1
|
Dietrich-Zagonel F, Alim MA, Beckman LB, Eliasson P. Dexamethasone treatment influences tendon healing through altered resolution and a direct effect on tendon cells. Sci Rep 2024; 14:15304. [PMID: 38961188 PMCID: PMC11222440 DOI: 10.1038/s41598-024-66038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.
Collapse
Affiliation(s)
- Franciele Dietrich-Zagonel
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
| | - Md Abdul Alim
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Leo Bon Beckman
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden.
- Department of Orthopaedics, Sahlgrenska University Hospital, Länsmansgatan 28, 431 80, Mölndal, Sweden.
| |
Collapse
|
2
|
Wang Q, Zhang W, Hu J, Zhao C, Cai L, Kang P. Lithium prevents glucocorticoid‑induced chondrocyte autophagy: An in vitro study. Mol Med Rep 2023; 28:183. [PMID: 37594059 PMCID: PMC10463216 DOI: 10.3892/mmr.2023.13070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Glucocorticoids can induce chondrocyte autophagy. Lithium is a classical regulator of autophagy. The present study aimed to determine whether lithium can prevent glucocorticoid‑induced chondrocyte autophagy by regulating the PI3K/AKT/mTOR signaling pathway. For this purpose, rat and human chondrocytes were treated with dexamethasone (200 µM) or dexamethasone (200 µM) combined with lithium chloride at various concentrations (0.01, 0.1, 1 and 10 mM). CYTO‑ID® autophagy fluorescence staining and transmission electron microscopy were used to detect the levels of autophagy in the chondrocytes. Reverse transcription‑quantitative PCR and western blot analysis were used to measure the expression levels of the autophagy marker, LC3B and the autophagy regulatory signaling pathway (PI3K/AKT/mTOR signaling pathways) markers, AKT and mTOR. The viability of chondrocytes was measured using the Cell Counting Kit‑8 assay. It was found that compared with that in the control group, dexamethasone induced the autophagy of chondrocytes, decreased the expression levels of AKT and mTOR, and reduced cell viability. Compared with the treatment with dexamethasone alone, lithium chloride (10 mM) + dexamethasone reduced the autophagy levels, increased the expression level of AKT and mTOR, and increased cell viability. In conclusion, the present study demonstrated that lithium can prevent glucocorticoid‑induced autophagy by activating the PI3K/AKT/mTOR signaling pathway and preventing the glucocorticoid‑induced decrease in chondrocyte viability.
Collapse
Affiliation(s)
- Qiuru Wang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wanli Zhang
- Public Laboratory Technology Center, West China Hospital, Sichuan University, Chengdu, Sichuan 637000, P.R. China
| | - Jian Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chengcheng Zhao
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lijun Cai
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pengde Kang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
4
|
Chen M, Fu W, Xu H, Liu CJ. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev 2023; 70:54-66. [PMID: 36906448 PMCID: PMC10518688 DOI: 10.1016/j.cytogfr.2023.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Glucocorticoid (GC) is one of the most prescribed medicines to treat various inflammatory and autoimmune diseases. However, high doses and long-term use of GCs lead to multiple adverse effects, particularly glucocorticoid-induced osteoporosis (GIO). Excessive GCs exert detrimental effects on bone cells, including osteoblasts, osteoclasts, and osteocytes, leading to impaired bone formation and resorption. The actions of exogenous GCs are considered to be strongly cell-type and dose dependent. GC excess inhibits the proliferation and differentiation of osteoblasts and enhances the apoptosis of osteoblasts and osteocytes, eventually contributing to reduced bone formation. Effects of GC excess on osteoclasts mainly include enhanced osteoclastogenesis, increased lifespan and number of mature osteoclasts, and diminished osteoclast apoptosis, which result in increased bone resorption. Furthermore, GCs have an impact on the secretion of bone cells, subsequently disturbing the process of osteoblastogenesis and osteoclastogenesis. This review provides timely update and summary of recent discoveries in the field of GIO, with a particular focus on the effects of exogenous GCs on bone cells and the crosstalk among them under GC excess.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Synovial Fluid in Knee Osteoarthritis Extends Proinflammatory Niche for Macrophage Polarization. Cells 2022; 11:cells11244115. [PMID: 36552878 PMCID: PMC9776803 DOI: 10.3390/cells11244115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophage polarization is a steering factor of osteoarthritis (OA) progression. Synovial fluid (SF) obtained from OA patients with different Kellgren-Lawrence grades (KL grades) holds several proinflammatory factors and was hypothesized to induce macrophage differentiation and polarization by providing the needed microenvironment. U937 cells and peripheral-blood-mononuclear-cell-derived monocytes (PBMC-derived CD14+ cells) were induced with SFs of progressive KL grades for 48 h, and the status of the differentiated cells was evaluated by cell surface markers representing M1 and M2 macrophage phenotypes. Functional viability assessment of the differentiated cells was performed by cytokine estimation. The fraction of macrophages and their phenotypes were estimated by immunophenotyping of SF-isolated cells of different KL grades. A grade-wise proteome analysis of SFs was performed in search of the factors which are influential in macrophage differentiation and polarization. In the assay on U937 cells, induction with SF of KL grade III and IV showed a significant increase in M1 type (CD86+). The percentage of M2 phenotype (CD163+) was significantly higher after the induction with SF of KL grade II. A Significantly higher M1/M2 ratio was estimated in the cells induced with KL grade III and IV. The cell differentiation pattern in the assay on PBMC-derived CD14+ cells showed a grade-wise decline in both M1 (CD11C+, CD86+) and M2 phenotype (CD163+). Cytokine estimation specific to M1 (TNF-α, IL-6, IL-1β, IFN-γ) and M2 (IL-4 and IL-10) macrophages corelated with the differentiation pattern in the U937 cell assay, while it did not reveal any significant changes in the PBMC-derived CD14+ cells assay. SF cells' immunophenotyping showed the highest percentage of CD14+ macrophages in KL grade II; CD86+ and CD163+ cells were minimal in all KL grades' SFs. The proteome analysis revealed significantly expressed MIF, CAPG/MCP, osteopontin, and RAS-related RAB proteins in KL grade III and IV samples, which are linked with macrophages' movement, polarization, and migration-behavior. In conclusion, this study demonstrated that SF in OA joints acts as a niche and facilitates M1 phenotype polarization by providing a proinflammatory microenvironment.
Collapse
|
6
|
Zeng R, Ke TC, Ou MT, Duan LL, Li Y, Chen ZJ, Xing ZB, Fu XC, Huang CY, Wang J. Identification of a potential diagnostic signature for postmenopausal osteoporosis via transcriptome analysis. Front Pharmacol 2022; 13:944735. [PMID: 36105211 PMCID: PMC9464864 DOI: 10.3389/fphar.2022.944735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: We aimed to establish the transcriptome diagnostic signature of postmenopausal osteoporosis (PMOP) to identify diagnostic biomarkers and score patient risk to prevent and treat PMOP. Methods: Peripheral blood mononuclear cell (PBMC) expression data from PMOP patients were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the “limma” package. The “WGCNA” package was used for a weighted gene co-expression network analysis to identify the gene modules associated with bone mineral density (BMD). Least absolute shrinkage and selection operator (LASSO) regression was used to construct a diagnostic signature, and its predictive ability was verified in the discovery cohort. The diagnostic values of potential biomarkers were evaluated by receiver operating characteristic curve (ROC) and coefficient analysis. Network pharmacology was used to predict the candidate therapeutic molecules. PBMCs from 14 postmenopausal women with normal BMD and 14 with low BMD were collected, and RNA was extracted for RT-qPCR validation. Results: We screened 2420 differentially expressed genes (DEGs) from the pilot cohort, and WGCNA showed that the blue module was most closely related to BMD. Based on the genes in the blue module, we constructed a diagnostic signature with 15 genes, and its ability to predict the risk of osteoporosis was verified in the discovery cohort. RT-qPCR verified the expression of potential biomarkers and showed a strong correlation with BMD. The functional annotation results of the DEGs showed that the diagnostic signature might affect the occurrence and development of PMOP through multiple biological pathways. In addition, 5 candidate molecules related to diagnostic signatures were screened out. Conclusion: Our diagnostic signature can effectively predict the risk of PMOP, with potential application for clinical decisions and drug candidate selection.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Tian-Cheng Ke
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mao-Ta Ou
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li-Liang Duan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Li
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhi-Jing Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhi-Bin Xing
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Chen Fu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cheng-Yu Huang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Jing Wang,
| |
Collapse
|
7
|
miRNA-Gene Interaction Network Construction Strategy to Discern Promising Traditional Chinese Medicine against Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9093614. [PMID: 35757478 PMCID: PMC9217536 DOI: 10.1155/2022/9093614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Osteoporosis is a widespread bone disease that affects million cases annually. The underlying mechanisms behind the progress of osteoporosis remain enigmatic, which limits detections of biomarkers and therapeutic targets. Hence, this study was aimed at exploring hub molecules to better understand the mechanism of osteoporosis development and discover the traditional Chinese medicine potential drugs for osteoporosis. miRNA and gene expression profiles were downloaded from Gene Expression Omnibus (GEO). Weighted correlation network analysis (WGCNA) was used to identify the key modules for osteoporosis. DIANA Tools was applied to perform pathway enrichment. A miRNA-gene interaction network was constructed, and hub miRNAs and genes were distinguished using Cytoscape software. Receiver operating characteristic (ROC) curves of hub miRNAs and genes were plotted, and correlations with hub genes and osteoporosis-associated factors were evaluated. Potential drugs for osteoporosis in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were screened, and molecular docking models between these drugs and target genes were showed by AutoDock tools. Two hub modules, 1 miRNA module and 1 gene module, were identified to be the most strongly correlated with osteoporosis by using WGCNA. Then, 3 KEGG pathways including focal adhesion, PI3K-Akt signaling pathway, and gap junction were shared pathways enriched with the miRNAs and genes screened out by WGCNA and differential expression analyses. Finally, after constructing a miRNA-gene interaction network, 6 hub miRNAs (hsa-miR-18b-3p, hsa-miR-361-3p, hsa-miR-484, hsa-miR-519e-5p, hsa-miR-940, and hsa-miR-1275) and 6 hub genes (THBS1, IFNAR2, ARHGAP5, TUBB2B, FLNC, and NTF3) were detected. ROC curves showed good performances of miRNAs and genes for osteoporosis. Correlations with hub genes and osteoporosis-associated factors suggested implicational roles of them for osteoporosis. Based on these hub genes, 3 natural compounds (kainic acid, uridine, and quercetin), which were the active ingredients of 192 herbs, were screened out, and a target-compound-herb network was extracted using TCMSP. Molecular docking models of kainic acid-NTF3, uridine-IFNAR2, and quercetin-THBS1 were exhibited with AutoDock tools. Our study sheds light on the pathogenesis of osteoporosis and provides promising therapeutic targets and traditional Chinese medicine drugs for osteoporosis.
Collapse
|
8
|
Omidi M, Ahmad Agha N, Müller A, Feyerabend F, Helmholz H, Willumeit-Römer R, Schlüter H, Luthringer-Feyerabend BJC. Investigation of the impact of magnesium versus titanium implants on protein composition in osteoblast by label free quantification. Metallomics 2021; 12:916-934. [PMID: 32352129 DOI: 10.1039/d0mt00028k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metallic implant biomaterials predominate in orthopaedic surgery. Compared to titanium-based permanent implants, magnesium-based ones offer new possibilities as they possess mechanical properties closer to the ones of bones and they are biodegradable. Furthermore, magnesium is more and more considered to be "bioactive" i.e., able to elicit a specific tissue response or to strengthen the intimate contact between the implant and the osseous tissue. Indeed, several studies demonstrated the overall beneficial effect of magnesium-based materials on bone tissue (in vivo and in vitro). Here, the direct effects of titanium and magnesium on osteoblasts were measured on proteomes levels in order to highlight metal-specific and relevant proteins. Out of 2100 identified proteins, only 10 and 81 differentially regulated proteins, compare to the control, were isolated for titanium and magnesium samples, respectively. Selected ones according to their relationship to bone tissue were further discussed. Most of them were involved in extracellular matrix maturation and remodelling (two having a negative effect on mineralisation). A fine-tuned balanced between osteoblast maturation, differentiation and viability was observed.
Collapse
Affiliation(s)
- M Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - N Ahmad Agha
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - A Müller
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - F Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - H Helmholz
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - R Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - H Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - B J C Luthringer-Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| |
Collapse
|
9
|
Kamalakar A, McKinney JM, Salinas Duron D, Amanso AM, Ballestas SA, Drissi H, Willett NJ, Bhattaram P, García AJ, Wood LB, Goudy SL. JAGGED1 stimulates cranial neural crest cell osteoblast commitment pathways and bone regeneration independent of canonical NOTCH signaling. Bone 2021; 143:115657. [PMID: 32980561 PMCID: PMC9035226 DOI: 10.1016/j.bone.2020.115657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Craniofacial bone loss is a complex clinical problem with limited regenerative solutions. Currently, BMP2 is used as a bone-regenerative therapy in adults, but in pediatric cases of bone loss, it is not FDA-approved due to concerns of life-threatening inflammation and cancer. Development of a bone-regenerative therapy for children will transform our ability to reduce the morbidity associated with current autologous bone grafting techniques. We discovered that JAGGED1 (JAG1) induces cranial neural crest (CNC) cell osteoblast commitment during craniofacial intramembranous ossification, suggesting that exogenous JAG1 delivery is a potential craniofacial bone-regenerative approach. In this study, we found that JAG1 delivery using synthetic hydrogels containing O9-1 cells, a CNC cell line, into critical-sized calvarial defects in C57BL/6 mice provided robust bone-regeneration. Since JAG1 signals through canonical (Hes1/Hey1) and non-canonical (JAK2) NOTCH pathways in CNC cells, we used RNAseq to analyze transcriptional pathways activated in CNC cells treated with JAG1 ± DAPT, a NOTCH-canonical pathway inhibitor. JAG1 upregulated expression of multiple NOTCH canonical pathway genes (Hes1), which were downregulated in the presence of DAPT. JAG1 also induced bone chemokines (Cxcl1), regulators of cytoskeletal organization and cell migration (Rhou), signaling targets (STAT5), promoters of early osteoblast cell proliferation (Prl2c2, Smurf1 and Esrra), and, inhibitors of osteoclasts (Id1). In the presence of DAPT, expression levels of Hes1 and Cxcl1 were decreased, whereas, Prl2c2, Smurf1, Esrra, Rhou and Id1 remain elevated, suggesting that JAG1 induces osteoblast proliferation through these non-canonical genes. Pathway analysis of JAG1 + DAPT-treated CNC cells revealed significant upregulation of multiple non-canonical pathways, including the cell cycle, tubulin pathway, regulators of Runx2 initiation and phosphorylation of STAT5 pathway. In total, our data show that JAG1 upregulates multiple pathways involved in osteogenesis, independent of the NOTCH canonical pathway. Moreover, our findings suggest that JAG1 delivery using a synthetic hydrogel, is a bone-regenerative approach with powerful translational potential.
Collapse
Affiliation(s)
| | - Jay M McKinney
- Wallace H. Coulter Department of Biomedical Engineering, USA; George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | | | | | | | - Hicham Drissi
- Department of Cell Biology, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | - Pallavi Bhattaram
- Department of Cell Biology, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA.
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, USA; George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Steven L Goudy
- Department of Otolaryngology, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
10
|
Wang Y, Dong Y, Wu S, Zhu Q, Li X, Liu S, Huang T, Li H, Ge RS. Acephate interferes with androgen synthesis in rat immature Leydig cells. CHEMOSPHERE 2020; 245:125597. [PMID: 31864041 DOI: 10.1016/j.chemosphere.2019.125597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Acephate is an organophosphate pesticide. It is widely used. However, whether it inhibits androgen synthesis and metabolism remains unclear. In the current study, we investigated the effect of acephate on the inhibition of androgen synthetic and metabolic pathways in rat immature Leydig cells after 3-h culture. Acephate inhibited basal androgen output in a dose-dependent manner with the inhibition starting at 0.5 μM. It significantly inhibited luteinizing hormone and 8-Br-cAMP stimulated androgen output at 50 μM. It significantly inhibited progesterone-mediated androgen output at 50 μM. Further study demonstrated that acephate down-regulated the expression of Hsd3b1 and its protein at ≥ 0.5 μM, Lhcgr at 5 μM and Star at 50 μM. Acephate directly blocked rat testicular HSD3B1 activity at 50 μM. Acephate did not affect other androgen synthetic and metabolic enzyme activities as well as ROS production, proliferation, and apoptosis of immature Leydig cells. In conclusion, acephate targets LHCGR, STAR, and HSD3B1, thus blocking androgen synthesis in rat immature Leydig cells and HSD3B1 is being the most sensitive target of acephate.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Siwen Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Shiwen Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.
| |
Collapse
|
11
|
Schmidt JR, Vogel S, Moeller S, Kalkhof S, Schubert K, von Bergen M, Hempel U. Sulfated hyaluronic acid and dexamethasone possess a synergistic potential in the differentiation of osteoblasts from human bone marrow stromal cells. J Cell Biochem 2019; 120:8706-8722. [PMID: 30485523 DOI: 10.1002/jcb.28158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
The development of novel bioactive biomaterials is urgently needed to meet the needs of an aging population. Both sulfated hyaluronic acid and dexamethasone are candidates for the functionalization of bone grafts, as they have been shown to enhance the differentiation of osteoblasts from bone marrow stromal cells in vitro and in vivo. However, the underlying mechanisms are not fully understood. Furthermore, studies combining different approaches to assess synergistic potentials are rare. In this study, we aim to gain insights into the mode of action of both sulfated hyaluronic acid and dexamethasone by a comprehensive analysis of the cellular fraction, released matrix vesicles, and the extracellular matrix, combining classical biochemical assays with mass spectrometry-based proteomics, supported by novel bioinformatical computations. We found elevated differentiation levels for both treatments, which were further enhanced by a combination of sulfated hyaluronic acid and dexamethasone. Single treatments revealed specific effects on osteogenic differentiation. Dexamethasone activates signalling pathways involved in the differentiation of osteoblasts, for example, CXC-motif chemokine receptor type 4 and mitogen-activated protein kinases. The effects of sulfated hyaluronic acid were predominantly linked to an alteration in the composition of the extracellular matrix, affecting the synthesis, secretion, and/or activity of fibrillary (fibronectin and thrombospondin-2) and nonfibrillary (transglutaminase-2, periostin, and lysyloxidase) extracellular matrix components, including proteases and their inhibitors (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-3). The effects were treatment specific, and less additive or contrary effects were found. Thus, we anticipate that the synergistic action of the treatment-specific effects is the key driver in elevated osteogenesis.
Collapse
Affiliation(s)
- Johannes R Schmidt
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Stefan Kalkhof
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Kristin Schubert
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Martin von Bergen
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Schmidt JR, Geurtzen K, von Bergen M, Schubert K, Knopf F. Glucocorticoid Treatment Leads to Aberrant Ion and Macromolecular Transport in Regenerating Zebrafish Fins. Front Endocrinol (Lausanne) 2019; 10:674. [PMID: 31636606 PMCID: PMC6787175 DOI: 10.3389/fendo.2019.00674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Long-term glucocorticoid administration in patients undergoing immunosuppressive and anti-inflammatory treatment is accompanied by impaired bone formation and increased fracture risk. Furthermore, glucocorticoid treatment can lead to impaired wound healing and altered cell metabolism. Recently, we showed that exposure of zebrafish to the glucocorticoid prednisolone during fin regeneration impacts negatively on the length, bone formation, and osteoblast function of the regenerate. The underlying cellular and molecular mechanisms of impairment, however, remain incompletely understood. In order to further elucidate the anti-regenerative effects of continued glucocorticoid exposure on fin tissues, we performed proteome profiling of fin regenerates undergoing prednisolone treatment, in addition to profiling of homeostatic fin tissue and fins undergoing undisturbed regeneration. By using LC-MS (liquid chromatography-mass spectrometry) we identified more than 6,000 proteins across all tissue samples. In agreement with previous reports, fin amputation induces changes in chromatin structure and extracellular matrix (ECM) composition within the tissue. Notably, prednisolone treatment leads to impaired expression of selected ECM components in the fin regenerate. Moreover, the function of ion transporting ATPases and other proteins involved in macromolecule and vesicular transport mechanisms of the cell appears to be altered by prednisolone treatment. In particular, acidification of membrane-enclosed organelles such as lysosomes is inhibited. Taken together, our data indicate that continued synthetic glucocorticoid exposure in zebrafish deteriorates cellular trafficking processes in the regenerating fin, which interferes with appropriate tissue restoration upon injury.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Karina Geurtzen
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- *Correspondence: Kristin Schubert
| | - Franziska Knopf
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität (TU) Dresden, Dresden, Germany
- Franziska Knopf
| |
Collapse
|
13
|
Parathyroid hormone 1‑34 inhibits senescence in rat nucleus pulposus cells by activating autophagy via the m‑TOR pathway. Mol Med Rep 2018; 18:2681-2688. [PMID: 29956812 PMCID: PMC6102631 DOI: 10.3892/mmr.2018.9229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/20/2018] [Indexed: 11/15/2022] Open
Abstract
Osteoporosis is closely associated with intervertebral disc degeneration. While parathyroid hormone (PTH) 1–34, which is an established drug used to treatosteoporosis, is thought to inhibit the disc degeneration associated with osteoporosis, the precise mechanism involved remains unclear. In the present study, primary Sprague-Dawley rat nucleus pulposus cells (NPCs) were cultured, phenotyped and then treated with dexamethasone (DXM) for 48 h. Cell area analysis and β-galactosidase staining were used to investigate the effect of DXM on the senescence of NPCs. In addition, the protein levels of LC3-II, Beclin-1, P62, p-mTOR and p-p70S6k were determined by western blotting and analyzing the regulatory effect of PTH upon autophagy and the mTOR signaling pathway in cells treated with DXM. Following autophagic inhibition induced by ATG5 siRNA transfection, the regulatory effect of PTH on senescence in NPCs were investigated in addition to the potential role of autophagy. As the concentration of DXM increased, the size of the NPCs was significantly enlarged and the proportion of cells with positive β-galactosidase staining increased significantly (P<0.05). In terms of protein expression, PTH treatment led to an increase in LC3-II and Beclin-1 proteins, a reduction in P62 protein, and inhibited p-mTOR and p-p70S6k protein expression in DXM-treated NPCs (P<0.05). PTH attenuated the effect of DXM according to the cell size and percentage of β-galactosidase-positive cells. However, the inhibition of autophagy via ATG5 siRNA transfection reversed the protective effect of PTH on cell senescence (P<0.05). Collectively, the present findings suggest that PTH may inhibit the senescence of NPCs induced by DXM by activating autophagy via the mTOR pathway.
Collapse
|
14
|
Liu XX, Ye H, Wang P, Zhang Y, Zhang JY. Identification of 14‑3‑3ζ as a potential biomarker in gastric cancer by proteomics‑based analysis. Mol Med Rep 2017; 16:7759-7765. [PMID: 28944820 DOI: 10.3892/mmr.2017.7496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
The identification of tumor biomarkers to support early diagnosis and tumor progression monitoring may potentially reduce the mortality of gastric cancer (GC). The present study aimed to detect novel tumor‑associated antigens from the AGS GC cell line, and to identify their associated autoantibodies in sera from patients with GC by proteomics‑based approaches. Proteins from AGS cell lysates were isolated using two‑dimensional polyacrylamide gel electrophoresis, and western blotting was subsequently performed, to determine autoantibody responses in sera derived from patients with GC and healthy individuals. Positive protein spots were removed from gels stained with Coomassie blue, and were then evaluated by liquid chromatography‑tandem mass spectrometry. Sera from patients with GC produced numerous spots, one of which was identified as 14‑3‑3ζ. Autoantibody frequency to 14‑3‑3ζ was 17.6% (15/85) in patients with GC, which was significantly higher than that in healthy control individuals (2.4%; 2/85; P<0.01). These results suggested that the autoantibody against 14‑3‑3ζ may be a potential serological biomarker for the detection and diagnosis of GC.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hua Ye
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng Wang
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jian-Ying Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital of Zhengzhou University and College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
The osteogenesis-promoting effects of alpha-lipoic acid against glucocorticoid-induced osteoporosis through the NOX4, NF-kappaB, JNK and PI3K/AKT pathways. Sci Rep 2017; 7:3331. [PMID: 28611356 PMCID: PMC5469800 DOI: 10.1038/s41598-017-03187-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/27/2017] [Indexed: 11/08/2022] Open
Abstract
Recently, accumulating evidence has indicated that glucocorticoid-induced osteoporosis (GIOP) is closely related to oxidative stress and apoptosis. Alpha-lipoic acid (LA), a naturally endogenous anti-oxidant, possesses anti-oxidative and anti-apoptosis activities, implicating LA as a therapeutic agent for the treatment of GIOP. In this study, the osteogenesis-promoting effects of LA against GIOP were investigated and the mechanisms were further probed. Here, the results showed that LA inhibited oxidative stress, suppressed apoptosis and improved osteopenia by promoting the expression of osteogenesis markers, including ALP, COL-I, OCN, BMP-2, RUNX2 and OSX. Further study revealed that the osteogenesis-promoting effects of LA likely occur via the regulation of the NOX4, NF-kappaB, JNK and PI3K/AKT pathways. The present study indicated that LA may prevent GIOP and promote osteogenesis and might be a candidate for the treatment of GIOP.
Collapse
|
16
|
Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association study. Sci Rep 2017; 7:45317. [PMID: 28383518 PMCID: PMC5382839 DOI: 10.1038/srep45317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/23/2017] [Indexed: 11/15/2022] Open
Abstract
Skeletal problems in layer chickens are gaining attention due to animal welfare and economic losses in the egg industry. The genetic improvement of bone traits has been proposed as a potential solution to these issues; however, genetic architecture is not well understood. We conducted a genome-wide association study (GWAS) on bone quality using a sample of 1534 hens genotyped with a 600 K Chicken Genotyping Array. Using a linear mixed model approach, a novel locus close to GSG1L, associated with femur bone mineral density (BMD), was uncovered in this study. In addition, nine SNPs in genes were associated with bone quality. Three of these genes, RANKL, ADAMTS and SOST, were known to be associated with osteoporosis in humans, which makes them good candidate genes for osteoporosis in chickens. Genomic partitioning analysis supports the fact that common variants contribute to the variations of bone quality. We have identified several strong candidate genes and genomic regions associated with bone traits measured in end-of-lay cage layers, which accounted for 1.3–7.7% of the phenotypic variance. These SNPs could provide the relevant information to help elucidate which genes affect bone quality in chicken.
Collapse
|
17
|
Filipović D, Costina V, Perić I, Stanisavljević A, Findeisen P. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria. Brain Res 2017; 1659:41-54. [DOI: 10.1016/j.brainres.2017.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
18
|
Xue E, Zhang Y, Song B, Xiao J, Shi Z. Effect of autophagy induced by dexamethasone on senescence in chondrocytes. Mol Med Rep 2016; 14:3037-44. [PMID: 27572674 PMCID: PMC5042789 DOI: 10.3892/mmr.2016.5662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/08/2016] [Indexed: 01/15/2023] Open
Abstract
The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague‑Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein‑red fluorescent protein‑light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway‑associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence‑associated (SA)‑β‑galactosidase (β‑gal) staining. A dose‑dependent increase in the number of autophagic vacuoles was observed in the DXM‑treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose‑dependent increase in autophagosome formation was observed in the DXM‑treated chondrocytes. Expression of LC3‑II and beclin‑1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA‑β‑gal staining indicated that DXM increased cell senescence. Notably, DXM‑induced cell senescence was exacerbated by the autophagic inhibitor 3‑MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM‑induced autophagy.
Collapse
Affiliation(s)
- Enxing Xue
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bing Song
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun Xiao
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhanjun Shi
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
19
|
Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96:409-47. [PMID: 26842265 DOI: 10.1152/physrev.00011.2015] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone.
Collapse
Affiliation(s)
- Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Wittig-Blaich
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mubashir Ahmad
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Carruthers NJ, Parker GC, Gratsch T, Caruso JA, Stemmer PM. Protein Mobility Shifts Contribute to Gel Electrophoresis Liquid Chromatography Analysis. J Biomol Tech 2016; 26:103-12. [PMID: 26229520 DOI: 10.7171/jbt.15-2603-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Profiling of cellular and subcellular proteomes by liquid chromatography with tandem mass spectrometry (MS) after fractionation by SDS-PAGE is referred to as GeLC (gel electrophoresis liquid chromatography)-MS. The GeLC approach decreases complexity within individual MS analyses by size fractionation with SDS-PAGE. SDS-PAGE is considered an excellent fractionation technique for intact proteins because of good resolution for proteins of all sizes, isoelectric points, and hydrophobicities. Additional information derived from the mobility of the intact proteins is available after an SDS-PAGE fractionation, but that information is usually not incorporated into the proteomic analysis. Any chemical or proteolytic modification of a protein that changes the mobility of that protein in the gel can be detected. The ability of SDS-PAGE to resolve proteins with chemical modifications has not been widely utilized within profiling experiments. In this work, we examined the ability of the GeLC-MS approach to help identify proteins that were modified after a small hairpin RNA-dependent knockdown in an experiment using stable isotope labeling by amino acids in cell culture-based quantitation.
Collapse
Affiliation(s)
- Nicholas J Carruthers
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Graham C Parker
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Theresa Gratsch
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Joseph A Caruso
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Paul M Stemmer
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
21
|
Jian Y, Chen Y, Geng C, Liu N, Yang G, Liu J, Li X, Deng H, Chen W. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines. Biomed Rep 2016; 4:723-727. [PMID: 27284413 DOI: 10.3892/br.2016.650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/06/2016] [Indexed: 12/27/2022] Open
Abstract
Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially expressed proteins between the two cell lines were analyzed prior and subsequent to rmhTRAIL administration by a liquid chromatography-tandem mass spectrometry method. The results showed that following TRAIL treatment, 6 apoptosis-related proteins, calpain small subunit 1 (CPNS1), peflin (PEF1), B-cell receptor-associated protein 31 (BAP31), apoptosis-associated speck-like protein containing CARD (ASC), BAG family molecular chaperone regulator 2 (BAG2) and chromobox protein homolog 3 (CBX3), were upregulated in RPMI 8226 cells while no change was identified in the U266 cells. Furthermore, small ubiquitin-related modifier 1 and several other ubiquitin proteasome pathway (UPP)-related proteins expressed higher levels in TRAIL-resistant cells U266 compared to the RPMI-8226 cells prior and subsequent to rmhTRAIL treatment. These results suggested that CPNS1, PEF1, BAP31, ASC, BAG2 and CBX3 were possibly target proteins of rmhTRAIL on RPMI 8226 cells, while UPP may have a vital role in mediating TRAIL-resistance in U266 cells.
Collapse
Affiliation(s)
- Yuan Jian
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yuling Chen
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Chuanying Geng
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Nian Liu
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Guangzhong Yang
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jinwei Liu
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xin Li
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Haiteng Deng
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
22
|
Goodman SB, Hwang KL. Treatment of Secondary Osteonecrosis of the Knee With Local Debridement and Osteoprogenitor Cell Grafting. J Arthroplasty 2015; 30:1892-6. [PMID: 26067706 DOI: 10.1016/j.arth.2015.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 02/01/2023] Open
Abstract
Secondary osteonecrosis of the knee (SOK) affects young individuals with chronic diseases and corticosteroid use. We report a series of young patients in whom the osteonecrotic lesion was openly debrided, and concentrated bone marrow osteoprogenitor cells (OPCs) harvested from the iliac crest were placed in the defect. Twelve patients (fourteen knees) have undergone debridement and grafting of distal femoral osteonecrotic lesions. Age at surgery averaged 23 years. Follow-up averaged 5 years. None of the patients have undergone further surgery, or were taking medications for ipsilateral knee pain. Knee Society Score and Knee Function Score averaged 87 and 85 respectively. The technique of open debridement and osteoprogenitor cell grafting for SOK is relatively simple, efficacious, has low morbidity, and does not preclude future interventions.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Katherine L Hwang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| |
Collapse
|
23
|
Zhu FB, Wang JY, Zhang YL, Quan RF, Yue ZS, Zeng LR, Zheng WJ, Hou Q, Yan SG, Hu YG. Curculigoside regulates proliferation, differentiation, and pro-inflammatory cytokines levels in dexamethasone-induced rat calvarial osteoblasts. Int J Clin Exp Med 2015; 8:12337-12346. [PMID: 26550143 PMCID: PMC4612828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Curculigoside (CCG), one of the main bioactive phenolic compounds isolated from the rhizome of Curculigo orchioides Gaertn., is reported to prevent bone loss in ovariectomized rats. However, the underlying molecular mechanisms are largely unknown. Therefore, we investigated the effects of CCG on proliferation and differentiation of calvarial osteoblasts and discussed the related mechanisms. MATERIALS AND METHODS Osteoblasts were incubated with dexamethasone (DEX) in the absence or presence of CCG concentrations for 24-72 h. Cell proliferation was evaluated by Cell Counting Kit-8 assay. Mitochondria membrane potential (MMP) and reactive oxygen species (ROS) were assessed by flow cytometry. We assessed the anti-inflammatory responses of CCG on DEX-induced osteoblasts by an enzyme-linked immunosorbent assay (ELISA). Relative protein expression of BMP-2, b-catenin, RANKL, OPG and RANK was measured using Western blotting. RESULTS It was found that osteoblasts proliferation decreased significantly after treated with 1 μM of dexamethasone (DEX), compared with untreated osteoblasts and the cytotoxic effect of DEX was reversed remarkably when pretreatment with 25-100 μg/ml of CCG. Pretreatment with 25-100 μg/ml of CCG increased MMP level and decreased ROS production in osteoblasts induced by DEX. In addition, DEX-induced inhibition of differentiation markers such as alkaline phosphatase (ALP), OPG, BMP-2, β-catenin, IGF-1 and M-CSF level, and promotion of differentiation markers such as RANKL and RANK was significantly reversed in the presence of CCG. CCG also reversed DEX-induced production of pro-inflammatory cytokines. CONCLUSIONS These results provide new insights into the osteoblast-protective mechanisms of CCG through inducing proliferation and differentiation and reducing the inflammatory responses, indicating that CCG may be developed as an agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Fang-Bing Zhu
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Jian-Yue Wang
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Ying-Liang Zhang
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Ren-Fu Quan
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Zhen-Shuang Yue
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Lin-Ru Zeng
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Wen-Jie Zheng
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Qiao Hou
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| | - Shi-Gui Yan
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang UniversityChina
| | - Yun-Gen Hu
- Department of Orthopaedic Surgery, Xiaoshan Traditional Chinese Medical HospitalHangzhou 311200, China
| |
Collapse
|
24
|
Shi C, Huang P, Kang H, Hu B, Qi J, Jiang M, Zhou H, Guo L, Deng L. Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling. J Mol Endocrinol 2015; 54:325-37. [PMID: 25878056 DOI: 10.1530/jme-14-0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 11/08/2022]
Abstract
The inhibition of osteoblast proliferation by glucocorticoids (GCs) is very important in the etiology of GC-induced osteoporosis. The mechanisms of this process are still not fully understood. The results of recent studies have indicated an important role for microRNAs in GC-mediated responses in various cellular processes, including cell proliferation and apoptosis. Therefore, we developed the hypothesis that these regulatory molecules might be involved in GC-decreased osteoblast proliferation. Western blotting, quantitative real-time PCR, cell proliferation assays, and luciferase assays were employed to investigate the role of miRNAs in GC-inhibited osteoblast proliferation. microRNA-199a-5p was significantly increased in osteoblasts treated with dexamethasone (Dex). To delineate the role of microRNA-199a-5p, we silenced and overexpressed microRNA-199a-5p in osteoblasts. We found that overexpressing microRNA-199a-5p remarkably increased the inhibition effect of Dex on osteoblast proliferation, and depleting microRNA-199a-5p significantly attenuated Dex-inhibited osteoblast proliferation. Results of mechanistic studies indicated that microRNA-199a-5p inhibited FZD4 and WNT2 expression through a microRNA-199a-5p binding site within the 3'-UTR of FZD4 and WNT2. The post-transcriptional repression of FZD4 and WNT2 were further confirmed by luciferase reporter assay. These results indicated that microRNA-199a-5p may play a significant role in GC-inhibited osteoblast proliferation by regulating the WNT signaling pathway.
Collapse
Affiliation(s)
- Changgui Shi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hui Kang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Bo Hu
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Min Jiang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| |
Collapse
|
25
|
González-Calixto C, Cázares-Raga FE, Cortés-Martínez L, Del Angel RM, Medina-Ramírez F, Mosso C, Ocádiz-Ruiz R, Valenzuela JG, Rodríguez MH, Hernández-Hernández FDLC. AealRACK1 expression and localization in response to stress in C6/36 HT mosquito cells. J Proteomics 2014; 119:45-60. [PMID: 25555378 DOI: 10.1016/j.jprot.2014.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/21/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The Receptor for Activated C Kinase 1 (RACK1), a scaffold protein member of the tryptophan-aspartate (WD) repeat family, folds in a seven-bladed β-propeller structure that permits the association of proteins to form active complexes. Mosquitoes of the genus Aedes sp., are vectors of virus producing important diseases such as: dengue, chikungunya and yellow fever. Based on the highly conserved gene sequence of AeaeRACK1 of the mosquito Aedes aegypti we characterized the mRNA and protein of the homologous AealRACK1 from the Ae. albopictus-derived cell line C6/36 HT. Two protein species differing in MW/pI values were observed at 35kDa/8.0 and 36kDa/6.5. The behavior of AealRACK1 was studied inducing stress with serum deprivation and the glucocorticoid dexamethasone. Both stressors induced increase of the expression of AealRACK1 mRNA and proteins. In serum-deprived cells AealRACK1 protein was located cortically near the plasma membrane in contrast to dexamethasone-treated cells where the protein formed a dotted pattern in the cytoplasm. In addition, 33 protein partners were identified by immunoprecipitation and mass spectrometry. Most of the identified proteins were ribosomal, involved in signaling pathways and stress responses. Our results suggest that AealRACK1 in C6/36 HT cells respond to stress increasing its synthesis and producing phosphorylated activated form. BIOLOGICAL SIGNIFICANCE Insect cells adapt to numerous environmental stressors, including chemicals and invasion of pathogenic microorganisms among others, coordinating cellular and organismal responses. Individual cells sense the environment using receptors that trigger signaling pathways that regulate expression of specific effector proteins and/or cellular responses as movement or secretion. In the coordination of responses to stress, scaffold proteins are pivotal molecules that recruit other proteins forming active complexes. The Receptor for Activated C Kinase 1 (RACK1) is the best studied member of the conserved tryptophan-aspartate (WD) repeat family. RACK1 folds in a seven-bladed β-propeller structure and it could be activated during stress, participating in different signaling pathways. The presence and activities of RACK1 in mosquitoes had not been documented before, in this work the molecule is demonstrated in an Aedes albopictus-derived cell line and its reaction to stress is observed under the effect of serum deprivation and the presence of glucocorticoid analog dexamethasone, a chemical used to cause stress in vitro.
Collapse
Affiliation(s)
- Cecilia González-Calixto
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Rosa María Del Angel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Fernando Medina-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Clemente Mosso
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Ramón Ocádiz-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Jesús G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos, Mexico
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico.
| |
Collapse
|
26
|
Rabilloud T, Lescuyer P. Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential. Proteomics 2014; 15:1051-74. [DOI: 10.1002/pmic.201400288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; CNRS UMR; 5249 Grenoble France
- Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CEA Grenoble; iRTSV/CBM; Grenoble France
| | - Pierre Lescuyer
- Department of Human Protein Sciences; Clinical Proteomics and Chemistry Group; Geneva University; Geneva Switzerland
- Toxicology and Therapeutic Drug Monitoring Laboratory; Department of Genetic and Laboratory Medicine; Geneva University Hospitals; Geneva Switzerland
| |
Collapse
|
27
|
Li H, Li X, Smerin SE, Zhang L, Jia M, Xing G, Su YA, Wen J, Benedek D, Ursano R. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD. Front Neurol 2014; 5:164. [PMID: 25295026 PMCID: PMC4172054 DOI: 10.3389/fneur.2014.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/15/2014] [Indexed: 12/19/2022] Open
Abstract
The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.
Collapse
Affiliation(s)
- He Li
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Xin Li
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center , Washington, DC , USA
| | - Stanley E Smerin
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Lei Zhang
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Min Jia
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Guoqiang Xing
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Yan A Su
- Department of Gene and Protein Biomarkers, GenProMarkers , Rockville, MD , USA
| | - Jillian Wen
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - David Benedek
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Robert Ursano
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
28
|
Overcoming Glucocorticoid Resistances and Improving Antitumor Therapies: Lipid and Polymers Carriers. Pharm Res 2014; 32:968-85. [DOI: 10.1007/s11095-014-1510-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
|
29
|
Leskiewicz M, Jantas D, Regulska M, Kaczanowska J, Basta-Kaim A, Budziszewska B, Kubera M, Lason W. Antidepressants attenuate the dexamethasone-induced decrease in viability and proliferation of human neuroblastoma SH-SY5Y cells: A involvement of extracellular regulated kinase (ERK1/2). Neurochem Int 2013; 63:354-62. [DOI: 10.1016/j.neuint.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 01/01/2023]
|
30
|
Tu Y, Xue H, Francis W, Davies AP, Pallister I, Kanamarlapudi V, Xia Z. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3. Biochem Biophys Res Commun 2013; 441:249-55. [PMID: 24141118 DOI: 10.1016/j.bbrc.2013.10.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as an anabolic effect on chondrocytes through significantly reversing Dex-induced chondrocytes apoptosis. This study may contribute to further investigating the clinical application of LF on OA.
Collapse
Affiliation(s)
- Yihui Tu
- Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi Y, Kawabata H, Murakami S. Analysis of functional xylanases in xylan degradation by Aspergillus niger E-1 and characterization of the GH family 10 xylanase XynVII. SPRINGERPLUS 2013; 2:447. [PMID: 24083101 PMCID: PMC3786065 DOI: 10.1186/2193-1801-2-447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/04/2013] [Indexed: 11/10/2022]
Abstract
Xylanases produced by Aspergillus niger are industrially important and many types of xylanases have been reported. Individual xylanases have been well studied for their enzymatic properties, gene cloning, and heterologous expression. However, less attention has been paid to the relationship between xylanase genes carried on the A. niger genome and xylanases produced by A. niger strains. Therefore, we examined xylanase genes encoded on the genome of A. niger E-1 and xylanases produced in culture. Seven putative xylanase genes, xynI–VII (named in ascending order of the molecular masses of the deduced amino acid sequences), were amplified from the strain E-1 genome using primers designed from the genome sequence of A. niger CBS 513.88 by PCR and phylogenetically classified into three clusters. Additionally, culture supernatant analysis by DE52 anion–exchange column chromatography revealed that this strain produced three xylanases, XynII, XynIII, and XynVII, which were identified by N-terminal amino acid sequencing and MALDI-TOF-MS analyses, in culture when gown in 0.5% xylan medium supplemented with 50 mM succinate. Furthermore, XynVII, the only GH family 10 xylanase in A. niger E-1, was purified and characterized. The purified enzyme showed a single band with a molecular mass of 35 kDa by SDS-PAGE. The highest activity of purified XynVII was observed at 55°C and pH 5.5. The enzyme was stable in the broad pH range of 3–10 and up to 60°C and was resistant to most metal ions and modifying regents. XynVII showed high specificity against beechwood xylan with Km and Vmax values of 2.8 mg mL–1 and 127 μmol min–1mg–1, respectively. TLC and MALDI-TOF-MS analyses showed that the final hydrolyzed products of the enzyme from beechwood xylan were xylose, xylobiose, and xylotriose substituted with a 4-o-metylglucuronic acid residue.
Collapse
Affiliation(s)
- Yui Takahashi
- Department of Agricultural Chemistry, Graduate School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, 214-8571 Japan
| | | | | |
Collapse
|
32
|
Geng CY, Liu N, Yang GZ, Liu AJ, Leng Y, Wang HJ, Li LH, Wu Y, Li YC, Chen WM. Differential protein expression profile between CD20 positive and negative cells of the NCI-H929 cell line. Asian Pac J Cancer Prev 2013; 13:5409-13. [PMID: 23317192 DOI: 10.7314/apjcp.2012.13.11.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
At present, multiple myeloma (MM) remains an incurable disease and cologenic cells may be responsible for disease relapse. It has been proposed that CD20+/CD138- NCI-H929 cells could be hallmarks of MM clonogenic cells. Here, the immunology phenotype of NCI-H929 cells is described. Only a small population of CD20+/CD138- cells (<1%) was found in the NCI-H929 cell line, but CD20+/CD138- cells were not detected. We found that CD20+/CD138+ cells were able to exhibit cologenic capacity by colony formation assay and continuous passage culture. Proteins were analyzed by 1D-SDS-PAGE and TMT based quantitative differential liquid chromatography tandem mass spectrometry (LC-MS/MS). 1,082 non-redundant proteins were identified, 658 of which were differentially expressed with at least a 1.5-fold difference. 205 proteins in CD20+ cells were expressed at higher levels and 453 proteins were at lower levels compared with CD20- cells. Most proteins had catalytic and binding activity and mainly participated in metabolic processes, cell communication and molecular transport. These results proved that there are different biological features and protein expression profile between CD20+ and CD20- cells in the NCI-H929 cell line.
Collapse
Affiliation(s)
- Chuan-Ying Geng
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Liang W, Yang Q, Ren Z, Chen X, Zha D, Singhal PC, Ding G. IQGAP1 mediates angiotensin II-induced apoptosis of podocytes via the ERK1/2 MAPK signaling pathway. Am J Nephrol 2013; 38:430-44. [PMID: 24247724 DOI: 10.1159/000355970] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/23/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS The mechanism underlying angiotensin II (AngII)-promoted podocyte apoptosis has not been established. IQ domain GTPase-activating protein 1 (IQGAP1) is a scaffolding protein of the mitogen-activated protein kinases (MAPK) signaling pathway, and plays a significant role in apoptosis. The present study evaluates the role of IQGAP1 in AngII-induced podocyte apoptosis. METHODS We randomly assigned 36 male Wistar rats to a normal saline-infused group, an AngII-infused group, or a normal control group, and measured podocyte apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and transmission electron microscopic analysis. In addition, we exposed differentiated mouse podocytes to AngII and then assessed apoptosis by flow cytometry and Hoechst-33258 staining. Expression of IQGAP1 was measured by Western blotting, real-time PCR and immunofluorescence assay in vivo and in vitro. IQGAP1 siRNA and MAPK pathway inhibitors were further introduced to investigate the role of IQGAP1 and MAPK signaling in the process. Coimmunoprecipitation was used to evaluate the interaction between ERK1/2 and IQGAP1. RESULTS AngII promoted podocyte apoptosis in vivo and in vitro. IQGAP1 had a linear distribution along the capillary loops of glomeruli in vivo, and was in the cellular membrane and cytoplasm of cultured podocytes. AngII stimulated IQGAP1 expression and increased phosphorylation of P38, JNK, and ERK1/2. Knockdown of IQGAP1 with siRNA prevented AngII-induced apoptosis of podocytes and reduced AngII-induced phosphorylation of ERK1/2, but not that of P38, JNK. This was accompanied by a reduced interaction between ERK1/2 and IQGAP1. CONCLUSION IQGAP1 contributes to AngII-induced apoptosis of podocytes by interacting with the ERK1/2 signaling protein.
Collapse
Affiliation(s)
- Yipeng Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Budni J, Romero A, Molz S, Martín-de-Saavedra M, Egea J, Del Barrio L, Tasca C, Rodrigues A, López M. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid. Neuroscience 2011; 190:346-53. [DOI: 10.1016/j.neuroscience.2011.05.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/19/2011] [Accepted: 05/22/2011] [Indexed: 01/21/2023]
|