1
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as Potential Anti-Osteoporosis Nutraceuticals: Major Sources and Mechanism(s) of Action. J Steroid Biochem Mol Biol 2025:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance elderly quality of life. Osteoporotic fractures are projected to affect one in three women and one in five men over aged 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth, and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ), and an increased risk of spinal fractures after treatment discontinuation. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention. Phytoestrogens, plant metabolites similar to mammalian estrogens, include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast, and prostate cancers), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause, and osteoporosis. The presentreview focuses on the botanical origin,classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP., India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow-226003, UP., India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP., India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP., India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow-226003, UP., India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP., India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP., India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP., India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP., India.
| |
Collapse
|
2
|
Luo J, Jiang P, Xu L. The Impact of Traditional Chinese Medicine Kidney-Tonifying Methods on Osteoporosis or Bone Loss in HR+ Breast Cancer Patients Following Endocrine Therapy. J Clin Densitom 2025; 28:101558. [PMID: 39823980 DOI: 10.1016/j.jocd.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
OBJECTIVE This study aims to systematically assess the therapeutic effects of Traditional Chinese Medicine (TCM) kidney-tonifying methods on osteoporosis in HR+ breast cancer patients after endocrine therapy, and to explore their clinical application value. METHODS This systematic review and meta-analysis adhered to the PRISMA guidelines and aimed to evaluate the impact of TCM kidney-tonifying methods on osteoporosis in HR+ breast cancer patients after endocrine therapy. Literature searches were conducted through October 2024 in databases including CBM, CNKI, Wanfang Data, PubMed, Web of Science, Cochrane Central, VIP, and renowned TCM databases such as TCM Online. Randomized controlled trials reporting lumbar spine bone density, femoral neck bone density, osteocalcin levels, pain VAS scores, and drug safety were included. The Cochrane tool was used for quality assessment, and meta-analysis was performed using RevMan 5.3 and Stata software. RESULTS This meta-analysis included 25 studies, covering 1795 patients. The combined results showed significant improvements in lumbar spine bone density (SMD = 0.98, 95 % CI: 0.52-1.44, P < 0.0001), femoral neck bone density (SMD = 0.73, 95 % CI: 0.35-1.10, P = 0.0001), and osteocalcin levels (SMD = 1.23, 95 % CI: 0.52-1.93, P = 0.0007) in patients treated with TCM kidney-tonifying methods compared to those in the control group. There was also a significant reduction in pain VAS scores (SMD = -1.14, 95 % CI:1.55 to -0.72, P < 0.00001). The safety data indicated no significant adverse reactions associated with the treatment. CONCLUSION TCM kidney-tonifying methods can significantly improve osteoporosis symptoms post-endocrine therapy in HR+ breast cancer patients, enhance bone density, and effectively reduce pain, demonstrating good safety and potential clinical value. Future research should further validate these findings through large-scale, multi-center randomized controlled trials to optimize treatment strategies.
Collapse
Affiliation(s)
- Jie Luo
- Department of Trauma and Orthopedics at the People's Hospital of Hezhou, Guangxi Zhuang Autonomous Region, China.
| | - Peng Jiang
- Department of Trauma and Orthopedics at the People's Hospital of Hezhou, Guangxi Zhuang Autonomous Region, China.
| | - Liming Xu
- Department of Trauma and Orthopedics at the People's Hospital of Hezhou, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Sun X, Lin Y, Zhong X, Fan C, Liu Z, Chen X, Luo Z, Wu J, Tima S, Zhang Z, Jiang J, Du X, Zhou X, Zhong Z. Alendronate-functionalized polymeric micelles target icaritin to bone for mitigating osteoporosis in a rat model. J Control Release 2024; 376:37-51. [PMID: 39368708 DOI: 10.1016/j.jconrel.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Formulating drugs into nanoparticles that target sites of disease can lead to strong therapeutic effects with lower doses of drugs and lower rates of off-target adverse effects. Few ways to target drugs to bone have been described, hampering the treatment of osteoporosis. Here we exploit the ability of alendronate to bind tightly to hydroxyapatite in bone as a tactic to target polymeric micelles loaded with the plant flavonoid icaritin to osteoporotic lesions. The traditional Chinese medicine icaritin, from Herba Epimedii, has previously been shown to inhibit adipogenesis and enhance osteogenesis by bone mesenchymal stem cells, but the compound on its own persists only briefly in the bloodstream. Our delivery system led to stronger inhibition of adipogenesis and activation of osteogenesis in a rat model of osteoporosis than when the icaritin-loaded micelles lacked alendronate. These results establish the feasibility of using alendronate to target osteogenic phytomolecules to sites of bone injury, which may guide the development of effective therapies against osteoporosis and, by extension, other bone disorders.
Collapse
Affiliation(s)
- Xiaoduan Sun
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingyue Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhen Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zaiyi Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jili Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Zhirong Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingjie Du
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| |
Collapse
|
4
|
Du X, Guo S, Mu X, Mei S, Yang R, Zhang H, Jiang C, Zhang J. Bencaosome [16:0 Lyso PA+XLGB28-sRNA] improves osteoporosis by simultaneously promoting osteogenesis and inhibiting osteoclastogenesis in mice. IUBMB Life 2024; 76:832-844. [PMID: 39012196 DOI: 10.1002/iub.2857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 07/17/2024]
Abstract
Osteoporosis (OP) is a systemic metabolic bone disease resulting in reduced bone strength and increased susceptibility to fractures, making it a significant public health and economic problem worldwide. The clinical use of anti-osteoporosis agents is limited because of their serious side effects or the high cost of long-term use. The Xianlinggubao (XLGB) formula is an effective traditional Chinese herbal medicine commonly used in orthopedics to treat osteoporosis; however, its mechanism of action remains unclear. In this study, we screened 40 small RNAs derived from XLGB capsules and found that XLGB28-sRNA targeting TNFSF11 exerted a significant anti-osteoporosis effect in vitro and in vivo by simultaneously promoting osteogenesis and inhibiting osteoclastogenesis. Oral administration of bencaosome [16:0 Lyso PA+XLGB28-sRNA] effectively improved bone mineral density and reduced the damage to the bone microstructure in mice. These results suggest that XLGB28-sRNA may be a novel oligonucleotide drug that promotes osteogenesis and inhibits osteoclastogenesis in mice.
Collapse
Affiliation(s)
- Xinyi Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shaoting Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuemeng Mu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Song Mei
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rui Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hengyan Zhang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jia Zhang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
5
|
Li W, Zhang Z, Li Y, Wu Z, Wang C, Huang Z, Ye B, Jiang X, Yang X, Shi X. Effects of total flavonoids of Rhizoma Drynariae on biochemical indicators of bone metabolism: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1443235. [PMID: 39359242 PMCID: PMC11445651 DOI: 10.3389/fphar.2024.1443235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Evidence shows that the total flavonoids of Rhizoma Drynariae (TFRD) can improve bone mineral density (BMD). However, there is no evidence to summarize the improvement of biochemical indicators of bone metabolism (BIBM). Methods The PubMed, Web of Science, Cochrane Library, Embase, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database, Chongqing VIP Information Database (VIP) and SinoMed were searched from inception to 6 May 2024. The final included studies performed meta-analyses using RevMan 5.3. Results Nine randomized controlled trials (RCTs) were ultimately included. The TFRD group had higher bone gla protein (BGP) and type I procollagen-N-propeptide (PINP) compared to the Other therapies (WMD: 5.11; 95% CI: 3.37, 6.84; p < 0.00001; WMD: 13.89; 95% CI: 11.81, 15.97; p < 0.00001). The tartrate-resistant acid phosphatase (TRACP) decreased significantly (WMD: -1.34; 95% CI: -1.62, -1.06; p < 0.00001). The alkaline phosphatase (ALP) increased significantly (WMD: 7.47; 95% CI: 6.29, 8.66; p < 0.00001). There were no significant differences in serum calcium (SC) or serum phosphorus (SP) levels between the TFRD and control groups (WMD: 0.08; 95% CI: -0.04, 0.20; p = 0.17; WMD: 0.02; 95% CI: -0.02, 0.05; p = 0.36). Conclusion TFRD can stimulate bone formation and prevent bone resorption in osteoporosis (OP) patients, but it has no effect on SC and SP. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Wei Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zechen Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyi Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengjie Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Baisheng Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Yang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolin Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Yan H, Li Z, Zhang Z. Exploring the pharmacological mechanism of Xianlingubao against diabetic osteoporosis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e39138. [PMID: 39093780 PMCID: PMC11296417 DOI: 10.1097/md.0000000000039138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Xianlinggubao formula (XLGB), is a traditional Chinese compound Medicine that has been extensively used in osteoarthritis and aseptic osteonecrosis, but its curative effect on diabetic osteoporosis (DOP) and its pharmacological mechanisms remains not clear. The aim of the present study was to investigate the possible mechanism of drug repurposing of XLGB in DOP therapy. We acquired XLGB active compounds from the traditional Chinese medicine systems pharmacology and traditional Chinese medicines integrated databases and discovered potential targets for these compounds by conducting target fishing using the traditional Chinese medicine systems pharmacology and Swiss Target Prediction databases. Gene Cards and Online Mendelian Inheritance in Man® database were used to identify the DOP targets. Overlapping related targets between XLGB and DOP was selected to build a protein-protein interaction network. Next, the Metascape database was utilized to enrich the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. In addition, Auto-Dock Vina software was used to verify drug and target binding. In total, 48 hub targets were obtained as the candidate targets responsible for DOP therapy. The anti-DOP effect mediated by XLGB was primarily centralized on the advanced glycation end products (AGEs)-receptor for AGE signaling pathway in diabetic complications and osteoclast differentiation. In addition, AKT serine/threonine kinase 1, tumor necrosis factor, Interleukin-6, vascular endothelial growth factor A and peroxisome proliferator activated receptor gamma, which were considered as potential therapeutic targets. Furthermore, molecular docking results confirm the credibility of the predicted therapeutic targets. This study elucidates that XLGB may through regulating AGEs formation and osteoclast differentiation as well as angiogenesis and adipogenesis against DOP. And this study provides new promising points to find the exact regulatory mechanisms of XLGB mediated anti-DOP effect.
Collapse
Affiliation(s)
- Huili Yan
- Department of Clinical Laboratory, Changzhi People’s Hospital, Changzhi, China
| | - Zongying Li
- Department of Clinical Laboratory, Changzhi People’s Hospital, Changzhi, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Park HJ, Kim MG, Yoo YS, Lee B, Choi YJ, Son CG, Lee EJ. Determination of the Combined Effects of Asian Herbal Medicine with Calcium and/or Vitamin D Supplements on Bone Mineral Density in Primary Osteoporosis: A Systematic Review and Meta-Analysis. Osteoporos Int 2024; 35:1-21. [PMID: 38472336 PMCID: PMC11652406 DOI: 10.1007/s00198-024-07061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Our review of 52 RCTs from 5 databases suggests a tendency for notable improvement in BMD when combining herbal medicine with supplements (calcium and vitamin D variants) compared to supplement monotherapy in primary osteoporosis. However, caution is needed in interpreting results due to substantial heterogeneity among included studies. PURPOSE To conduct a systematic review and meta-analysis to determine whether herbal medicine (HM) plus supplements such as calcium (Ca) or vitamin D (Vit.D) improves bone mineral density (BMD) compared to supplements alone in primary osteoporosis (OP) patients. METHODS We searched 5 databases for randomized controlled trials (RCTs) using HMs with supplements (Ca or Vit.D variants) as interventions for primary OP patients published until August 31, 2022. Meta-analysis using BMD score as the primary outcome was performed using RevMan 5.4 version. Risk of bias in the included studies was assessed useing RoB 2.0 tool. RESULTS In total, 52 RCTs involving 4,889 participants (1,408 men, 3,481 women) were included, with average BMD scores of 0.690 ± 0.095 g/cm2 (lumbar) and 0.625 ± 0.090 g/cm2 (femoral neck). As a result of performing meta-analysis using BMD scores for all 52 RCTs included in this review, combination of HMs with Ca and Vit.D variants improved the BMD score by 0.08 g/cm2 (lumbar, 38 RCTs, 95% CI: 0.06-0.10, p < 0.001, I2 = 97%) and 0.06 g/cm2 (femoral neck, 19 RCTs, 95% CI: 0.04-0.08, p < 0.001, I2 = 92%)compared to controls. However, statistical significance of the lumbar BMD improvement disappeared after adjusting for potential publication bias. CONCLUSION Our data suggest that combining of HM and supplements tends to be more effective in improving BMD in primary OP than supplements alone. However, caution is needed in interpretation due to the reporting bias and high heterogeneity among studies, and well-designed RCTs are required in the future.
Collapse
Affiliation(s)
- Hee-Joo Park
- College of Korean Medicine, Daejeon University, 62, Daehak-Ro, Dong-Gu, Daejeon, 34520, Republic of Korea
| | - Min-Gyeong Kim
- College of Korean Medicine, Daejeon University, 62, Daehak-Ro, Dong-Gu, Daejeon, 34520, Republic of Korea
| | - Young-Seo Yoo
- College of Korean Medicine, Daejeon University, 62, Daehak-Ro, Dong-Gu, Daejeon, 34520, Republic of Korea
| | - Boram Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Yu-Jin Choi
- Institute of Bioscience and Integrative Medicine, Daejeon University, 62 Daehak-Ro, Dong-Gu, Daejeon, 34520, Republic of Korea
| | - Chang-Gue Son
- Reseacrch Center for CFS/ME in Daejeon University, 75, Daedukdae-Ro 176, Seo-Gu, Daejeon, 35235, Republic of Korea
| | - Eun-Jung Lee
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, 62, Daehak-Ro, Dong-Gu, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
8
|
Wang L, Huang X, Qin J, Qi B, Sun C, Guo X, Liu Q, Liu Y, Ma Y, Wei X, Zhang Y. The Role of Traditional Chinese Medicines in the Treatment of Osteoporosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:949-986. [PMID: 38879748 DOI: 10.1142/s0192415x24500393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Osteoporosis (OP) represents a substantial public health issue and is associated with increasing rates of morbidity and mortality. It is characterized by reduced bone mineral density, deterioration of bone tissue quality, disruption of the microarchitecture of bones, and compromised bone strength. These changes may be attributed to the following factors: intercellular communication between osteoblasts and osteoclasts; imbalanced bone remodeling; imbalances between osteogenesis and adipogenesis; imbalances in hormonal regulation; angiogenesis; chronic inflammation; oxidative stress; and intestinal microbiota imbalances. Treating a single aspect of the disease is insufficient to address its multifaceted nature. In recent decades, traditional Chinese medicine (TCM) has shown great potential in the treatment of OP, and the therapeutic effects of Chinese patent drugs and Chinese medicinal herbs have been scientifically proven. TCMs, which contain multiple components, can target the diverse pathogeneses of OP through a multitargeted approach. Herbs such as XLGB, JTG, GSB, Yinyanghuo, Gusuibu, Buguzhi, and Nvzhenzi are among the TCMs that can be used to treat OP and have demonstrated promising effects in this context. They exert their therapeutic effects by targeting various pathways involved in bone metabolism. These TCMs balance the activity of osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells), and they exhibit anti-inflammatory, immunomodulatory, anti-oxidative, and estrogen-like functions. These multifaceted mechanisms underlie the efficacy of these herbs in the management and treatment of OP. Herein, we examine the efficacy of various Chinese herbs and Chinese patent drugs in treating OP by reviewing previous clinical trials and basic experiments, and we examine the potential mechanism of these therapies to provide evidence regarding the use of TCM for treating OP.
Collapse
Affiliation(s)
- Liang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xinyi Huang
- School of Public Health, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jinran Qin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Xiangyun Guo
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qingqing Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yichen Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, P. R. China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
- Institute of Orthopaedics of Beijing Integrative Medicine, Beijing 100061, P. R. China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
9
|
Yang F, Su T, Liu Z, Xia F, Yu C, Ma L, Su X. Efficacy of Xianling Gubao capsule vs. its combination therapy in the treatment of primary osteoporosis: A network meta-analysis of randomized controlled trials. Heliyon 2024; 10:e29711. [PMID: 38707332 PMCID: PMC11066608 DOI: 10.1016/j.heliyon.2024.e29711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/04/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This study aimed to evaluate the efficacy of the Xianling Gubao (XLGB) capsule alone and its combination therapy in primary osteoporosis (POP). Methods Databases including PubMed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Data, VIP, and SinoMed were searched from their inception to January 16, 2024, for randomized controlled trials (RCTs) investigating the XLGB treatment for POP. A network meta-analysis (NMA) was performed to evaluate the efficacy and safety of multiple interventions in the treatment of POP. The Cochrane risk-of-bias tool was used to assess the quality of RCTs included in the meta-analysis. Software Stata (version 15.0) was used for statistical analysis. The surface under the cumulative ranking curve (SUCRA) method was used to present the findings from this NMA numerically and graphically by ranking multiple interventions. Results A total of 107 RCTs were included in the meta-analysis, involving 10,032 participants and 21 interventions. Meta-analysis showed that XLGB + calcium (Ca) + calcitonin (99.9 %) was the most desirable treatment option for improving clinical efficacy. XLGB + Ca + bisphosphonate (BP) was most effective for improving bone mineral density (BMD) at the lumbar spine, femoral neck BMD, and serum bone Gla protein (BGP). SUCRA values for improving these three outcome measures by XLGB + Ca + BP were 87.4 %, 77.2 %, and 84.3 %, respectively. XLGB + calcitonin was the optimal option in terms of safety evaluation and improving visual analogue scale (VAS), with the SUCRA values being 89.6 % and 94.9 %, respectively. Conclusions The XLGB combination therapy is a desirable option for treating POP as it can effectively improve the therapeutic effects, BMD, and serum BGP, as well as relieve pain in patients with POP.
Collapse
Affiliation(s)
- Fushuang Yang
- Children's Diagnosis and Treatment Center, The Affiliated Hospital to Changchun University of Chinese Medicine, China
| | - Tianyi Su
- The Second Norman Bethune Hospital of Jilin University, China
| | - Zhenkun Liu
- Department of Gynaecology, The First Clinical Hospital of Jilin Province Academy of Traditional Chinese Medicine, China
| | - Fang Xia
- College of Health Management, Changchun University of Chinese Medicine, China
| | - Cheng Yu
- College of Health Management, Changchun University of Chinese Medicine, China
| | - Li Ma
- College of Health Management, Changchun University of Chinese Medicine, China
| | - Xin Su
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, China
| |
Collapse
|
10
|
Li C, Lin X, Lin Q, Lin Y, Lin H. Jiangu granules ameliorate postmenopausal osteoporosis via rectifying bone homeostasis imbalance: A network pharmacology analysis based on multi-omics validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155137. [PMID: 37856991 DOI: 10.1016/j.phymed.2023.155137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a series of reactions to bone homeostasis dysregulation mediated by estrogen deficiency in elderly women. Jiangu granules, a traditional Chinese medicine formula, has been proven as an effective treatment approach for PMOP, which still needs more research iin its complex regulatory mechanisms. PURPOSE Our study aimed to identify the putative targets and regulatory mechanisms of Jiangu granules in PMOP treating. METHODS We utilized the NHANES database to compare the clinical information of normal population and PMOP patients. Associated with transcriptomics and proteomic data, we identified the PMOP-related genes, and further studied them with bioinformatic methods including and prognosis model. Network pharmacology was applied for confirming the action targets of Jiangu granules in PMOP. We verified the safety and effectiveness in PMOP treatments of Jiangu granules, and also demonstrated our hypothesis in rats. RESULTS We discovered that the PMOP patients had higher monocytes than the normal women. Moreover, the transcriptomics and proteomic analysis suggested that the dysregulation of PMOP-related genes expression was associated with monocytes, and the Notch pathway were the critical targets representing bone homeostasis imbalance highly involved in the occurrence of PMOP. We also ascertained network pharmacology results further revealing that Jiangu granules might treat PMOP via recovering the bone homeostasis imbalance identified above. In vivo experiments, we confirmed the high efficacy which mainly resulted from function in mitigating the imbalance in bone homeostasis by recovering the normal expression of PMOP-related genes associated with monocytes, Notch, and steroid pathway in the rat models. CONCLUSION Our finding underscored the clinical potential of Jiangu granules in treating PMOP, and enriched the comprehension of the related pathogenic and therapeutic mechanisms.
Collapse
Affiliation(s)
- Chaoxiong Li
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qin Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanping Lin
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haiming Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, 1st Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Karimi SM, Bayat M, Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. J Tradit Complement Med 2024; 14:1-18. [PMID: 38223808 PMCID: PMC10785263 DOI: 10.1016/j.jtcme.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 01/16/2024] Open
Abstract
Background Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.
Collapse
Affiliation(s)
- Seyedeh Mahnaz Karimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Kwon DY, Gu JH, Oh M, Lee EJ. Combination effects of herbal and western medicines on osteoporosis in rheumatoid arthritis: systematic review and meta-analysis. Front Pharmacol 2023; 14:1164898. [PMID: 37637429 PMCID: PMC10448903 DOI: 10.3389/fphar.2023.1164898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose: This study aimed to comprehensively review the effect of combining herbal medicine (HM) with Western Medicine (WM) compared to WM alone on bone mineral density (BMD) improvement for osteoporosis in patients with rheumatoid arthritis (RA). Methods: Randomized controlled trials (RCTs) were searched using 10 databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Nation Information by NII. We selected studies that used BMD as an evaluation index and administered HM treatment for osteoporosis in patients with RA. Subsequently, a meta-analysis was conducted using BMD as a continuous variable using RevMan version 5.4. Results: Eighteen RCTs that met the eligibility criteria of this study were selected. The total number of study participants was 1,491 (481 men and 1,010 women). The mean age of participants was 52.4 ± 7.4 years, and the mean morbidity period of RA was 6.8 ± 1.3 years. In all studies, disease-modifying anti-rheumatic drugs (DMARDs; 16 RCTs) or bisphosphonates (two RCTs) were used as WM co-intervention with HMs (17 types of HM, 18 RCTs). Overall, the combination of HM and WM improved the BMD score, producing better results than WM alone. In particular, when HM was used in combination with DMARDs, which were used in most studies, BMD improved by 0.04 g/cm2 (95% confidence interval [CI]: 0.03-0.05, p < 0.001, I2 = 19%) in the lumbar spine and 0.03 g/cm2 (95% CI: 0.02-0.03, p < 0.001, I2 = 0%) in the femoral neck compared to the DMARDs alone group after treatment. In addition to BMD, bone markers and inflammatory indicators evaluated by each RCT showed significant improvement after HM plus WM treatment. In the analysis of frequently prescribed HMs, the BMD after treatment was higher by 0.04 g/cm2 (95% CI: 0.03-0.04, p < 0.001, I2 = 45%) in the Xianlinggubao-capsule plus methotrexate (MTX) group and by 0.02 g/cm2 (95% CI: 0.00-0.03, p = 0.04, I2 = 0) in the Hanbikang-tang plus MTX group compared to the MTX alone group. Conclusion: This systematic review cautiously provides evidence for the combined therapeutic effect of HM and WM for osteoporosis in patients with RA. However, well-designed, large-scale clinical trials are necessary before recommending this combination therapy for osteoporosis in patients with RA. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=331854], identifier [CRD42022331854].
Collapse
Affiliation(s)
| | | | | | - Eun-Jung Lee
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Gupta A, Mehta SK, Kumar A, Singh S. Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review. Crit Rev Biotechnol 2023; 43:142-169. [PMID: 34957903 DOI: 10.1080/07388551.2021.2010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone metabolism constitutes the intricate processes of matrix deposition, mineralization, and resorption. Any imbalance in these processes leads to traumatic bone injuries and serious disease conditions. Therefore, bone remodeling plays a crucial role during the regeneration process maintaining the balance between osteoblastogenesis and osteoclastogenesis. Currently, numerous phytobiologics are emerging as the new therapeutics for the treatment of bone-related complications overcoming the synthetic drug-based side effects. They can either target osteoblasts, osteoclasts, or both through different mechanistic pathways for maintaining the bone remodeling process. Although phytobiologics have been widely used since tradition for the treatment of bone fractures recently, the research is accentuated toward the development of osteogenic phytobioactives, constituent-based drug designing models, and efficacious delivery of the phytobioactives. To achieve this, different plant extracts and successful isolation of their phytoconstituents are critical for osteogenic research. Hence, this review emphasizes the phytobioactives based research specifically enlisting the plants and their constituents used so far as bone therapeutics, their respective isolation procedures, and nanotechnological interventions in bone research. Also, the review enlists the vast array of folklore plants and the newly emerging nano-delivery systems in treating bone injuries as the future scope of research in the phytomedicinal orthopedic applications.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
16
|
He L, Chen C, Duan S, Li Y, Li C, Yao X, Gonzalez FJ, Qin Z, Yao Z. Inhibition of estrogen sulfation by Xian-Ling-Gu-Bao capsule. J Steroid Biochem Mol Biol 2023; 225:106182. [PMID: 36152789 DOI: 10.1016/j.jsbmb.2022.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 02/01/2023]
Abstract
Xian-Ling-Gu-Bao capsule (XLGB) is a widely prescribed traditional Chinese medicine used for the treatment of osteoporosis. However, it significantly elevates levels of serum estrogens. Here we aimed to assess the dominant contributors of sulfotransferase (SULT) enzymes to the sulfation of estrogens and identify the effective inhibitors of this pathway in XLGB. First, estrone, 17β-estradiol, and estriol underwent sulfation in human liver S9 extracts. Phenotyping reactions and enzyme kinetics assays revealed that SULT1A1, 1A2, 1A3, 1C4, 1E1, and 2A1 all participated in estrogen sulfation, with SULT1E1 and 1A1 as the most important contributors. The incubation system for these two active enzymes were optimized with Tris-HCl buffer, DL-Dithiothreitol (DTT), MgCl2, adenosine 3'-phosphate 5'-phosphosulfate (PAPS), protein concentration, and incubation time. Then, 29 compounds in XLGB were selected to investigate their inhibitory effects and mechanisms against SULT1E1 and 1A1 through kinetic modelling. Moreover, in silico molecular docking was used to validate the obtained results. And finally, the prenylated flavonoids (isobavachin, neobavaisoflavone, etc.) from Psoralea corylifolia L., prenylated flavanols (icariside II) from Epimedium brevicornu Maxim., tanshinones (dihydrotanshinone, tanshinone II-A,) from Salvia miltiorrhiza Bge., and others (corylifol A, corylin) were identified as the most potent inhibitors of estrogen sulfation. Taken together, these findings provide insights into the understanding regioselectivity of estrogen sulfation and identify the effective components of XLGB responsible for the promotion of estrogen levels.
Collapse
Affiliation(s)
- Liangliang He
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chanjuan Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shuyi Duan
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of PR China, Jinan University, Guangzhou 510632, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of PR China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Zhang D, Su Y, He Q, Zhang Y, Gu N, Zhang X, Yan K, Yao N, Qian W. Icariin Exerts Estrogen-Like Actions on Proliferation of Osteoblasts in Vitro via Membrane Estrogen Receptors-Mediated Non-nuclear Effects. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127000. [PMID: 36942079 PMCID: PMC10024316 DOI: 10.5812/ijpr-127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Background According to reports, icariin (ICA) is a bone anabolic agent able to prevent osteoporosis in both ovariectomized rats and postmenopausal women. However, its effect on osteoblast proliferation remains to be determined, and the underlying mechanism remains to be elucidated. Methods Icariin-bovine serum albumin (BSA) conjugates were purified by Sephadex G-25 gel chromatography technology. Primary osteoblasts from neonatal rats were used to evaluate the effects of ICA, ICA-BSA, ICA-BSA + ICI182780, and ICA-BSA + PD98059. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and propidium iodide (PI)-staining assays were used to detect the proliferation of osteoblasts after drug exposure. The intracellular calcium ions were detected using a confocal microscope with Fluo-3/AM as the fluorescent indicator. Western blot was capitalized on to measure the relative content of phospho-extracellular signal-regulated kinase (p-ERK). Results Primary osteoblasts in culture were detected by histochemical staining of alkaline phosphatase, and calcified nodules were obtained by sequential digestion. Icariin and bovine serum albumin could form conjugate, which could be purified by Sephadex G-25 gel chromatography technology. MTT and flow cytometry results show that ICA-BSA conjugate significantly facilitated the proliferation of osteoblasts (P < 0.05). The intracellular calcium ions also ascended vastly in the cells treated with ICA-BSA conjugate (P < 0.01). Icariin-bovine serum albumin exposure rapidly activated the extracellular signal-regulated kinase (ERK) signaling. Furthermore, ICA- and ICA-BSA-mediated actions on osteoblasts were signally alleviated after dealing with ERK inhibitor PD98059 or estrogen receptor (ER) antagonist ICI182780, which might have a relation to the repression of ERK phosphorylation. Conclusions Icariin could serve as estrogen in osteoblast cells by the rapid nongenomic ER signaling pathway independent of ligand and estrogen response element (ERE) and mediated by mitogen-activated protein kinase (MAPK).
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Yan Su
- Reproductive Center, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, P.R. China
| | - Qiang He
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Ning Gu
- Department of Cardiovascular Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Kun Yan
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Nianwei Yao
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Corresponding Author: Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China.
| |
Collapse
|
18
|
Qin Z, Xu K, Mo W, Ye J, Xu J. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Clinical Study of Jianyao Migu Granules in the Treatment of Osteopenic Low Back Pain. J Pain Res 2022; 15:2607-2617. [PMID: 36072907 PMCID: PMC9444029 DOI: 10.2147/jpr.s377082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This randomized controlled trial aimed to evaluate the clinical efficacy of Jianyao Migu granules (JYMGG) in the treatment of primary osteopenic low back pain (LBP). Patients and Methods A total of 108 patients with primary osteopenic LBP were randomly divided into the JYMGG group and placebo group. Both groups took 600 mg of oral Caltrate D daily; in addition, the JYMGG group was given oral JYMGG, while the placebo group was given placebo granules. The treatment period was 6 months for both groups. The pre- to post-treatment changes in the bone mineral density (BMD), visual analogue scale (VAS) score, Oswestry disability index (ODI), and bone turnover markers were compared between the two groups. Results The post-treatment VAS score and ODI were significantly lower than baseline in both groups (P<0.05). In the JYMGG group, the lumbar BMD increased from 0.88±0.07 g/cm2 to 0.90±0.13 g/cm2 and the hip BMD increased from 0.77±0.08 g/cm2 to 0.78±0.10 g/cm2, giving increases of 2.70% and 1.96% respectively, but the differences were not statistically significant. The post-treatment levels of ALP, osteocalcin, P1NP, and β-CTX were increased compared with baseline in both groups, but the differences were not statistically significant. The thyrotropin level was significantly increased after treatment in the placebo group (P<0.05). There were no abnormalities detected in routine blood and kidney function tests performed during the observation period. Some patients showed elevated liver enzymes and gastrointestinal reactions. Conclusion JYMGG effectively relieved the bone pain, and improved the quality of life of patients with primary osteopenic LBP.
Collapse
Affiliation(s)
- Zihao Qin
- Orthopedics Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ke Xu
- Orthopedics Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wen Mo
- Orthopedics Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jie Ye
- Orthopedics Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jinhai Xu
- Orthopedics Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Correspondence: Jinhai Xu; Jie Ye, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725, South Wanping Road, Xuhui District, Shanghai, 200030, People’s Republic of China, Tel +86 18016006692; +86 3301880301, Email ;
| |
Collapse
|
19
|
He L, Xu C, Wang Z, Duan S, Xu J, Li C, Yao X, Gonzalez FJ, Qin Z, Yao Z. Identification of naturally occurring inhibitors in Xian-Ling-Gu-Bao capsule against the glucuronidation of estrogens. Front Pharmacol 2022; 13:935685. [PMID: 35991901 PMCID: PMC9386001 DOI: 10.3389/fphar.2022.935685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Xian-Ling-Gu-Bao (XLGB) capsule, a well-known traditional Chinese medicine prescription, is widely used for the treatment of osteoporosis. It could significantly increase the levels of estrogen in ovariectomized rats and mice. However, this working mechanism has not been well elucidated. Considering that UDP-glucuronosyltransferase (UGT) enzymes are the important enzymes that inactivate and regulate estrogen activity in vivo, this study aimed to identify the bioactive compounds from XLGB against the glucuronidation of estrogens. First, thirty compounds were considered as candidate bioactive compounds based on our previous studies including pharmacological evaluation, chemical profiles, and metabolic profiles. Second, the characteristics of estrogen glucuronidation by uridine diphosphate glucuronic acid (UDPGA)-supplemented human liver microsomes (HLM), human intestine microsomes (HIM), and expressed UGT enzymes were determined, and the incubation systems of their key UGT enzymes were optimized. Then, inhibitory effects and mechanisms of XLGB and its main compounds toward the key UGT isozymes were further investigated. As a result, estrogen underwent efficient glucuronidation by HLM and HIM. UGT1A10, 1A1, and 2B7 were mainly responsible for the glucuronidation of estrone, β-estradiol, and estriol, respectively. For E1 and E2, UGT1A10 and 1A1 tended to mediate estrogen-3-O-glucuronidation, while UGT2B7 preferred catalyzing estrogen-16-O-glucuronidation. Furthermore, the incubation system for active UGT isoforms was optimized including Tris-HCl buffer, detergents, MgCl2 concentration, β-glucuronidase inhibitors, UDPGA concentration, protein concentration, and incubation time. Based on optimal incubation conditions, eleven, nine, and nine compounds were identified as the potent inhibitors for UGT1A10, 1A1, and 2B7, respectively (IC50 < 4.97 μM and Ki < 3.35 μM). Among them, six compounds (bavachin, isobavachin, isobavachalcone, neobavaisoflavone, corylifol A, and icariside II) simultaneously demonstrated potent inhibitory effects against these three active enzymes. Prenylated flavanols from Epimedium brevicornu Maxim., prenylated flavonoids from Psoralea corylifolia L., and salvianolic acids from Salvia miltiorrhiza Bge. were characterized as the most important and effective compounds. The identification of potent natural inhibitors of XLGB against the glucuronidation of estrogen laid an important foundation for the pharmacodynamic material basis.
Collapse
Affiliation(s)
- Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chunxia Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziying Wang
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Shuyi Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P.R. China, Jinan University, Guangzhou, China
| | | | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhihong Yao, ; Zifei Qin,
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P.R. China, Jinan University, Guangzhou, China
- *Correspondence: Zhihong Yao, ; Zifei Qin,
| |
Collapse
|
20
|
Peng Z, Xu R, You Q. Role of Traditional Chinese Medicine in Bone Regeneration and Osteoporosis. Front Bioeng Biotechnol 2022; 10:911326. [PMID: 35711635 PMCID: PMC9194098 DOI: 10.3389/fbioe.2022.911326] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
According to World Health Organization (WHO), osteoporosis is a systematic bone disability marked by reduced bone mass and microarchitectural degeneration of osseous cells, which leads to increased bones feebleness and fractures vulnerability. It is a polygenetic, physiological bone deformity that frequently leads to osteoporotic fractures and raises the risk of fractures in minimal trauma. Additionally, the molecular changes that cause osteoporosis are linked to decreased fracture repair and delayed bone regeneration. Bones have the ability to regenerate as part of the healing mechanism after an accident or trauma, including musculoskeletal growth and ongoing remodeling throughout adulthood. The principal treatment approaches for bone loss illnesses, such as osteoporosis, are hormone replacement therapy (HRT) and bisphosphonates. In this review, we searched literature regarding the Traditional Chinese medicines (TCM) in osteoporosis and bone regeneration. The literature results are summarized in this review for osteoporosis and bone regeneration. Traditional Chinese medicines (TCM) have grown in popularity as a result of its success in curing ailments while causing minimal adverse effects. Natural Chinese medicine has already been utilized to cure various types of orthopedic illnesses, notably osteoporosis, bone fractures and rheumatism with great success. TCM is a discipline of conventional remedy that encompasses herbal medication, massage (tui na), acupuncture, food, and exercise (qigong) therapy. It is based on more than 2,500 years of Chinese healthcare profession. This article serves as a comprehensive review summarizing the osteoporosis, bone regeneration and the traditional Chinese medicines used since ancient times for the management of osteoporosis and bone regeneration.
Collapse
|
21
|
Management of Postmenopausal Osteoporosis: ACOG Clinical Practice Guideline No. 2. Obstet Gynecol 2022; 139:698-717. [PMID: 35594133 DOI: 10.1097/aog.0000000000004730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To provide updated evidence-based recommendations for the treatment of postmenopausal osteoporosis. TARGET POPULATION Postmenopausal patients with primary osteoporosis. METHODS This guideline was developed using an a priori protocol in conjunction with a writing team consisting of two specialists in obstetrics and gynecology appointed by the ACOG Committee on Clinical Practice Guidelines-Gynecology and one external subject matter expert. ACOG medical librarians completed a comprehensive literature search for primary literature within Cochrane Library, Cochrane Collaboration Registry of Controlled Trials, EMBASE, PubMed, and MEDLINE. Studies that moved forward to the full-text screening stage were assessed by two authors from the writing team based on standardized inclusion and exclusion criteria. Included studies underwent quality assessment, and a modified GRADE (Grading of Recommendations Assessment, Development, and Evaluation) evidence-to-decision framework was applied to interpret and translate the evidence into recommendation statements. RECOMMENDATIONS This Clinical Practice Guideline includes updated recommendations on who should receive osteoporosis pharmacotherapy, the benefits and risks of available pharmacotherapy options, treatment monitoring and follow-up, and the role of calcium and vitamin D in the management of postmenopausal osteoporosis. Recommendations are classified by strength and evidence quality. Ungraded Good Practice Points are included to provide guidance when a formal recommendation could not be made because of inadequate or nonexistent evidence.
Collapse
|
22
|
Puerarin specifically disrupts osteoclast activation via blocking integrin-β3 Pyk2/Src/Cbl signaling pathway. J Orthop Translat 2022; 33:55-69. [PMID: 35228997 PMCID: PMC8858883 DOI: 10.1016/j.jot.2022.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. Methods In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 cells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. Results Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-β3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. Conclusions Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-β3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. Translational potential of this article These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.
Collapse
|
23
|
Luo MH, Zhao JL, Xu NJ, Xiao X, Feng WX, Li ZP, Zeng LF. Comparative Efficacy of Xianling Gubao Capsules in Improving Bone Mineral Density in Postmenopausal Osteoporosis: A Network Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:839885. [PMID: 35250888 PMCID: PMC8895757 DOI: 10.3389/fendo.2022.839885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The clinical efficacy of Xianling Gubao capsule (XLGB) and its combination therapy in the treatment of postmenopausal osteoporosis (PMOP) was systematically evaluated by frequency-based network meta-analysis. METHODS We searched the China National Knowledge Infrastructure (CNKI), Wanfang, SinoMed, PubMed, Embase and Cochrane Library databases to identify clinical trials of XLGB for the treatment of PMOP from the establishment of each database to November 22, 2021. The quality of the included studies was evaluated by using the risk of bias assessment tool version 2.0 (Rob 2.0) recommended by Cochrane. Stata 14.0 was applied for statistical analysis of the data, and the surface under the cumulative ranking curve (SUCRA) was used to rank the intervention measures of each outcome index. RESULTS This study included 22 clinical trials (including 19 RCTs and 3 non-RCTs) involving 12 drug therapies. According to the results of the network meta-analysis and SUCRA, the best three interventions for improving lumbar bone mineral density (BMD) are XLGB+BP+calcium (83.7%), XLGB+BP (68.5.7%) and XLGB+VD (67.1%). XLGB+calcium was the best combination regimen for improving femoral neck BMD and increasing bone Gla protein (BGP) and alkaline phosphatase (ALP) contents in serum. The SUCRA values of XLGB+calcium for improving the three outcome indicators were 68.0%, 59.5% and 82.1%, respectively. CONCLUSIONS The results of this network meta-analysis show that combined application of XLGB can effectively improve BMD and serum BGP and ALP compared to calcium alone, VD or BP. In the future, multicenter, large-sample and double-blind clinical RCTs should be carried out to supplement and verify the results of this study.
Collapse
Affiliation(s)
- Ming-hui Luo
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-long Zhao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan-jun Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao Xiao
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-xuan Feng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-ping Li
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zi-ping Li, ; Ling-feng Zeng,
| | - Ling-feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zi-ping Li, ; Ling-feng Zeng,
| |
Collapse
|
24
|
Cheng BR, Wu RY, Gao QY, Jiang KX, Li SS, Qi SH, Yuan MY, Liu JP. Chinese Proprietary Medicine Xianling Gubao Capsule for Osteoporosis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front Endocrinol (Lausanne) 2022; 13:870277. [PMID: 35464071 PMCID: PMC9022208 DOI: 10.3389/fendo.2022.870277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To assess the benefit and harm of Chinese medicine Xianling Gubao (XLGB) capsule compared to conventional medication or placebo to inform clinical practice. METHODS We included randomized controlled trials (RCTs) with Jadad score ≥3 of XLGB capsule compared to pharmaceutical medication, placebo, or no treatment for primary osteoporosis. We conducted searches in EMBASE, Cochrane CENTRAL, MEDLINE, China National Knowledge Infrastructure, VIP, Wanfang, and Chinese Biomedical Literature Database (Sino-Med) from their inception till November 13th, 2021. Study selection and data extraction were done by two authors independently. The methodological quality of the RCTs was assessed using Cochrane's risk of bias tool. The effect size was presented as risk ratio (RR) or mean difference (MD) with their 95% confidence interval (CI). RESULTS Our searches identified 2292 records and after exclusions, eight trials involving 846 participants were included. There was no statistically significant difference between conventional medications with or without XLGB on new fracture (RR: 0.50, 95% CI: [0.13, 1.87]). Quality of life by SF-36 questionnaire of XLGB plus calcium carbonate, vitamin D3, and calcitriol was improved than that of without XLGB (MD: 6.72 scores, 95% CI: [2.82, 10.62]). XLGB increased bone mineral density similarly as calcium carbonate plus vitamin D3 (MD: 0.21, 95% CI: [-0.16, 0.58]) or as alendronate sodium, calcium carbonate plus vitamin D3 (MD: 0.00, 95% CI: [-0.10, 0.10]), but it had no additional effect as an add-on treatment to conventional medications (MD: 0.13, 95% CI: [-0.12, 0.37]). XLGB relieved pain via visual analog scale more effectively when combined with medications (MD: -1.55 score, 95% CI: [-2.47, -0.63]). XLGB as monotherapy did not increase adverse events (RR: 0.63, 95% CI: [0.28, 1.41]), or as an add-on treatment (RR: 0.25, 95% CI: [0.03, 2.16]). CONCLUSION This systematic review shows that XLGB capsule appears to be safe and has a beneficial effect on the quality of life and pain relief when used alone or in combination with conventional medications in osteoporosis patients. Further large, rigorous trials are warranted to test its long-term benefit.
Collapse
Affiliation(s)
- Bai-Ru Cheng
- The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Rou-Yan Wu
- The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Qin-Yang Gao
- The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Kai-Xin Jiang
- The Second School of Clinical Medicine (Dongfang Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Shuang-Sang Li
- The Second School of Clinical Medicine (Dongfang Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Shi-Hao Qi
- The Second School of Clinical Medicine (Dongfang Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Yi Yuan
- The Second School of Clinical Medicine (Dongfang Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Ping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jian-Ping Liu,
| |
Collapse
|
25
|
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:777697. [PMID: 34917616 PMCID: PMC8670327 DOI: 10.3389/fcell.2021.777697] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Subin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
26
|
Wang J, Sun Y, Tian X. The Inhibitory Effect of Icariin Nanoparticles on Angiogenesis in Pulmonary Fibrosis. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5429-5435. [PMID: 33980352 DOI: 10.1166/jnn.2021.19316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated icariin (ICA) nanoparticles on angiogenesis in rats with pulmonary fibrosis and its mechanism. First, icariin solid nanoliposomes (ICA-SLN) were prepared. The in vitrorelease of icariin nanoparticles was determined using a UV-Vis spectrophotometer, after which the plasma concentration of icariin nanoparticles in rats was determined. The bioavailability of icariin nanoparticles was investigated, and the effect of icariin on angiogenesis of pulmonary fibrosis rats was re-observed. The results showed that the bioavailability of icariin in vivo was enhanced after nanomodification, which indicated that icariin solid nanoliposome was a good choice for oral sustained-release nanocarrier materials. in vivo experiments showed that icariin could significantly inhibit angiogenesis in rats with pulmonary fibrosis, and the inhibitory effect was related to the dose and time of action. Most importantly, this study provides the possibility of icariin as a targeted agent for future-targeted therapy.
Collapse
Affiliation(s)
- Jiahao Wang
- Linyi Traditional Chinese Medicine Hospital, Liny 276000, Shandong, PR China
| | - Yuying Sun
- Linyi Agriculture and Rural Affairs Bureau, Linyi 276000, Shandong, PR China
| | - Xiangtong Tian
- Linyi Traditional Chinese Medicine Hospital, Liny! 276000, Shandong, PR China
| |
Collapse
|
27
|
Qiu ZC, Tang XY, Wu QC, Tang ZL, Wong MS, Chen JX, Yao XS, Dai Y. A new strategy for discovering effective substances and mechanisms of traditional Chinese medicine based on standardized drug containing plasma and the absorbed ingredients composition, a case study of Xian-Ling-Gu-Bao capsules. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114396. [PMID: 34246738 DOI: 10.1016/j.jep.2021.114396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The overall therapeutic effect of traditional Chinese medicine formulae (TCMF) was achieved by the interactions of multiple components with multiple targets. However, current pharmacology research strategies have struggled to identify effective substance groups and encountered challenges in elucidating the underlying mechanisms of TCMF. AIM In this study, a comprehensive strategy was proposed and applied to elucidate the interactions of the multiple components that underlie the functions of the famous TCMF: Xian-Ling-Gu-Bao (XLGB) capsule on bone metabolism in vivo and to elucidate the molecular mechanisms underlying the effects of XLGB on bone cells, especially on osteoblasts. METHODS The efficacy of XLGB in the protection against bones loss in ovariectomized (OVX) rats was confirmed by Micro-CT analysis. The anti-osteoporosis mechanism involved in the systemic regulatory actions of XLGB was elucidated by transcriptome sequencing analysis on bone marrow mesenchymal stem cells isolated from OVX rats. Moreover, the components absorbed in XLGB-treated plasma were characterized by mass spectrometry analysis, and subsequently, a standardized preparation process of drug-containing plasma was established. The synergistic osteogenic effect of the multiple components in plasma was investigated by a combination and then knockout of components using pre-osteoblast MC3T3-E1 cells. In order to decipher the underlying mechanism of XLGB, the targets of the absorbed components on bone were predicted by target prediction and network pharmacology analysis, then several interactions were validated by biochemical and cell-based assay. RESULTS A total of 18 genes, including HDC, CXCL1/2, TNF, IL6 and Il1b, were newly found to be the major target genes regulated by XLGB. Interestingly, we found that a combination of the three absorbed components, i.e. MSP, rather than their single form at the same concentration, stimulated the formation of calcified nodules in MC3T3-E1 cells, suggesting a synergistic effect of these components. Besides, target prediction and experimental validation confirmed the binding affinity of corylin and icaritin for estrogen receptor α and β, the inhibitory activity of isobavachin and isobavachalcone on glycogen synthase kinase-3β, and the inhibitory activity of isobavachalcone on cathepsin K. The cell-based assay further confirmed the result of the biochemical assay. A network that integrated absorbed components of XLGB-targets-perturbation genes-pathways against osteoporosis was established. CONCLUSION Our current study provides a new systemic strategy for discovering active ingredient groups of TCM formulae and understanding their underlying mechanisms.
Collapse
Affiliation(s)
- Zuo-Cheng Qiu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Qing-Chang Wu
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zi-Ling Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
28
|
Ding Y, Ma H, Xu Y, Yang F, Li Y, Shi F, Lu Y. Potentiation of flutamide-induced hepatotoxicity in mice by Xian-Ling-Gu-Bao through induction of CYP1A2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114299. [PMID: 34090906 DOI: 10.1016/j.jep.2021.114299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xian-Ling-Gu-Bao (XLGB) Fufang is herbal formula widely used to treat osteoporosis and other bone disorders. Because of its commonality in the clinical use, there is a safety concern over the use of XLGB combined with other androgen deprivation therapy (ADT) drugs such as flutamide (FLU) that is associated with reduced bone density. To date, there have been no evaluations on the side effects of the drug-drug interaction between XLGB and FLU. AIM OF THE STUDY The present study was designed to investigate the hepatotoxicity in the context of the combined treatment of XLGB and FLU in a mouse model, and to determine whether the metabolic activation of FLU through induction of CYP1A2 plays a role in the increased hepatoxicity caused by the combination of XLGB and FLU. MATERIALS AND METHODS C57 mice were administered with either XLGB (6,160 mg/kg), FLU (300 mg/kg), or with the combination of the two drugs. Animals were treated with XLGB for 5 days before the combined administration of XLGB and FLU for another 4 days. The serum of mice from single or the combined administration groups was collected for biochemical analysis. The mouse liver was collected to examine liver morphological changes, evaluate liver coefficient, as well as determine the mRNA expression of P450 isozymes (Cyp1a2, Cyp3a11 and Cyp2c37). For metabolism analysis, mice were treated with XLGB, FLU, or the combination of XLGB and FLU for 24 h. The urine samples were collected for the analysis of FLU-NAC conjugate by UPLC-Q-Orbitrap MS. The liver microsomes were prepared from fresh livers to determine the activity of metabolizing enzyme CYP1A2. RESULTS The combined treatment of XLGB and FLU caused loss of mice body weight and elicited significant liver toxicity as evidenced by an increased liver coefficient and serum lactate dehydrogenase (LDH) activity as well as pathological changes of fatty lesion of liver tissue. FLU increased hepatic expression of Cyp1a2 mRNA that was further elevated in the liver of mice when administered with both FLU and XLGB. Treatment of FLU resulted in an increase in the expression of Cyp3a11 mRNA that was negated when mice were co-treated with FLU and XLGB. No significant difference in Cyp2c37 mRNA expression was observed among the different treatment groups as compared to the control. Analysis of metabolic activity showed that the combined administration caused a synergic effect in elevating the activity of the CYP1A2 enzyme. Mass spectrometry analysis identified the presence of FLU reactive metabolite derived FLU-NAC conjugate in the urine of mice treated with FLU. Strikingly, about a two-fold increase of the FLU-NAC conjugate was detected when treated with both FLU and XLGB, indicating an elevated amount of toxic metabolite produced from FLU in the present of XLGB. CONCLUSION FLU and XLGB co-treatment potentiated FLU-induced hepatoxicity. This increased hepatoxicity was mediated through the induction of CYP1A2 activity which in turn enhanced bioactivation of FLU leading to over production of FLU-NAC conjugate and oxidative stress. These results offer warnings about serious side effects of the FLU-XLGB interaction in the clinical practice.
Collapse
Affiliation(s)
- Yannan Ding
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China; Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Honghong Ma
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yasha Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Feng Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
29
|
Chen J, Zheng J, Chen M, Lin S, Lin Z. The Efficacy and Safety of Chinese Herbal Medicine Xianling Gubao Capsule Combined With Alendronate in the Treatment of Primary Osteoporosis: A Systematic Review and Meta-Analysis of 20 Randomized Controlled Trials. Front Pharmacol 2021; 12:695832. [PMID: 34335260 PMCID: PMC8322973 DOI: 10.3389/fphar.2021.695832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Herein, we purposed to evaluate the efficacy along with the safety of Xianling Gubao capsule (XLGB) combined with alendronate (ALE) for primary osteoporosis (POP) from the current literature. Materials and Methods: We carried out a search for electronic literature in the PubMed, Chinese National Knowledge Infrastructure, EMBASE, Wanfang Web of Science, Chinese Biomedical Literature Database, Cochrane Library, as well as Chinese VIP databases targeting articles published from inception to December 2020. Only randomized controlled trials (RCTs) were enrolled into the study. Alkaline phosphatase (ALP), visual analogue scale (VAS), serum phosphorus (S-P), bone gla protein (BGP), serum calcium (S-Ca) and bone mineral density (BMD) were the primary outcome variable. The total clinical effective rate along with the adverse drug reaction (ADR) were the secondary outcome variables. The meta-analysis was conducted using RevMan 5.3 and STATA 12.0. GRADE pro3.6.1 software was used for the assessment of evidence quality. Results: Overall, 20 RCTs focusing on 1911 patients were enrolled into the study. Our meta-analysis demonstrated that XLGB combined with ALE remarkably increased BMD (p < 0.001), BGP (p < 0.001), S-Ca (p < 0.001), S-P (p < 0.001) and effective rate (p < 0.001) than ALE alone in patients with POP. Moreover, ALP (p < 0.001) and VAS (p < 0.001) were overtly by decreased XLGB. However, XLGB combined with ALE would not markedly increase the rate of ADR in contrast with ALE alone (p = 0.499). Conclusion: The results of our study demonstrated that XLGB is a potential candidate for OP treatment. We recommend that rigorous, as well as high-quality trials involving large samples sizes should be conducted to confirm our findings.
Collapse
Affiliation(s)
- Jiaru Chen
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, China
| | - Junju Zheng
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, China
| | - Mangmang Chen
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, China
| | - Shenglei Lin
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, China
| | - Zhou Lin
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
30
|
Tang XY, Gao MX, Xiao HH, Dai ZQ, Yao ZH, Dai Y, Yao XS. Effects of Xian-Ling-Gu-Bao capsule on the gut microbiota in ovariectomized rats: Metabolism and modulation. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122771. [PMID: 34058528 DOI: 10.1016/j.jchromb.2021.122771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/27/2020] [Accepted: 05/11/2021] [Indexed: 01/28/2023]
Abstract
Xian-Ling-Gu-Bao capsule (XLGB) has been proven to prevent and treat osteoporosis. However, as a long-term oral formula, XLGB's effects on the metabolic capacity, structure and function of gut microbiota have yet to be elucidated in ovariectomized (OVX) rats. Our objectives were to evaluate the capacity of gut microbiota for metabolizing XLGB ingredients and to assess the effect of this prescription on gut microbiota. Herein, an integrated analysis that combined ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultrahigh-performance liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-TQD-MS) was conducted to determine the metabolic capacity of gut microbiota. The effects of XLGB on gut microbiota were explored by metagenomic sequencing in OVX rats. Fecal samples from each group were collected after intragastric administration for three months. In total, 64 biotransformation products were fully characterized with rat gut microbiota from the OVX group and the XLGB group. The deglycosylation reaction was the main biotransformation pathway in core structures in the group that was incubated with XLGB. Compared with the OVX group, different biotransformation products and pathways of the XLGB group after incubation for 2 h and 8 h were described. After three months of feeding with XLGB, the domesticated gut microbiota was conducive to the production of active absorbed components via deglycosylation, such as icaritin, psoralen and isopsoralen. Comparisons of the gut microbiota of the OVX and XLGB groups showed differences in the relative abundances of the two dominant bacterial divisions, namely, Firmicutes and Bacteroidetes. The proportion of Firmicutes was significantly lower and that of Bacteroidetes was significantly higher in the XLGB group. This result demonstrated that XLGB could provide a basis for the treatment of osteoporosis by regulating lipid and bile acid metabolism. In addition, the increase in Lactobacillus, Bacteroides and Prevotella could be an important factor that led to easier production of active absorbed aglycones in the XLGB group. Our observation provided further evidence of the importance of gut microbiota in the metabolism and potential activity of XLGB.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Meng-Xue Gao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
31
|
Network Pharmacology-Based Systematic Analysis of Molecular Mechanisms of Dingji Fumai Decoction for Ventricular Arrhythmia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5535480. [PMID: 34046076 PMCID: PMC8128550 DOI: 10.1155/2021/5535480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022]
Abstract
Background Dingji Fumai Decoction (DFD), a traditional herbal mixture, has been widely used to ventricular arrhythmia (VA) in clinical practice in China. However, research on the bioactive components and underlying mechanisms of DFD in VA is still scarce. Methods Components of DFD were collected from TCMSP, ETCM, and literature. The chemical structures of each component were obtained from PubChem. Next, SwissADME and SwissTargetPrediction were applied for compounds screening and targets prediction of DFD; meanwhile, targets of VA were collected from DrugBank and Online Mendelian Inheritance in Man (OMIM). Then, the H-C-T-D network and the protein-protein interaction (PPI) network were constructed based on the data obtained above. CytoNCA was utilized to filter hub genes and VarElect was used to analyze the relationship between genes and diseases. At last, Metascape was employed for systematic analysis on the potential targets of herbals against VA, and AutoDock was applied for molecular docking to verify the results. Results A total of 434 components were collected, 168 of which were qualified, and there were 28 shared targets between DFD and VA. Three function modules of DFD were found from the PPI network. Further systematic analysis of shared genes and function modules explained the potential mechanism of DFD in the treatment of VA; molecular docking has verified the interactions. Conclusions DFD could be employed for VA through mechanisms, including complex interactions between related components and targets, as predicted by network pharmacology and molecular docking. This work confirmed that DFD could apply to the treatment of VA and promoted the explanation of DFD for VA in the molecular mechanisms.
Collapse
|
32
|
Xu YH, Sun YC, Liu J, Li HX, Huang CY, Pang YY, Wu T, Hu X. Serum Pharmacochemistry Analysis Combined with Network Pharmacology Approach to Investigate the Antiosteoporosis Effect of Xianlinggubao Capsule in vivo. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1726301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractXianlinggubao capsule (XLGB) is a traditional Chinese medicine multi-component herbal prescription and has been widely used in osteoporosis (OP) treatment. However, the underlying anti-OP mechanisms of XLGB have not been fully studied. In this study, an ovariectomized rat model of OP was established. The OP rats were orally administrated with XLGB, and then the main absorbed components in serum sample were assessed based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). Subsequently, the potential anti-OP markers in XLGB were screened based on a network pharmacology strategy. Molecular docking analysis was used for confirmation. LC-MS showed 22 absorbed components in the serum sample of OP rat with XLGB treatment. Network pharmacology and pathway analysis suggested 19 potential anti-OP markers in XLGB. According to molecular docking process, most of the potential markers displayed strong interactions with the 22 absorbed components mentioned above. Besides, an absorbed component–potential marker–pathway network was further established. In conclusion, our data suggested the possible mechanisms for XLGB in OP treatment, in which the “multicomponents, multitargets, and multipathways” participated. Our article provided possible direction for drug discovery in OP and could help for exploring novel application of XLGB in clinical setting.
Collapse
Affiliation(s)
- Yun-Hui Xu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yi-Chun Sun
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
- Guangdong Efong Pharmaceutical Co., Ltd, Guangzhou, People's Republic of China
| | - Jie Liu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Hui-Xin Li
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
| | - Chun-Yue Huang
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yuan-Yuan Pang
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
| | - Tong Wu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Xiao Hu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
| |
Collapse
|
33
|
Tang XY, Dai ZQ, Shi DF, Zeng JX, Wang XL, Li L, Yao XS, Dai Y. An UHPLC-MS/MS method for simultaneous determination of ten sex steroid hormones in ovariectomy-induced osteoporosis rat and its application in discovery of sex steroid hormones regulatory components of Xian-Ling-Gu-Bao capsule. J Pharm Biomed Anal 2021; 195:113888. [PMID: 33418443 DOI: 10.1016/j.jpba.2020.113888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
Sex steroid hormones could directly affect the bone metabolism by regulating cell physiological functions. In female, it inevitably causes the abnormal levels of sex steroid hormones at post-menopause in vivo. Ovariectomized rats and mice are classic animal models of osteoporosis to better understand the action mechanism of anti-osteoporosis drugs. However, it is not clear whether Xian-Ling-Gu-Bao capsule (XLGB), a kidney-tonifying traditional Chinese medicine prescription, treat osteoporosis via regulating multiple sex steroid hormones. In the present study, a reliable method involving ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/TQ-XS-MS) was developed for simultaneous quantitative analysis of ten sex steroid hormones (three estrogens, five androgens and two progestogens) in rat and mouse serum. The results of methodology were acceptable. The validated method was then successfully applied in the determination of the levels of sex steroid hormones in ovariectomy-induced osteoporosis rats, as well as drug (17β-estradiol and XLGB) intervened rats. As a result, XLGB could not only significantly increase the level of 17β-estradiol, but also improve the levels of progesterone, 17α-hydroxyprogesterone and androstenedione. Combined with molecular docking results and pharmacokinetic parameters, psoralen, isopsoralen and sweroside were considered as the key effective components of XLGB to activate adenylyl cyclase on promoting the biosynthesis of multiple sex steroid hormones. It is the first time to evaluate the regulatory effect of kidney-tonifying traditional Chinese medicine prescription on the levels of steroids in ovariectomy-induced osteoporosis rat, as well as the potential substance basis and mechanism of steroid hormone regulation.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Dan-Feng Shi
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Jia-Xing Zeng
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Xin-Luan Wang
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, PR China
| | - Ling Li
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, PR China
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
34
|
The Efficacy and Safety of Traditional Chinese Medicine Tonifying-Shen (Kidney) Principle for Primary Osteoporosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5687421. [PMID: 33082825 PMCID: PMC7559232 DOI: 10.1155/2020/5687421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Objective This study aimed to appraise the efficacy and safety of the tonifying-Shen (kidney) principle (TS (TK) principle) for primary osteoporosis (POP). Methods Randomized controlled clinical trials (RCTs) using the TS (TK) principle for POP were searched from eight electronic databases to search for relevant literature that was published from the initiation to September 2019. Two reviewers performed study selection, data extraction, data synthesis, and quality assessment independently. Review Manager 5.3 software was used to assess the risk of bias and conduct the data synthesis. We assessed the quality of evidence for outcomes by using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results Thirty-six studies with 3617 participants were included. Meta-analysis showed a consistently superior effect of the TS (TK) principle combined with conventional Western medicine (CWM) in terms of total effectiveness rates (RR = 1.28; 95% CI (1.23, 1.33); P < 0.00001), BMD of the lumbar spine (SMD = 0.71; 95% CI (0.47, 0.95); P < 0.00001) and proximal femur (SMD = 0.94; 95% CI (0.49, 1.38); P < 0.00001), TCM symptom integral (SMD = −1.23; 95% CI (−1.43, −1.02); P < 0.00001), and VAS scores (SMD = −3.88; 95% CI (−5.29, −2.46); P < 0.00001), when compared to using CWM alone and with significant differences. Besides, in respect of adverse effects, it showed no significant statistical difference between the experimental and control groups, RR = 0.99 and 95% CI (0.65, 1.51), P=0.97. Conclusion Our meta-analysis provides promising evidence to suggest that using the TS (TK) principle combined with CWM for POP is more effective than using CWM alone. Also, both of them are safe and reliable for POP.
Collapse
|
35
|
Li J, Sun K, Qi B, Feng G, Wang W, Sun Q, Zheng C, Wei X, Jia Y. An evaluation of the effects and safety of Zuogui pill for treating osteoporosis: Current evidence for an ancient Chinese herbal formula. Phytother Res 2020; 35:1754-1767. [PMID: 33089589 PMCID: PMC8246738 DOI: 10.1002/ptr.6908] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/29/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
The aim of this study is to systematically evaluate existing evidence of the Chinese herbal formula, Zuogui pill (ZGP), for the treatment of osteoporosis. A systematic literature search was performed in six electronic databases. The authors independently extracted data in pairs and evaluated the risk of bias. A total of 221 articles were identified initially, of which 12 relevant studies were enrolled. The primary outcome was fracture incidence and bone mineral density (BMD) at different sites. Bone metabolism markers, clinical symptoms, quality of life, and adverse events or adverse drug reactions (ADRs) were secondary outcomes. The results showed that ZGP, combined with anti‐osteoporosis drugs, significantly increased BMD at the lumbar spine, Ward's area, and total hip. In terms of markers for improved bone metabolism, ZGP plus conventional drugs dramatically improved the levels of alkaline phosphatase, bone Gla protein, bone alkaline phosphatase, and tartrate‐resistant acid phosphatase. Gastrointestinal discomfort, dizziness, and fatigue were found in the combined therapy group. Although the results indicate that ZGP is a potential candidate for osteoporosis, evidence remains insufficient. Further rigorously designed and high‐quality trials with a larger sample size are warranted to verify the current conclusions.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Orthopaedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Sun
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guiyu Feng
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Sun
- Department of Orthopaedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chengying Zheng
- Department of Orthopaedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wei
- Department of Scientific Research, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yusong Jia
- Department of Orthopaedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Zhang Z, Huang C, Jiang Q, Zheng Y, Liu Y, Liu S, Chen Y, Mei Y, Ding C, Chen M, Gu X, Xing D, Gao M, He L, Ye Z, Wu L, Xu J, Yang P, Zhang X, Zhang Y, Chen J, Lin J, Zhao L, Li M, Yang W, Zhou Y, Jiang Q, Chu CQ, Chen Y, Zhang W, Tsai WC, Lei G, He D, Liu W, Fang Y, Wu D, Lin J, Wei CC, Lin HY, Zeng X. Guidelines for the diagnosis and treatment of osteoarthritis in China (2019 edition). ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1213. [PMID: 33178745 PMCID: PMC7607097 DOI: 10.21037/atm-20-4665] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease of middle-aged and elderly people, contributed a higher burden of disease in China and the world. In 2017, under the support of the Rheumatology and Immunology Expert Committee of the Cross-Strait Medical and Health Exchange Association. The objective was to develop an evidence-based diagnosis and treatment guideline for OA in China based on emerging new evidence. The guideline was registered at International Practice Guidelines Registry Platform (IPGRP-2018CN028). The grading of recommendations assessment, development and evaluation (GRADE) approach was used to rate the quality of evidence and the strength of recommendations, and the RIGHT (Reporting Items for Practice Guidelines in Healthcare) checklist was followed to report the guideline. The guideline provides recommendations for the OA diagnosis, disease risks monitoring and evaluate, treatment purpose and physical, medical and surgical interventions. This guideline is intended to serve as a tool for Chinese clinicians for the best decisions-making on diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cibo Huang
- Department of Rheumatology and Immunology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Jiang
- Department of Rheumatism, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zheng
- Department of Rheumatology, Beijing Chaoyang Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyun Liu
- Department of Rheumatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjuan Chen
- Department of Rheumatology and Immunology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifang Mei
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xin Gu
- Department of Rehabilitaion Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Dan Xing
- Department of Orthopaedics, Peking University People's Hospital, Beijing, China
| | - Min Gao
- Department of Rheumatology and Immunology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lan He
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, the People's Hospital of the Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianhua Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pinting Yang
- Department of Rheumatic Immunology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuewu Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yue Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Chen
- Department of Rheumatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Like Zhao
- Department of Rheumatology and Immunology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yixin Zhou
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, USA
| | - Yaolong Chen
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou, China
| | - Weiya Zhang
- Academic Rheumatology, Clinical Sciences Building, University of Nottingham, City Hospital, Nottingham, UK
| | - Wei-Chung Tsai
- Department of Internal Medicine, Kaohsiung Medical College, Kaohsiung
| | - Guanghua Lei
- Department of Orthopedic, Xiangya Hospital, Central South University, Changsha, China
| | - Dongyi He
- Department of Arthrology, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Wei Liu
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongfei Fang
- Department of Rheumatology and Immunology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Darong Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhao Lin
- Department of Orthopedics, Peking University People's Hospital, Beijing, China
| | - Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chung Shan Medical University Hospital, Taichung
| | - Hsiao-Yi Lin
- Veterans General Hospital, Taipei and National Yang-Ming Medical University, Taipei
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Bao H, Guo H, Feng Z, Li X. Deciphering the underlying mechanism of Xianlinggubao capsule against osteoporosis by network pharmacology. BMC Complement Med Ther 2020; 20:208. [PMID: 32620113 PMCID: PMC7333287 DOI: 10.1186/s12906-020-03007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Xianlinggubao formula (XLGB), a Chinese State Food and Drug Administration-permitted traditional Chinese herbal medicine, has been extensively used to treat osteoporosis. Although XLGB was shown to improve bone mass in ovariectomized rats and clinically alleviate osteoporosis symptoms, its pharmacological mechanisms remain unclear. Methods In this study, we used a network pharmacological approach to explore the potential mechanism of XLGB in treating osteoporosis. We obtained XLGB compounds from the TCMSP and TCMID databases and identified potential targets of these compounds through target fishing based on the TCMSP and Swiss Target Prediction databases. Next, we identified the osteoporosis targets by using the CTD, TTD, GeneCards, OMIM and PharmGKB databases. Then, the overlapping genes between the XLGB potential targets and the osteoporosis targets were used to establish a protein-protein interaction (PPI) network and to analyze their interactions and identify the major hub genes in this network. Subsequently, the Metascape database was utilized to conduct the enrichment of Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results There were 104 active compounds and 295 related targets identified overall. After the Metascape enrichment analysis, we identified the top 25 cellular biological processes and top 15 pathways based on the logP value and found that the XLGB-mediated anti-osteoporosis effect was mainly associated with reactive oxygen species, organonitrogen compound response and cell migration. Furthermore, 36 hub genes of XLGB, such as EGF, EGFR, MTOR, MAPK14 and NFKB1, were considered potential therapeutic targets, suggesting the underlying mechanisms of XLGB acting on osteoporosis. Conclusion We investigated the possible therapeutic mechanisms of XLGB from a systemic perspective. These key targets and pathways provide promising directions for future research to reveal the exact regulatory mechanisms of XLGB.
Collapse
Affiliation(s)
- Hangsheng Bao
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Huizhi Guo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zongquan Feng
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Xin Li
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
38
|
Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes. Biomolecules 2020; 10:biom10060932. [PMID: 32575510 PMCID: PMC7356262 DOI: 10.3390/biom10060932] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
In osteoarthritis (OA), inhibition of excessively expressed pro-inflammatory cytokines in the OA joint and increasing the anabolism for cartilage regeneration are necessary. In this ex-vivo study, we used an inflammatory model of human OA chondrocytes microtissues, consisting of treatment with cytokines (interleukin 1β (IL-1β)/tumor necrosis factor α (TNF-α)) with or without supplementation of six herbal compounds with previously identified chondroprotective effect. The compounds were assessed for their capacity to modulate the key catabolic and anabolic factors using several molecular analyses. We selectively investigated the mechanism of action of the two most potent compounds Vanillic acid (VA) and Epimedin C (Epi C). After identification of the anti-inflammatory and anabolic properties of VA and Epi C, the Ingenuity Pathway Analysis showed that in both treatment groups, osteoarthritic signaling pathways were inhibited. In the treatment group with VA, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was inhibited by attenuation of the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα) phosphorylation. Epi C showed a significant anabolic effect by increasing the expression of collagenous and non-collagenous matrix proteins. In conclusion, VA, through inhibition of phosphorylation in NF-κB signaling pathway and Epi C, by increasing the expression of extracellular matrix components, showed significant anti-inflammatory and anabolic properties and might be potentially used in combination to treat or prevent joint OA.
Collapse
|
39
|
Tang XY, Gao MX, Xiao HH, Yun WJ, Dai Y, Yao ZH, Wong MS, Yao XS. Simultaneous Quantitative Analysis of Multiple Biotransformation Products of Xian-Ling-Gu-Bao, a Traditional Chinese Medicine Prescription, with Rat Intestinal Microflora by Ultra-Performance Liquid Chromatography Tandem Triple Quadrupole Mass Spectrometry. J Chromatogr Sci 2020; 58:494-503. [PMID: 32236407 DOI: 10.1093/chromsci/bmaa012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/11/2019] [Accepted: 02/25/2020] [Indexed: 11/15/2022]
Abstract
Abstract
Xian-Ling-Gu-Bao (XLGB), a famous traditional Chinese medicine prescription consisted of six herbal medicines, was used for prevention and treatment of osteoporosis in China. As an oral formulation, the multiple components contained in XLGB were inevitably biotransformed by the intestinal microflora before absorption via the gastrointestinal tract. However, the dynamic profiles of biotransformation products of XLGB remain unknown. In this paper, a rapid and sensitive ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry method was developed for the simultaneous quantitative analysis of multiple biotransformation products of XLGB with rat intestinal microflora. For 10 selected quantitative compounds, all calibration curves revealed good linearity (r2 > 0.99) within the sampling ranges considered. The whole intra- and inter-day precisions (as relative standard deviation) of all analytes were <13.5%, and the accuracies (as relative error) were in the range from −11.3 to 11.2%. The lower limits of quantification were 20, 10, 5, 20, 2, 2, 2, 5, 2 and 2 ng/mL for sweroside, timosaponin BII, epimedin C, asperosaponin VI, psoralen, isobavachin, icariside II, timosaponin AIII, isobavachalcone and icaritin, respectively. The matrix effects, extraction recoveries and stabilities were all satisfactory. Meanwhile, dynamic profiles of 21 additional biotransformation products were also monitored by their area-time curves. The analytical method was successfully applied to describe dynamic profiles of 31 biotransformation products of XLGB and the recipes with removal of a definite composed herbal medicine (Anemarrhenae Rhizoma or Rehmanniae Radix).
Collapse
Affiliation(s)
- Xi-Yang Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Meng-Xue Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Nanshan District, Shenzhen 518057, China
| | - Wei-Jing Yun
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenhe District, Shenyang 110016, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Zhi-Hong Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Nanshan District, Shenzhen 518057, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou 510632, China
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenhe District, Shenyang 110016, China
| |
Collapse
|
40
|
Zhu N, Hou J. Exploring the mechanism of action Xianlingubao Prescription in the treatment of osteoporosis by network pharmacology. Comput Biol Chem 2020; 85:107240. [PMID: 32126522 DOI: 10.1016/j.compbiolchem.2020.107240] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
In this study, the network pharmacology analysis method was used to explore the bioactive components and targets of Xianlinggubao (XLGB) and further elucidate its potential biological mechanisms of action in the treatment of osteoporosis (OP). The bioactive compounds and predictive targets of XLGB were collected from the traditional Chinese medicine systems pharmacology databases and analysis platform(TCMSP), the Encyclopeida of traditional Chinese medicine (ETCM), traditional Chinese medicine Databse@Taiwan, ChEMBL, STITCH, and SymMap database. The targets corresponding to OP were obtained by using Online Mendelian Inheritance in Man® (OMIM), GeneCards, the National Center for Biotechnology Information-Gene database. The XLGB-OP targets were obtained by intersecting with the targets of XLGB and OP. Protien-Protien interaciton (PPI) network was constructed using STRING online database and analyzed using Cytoscape 3.7.0 software to screen out hub genes. Gene ontology (GO) and KEGG enrichment analysis of the target in the PPI network was conducted using the ClusterProfiler package in R with adjusted p-value<0.05. A total of 65 XLGB bioactive compounds were screened corresponding to 776 XLGB targets and 2556 OP targets. The GO analysis and KEGG enrichment analyses suggested XLGB played a therapeutic roles in OP treatment via the interleukin-17 signaling pathway, hypoxia-inducible factor-1 signaling pathway, insulin resistance, Th-17 signaling pathway, etc. Five hub genes (AKT1, MAPK1, MAPK8, TP53, and STAT3) were screened using the degree algorithm, and molecular docking stimulation results showed that most bioactive compounds of XLGB had strong binding efficiency with hub genes. Overall, this study laid the foundation for further in vivo and in vitro experimental research and expanded the clinical applications of XLGB.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Department of Minimally Invasive Spinal Surgery, the Affiliated Hospital of Chengde Medical College, Chengde, 067000, China.
| | - Jingyi Hou
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, 067000, China.
| |
Collapse
|
41
|
Simultaneous determination of multiple components in rat plasma and pharmacokinetic studies at a pharmacodynamic dose of Xian-Ling-Gu-Bao capsule by UPLC-MS/MS. J Pharm Biomed Anal 2020; 177:112836. [DOI: 10.1016/j.jpba.2019.112836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/08/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023]
|
42
|
Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules. Int J Mol Sci 2019; 20:ijms20225745. [PMID: 31731767 PMCID: PMC6888688 DOI: 10.3390/ijms20225745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, 34 Traditional Chinese Medicine (TCM) compounds were screened for potential anabolic and anti-inflammatory properties on human osteoarthritic (OA) chondrocytes. The anabolic effects were assessed by measuring the glycosaminoglycan (GAG) relative to the DNA content using a 3D pellet culture model. The most chondrogenic compounds were tested in an inflammatory model consisting of 3 days of treatment with cytokines (IL-1β/TNF-α) with or without supplementation of TCM compounds. The anti-inflammatory effects were assessed transcriptionally, biochemically and histologically. From the 34 compounds, Vanilic acid (VA), Epimedin A (Epi A) and C (Epi C), 2''-O-rhamnosylicariside II (2-O-rhs II), Icariin, Psoralidin (PS), Protocatechuicaldehyde (PCA), 4-Hydroxybenzoic acid (4-HBA) and 5-Hydroxymethylfurfural (5-HMF) showed the most profound anabolic effects. After induction of inflammation, pro-inflammatory and catabolic genes were upregulated, and GAG/DNA was decreased. VA, Epi C, PS, PCA, 4-HBA and 5-HMF exhibited anti-catabolic and anti-inflammatory effects and prevented the up-regulation of pro-inflammatory markers including metalloproteinases and cyclooxygenase 2. After two weeks of treatment with TCM compounds, the GAG/DNA ratio was restored compared with the negative control group. Immunohistochemistry and Safranin-O staining confirmed superior amounts of cartilaginous matrix in treated pellets. In conclusion, VA, Epi C, PS, PCA, 4-HBA and 5-HMF showed promising anabolic and anti-inflammatory effects.
Collapse
|
43
|
Yu H, Yue J, Wang W, Liu P, Zuo W, Guo W, Zhang Q. Icariin promotes angiogenesis in glucocorticoid-induced osteonecrosis of femoral heads: In vitro and in vivo studies. J Cell Mol Med 2019; 23:7320-7330. [PMID: 31507078 PMCID: PMC6815836 DOI: 10.1111/jcmm.14589] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022] Open
Abstract
The injury and dysfunction of the femoral head microvascular endothelial cells are associated with the pathogenesis of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). Reports indicate that icariin (ICA) can enhance vascular roles and also inhibit endothelial cell dysfunction. However, it still remains unclear whether ICA can promote angiogenesis in glucocorticoid-induced ONFH. In this study, we investigate this hypothesis through in vitro and in vivo experiments. Results showed that 0.1 mg/mL hydrocortisone significantly suppressed bone microvascular endothelial cells (BMECs) proliferation while ICA at 10-5 mol/L reversed this inhibition. ICA significantly promoted BMECs migration, tube formation, the angiogenesis-related cytokines expression and the activation of Akt. Furthermore, ICA enhanced Bcl-2 expression but diminished Bax expression. According to in vivo results, rats with ICA treatment exhibited a lower ratio of empty lacunae, higher volume of blood vessels and more CD31-positive cells. This study revealed that ICA promotes angiogenesis of BMECs in vitro and improves femoral head blood vessel volume of rats treated with glucocorticoid, suggesting the efficacy of ICA in the prevention of glucocorticoid-induced ONFH.
Collapse
Affiliation(s)
- Huachen Yu
- Graduate School of Peking Union Medical College, Beijing, China.,China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ju'an Yue
- Department of Orthopaedic, Aviation General Hospital of China Medical University, Beijing, China
| | - Weiguo Wang
- China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Pei Liu
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zuo
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.,Peking University China-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Wanshou Guo
- Graduate School of Peking Union Medical College, Beijing, China.,China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Qidong Zhang
- China-Japan Friendship Institute of Clinical Medicine, Beijing, China.,Beijing Key Lab Immune-Mediated Inflammatory Diseases, Beijing, China.,Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
44
|
Lima AC, Ferreira H, Reis RL, Neves NM. Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin Drug Deliv 2019; 16:795-813. [DOI: 10.1080/17425247.2019.1635117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Cláudia Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
45
|
Wu W, Wang T, Sun B, Liu D, Lin Z, Miao Y, Wang C, Geng X, Li B. Xian-Ling-Gu-Bao induced inflammatory stress rat liver injury: Inflammatory and oxidative stress playing important roles. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111910. [PMID: 31026554 DOI: 10.1016/j.jep.2019.111910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xian-Ling-Gu-Bao (XLGB) Fufang is an herbal formula that has been used in clinical settings to treat osteoporosis, osteoarthritis, aseptic bone necrosis, and climacteric syndrome. Despite its uses, XLGB treatment has been linked to potential liver injury. To date, there is a lack of clear demonstration of such toxicity in animal models. AIM OF THE STUDY As animal models fail to reproduce the XLGB hepatotoxicity reported in humans, because human hepatocytes are clearly more sensitive to XLGB, this study was designed to investigate a more reliable animal model of such toxicity. MATERIALS AND METHODS We randomized rats into five groups, as follows: CON (control), XLGB, lipopolysaccharide (LPS), L-XLGB/LPS (XLGB, 0.125 g/kg; LPS, 0.1 mg/kg), and XLGB/LPS (XLGB, 1.25 g/kg; LPS, 0.1 mg/kg). These groups were treated with 0.5% sodium carboxymethyl cellulose (CMC-Na), XLGB suspension, normal saline, or LPS. The first administration of XLGB [0.125 g/kg or 1.25 g/kg, by mouth (PO)] or its solvent (0.5% CMC-Na) was delivered, and then food was removed. Twelve hours after the first administration of XLGB, rats received LPS [0.1 mg/kg, intravenously (IV)] or saline control. After 30 min, a second administration of XLGB (0.125 g/kg or 1.25 g/kg, PO) or solvent was administered. The rats were anesthetized at 12 h or 24 h following the second administration of XLGB. Liver function was evaluated by measuring liver weight, liver microscopy, serum biochemistry and plasma microRNA-122 (miR-122). The plasma levels of 27 cytokines were measured to evaluate inflammation. Moreover, the expression of cytochrome P450 2E1 (CYP2E1), nicotinic adenine dinucleotide phosphate (NADPH) oxidase and inducible nitric oxide synthase (iNOS) at protein levels were observed; immunofluorescence and immunohistochemistry were used to confirmed the hepatotoxicity of XLGB. RESULTS Hepatotoxicity in male rats with moderate inflammation induced by XLGB was indicated by liver histopathology, serum biochemical analysis, serum miR-122 levels, and immunofluorescent assessments. We observed significant increases in liver weight and liver indexes in male rats with moderate inflammation in response to XLGB. Histopathological assessment further showed that extensive hepatocellular necrosis and inflammatory infiltration were evident in rats co-treated with XLGB/LPS. The levels of serum transaminases [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT)], total bilirubin (TBIL) and triglyceride (TG), which are markers of liver function, were also significantly increased by XLGB/LPS treatment. Similarly, miR-122 was significantly elevated in XLGB/LPS treated rats relative to other groups. An immunofluorescent assessment showed extensive apoptosis in hepatocytes from these co-treated rats. What is more, XLGB can dose-dependently induce liver injury in male rats with moderate inflammation. Hepatic CYP2E1, neutrophil chemotactic factor (NCF-1), iNOS, and NOX-2 (an NADPH oxidase subunit) levels were increased in response to XLGB treatment, and staining for DMPO nitrone adducts further showed elevated oxidative stress level in XLGB/LPS-treated rats relative to the other experimental groups. CONCLUSION LPS and XLGB co-treatment in rats led to marked hepatotoxicity. This toxicity was associated with disrupted lipid metabolism, extensive liver necrosis and inflammatory infiltration, apoptosis, and expression of oxidative stress-related proteins. These results demonstrate a valuable model for the study of iDILI in the context of XLGB treatment, and further provide insights into the potential mechanisms by which XLGB may induce hepatotoxicity in humans.
Collapse
Affiliation(s)
- Wenxiao Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Ting Wang
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Bo Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Dong Liu
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Zhi Lin
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Chao Wang
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation of Drugs, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; National Institute for Food and Drug Control, 31 Hua Tuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
46
|
Zheng Y, Wang X, Zhang ZK, Guo B, Dang L, He B, Zhang C, Zhou J, Shi W, Zhao Y, Zhan H, Xu Y, Liang C, Liu J, Guan D, Wang L, Wu X, Li J, Zhuo Z, Lin Z, Qiu H, Zhong L, Bian Z, Shi Y, Zhang BT, Zhang G, Lu A. Bushen Yijing Fang Reduces Fall Risk in Late Postmenopausal Women with Osteopenia: A Randomized Double-blind and Placebo-controlled Trial. Sci Rep 2019; 9:2089. [PMID: 30765762 PMCID: PMC6375933 DOI: 10.1038/s41598-018-38335-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023] Open
Abstract
Falls in late postmenopausal women with osteopenia usually cause fractures with severe consequences. This 36-month randomized, double-blind and placebo-controlled trial with a 10-year observational follow-up study aimed to investigate the long-term effect of herbal formula Bushen Yijing Fang (BSYJF) on fall risk in the late postmenopausal women with osteopenia. 140 late postmenopausal women (Femoral neck T-score, −2.5~−2 SD) were recruited and randomized to orally receive calcium carbonate 300 mg daily with either BSYJF or placebo for 36 months. The effect was further investigated for another 10-year follow-up. During the 36-month administration, there were 12 falls in BSYJF group and 28 falls in placebo group, respectively, indicating 64% lower risk of falls (RR 0.36 [95% CI, 0.18 to 0.71]; P = 0.004) in BSYJF group. During the 10-year follow-up, 36% lower fall risk (RR 0.64 [95% CI, 0.46 to 0.89]; P = 0.009) was observed in BSYJF group. No significant difference was found in safety profile between two groups. Thirty-six-month administration of BSYJF reduced fall risk with an increase in bone mass, and its latent effect on fall risk was continually observed in the 10-year follow-up in late postmenopausal women with osteopenia. This clinical trial was registered at Chinese clinical trial registry (ChiCTR-IOR-16008942).
Collapse
Affiliation(s)
- Yuxin Zheng
- Department of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuezong Wang
- Department of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.,School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Bing He
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chi Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiwei Zhou
- Department of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanzhong Shi
- Preparation Center of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongfang Zhao
- Institute of Orthopaedics and Traumatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Zhan
- Institute of Orthopaedics and Traumatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Xu
- Institute of Orthopaedics and Traumatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Daogang Guan
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaohao Wu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jie Li
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Qiu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lidan Zhong
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhaoxiang Bian
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yinyu Shi
- Department of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China. .,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China. .,School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
47
|
Wong MS, Poon CCW, Zhou LP, Xiao HH. Natural Products as Potential Bone Therapies. Handb Exp Pharmacol 2019; 262:499-518. [PMID: 31792676 DOI: 10.1007/164_2019_322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Demands for natural products, in the form of botanicals, dietary supplements, and herbal medicine, for management of chronic diseases are increasing globally. Natural products might be an alternative for the management of bone health to meet the demands of a growing aging population. Different types of natural products, including Chinese herbal medicine decoctions, herbs, and isolated phytochemicals, have been demonstrated to exert bone protective effects. The most common types of bone protective bioactives are flavonoids, stilbene, triterpenoids, coumestans, lignans, and phenolic acid. The actions of natural products can be mediated by acting systemically on the hormonal axis or locally via their direct or indirect effects on osteogenesis, osteoclastogenesis, as well as adipogenesis. Furthermore, with the use of metabolomic and microbiome approaches to understand the actions of natural products, novel mechanisms that involve gut-brain-bone axis are also revealed. These studies provide evidence to support the use of natural products as bone therapeutics as well as identify new biological targets for novel drug development.
Collapse
Affiliation(s)
- Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China. .,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, People's Republic of China
| |
Collapse
|
48
|
Huang L, Wang X, Cao H, Li L, Chow DHK, Tian L, Wu H, Zhang J, Wang N, Zheng L, Yao X, Yang Z, Qin L. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials 2018; 182:58-71. [DOI: 10.1016/j.biomaterials.2018.07.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
|
49
|
Zheng N, Liu X, Zhang R, Ho I, Chen S, Xu J, Yao H, Wang J, Yue J, Wang X, Qin L. Jingshu Keli attenuates cervical spinal nerve ligation-induced allodynia in rats through inhibition of spinal microglia and Stat3 activation. Spine J 2018; 18:2112-2118. [PMID: 29969729 DOI: 10.1016/j.spinee.2018.06.354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Cervical radicular pain resulting from mechanical compression of a spinal nerve secondary to spinal degenerative alternations negatively impacts patients' quality of life. Jingshu Keli (JSKL), a traditional Chinese medicine formula with multiple active compounds, has been prescribed for pain management in patients with cervical radiculopathy for decades. Two major components of JSKL, ferulic acid and cinnamaldehyde, were identified to have anti-inflammation effect via inhibiting activation of Stat3. PURPOSE To investigate the efficacy of JSKL by investigating its mechanism in attenuating cervical radiculopathy-induced mechanical allodynia via modulation activation of spinal microglia and phosphorylation of signal transducer and activator of transcription 3 (Stat3). STUDY DESIGN An in vivo animal experiment. METHODS Cervical radiculopathy of rats was established by C7 spinal nerve ligation (SNL) with 6-0 silk suture. The effect of postoperational daily gavage of JSKL on mechanical allodynia of rats was tested on day 3, 7, and 14 after surgery. Furthermore, spinal glial cells activation and phosphorylation of Stat3 (p-Stat3) were tested with immunofluorescence imaging and Western blot. RESULT The JSKL significantly inhibited SNL-induced allodynia as well as microglia activation in the spinal cord on day 7 and 14 after surgery. Moreover, expression of p-Stat3 was decreased in rats with SNL and JSKL treatment in comparison with rats with SNL and vehicle treatment. CONCLUSIONS The JSKL attenuated SNL-induced mechanical allodynia in rats. This analgesic effect might be explained by the suppression of activations of spinal microglia as well as p-Stat3. Our study provides experimental evidence for JSKL as an alternative approach to manage refractory pain in patients with cervical radiculopathy.
Collapse
Affiliation(s)
- Nianye Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Ri Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Idy Ho
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Shihui Chen
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Hao Yao
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Jiali Wang
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Jiang Yue
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| | - Xinluan Wang
- Translational Research and Development Centre of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, PR China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, Faculty of Medicine, CUHK, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
50
|
Yun GW, Kang JH, Lee H. Effects of Korean herbal medicine (Cheong-A-Won) for treatment of bone mineral density in women with osteoporosis: A randomized, double blind, placebo controlled trial. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|