geometry indices. Although our findings exhibited several associations with selected bone density/ultrasound and geometry indices, the nominally significant associations are regarded as primarily hypothesis generating and suggest that replication in other samples is needed. Thus, NOS3 genetic variation does not appear to be a major contributor to adult bone density/ultrasound and geometry in our sample.
Collapse
Affiliation(s)
- K Cho
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Shiraki M, Urano T, Kuroda T, Saito M, Tanaka S, Miyao-Koshizuka M, Inoue S. The synergistic effect of bone mineral density and methylenetetrahydrofolate reductase (MTHFR) polymorphism (C677T) on fractures. J Bone Miner Metab 2008; 26:595-602. [PMID: 18979159 DOI: 10.1007/s00774-008-0878-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 04/15/2008] [Indexed: 01/22/2023]
Abstract
A functional polymorphism in methylenetetrahydrofolate reductase (MTHFR) has been identified at codon 677 (C677T). The T-allele variant (valine type) has lower enzyme activity than the wild type (C-allele or alanine type), resulting in a slightly elevated homocysteine level, which has been recently recognized as a risk factor for fracture. However, whether subjects bearing the T allele have higher susceptibility to fractures is still controversial. We have investigated the effects of MTHFR polymorphism on fracture susceptibility in Japanese postmenopausal women. A total of 502 postmenopausal ambulatory Japanese women were followed up for 5.1 +/- 3.4 (mean +/- SD) years, and a total of 155 patients with incident fractures (121 patients with vertebral fractures and 34 cases with fractures at other sites) were recorded. When compared with the patients without any fractures, the patients with incident fractures were older, had more prevalent fractures, had higher urinary levels of bone turnover markers as well as plasma homocysteine level, but were shorter in body height and had lower bone mineral density. The prevalence of the TT genotype of MTHFR was significantly higher in the patients with incident fractures compared to the other genotypes. The subjects with the TT genotype had a higher incidence rate of fracture and higher plasma level of homocysteine than the subjects bearing the non-TT genotype. This relationship was observed in both osteoporotic and nonosteoporotic groups. The hazard ratio for TT genotype without osteoporosis, non-TT genotype with osteoporosis, and TT genotype with osteoporosis was 1.49 (0.91-2.45), 3.64 (2.50-5.29), and 7.21 (4.34-11.97), respectively, compared to the non-TT genotype without osteoporosis. A higher hazard ratio for the TT genotype with osteoporosis was still apparent after adjustment for age, body size, and number of prevalent vertebral fractures. These results indicate that the TT genotype of MTHFR may be a risk factor for future fracture in addition to the traditional risk factors.
Collapse
Affiliation(s)
- Masataka Shiraki
- Department of Internal Medicine, Research Institute and Practice for Involutional Diseases, 1610-1 Meisei, Misato, Azumino, Nagano, 399-8101, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lei SF, Jiang H, Deng FY, Deng HW. Searching for genes underlying susceptibility to osteoporotic fracture: current progress and future prospect. Osteoporos Int 2007; 18:1157-75. [PMID: 17534537 DOI: 10.1007/s00198-007-0402-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 04/11/2007] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Osteoporotic fracture (OF) is a public health problem. It is a common practice in the genetics of osteoporosis that bone mineral density (BMD) was studied as a major surrogate phenotype in gene search for risk of OF (ROF) because of their high phenotypic correlation. However, some studies indicate that the genetic correlation between BMD and ROF is very low. This implies that most genes found important for BMD may not be relevant to ROF. Ideally, employing OF per se as a direct study phenotype can directly find the relevant genes underlying ROF. EVIDENCE Here, we summarized some evidence supporting ROF under moderate genetic control, and the current progress of molecular genetic studies employing OF as the direct study phenotype, then give our consideration on the future prospects in the genetics of ROF.
Collapse
Affiliation(s)
- S-F Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | | | | | | |
Collapse
|
40
|
Hong X, Hsu YH, Terwedow H, Tang G, Liu X, Jiang S, Xu X, Xu X. Association of the methylenetetrahydrofolate reductase C677T polymorphism and fracture risk in Chinese postmenopausal women. Bone 2007; 40:737-42. [PMID: 17174622 PMCID: PMC1855293 DOI: 10.1016/j.bone.2006.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/22/2006] [Accepted: 09/23/2006] [Indexed: 10/23/2022]
Abstract
Osteoporotic fractures are a leading cause of disability and, indirectly, of death in the elderly population. Previous studies have shown that homocysteine level and the C677T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR) may be involved in the development of osteoporosis and its related fracture in European populations. The aim of this study was to verify the association of this polymorphism with bone mineral density (BMD) and fractures in our 1899 Chinese postmenopausal women. The C677T T allele frequency in this population was 39.2%. The distribution of the MTHFR genotypes followed the Hardy-Weinberg equilibrium. BMD at total body, total hip or femoral neck did not significantly vary with MTHFR C677T genotype. The T allele carrier tended to have higher risk of having osteoporosis or osteopenia, but the difference was statistically insignificant. However, Poisson regression analysis revealed that the T allele carriers had an increased risk of fractures (RR=1.7, 95% CI=1.1-2.7, p=0.01) which occurred before or after menopause. As far as fracture incidence after menopause was concerned, the CT or TT genotype had more than twice the risk of the CC genotype (RR=2.5, 95% CI=1.2-4.9, p=0.009). This association was independent of age, physical activity, occupation, passive smoking, height, weight, years since menopause, and total hip BMD. Our data show that the MTHFR C677T polymorphism is an independent predictor of fracture risk, although it only had a weak effect on BMD. Further study on the mechanistic role that this polymorphism plays in the development of fractures may lead to better understanding of the etiology of osteoporotic fracture.
Collapse
Affiliation(s)
- Xiumei Hong
- School of Life Science, University of Science and Technology of China, Huangshan Road, Hefei City, Anhui Province, China
- Center for Population Genetics, Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL
- Anhui Medical University, Institute of Medicine, Anhui, China
| | - Yi-Hsiang Hsu
- Program for Population Genetics, Harvard School of Public Health, Boston, MA
| | - Henry Terwedow
- Program for Population Genetics, Harvard School of Public Health, Boston, MA
| | - Genfu Tang
- Anhui Medical University, Institute of Medicine, Anhui, China
| | - Xue Liu
- Anhui Medical University, Institute of Medicine, Anhui, China
| | - Shanqun Jiang
- Anhui Medical University, Institute of Medicine, Anhui, China
| | - Xin Xu
- Program for Population Genetics, Harvard School of Public Health, Boston, MA
| | - Xiping Xu
- School of Life Science, University of Science and Technology of China, Huangshan Road, Hefei City, Anhui Province, China
- Center for Population Genetics, Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL
- Anhui Medical University, Institute of Medicine, Anhui, China
| |
Collapse
|
41
|
Baines M, Kredan MB, Usher J, Davison A, Higgins G, Taylor W, West C, Fraser WD, Ranganath LR. The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone 2007; 40:730-6. [PMID: 17141597 DOI: 10.1016/j.bone.2006.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/08/2006] [Accepted: 10/01/2006] [Indexed: 01/30/2023]
Abstract
We studied the association between plasma total homocysteine (tHcy), its determinants folate, vitamin B(12), vitamin B(6) and MTHFR genotype, and bone mineral density (BMD) in 328 postmenopausal British women. When the subjects were assigned to one of 3 groups (control, osteopenic or osteoporotic) according to their BMD at the os calcis, those in the osteoporotic group had, compared with the controls, a significantly lower serum folate concentration, a significantly higher % of current smokers and a significantly higher incidence of recent fracture. In the population as a whole, we found significant associations of BMD with tHcy (r=-0.130, p=0.033, log tHcy) and folate (r=0.132, p=0.025, log folate). The association of folate with BMD was maintained after correction for age, weight and height (r=0.124, p=0.042, log folate), but the association of tHcy with BMD weakened after correction for age, weight, height and creatinine (r=-0.117, p=0.059, log tHcy). Vitamins B(12) and B(6) were not associated with BMD, but were significantly associated with tHcy, vitamin B(12) (r=-0.34, p<0.0001), vitamin B(6) (r=-0.16, p=0.007), as was folate (r=-0.41, p<0.0001). There was an increasing frequency of the MTHFR TT genotype across the 3 BMD groups, but this did not attain significance. Individuals with the TT genotype had significantly higher plasma tHcy but there was no difference between the genotypes (CC, CT, TT) for folate or BMD. Smoking was associated with a highly significant reduction in BMD and lower weight, and a significant reduction in circulating folate and vitamin B(6) concentrations, but no change in tHcy or vitamin B(12) concentrations when compared with non-smokers. We conclude that low serum folate is a significant risk factor for osteoporosis, with plasma tHcy having a lesser effect. Both vitamins B(12) and B(6), by acting through tHcy, may also have an effect on the skeleton, albeit a weaker one than folate. Cigarette smoking is a strong determinant of BMD, and may act through effects on folate and vitamin B(6).
Collapse
Affiliation(s)
- M Baines
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Riancho JA, Valero C, Zarrabeitia MT. MTHFR polymorphism and bone mineral density: meta-analysis of published studies. Calcif Tissue Int 2006; 79:289-93. [PMID: 17115239 DOI: 10.1007/s00223-006-0143-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 07/17/2006] [Indexed: 10/23/2022]
Abstract
The C677T (rs1801133) polymorphism of methylenetetrahydrofolate reductase (MTHFR) has been associated with bone status in some studies, but the results have been mixed. In order to have a better understanding of this issue, we performed a meta-analysis of studies about the association of the C677T polymorphism and bone mineral density (BMD). Eight studies analyzed the relationship with spine BMD. When their results were combined, individuals with TT genotype showed a small but significantly reduced BMD compared to those with TC and CC genotypes. The weighted mean difference (WMD) was 18.0 mg/cm2 (P = 0.001, 95% confidence interval [CI] 7.1-28.9), without statistical evidence for between-study heterogeneity (P = 0.28, I2 = 17%). Six studies analyzed femoral neck BMD. A test for heterogeneity was significant (P = 0.03, I2 = 56%). Individuals with TT alleles tended to have somewhat lower BMD, but the difference was not statistically significant. In random effects model, the WMD between the TT and TC/CC genotypes was 6.4 mg/cm2 (95% CI -7.8 to 21.2, P = 0.36). Total hip BMD was measured in four studies. They showed a significantly lower BMD in subjects with TT alleles: WMD 19.7 (95% CI 5.3-34.1) mg/cm2, P = 0.007, in comparison with TC/CC subjects. When we considered only studies on women, the WMD in BMD between TT and TC/CC genotypes was significant at the spine (22.1 mg/cm2, 95% CI 8.6-35.6; P = 0.001) and the femoral neck (15.5 mg/cm2, 95% CI 4.3-26.7; P = 0.007). There was no evidence for heterogeneity. The small number of studies did not allow a meaningful sex-stratified analysis of total hip BMD or a separate analysis of male data. In conclusion, the C677T polymorphism of the MTHFR gene is associated with small differences in BMD, at least in women.
Collapse
Affiliation(s)
- J A Riancho
- Department of Internal Medicine, Hospital U. M. Valdecilla, University of Cantabria, Av. Valdecilla s/n, Santander, 39008, Spain.
| | | | | |
Collapse
|
43
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
44
|
Kim DJ, Koh JM, Lee O, Kim NJ, Lee YS, Kim YS, Park JY, Lee KU, Kim GS. Homocysteine enhances apoptosis in human bone marrow stromal cells. Bone 2006; 39:582-90. [PMID: 16644300 DOI: 10.1016/j.bone.2006.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 03/13/2006] [Accepted: 03/15/2006] [Indexed: 11/25/2022]
Abstract
INTRODUCTION High plasma homocysteine (Hcy) levels have been associated with increased risk of fracture. Since Hcy has been shown to induce apoptosis in many cell types, including vascular endothelial cells, we hypothesized that Hcy would have a similar apoptotic effect on osteoblasts, leading to osteoporosis by reducing bone formation. MATERIALS AND METHODS Using primary human bone marrow stromal cells (hBMSC) and HS-5 cell line (human bone marrow stromal cell line), we investigated the effects of Hcy on these cells by cell viability assay and analysis of cytoplasmic histone-associated DNA fragments. Caspase activity assay, Western blots, and electrophoresis mobility shift assay (EMSA) were performed to find the mechanism of apoptosis. Intracellular reactive oxygen species (ROS) were measured by spectrometry using dichlorofluorescein diacetate, and cellular total glutathione level was determined by a commercially available kit. N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) were used as tools for investigating the role of ROS and nuclear factor-kappaB (NF-kappaB), respectively. RESULTS Hcy induced apoptosis in primary human bone marrow stromal cells and the HS-5 cell line, and this apoptotic effect was caspase-dependent. In addition, Hcy increased cytochrome c release into the cytosol, and activated caspase-9 and caspase-3, but not caspase-8, indicating that Hcy induces apoptosis via the mitochondria pathway. Hcy increased ROS, and NAC inhibited the apoptotic effect of Hcy. Western blot and EMSA showed that Hcy activated the NF-kappaB pathway. PDTC blocked Hcy-induced caspase-3 activation and apoptosis. CONCLUSION These results suggest that Hcy induces apoptosis via the ROS-mediated mitochondrial pathway and NF-kappaB activation in hBMSCs, and that Hcy may contribute to the development of osteoporosis by reducing bone formation. Antioxidants may have a role in preventing bone loss in individuals with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Duk Jae Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap-Dong, Songpa-Gu, Seoul 138-736, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Koh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, Lee KU, Kim GS. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res 2006; 21:1003-11. [PMID: 16813521 DOI: 10.1359/jbmr.060406] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Hyperhomocystinemia is a modifiable risk factor for osteoporosis and fracture. Physiologic concentrations of Hcy directly activate osteoclast formation and activity through stimulation of p38 MAPK and integrin beta3. The effects of Hcy were mediated by generation of intracellular ROS. INTRODUCTION Hyperhomocysteinemia is a modifiable risk factor for osteoporosis and its related bone fractures. It has been reported that bone resorption and turnover rate were increased in hyperhomocystinemia. Using mouse bone marrow cells, we examined the direct effects of homocysteine (Hcy) on osteoclast formation and activity. MATERIALS AND METHODS Osteoclast formation was determined by TRACP staining and TRACP activity. Intracellular reactive oxygen species (ROS) generation was measured using a fluorescent probe, dichlorodihydrofluorescein diacetate. Intracellular signaling cascades of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-kappaB were measured by Western blotting. Integrin beta3 mRNA levels were measured by RT-PCR. Actin ring formation and bone resorption assays were also performed. RESULTS Physiologic concentrations of Hcy upregulated TRACP+ multinucleated cells and TRACP activity, stimulated actin ring formation, and increased the number of nuclei per cell and the level of expression of integrin beta3 mRNA. In addition, Hcy increased bone resorption and stimulated p38 MAPK activity and intracellular reactive oxygen species (ROS) generation. All of these Hcy-induced changes were blocked by pretreatment with the antioxidant, N-acetyl cysteine. CONCLUSIONS Hcy directly activates osteoclast formation and activity through increased generation of intracellular ROS. These findings suggest that, in individuals with mild to moderate hyperhomocystinemia, increased bone resorption by osteoclasts may contribute to osteoporosis and that an antioxidant may attenuate bone loss in these individuals.
Collapse
Affiliation(s)
- Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kumar A, John L, Alam M, Gupta A, Sharma G, Pillai B, Sengupta S. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast. Biochem J 2006; 396:61-9. [PMID: 16433631 PMCID: PMC1449999 DOI: 10.1042/bj20051411] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular thiols like cysteine, homocysteine and glutathione play a critical role in the regulation of important cellular processes. Alteration of intracellular thiol concentration results in many diseased states; for instance, elevated levels of homocysteine are considered to be an independent risk factor for cardiovascular disease. Yeast has proved to be an excellent model system for studying many human diseases since it carries homologues of nearly 40% of human disease genes and many fundamental pathways are highly conserved between the two organisms. In the present study, we demonstrate that cysteine and homocysteine, but not glutathione, inhibit yeast growth in a concentration-dependent manner. Using deletion strains (str2Delta and str4Delta) we show that cysteine and homocysteine independently inhibit yeast growth. Transcriptional profiling of yeast treated with cysteine and homocysteine revealed that genes coding for antioxidant enzymes like glutathione peroxidase, catalase and superoxide dismutase were down-regulated. Furthermore, transcriptional response to homocysteine did not show any similarity to the response to H2O2. We also failed to detect induction of reactive oxygen species in homocysteine- and cysteine-treated cells, using fluorogenic probes. These results indicate that homocysteine- and cysteine-induced growth defect is not due to the oxidative stress. However, we found an increase in the expression of KAR2 (karyogamy 2) gene, a well-known marker of ER (endoplasmic reticulum) stress and also observed HAC1 cleavage in homocysteine- and cysteinetreated cells, which indicates that homocysteine- and cysteine-mediated growth defect may probably be attributed to ER stress. Transcriptional profiling also revealed that genes involved in one-carbon metabolism, glycolysis and serine biosynthesis were up-regulated on exogenous addition of cysteine and homocysteine, suggesting that cells try to reduce the intracellular concentration of thiols by up-regulating the genes involved in their metabolism.
Collapse
Affiliation(s)
- Arun Kumar
- Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Lijo John
- Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Md. Mahmood Alam
- Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Ankit Gupta
- Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Gayatri Sharma
- Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Beena Pillai
- Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
- Correspondence may be addressed to either of the authors (email or )
| | - Shantanu Sengupta
- Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
- Correspondence may be addressed to either of the authors (email or )
| |
Collapse
|
47
|
Abstract
Osteoporotic fractures in subjects at advanced age constitute a tremendous and growing problem. Established lifestyle risk factors can explain only a modest proportion of the liability to osteoporotic fractures. Bone mineral density (BMD) is considered the best established risk factor for osteoporotic fractures. The importance of genetic factors in the quality of bone is substantial, but no consensus exists yet on the genes that are involved. However, concomitant diseases, balance disorders and lifestyle habits are more important for fractures in elderly subjects. The abundance of common sequence variations, so-called polymorphisms, in the human genome and their high frequency in the population have made them targets to explain variation in the risk. Some genes have been identified that appear to be involved in the regulation of bone mass and in the pathogenesis of osteoporosis. Among these are those coding for the two estrogen receptors (ERalpha and ERbeta), the androgen receptor (AR) and the vitamin D receptor (VDR). In addition, enzymes involved in the biogenesis of estrone and estradiol have attracted attention as well as polymorphisms in the regulatory region of the type I collagen gene, COLIA1, affecting the binding site for the transcription factor Specificity protein 1 (Sp1). Although evidence suggests that the quality of bone is determined to a large extent by genetic factors, research so far has not been able to unequivocally identify genes involved in this matter. Over the last years a large number of studies have pointed to the variability in many genes and their relation with BMD, bone-related symptoms or specific therapies. The findings emphasize the complexity of the genetics of bone mass and bone loss.
Collapse
Affiliation(s)
- Jos H H Thijssen
- Laboratory of Endocrinology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S. Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 2006; 5:1. [PMID: 16430779 PMCID: PMC1395315 DOI: 10.1186/1476-511x-5-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 01/23/2006] [Indexed: 02/07/2023] Open
Abstract
Homocysteine is an independent risk factor for cardiovascular diseases. It is also known to be associated with a variety of complex disorders. While there are a large number of independent studies implicating homocysteine in isolated pathways, the mechanism of homocysteine induced adverse effects are not clear. Homocysteine-induced modulation of gene expression through alteration of methylation status or by hitherto unknown mechanisms is predicted to lead to several pathological conditions either directly or indirectly. In the present manuscript, using literature mining approach, we have identified the genes that are modulated directly or indirectly by an elevated level of homocysteine. These genes were then placed in appropriate pathways in an attempt to understand the molecular basis of homocysteine induced complex disorders and to provide a resource for selection of genes for polymorphism screening and analysis of mutations as well as epigenetic modifications in relation to hyperhomocysteinemia. We have identified 135 genes in 1137 abstracts that either modulate the levels of homocysteine or are modulated by elevated levels of homocysteine. Mapping the genes to their respective pathways revealed that an elevated level of homocysteine leads to the atherosclerosis either by directly affecting lipid metabolism and transport or via oxidative stress and/or Endoplasmic Reticulum (ER) stress. Elevated levels of homocysteine also decreases the bioavailability of nitric oxide and modulates the levels of other metabolites including S-adenosyl methionine and S-adenosyl homocysteine which may result in cardiovascular or neurological disorders. The ER stress emerges as the common pathway that relates to apoptosis, atherosclerosis and neurological disorders and is modulated by levels of homocysteine. The comprehensive network collated has lead to the identification of genes that are modulated by homocysteine indicating that homocysteine exerts its effect not only through modulating the substrate levels for various catalytic processes but also through regulation of expression of genes involved in complex diseases.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | - RD Senthilkumar
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Elayanambi Sundaramoorthy
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Anubha Mahajan
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Amitabh Sharma
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Shantanu Sengupta
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| |
Collapse
|
49
|
Abstract
Gender differences in susceptibility to complex disease such as asthma, diabetes, lupus, autism and major depression, among numerous other disorders, represent one of the hallmarks of non-Mendelian biology. It has been generally accepted that endocrinological differences are involved in the sexual dimorphism of complex disease; however, specific molecular mechanisms of such hormonal effects have not been elucidated yet. This paper will review evidence that sex hormone action may be mediated via gene-specific epigenetic modifications of DNA and histones. The epigenetic modifications can explain sex effects at DNA sequence polymorphisms and haplotypes identified in gender-stratified genetic linkage and association studies. Hormone-induced DNA methylation and histone modification changes at specific gene regulatory regions may increase or reduce the risk of a disease. The epigenetic interpretation of sexual dimorphism fits well into the epigenetic theory of complex disease, which argues for the primary pathogenic role of inherited and/or acquired epigenetic misregulation rather than DNA sequence variation. The new experimental strategies, especially the high throughput microarray-based epigenetic profiling, can be used for testing the epigenetic hypothesis of gender effects in complex diseases.
Collapse
Affiliation(s)
- Zachary Kaminsky
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | | | | |
Collapse
|
50
|
Kumar J, Das SK, Sharma P, Karthikeyan G, Ramakrishnan L, Sengupta S. Homocysteine levels are associated with MTHFR A1298C polymorphism in Indian population. J Hum Genet 2005; 50:655-63. [PMID: 16244782 DOI: 10.1007/s10038-005-0313-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
An elevated level of homocysteine is an independent risk factor for cardiovascular diseases and is associated with other complex disorders. Homocysteine levels can be elevated due to dietary and/or genetic factors. A majority of Indian population have a low level of vitamin B12 (presumably due to vegetarian diet)--a critical nutritional factor, deficiency of which results in hyperhomocysteinemia. Hence, polymorphisms in the genes responsible for homocysteine metabolism can be perceived to have a greater impact in relation to hyperhomocysteinemia in Indian population. For this reason, the effects of diet and/or methylenetetrahydrofolate reductase (MTHFR) polymorphism were assessed in 200 individuals having varying homocysteine levels. Homocysteine levels were significantly elevated in individuals adhering to a vegetarian diet (P = 0.019) or having MTHFR A1298C polymorphism (P = 0.006). The minor allele frequency (MAF) of MTHFR C677T and A1298C was 0.15 and 0.44 respectively in this cohort. Since the MAF of these polymorphisms differed considerably from Caucasian and other Asian populations, frequencies of these polymorphisms were also determined in more than 400 individuals from different ethnic populations, selected from the entire country based on their geographical location and linguistic lineage, and was found to be similar to that of our cohort. The fact that MTHFR A1298C polymorphism is significantly associated with homocysteine levels, and that the CC genotype is present at a higher frequency in the Indian population, makes it extremely relevant in terms of its potential impact on hyperhomocysteinemia.
Collapse
Affiliation(s)
- Jitender Kumar
- Institute of Genomics and Integrative Biology, Mall Road, 110007 Delhi, India
| | | | | | | | | | | |
Collapse
|