1
|
Rodelo-Haad C, Rodríguez-Ortiz ME, Garcia-Sáez R, Rivas-Domínguez A, Jurado-Montoya D, Martín-Malo A, Rodríguez M, Pendón-Ruiz de Mier MV, Muñoz-Castañeda JR. The true cost of phosphate control in chronic kidney disease. Clin Kidney J 2025; 18:i46-i60. [PMID: 40083951 PMCID: PMC11903093 DOI: 10.1093/ckj/sfae434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Indexed: 03/16/2025] Open
Abstract
The loss of kidney function entails the development of a positive phosphate balance. The burden of addressing elevated phosphate levels is high. Both parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are increased to promote phosphaturia, thereby preventing the rise in serum phosphate. However, if the phosphate load is excessive, the corresponding phosphaturia is maximal, kidney function deteriorates and hyperphosphataemia becomes clinically evident in advanced stages of chronic kidney disease (CKD). In addition to its role in CKD progression, hyperphosphataemia has been linked to a multitude of adverse outcomes, including overt inflammation, vascular calcifications, endothelial dysfunction, cardiovascular disease, renal osteodystrophy and secondary hyperparathyroidism. Collectively, these factors contribute to the markedly elevated mortality rates observed among individuals with CKD. Furthermore, hyperphosphataemia has been identified as a significant contributor to the development of inflammatory processes, oxidative stress and fibrosis, which underlie the aetiology of numerous comorbidities. Additionally, elevated levels of PTH and FGF23 have been demonstrated to independently induce organ and tissue injury, which is associated with poor outcomes in CKD. This article provides a concise overview of the current understanding of phosphate handling by the kidney in the context of CKD. It outlines the detrimental effects of phosphate on various organs and the mechanisms through which it contributes to CKD progression. Additionally, we discuss the tools available for clinicians to identify patients at risk of an excessive phosphate load.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - María E Rodríguez-Ortiz
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Garcia-Sáez
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Antonio Rivas-Domínguez
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Daniel Jurado-Montoya
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Alejandro Martín-Malo
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - Mariano Rodríguez
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
- European Uremic Toxins Group (EUTOx)
- COST Action CA21165 – Personalized medicine in chronic kidney disease: improved outcome based on Big Data (PerMediK)
| | - M Victoria Pendón-Ruiz de Mier
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| | - Juan Rafael Muñoz-Castañeda
- GC13, Mineral Metabolism, Vascular Calcification, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba, Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Kumar N. Unveiling the Emerging Role of Klotho: A Comprehensive Narrative Review of an Anti-aging Factor in Human Fertility. Curr Protein Pept Sci 2025; 26:105-112. [PMID: 39225223 DOI: 10.2174/0113892037329291240827113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Klotho, an anti-aging protein, plays a vital role in diverse biological functions, such as regulating calcium and vitamin D levels, preventing chronic fibrosis, acting as an antioxidant and anti-inflammatory agent, safeguarding against cardiovascular and neurodegenerative conditions, as well as exerting anti-apoptotic, anti-senescence effects. Additionally, it contributes to metabolic processes associated with diabetes and exhibits anti-cancer properties. This protein is commonly expressed in organs, such as kidneys, brain, pancreas, parathyroid glands, ovaries, and testes. Recent research has highlighted its significance in human fertility. This narrative review provides insight into the involvement of Klotho protein in male and female fertility, as well as its potential role in managing human infertility in the future. In this study, a search was conducted on literature spanning from November 1997 to June 2024 across multiple databases, including PUBMED, SCOPUS, and Google Scholar, focusing on Klotho proteins. The search utilized keywords, such as "discovery of Klotho proteins," "Biological functions of Klotho," "Klotho in female fertility," "Klotho and PCOS," "Klotho and cryopreservation," and "Klotho in male infertility." Inclusion criteria comprised full-length original or review articles, as well as abstracts, discussing the role of Klotho protein in human fertility, published in English in various peer-reviewed journals. Exclusion criteria involved articles published in languages other than English. Hence, due to its anti-aging characteristics, Klotho protein presents potential roles in male and female fertility and holds promising prospects for reproductive medicine. Further, it holds the potential to become a valuable asset in addressing infertility concerns for both males and females.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar 508126, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Siracusa C, Carabetta N, Morano MB, Manica M, Strangio A, Sabatino J, Leo I, Castagna A, Cianflone E, Torella D, Andreucci M, Zicarelli MT, Musolino M, Bolignano D, Coppolino G, De Rosa S. Understanding Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Therapeutic Implications. Int J Mol Sci 2024; 25:13096. [PMID: 39684805 DOI: 10.3390/ijms252313096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Vascular calcification (VC) is a biological phenomenon characterized by an accumulation of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors in patients affected by chronic kidney disease. However, VC may occur earlier and faster in these patients if it is associated with new or non-traditional risk factors such as oxidative stress, anemia, and inflammation. In chronic kidney disease, several pathophysiological processes contribute to vascular calcifications, including osteochondrogenic differentiation of vascular cells, hyperphosphatemia and hypercalcemia, and the loss of specific vascular calcification inhibitors including pyrophosphate, fetuin-A, osteoprotegerin, and matrix GLA protein. In this review we discuss the main traditional and non-traditional risk factors that can promote VC in patients with kidney disease. In addition, we provide an overview of the main pathogenetic mechanisms responsible for VC that may be crucial to identify new prevention strategies and possible new therapeutic approaches to reduce cardiovascular risk in patients with kidney disease.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Benedetta Morano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Marzia Manica
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Alberto Castagna
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Teresa Zicarelli
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michela Musolino
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Kim HJ, Seong EY, Song SH. Medium cut-off dialyzer improves reduction ratios of large middle molecules associated with vascular calcification. Kidney Res Clin Pract 2024; 43:753-762. [PMID: 38268127 PMCID: PMC11615443 DOI: 10.23876/j.krcp.23.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND We aimed to investigate the change in the large middle molecule (>15 kDa) removal rate, which is associated with vascular calcification, when using a medium cut-off (MCO) dialyzer compared to a high-flux (HF) dialyzer. METHODS Twenty patients with clinically stable maintenance hemodialysis were investigated over a 15-week study period. Dialyzer efficacies were evaluated during the last midweek hemodialysis treatment for each consecutive dialyzer membrane use: 1st HF, MCO, and 2nd HF dialyzer; 5 weeks each period. Changes in α1-microglobulin (33 kDa) during a dialysis session were analyzed to assess the efficacy of the MCO dialyzer as a reference. The levels and reduction ratios of fibroblast growth factor 23 (FGF23, 32 kDa), osteoprotegerin (OPG, 60 kDa), and sclerostin (22 kDa) were analyzed. Large middle molecules were measured using an enzyme-linked immunosorbent assay. RESULTS Serum hemoglobin, phosphorus, and corrected calcium levels were not significantly different for each dialyzer period. Total protein and albumin values during the MCO dialyzer period did not decrease compared with the HF dialyzer period. The reduction ratio of α1-microglobulin was significantly higher in the MCO dialyzer than in the HF dialyzer (p < 0.001). The reduction ratios of FGF23 (p < 0.001), OPG (p < 0.001), and sclerostin (p < 0.001) were significantly higher in the MCO dialyzer than those in the HF dialyzer. CONCLUSION The reduction rate of large middle molecules related to vascular calcification, such as FGF23, OPG, and sclerostin, was significantly higher when using the MCO dialyzer than the HF dialyzer.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Eun Young Seong
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
5
|
Martiniakova M, Mondockova V, Kovacova V, Babikova M, Zemanova N, Biro R, Penzes N, Omelka R. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr 2024; 16:217. [PMID: 39238022 PMCID: PMC11378428 DOI: 10.1186/s13098-024-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obesity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipocalin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases mentioned above. In this context, particular emphasis was given on available clinical studies. According to the latest knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-density lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS and MetS-related diseases negatively affecting bone quality.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
6
|
Petrović M, Brković V, Baralić M, Marić I, Petković N, Stanković S, Lalić N, Stanisavljević D, Đukanović L, Ležaić V. Comparative Analysis of Vascular Calcification Risk Factors in Pre-Hemodialysis and Prevalent Hemodialysis Adult Patients: Insights into Calcification Biomarker Associations and Implications for Intervention Strategies in Chronic Kidney Disease. Diagnostics (Basel) 2024; 14:824. [PMID: 38667470 PMCID: PMC11049133 DOI: 10.3390/diagnostics14080824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
This retrospective study aimed to compare risk factors for vascular calcification (VC) between pre-hemodialysis (HD) and prevalent HD adult patients while investigating associations with calcification biomarkers. Baseline data from 30 pre-HD and 85 HD patients were analyzed, including iPTH, vitamin D, FGF 23, fetuin-A, sclerostin, and VC scores (Adragao method). Prevalence of VC was similar in both groups, but HD patients had more frequent VC scores ≥ 6. Pre-HD patients were older, with higher prevalence of hypertension and less frequent use of calcium phosphate binders. Both groups showed similar patterns of hyperphosphatemia, low vitamin D, and iPTH. Fetuin-A and sclerostin levels were higher in pre-HD, while FGF 23 was elevated in HD patients. Higher VC risk in pre-HD patients was associated with male gender, older age, lower fetuin-A and higher sclerostin, lower ferritin, and no vitamin D treatment, while in HD patients with higher sclerostin, FGF 23 and urea, and lower iPTH. Conclusion: Biomarkers could be measurable indicators of biological processes underlying VC in CKD patients that may serve as a potential guide for considering personalized therapeutic approaches. Further studies are needed to elucidate the underlying pathways.
Collapse
Affiliation(s)
- Marko Petrović
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.P.); (M.B.)
| | - Voin Brković
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.P.); (M.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| | - Marko Baralić
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.P.); (M.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| | - Ivko Marić
- Special Hospital for Internal Diseases, 11550 Lazarevac, Serbia
| | - Nenad Petković
- Fresenius Medical Care Dialysis Center, 76230 Šamac, Bosnia and Herzegovina
| | - Sanja Stanković
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nataša Lalić
- Uromedica Polyclinic Belgrade, 11000 Belgrade, Serbia
| | | | - Ljubica Đukanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| | - Višnja Ležaić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia (L.Đ.)
| |
Collapse
|
7
|
Khreba N, Khedr D, Abdel-Baky A, Kannishy GE, Samaan E. Nephron index rather than serum FGF 23 predicts endothelial dysfunction in early but not advanced chronic kidney disease patients. Int Urol Nephrol 2023; 55:3159-3165. [PMID: 37043155 PMCID: PMC10611818 DOI: 10.1007/s11255-023-03589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Endothelial dysfunction is the primary step for the development of CKD-related cardiovascular disease. Early prediction and management can influence patient survival. Serum testing of FGF 23 hormone and urinary phosphate excretion were studied as predictors of all-cause cardiovascular morbidity in CKD patients; however, their relation to endothelial dysfunction is controversial. A combination of both in one index is hypothesized to increase their sensitivity in detecting endothelial dysfunction, especially in the early stages of CKD before the dominance of hyperphosphatemia, the original risk. METHODS A cross-sectional comparative analysis between thirty CKD stage 3 patients and sixty stage 4-5 CKD patients was conducted. All patients were tested for markers of mineral bone disorders including serum FGF 23 and 24-h urinary phosphate excretion. A combination of both in one index (nephron index) is calculated and hypothesized to correlate with nephron number. Endothelial dysfunction was assessed by measuring the post-occlusion brachial flow-mediated dilatation (FMD). RESULTS In univariate and multivariate regression analyses, the nephron index was the only predictor of endothelial dysfunction in individuals with stage 3 CKD (r = 0.74, P 0.01). This was not applied to stage 4-5 CKD patients where serum phosphorus (r = - 0.53, P 0.001), intact PTH (r = - 0.53, P 0.001), uric acid (r = - 0.5, P 0.001), and measured GFR (r = 0.59, P 0.001) were the highest correlates to FMD; the Nephron index had the weakest correlation (r = 0.28, P = 0.02) and is not predictive of endothelial dysfunction. CONCLUSION Nephron index calculation showed better correlation with endothelial dysfunction than using any of its determinants alone in early stages of CKD when FGF 23 levels are just beginning to rise. In advanced CKD patients, hyperphosphatemia, hyperparathyroidism, hyperuricemia, and measured GFR are more reliable than nephron index.
Collapse
Affiliation(s)
- Nora Khreba
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt
| | - Doaa Khedr
- Diagnostic and Interventional Radiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Azza Abdel-Baky
- Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Ghada El Kannishy
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt
| | - Emad Samaan
- Mansoura Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Internal Medicine Depament, Mansoura University, El Gomhoria St., Mansoura, 35516, Egypt.
| |
Collapse
|
8
|
Vervloet MG. Can we reverse arterial stiffness by intervening on CKD-MBD biomarkers? Clin Kidney J 2023; 16:1766-1775. [PMID: 37915898 PMCID: PMC10616505 DOI: 10.1093/ckj/sfad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Indexed: 11/03/2023] Open
Abstract
The increased cardiovascular risk of chronic kidney disease may in part be the consequence of arterial stiffness, a typical feature of kidney failure. Deranged homeostasis of minerals and hormones involved (CKD-MBD), are also strongly associated with this increased risk. It is well established that CKD-MBD is a main driver of vascular calcification, which in turn worsens arterial stiffness. However, there are other contributors to arterial stiffness in CKD than calcification. An overlooked possibility is that CKD-MBD may have detrimental effects on this potentially better modifiable component of arterial stiffness. In this review, the individual contributions of short-term changes in calcium, phosphate, PTH, vitamin D, magnesium, and FGF23 to arterial stiffness, in most studies assessed as pulse wave velocity, is summarized. Indeed, there is evidence from both observational studies and interventional trials that higher calcium concentrations can worsen arterial stiffness. This, however, has not been shown for phosphate, and it seems unlikely that, apart from being a contributor to vascular calcification and having effects on the microcirculation, phosphate has no acute effect on large artery stiffness. Several interventional studies, both by infusing PTH and by abrupt lowering PTH by calcimimetics or surgery, virtually ruled out direct effects on large artery stiffness. A well-designed trial using both active and nutritional vitamin D as intervention found a beneficial effect for the latter. Unfortunately, the study had a baseline imbalance and other studies did not support its finding. Both magnesium and FGF23 do not seem do modify central arterial stiffness.
Collapse
Affiliation(s)
- Marc G Vervloet
- Amsterdam University Medical Centres, Nephrology, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Leidner AS, Cai X, Zelnick LR, Lee J, Bansal N, Pasch A, Kansal M, Chen J, Anderson AH, Sondheimer JH, Lash JP, Townsend RR, Go AS, Feldman HI, Shah SJ, Wolf M, Isakova T, Mehta RC. Fibroblast Growth Factor 23 and Risk of Heart Failure Subtype: The CRIC (Chronic Renal Insufficiency Cohort) Study. Kidney Med 2023; 5:100723. [PMID: 37915961 PMCID: PMC10616385 DOI: 10.1016/j.xkme.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Rationale & Objective Heart failure (HF) is an important cause of morbidity and mortality among individuals with chronic kidney disease (CKD). A large body of evidence from preclinical and clinical studies implicates excess levels of fibroblast growth factor 23 (FGF23) in HF pathogenesis in CKD. It remains unclear whether the relationship between elevated FGF23 levels and HF risk among individuals with CKD varies by HF subtype. Study Design Prospective cohort study. Settings & Participants A total of 3,502 participants were selected in the Chronic Renal Insufficiency Cohort study. Exposure Baseline plasma FGF23. Outcomes Incident HF by subtype and total rate of HF hospitalization. HF was categorized as HF with preserved ejection fraction (HFpEF, ejection fraction [EF] ≥ 50%), HF with reduced EF (HFrEF, EF < 50%) and HF with unknown EF (HFuEF). Analytical Approach Multivariable-adjusted cause-specific Cox proportional hazards models were used to investigate associations between FGF23 and incident hospitalizations for HF by subtype. The Lunn-McNeil method was used to compare hazard ratios across HF subtypes. Poisson regression models were used to evaluate the total rate of HF. Results During a median follow-up time of 10.8 years, 295 HFpEF, 242 HFrEF, and 156 HFuEF hospitalizations occurred. In multivariable-adjusted cause-specific Cox proportional hazards models, FGF23 was significantly associated with the incidence of HFpEF (HR, 1.41; 95% CI, 1.21-1.64), HFrEF (HR, 1.27; 95% CI, 1.05-1.53), and HFuEF (HR, 1.40; 95% CI, 1.13-1.73) per 1 standard deviation (SD) increase in the natural log of FGF23. The Lunn-McNeil method determined that the risk association was consistent across all subtypes. The rate ratio of total HF events increased with FGF23 quartile. In multivariable-adjusted models, compared with quartile 1, FGF23 quartile 4 had a rate ratio of 1.81 (95% CI, 1.28-2.57) for total HF events. Limitations Self-report of HF hospitalizations and possible lack of an echocardiogram at time of hospitalization. Conclusions In this large multicenter prospective cohort study, elevated FGF23 levels were associated with increased risks for all HF subtypes. Plain-Language Summary Heart failure (HF) is a prominent cause of morbidity and mortality in individuals with chronic kidney disease (CKD). Identifying potential pathways in the development of HF is essential in developing therapies to prevent and treat HF. In a large cohort of individuals with CKD, the Chronic Renal Insufficiency Cohort (N = 3,502), baseline fibroblast growth factor-23 (FGF23), a hormone that regulates phosphorous, was evaluated in relation to the development of incident and recurrent HF with reduced, preserved, and unknown ejection fraction. In this large multicenter prospective cohort study, elevated FGF23 levels were associated with increased risk of all HF subtypes. These findings demonstrate the need for further research into FGF23 as a target in preventing the development of HF in individuals with CKD.
Collapse
Affiliation(s)
| | - Xuan Cai
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Jungwha Lee
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | - Sanjiv J. Shah
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Myles Wolf
- Duke University School of Medicine, Durham, North Carolina
| | - Tamara Isakova
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rupal C. Mehta
- Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
10
|
Cozzolino M, Maffei Faccioli F, Cara A, Boni Brivio G, Rivela F, Ciceri P, Magagnoli L, Galassi A, Barbuto S, Speciale S, Minicucci C, Cianciolo G. Future treatment of vascular calcification in chronic kidney disease. Expert Opin Pharmacother 2023; 24:2041-2057. [PMID: 37776230 DOI: 10.1080/14656566.2023.2266381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is one of the global leading causes of morbidity and mortality in chronic kidney disease (CKD) patients. Vascular calcification (VC) is a major cause of CVD in this population and is the consequence of complex interactions between inhibitor and promoter factors leading to pathological deposition of calcium and phosphate in soft tissues. Different pathological landscapes are associated with the development of VC, such as endothelial dysfunction, oxidative stress, chronic inflammation, loss of mineralization inhibitors, release of calcifying extracellular vesicles (cEVs) and circulating calcifying cells. AREAS COVERED In this review, we examined the literature and summarized the pathophysiology, biomarkers and focused on the treatments of VC. EXPERT OPINION Even though there is no consensus regarding specific treatment options, we provide the currently available treatment strategies that focus on phosphate balance, correction of vitamin D and vitamin K deficiencies, avoidance of both extremes of bone turnover, normalizing calcium levels and reduction of inflammatory response and the potential and promising therapeutic approaches liketargeting cellular mechanisms of calcification (e.g. SNF472, TNAP inhibitors).Creating novel scores to detect in advance VC and implementing targeted therapies is crucial to treat them and improve the future management of these patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Federico Maffei Faccioli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Anila Cara
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Boni Brivio
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Rivela
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serena Speciale
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Carlo Minicucci
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Dai Z, Zhang X. Pathophysiology and Clinical Impacts of Chronic Kidney Disease on Coronary Artery Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10050207. [PMID: 37233174 DOI: 10.3390/jcdd10050207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The global prevalence of chronic kidney disease (CKD) has increased in recent years. Adverse cardiovascular events have become the main cause of life-threatening events in patients with CKD, and vascular calcification is a risk factor for cardiovascular disease. Vascular calcification, especially coronary artery calcification, is more prevalent, severe, rapidly progressive, and harmful in patients with CKD. Some features and risk factors are unique to vascular calcification in patients with CKD; the formation of vascular calcification is not only influenced by the phenotypic transformation of vascular smooth muscle cells, but also by electrolyte and endocrine dysfunction, uremic toxin accumulation, and other novel factors. The study on the mechanism of vascular calcification in patients with renal insufficiency can provide a basis and new target for the prevention and treatment of this disease. This review aims to illustrate the impact of CKD on vascular calcification and to discuss the recent research data on the pathogenesis and factors involved in vascular calcification, mainly focusing on coronary artery calcification, in patients with CKD.
Collapse
Affiliation(s)
- Zhuoming Dai
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
12
|
Bacha F, El Ghormli L, Braffett BH, Shah AS, Marcovina SM, Levitt Katz LE, Willi SM, Caprio S, Dhaliwal R, Gidding SS. Candidate biomarkers as predictors of future kidney disease and cardiovascular dysfunction in adolescents with type 2 diabetes. Diabetes Res Clin Pract 2023; 199:110671. [PMID: 37068551 PMCID: PMC10207151 DOI: 10.1016/j.diabres.2023.110671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
AIMS Evaluate changes in circulating biomarkers as predictors of kidney disease, and cardiac/vascular dysfunction in participants from the Treatment Options for type 2 Diabetes in Adolescents and Youth (TODAY) study. METHODS Candidate biomarkers were assessed annually in 507 participants over a mean follow-up of 6.9 ± 2.4 years. Moderate albuminuria was defined as urine albumin-to-creatinine ratio ≥ 30 mg/g and hyperfiltration as eGFR ≥ 135 mL/min/1.73 m2 at two consecutive visits. Echocardiography (n = 256) and pulse wave velocity (n = 193) were evaluated twice, 5 years apart. Adjusted Cox proportional hazard models and logistic regression models were used to examine associations between biomarkers and outcomes. RESULTS At baseline, 35.7% were male, with a mean age 13.9 years, diabetes duration 7.8 months, and HbA1c 6.0%. Higher concentrations of E-selectin and proinsulin were associated with incident moderate albuminuria and hyperfiltration. Higher concentrations of FGF-23 were associated with lower risk of hyperfiltration and negatively correlated with eGFR. No candidate biomarkers predicted a decline in cardiac or vascular function. CONCLUSIONS Circulating biomarkers of endothelial dysfunction and markers of β-cell dysfunction and insulin sensitivity could be used in a more personalized risk assessment of kidney disease in youth-onset type 2 diabetes. However, biomarkers studied have limited value in predicting cardiac dysfunction or vascular stiffness.
Collapse
Affiliation(s)
- Fida Bacha
- Texas Children's Hospital and Baylor College of Medicine, 6621 Fannin St, Houston, TX 77030, USA
| | - Laure El Ghormli
- The Biostatistics Center, George Washington University, 6110 Executive Blvd, Rockville, MD 20852, USA
| | - Barbara H Braffett
- The Biostatistics Center, George Washington University, 6110 Executive Blvd, Rockville, MD 20852, USA.
| | - Amy S Shah
- Cincinnati Children's Hospital and University of Cincinnati, 333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | - Lorraine E Levitt Katz
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Steven M Willi
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Sonia Caprio
- Department of Pediatric Endocrinology, Yale School of Medicine, 1 Long Warf Dr, New Haven, CT 06519, USA
| | - Ruban Dhaliwal
- State University of New York Upstate Medical University, 766 Irving Ave, Syracuse, NY 13210, USA
| | - Samuel S Gidding
- Department of Genomic Health, Geisinger, 100 N Academy Ave, Danville, PA 17822, USA
| |
Collapse
|
13
|
Kim JE, Cho MH. Effects of Multiwall Carbon Nanotubes on Premature Kidney Aging: Biochemical and Histological Analysis. TOXICS 2023; 11:373. [PMID: 37112600 PMCID: PMC10143039 DOI: 10.3390/toxics11040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Carbon nanotubes (CNTs) have gained much attention due to their superb properties, which make them promising options for the reinforcing composite materials with desirable mechanical properties. However, little is known about the linkage between lung exposure to nanomaterials and kidney disease. In this study, we compared the effects on the kidneys and aging for two different types of multiwall carbon nanotubes (MWCNTs): pristine MWCNTs (PMWCNTs) and acid-treated MWCNTs (TMWCNTs), with TMWCNTs being the preferred form for use as a composite material due to its superior dispersion properties. We used tracheal instillation and maximum tolerated dose (MTD) for both types of CNTs. MTD was determined as a 10% weight loss dose in a 3-month subchronic study, and the appropriate dosage for 1-year exposure was 0.1 mg/mouse. Serum and kidney samples were analyzed using ELISA, Western blot, and immunohistochemistry after 6 months and 1 year of treatment. PMWCNT-administered mice showed the activation of pathways for inflammation, apoptosis, and insufficient autophagy, as well as decreased serum Klotho levels and increased serum levels of DKK-1, FGF-23, and sclerostin, while TMWCNTs did not. Our study suggests that lung exposure to PMWCNTs can induce premature kidney aging and highlights a possible toxic effect of using MWCNTs on the kidneys in the industrial field, further highlighting that dispersibility can affect the toxicity of the nanotubes.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- RNABIO, Seongnam 13201, Republic of Korea
| |
Collapse
|
14
|
Kumar T, Mohanty S, Rani A, Malik A, Kumar R, Bhashker G. Fibroblast Growth Factor-23 in Pre-Dialysis Chronic Kidney Disease Patients and its Correlation with Carotid Artery Calcification. Indian J Nephrol 2022; 32:560-566. [PMID: 36704592 PMCID: PMC9872934 DOI: 10.4103/ijn.ijn_506_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Fibroblast growth factor 23 (FGF-23) is a phosphate metabolism regulator in patients with chronic kidney disease (CKD). The present study is aimed to examine the FGF-23 level in pre-dialysis patients with CKD and its correlation with carotid artery calcification (CAAC). Methods This cross-sectional study included patients with CKD and controls. The patients were compared with controls having similar distribution of age and sex to determine serum FGF-23 level in Indian healthy adult population. Detailed medical history, physical examination, and investigations were done for each patient. Atherosclerotic risk factors, cardiovascular comorbidities, and drug history were recorded. Carotid calcification was observed using carotid ultrasound. Results In total, 62 patients with a mean age of 50.0 years were enrolled. Majority of the patients had hypertension (66.1%), followed by diabetes (27.4%) and dyslipidemia (3.2%). Mean serum corrected calcium levels were significantly higher in patients with CAAC compared to the patients without CAAC (9.21 ± 1.34 vs. 8.53 ± 0.93 mg/dL; P = 0.014). The FGF-23 levels were significantly higher in patients with CAAC compared to those without CAAC (396.0 vs. 254.0 pg/mL; P = 0.008). CAAC was found to be present in both early and late stages of CKD. Multivariate analysis showed that log FGF-23 and serum corrected calcium remained as independent determinants of CAAC. The prevalence of CAAC increased with the ascending quartiles of FGF23. Conclusion In conclusion, FGF-23 was found to be independently associated with CAAC in CKD.
Collapse
Affiliation(s)
- Tarun Kumar
- Department of Nephrology, V.M.M.C. and Safdarjung Hospital, New Delhi, India
| | - Smita Mohanty
- Department of Medicine, V.M.M.C. and Safdarjung Hospital, New Delhi, India
| | - Anita Rani
- Department of Biochemistry, V.M.M.C. and Safdarjung Hospital, New Delhi, India
| | - Amita Malik
- Department of Radiodiagnosis, V.M.M.C. and Safdarjung Hospital, New Delhi, India
| | - Rajesh Kumar
- Department of Nephrology, V.M.M.C. and Safdarjung Hospital, New Delhi, India
| | - Gaurav Bhashker
- Department of Nephrology, V.M.M.C. and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
15
|
Uhlinova J, Kuudeberg A, Metsküla K, Lember M, Rosenberg M. Significant associations between bone mineral density and vascular calcification in patients with different stages of chronic kidney disease. BMC Nephrol 2022; 23:327. [PMID: 36199013 PMCID: PMC9533531 DOI: 10.1186/s12882-022-02955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Chronic kidney disease—mineral and bone disorders (CKD-MBD) is characterised by generalised vascular calcification (VC) and impaired bone health. We aimed to investigate the relationship between VC and bone mineral density (BMD) in CKD patients. Methods We performed a cross-sectional study of patients with different stages of CKD. For assessment of VC of abdominal aorta lateral lumbar X-rays (Kauppila score), the ankle-brachial index (ABI) and echocardiography were used. Total body densitometry provided BMD. Results Ninety patients (41% male, median age 64 years (range 29–87)) were included, of whom 41.1% had a Kauppila score > 1. Evidence of peripheral VC as measured by ABI was detected in 23.3% of cases. Lesions of the heart valves were found in 46.7% of patients. There was a significant association between high ABI and lesions of the heart valves. In the multivariate regression model to analyse the independent determinants of abdominal aorta calcification (AAC) and ABI, the BMD of the femoral neck was identified as significant for both (p = 0.001, p = 0.001). The total spine BMD was found to be significant for AAC (p = 0.001), and the BMD of spine L1-L4 and the ribs were found to be significant for ABI (p = 0.01, p = 0.002 respectively). In factorial regression analysis, where BMD was independent determinant, valvular calcification was significant for BMD of femur, femoral neck and total BMD. Age and tALP were inversely correlated with the BMD of femur and femoral neck. Conclusions Our work highlighted clinically important relationships between VC and bone mineral density (BMD) in CKD patients. We detected inverse relationships between AAC, high ABI and BMD. Secondly, BMD at certain bone sites (femur, femoral neck) and total BMD were associated with important lesions of heart valves. Thirdly, a significant association between a high ABI and lesions of the heart valves. We believe that the results of our study will help in the planning of future research and in current clinical practice for the early diagnosis, further monitoring and management of CKD-MBD. Additionally, these results may have treatment implications on use of different CKD-MBD medications.
Collapse
Affiliation(s)
- Jana Uhlinova
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, Puusepa str. 8, 50406, Tartu, Estonia. .,Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia.
| | - Anne Kuudeberg
- Department of Anatomy, Institute of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia
| | - Kaja Metsküla
- Department of Immunology, Institute of Biomedicine and Translation Medicine, University of Tartu, Tartu, Estonia
| | - Margus Lember
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, Puusepa str. 8, 50406, Tartu, Estonia.,Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Mai Rosenberg
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tartu, Puusepa str. 8, 50406, Tartu, Estonia.,Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
16
|
Halim A, Burney HN, Li X, Li Y, Tomkins C, Siedlecki AM, Lu TS, Kalim S, Thadhani R, Moe S, Ting SM, Zehnder D, Hiemstra TF, Lim K. FGF23 and Cardiovascular Structure and Function in Advanced Chronic Kidney Disease. KIDNEY360 2022; 3:1529-1541. [PMID: 36245643 PMCID: PMC9528374 DOI: 10.34067/kid.0002192022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
Background Fibroblast growth factor 23 (FGF23) is a bone-derived phosphatonin that is elevated in chronic kidney disease (CKD) and has been implicated in the development of cardiovascular disease. It is unknown whether elevated FGF23 in CKD is associated with impaired cardiovascular functional capacity, as assessed by maximum exercise oxygen consumption (VO2Max). We sought to determine whether FGF23 is associated with cardiovascular functional capacity in patients with advanced CKD and after improvement of VO2Max by kidney transplantation. Methods We performed secondary analysis of 235 patients from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) cohort, which recruited patients with stage 5 CKD who underwent kidney transplantation or were waitlisted and hypertensive controls. All patients underwent cardiopulmonary exercise testing (CPET) and echocardiography and were followed longitudinally for 1 year after study enrollment. Results Patients across FGF23 quartiles differed in BMI (P=0.004) and mean arterial pressure (P<0.001) but did not significantly differ in sex (P=0.5) or age (P=0.08) compared with patients with lower levels of FGF23. Patients with higher FGF23 levels had impaired VO2Max (Q1: 24.2±4.8 ml/min per kilogram; Q4: 18.6±5.2 ml/min per kilogram; P<0.001), greater left ventricular mass index (LVMI; P<0.001), reduced HR at peak exercise (P<0.001), and maximal workload (P<0.001). Kidney transplantation conferred a significant decline in FGF23 at 2 months (P<0.001) before improvement in VO2Max at 1 year (P=0.008). Multivariable regression modeling revealed that changes in FGF23 was significantly associated with VO2Max in advanced CKD (P<0.001) and after improvement after kidney transplantation (P=0.006). FGF23 was associated with LVMI before kidney transplantation (P=0.003), however this association was lost after adjustment for dialysis status (P=0.4). FGF23 was not associated with LVMI after kidney transplantation in all models. Conclusions FGF23 levels are associated with alterations in cardiovascular functional capacity in advanced CKD and after kidney transplantation. FGF23 is only associated with structural cardiac adaptations in advanced CKD but this was modified by dialysis status, and was not associated after kidney transplantation.
Collapse
Affiliation(s)
- Arvin Halim
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N. Burney
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Claudia Tomkins
- Biochemistry Department, Kettering General Hospital NHS Foundation Trust, Kettering, United Kingdom
| | - Andrew M. Siedlecki
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzong-shi Lu
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Ravi Thadhani
- Mass General Brigham, Harvard Medical School, Massachusetts
| | - Sharon Moe
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen M.S. Ting
- Department of Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Daniel Zehnder
- Department of Nephrology and Department of Acute Medicine, North Cumbria University Hospital NHS Trust, Carlisle, United Kingdom
| | - Thomas F. Hiemstra
- School of Clinical Medicine, University of Cambridge; Clinical Trials Unit (CTU), Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
18
|
Kim HJ, Kim Y, Kang M, Kim S, Park SK, Sung S, Hyun YY, Jung JY, Ahn C, Oh KH. Low Klotho/Fibroblast Growth Factor 23 Ratio Is an Independent Risk Factor for Renal Progression in Chronic Kidney Disease: Finding From KNOW-CKD. Front Med (Lausanne) 2022; 9:904963. [PMID: 35872753 PMCID: PMC9304693 DOI: 10.3389/fmed.2022.904963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background We aimed to evaluate soluble Klotho and circulating fibroblast growth factor 23 (FGF23) ratio as a risk factor for renal progression, cardiovascular (CV) events, and mortality in chronic kidney disease (CKD). Methods We analyzed 2,099 subjects from a CKD cohort whose soluble Klotho and C-terminal FGF23 levels were measured at enrollment. The Klotho to FGF23 ratio was calculated as Klotho values divided by FGF23 values + 1 (hereinafter called the Klotho/FGF23 ratio). Participants were categorized into quartiles according to Klotho/FGF23 ratio. The primary outcome was renal events, defined as the doubling of serum creatinine, 50% reduction of estimated glomerular filtration rate from the baseline values, or development of end-stage kidney disease. The secondary outcomes consisted of CV events and death. Changes in CV parameters at the time of enrollment and during follow-up according to the Klotho/FGF23 ratio were also examined. Results During the follow-up period of 64.0 ± 28.2 months, 735 (35.1%) and 273 (13.0%) subjects developed renal events and composite outcomes of CV events and death, respectively. After adjustment, the first (HR: 1.36; 95% CI: 1.08–1.72, P = 0.010) and second (HR: 1.45; 95% CI: 1.15–1.83, P = 0.002) quartiles with regard to the Klotho/FGF23 ratio showed elevated risk of renal events as compared to the fourth quartile group. There was no significant association between Klotho/FGF23 ratio and the composite outcome of CV events and death. The prevalence of left ventricular hypertrophy and vascular calcification was higher in the low Klotho/FGF23 ratio quartiles at baseline and at the fourth-year follow-up. Conclusions Low Klotho/FGF23 ratio was significantly associated with increased renal events in the cohort of Korean predialysis CKD patients.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Yunmi Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, South Korea
| | - Minjung Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seonmi Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Sue Kyung Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Suah Sung
- Department of Internal Medicine, Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Young Youl Hyun
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji Yong Jung
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Curie Ahn
- Department of Internal Medicine, National Medical Center, Seoul, South Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Kook-Hwan Oh
| |
Collapse
|
19
|
Kawai K, Sato Y, Kawakami R, Sakamoto A, Cornelissen A, Mori M, Ghosh S, Kutys R, Virmani R, Finn AV. Generalized Arterial Calcification of Infancy (GACI): Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:1261-1276. [PMID: 35677616 PMCID: PMC9167688 DOI: 10.2147/jmdh.s251861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
It is very unusual to see evidence of arterial calcification in infants and children, and when detected, genetic disorders of calcium metabolism should be suspected. Generalized arterial calcification of infancy (GACI) is a hereditary disease, which is characterized by severe arterial calcification of medium sized arteries, mostly involving the media with marked intimal proliferation and ectopic mineralization of the extravascular tissues. It is caused by inactivating variants in genes encoding either ENPP1, in a majority of cases (70–75%), or ABCC6, in a minority (9–10%). Despite similar histologic appearances between ENPP1 and ABCC6 deficiencies, including arterial calcification, organ calcification, and cardiovascular calcification, mortality is higher in subjects carrying the ENPP1 versus ABCC6 variants (40% vs 10%, respectively). Overall mortality in individuals with GACI is high (55%) before the age of 6 months, with 24.4% dying in utero or being stillborn. Rare cases show spontaneous regression with age, while others who survive into adulthood often manifest musculoskeletal complications (osteoarthritis and interosseous membrane ossification), enthesis mineralization, and cervical spine fusion. Despite recent advances in the understanding of the genetic mechanisms underlying this disease, there is still no ideal therapy for the resolution of vascular calcification in GACI. Although bisphosphonates with anti-calcification properties have been commonly used for the treatment of CAGI, their benefit is controversial, with favorable results reported at one year and questionable benefit with delayed initiation of treatment. Enzyme replacement therapy with administration of recombinant form of ENPP1 prevents calcification and mortality, improves hypertension and cardiac function, and prevents intimal proliferation and osteomalacia in mouse models of ENPP1 deficiency. Therefore, newer treatments targeting genes are on the horizon. In this article, we review up to date knowledge of the understanding of GACI, its clinical, pathologic, and etiologic understanding and treatment in support of more comprehensive care of GACI patients.
Collapse
Affiliation(s)
| | - Yu Sato
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD, USA
- University of Maryland, School of Medicine, Baltimore, MD, USA
- Correspondence: Aloke V Finn, 19 Firstfield Road, Gaithersburg, MD, 20878, USA, Tel +301.208.3570, Fax +301.208.3745, Email
| |
Collapse
|
20
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Sirikul W, Siri-Angkul N, Chattipakorn N, Chattipakorn SC. Fibroblast Growth Factor 23 and Osteoporosis: Evidence from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23052500. [PMID: 35269640 PMCID: PMC8909928 DOI: 10.3390/ijms23052500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a chronic debilitating disease caused by imbalanced bone remodeling processes that impair the structural integrity of bone. Over the last ten years, the association between fibroblast growth factor 23 (FGF23) and osteoporosis has been studied in both pre-clinical and clinical investigations. FGF23 is a bone-derived endocrine factor that regulates mineral homeostasis via the fibroblast growth factor receptors (FGFRs)/αKlotho complex. These receptors are expressed in kidney and the parathyroid gland. Preclinical studies have supported the link between the local actions of FGF23 on the bone remodeling processes. In addition, clinical evidence regarding the effects of FGF23 on bone mass and fragility fractures suggest potential diagnostic and prognostic applications of FGF23 in clinical contexts, particularly in elderly and patients with chronic kidney disease. However, inconsistent findings exist and there are areas of uncertainty requiring exploration. This review comprehensively summarizes and discusses preclinical and clinical reports on the roles of FGF23 on osteoporosis, with an emphasis on the local action, as opposed to the systemic action, of FGF23 on the bone. Current gaps in knowledge and future research directions are also suggested to encourage further rigorous research in this important field.
Collapse
Affiliation(s)
- Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Natthaphat Siri-Angkul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.-A.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944-451; Fax: +66-53-222-844
| |
Collapse
|
22
|
Silva AP, Viegas CSB, Guilherme P, Tavares N, Dias C, Rato F, Santos N, Faísca M, de Almeida E, Neves PL, Simes DC. Gla-Rich Protein, Magnesium and Phosphate Associate with Mitral and Aortic Valves Calcification in Diabetic Patients with Moderate CKD. Diagnostics (Basel) 2022; 12:496. [PMID: 35204586 PMCID: PMC8870734 DOI: 10.3390/diagnostics12020496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Accelerated and premature cardiovascular calcification is a hallmark of chronic kidney disease (CKD) patients. Valvular calcification (VC) is a critical indicator of cardiovascular disease and all-cause mortality in this population, lacking validated biomarkers for early diagnosis. Gla-rich protein (GRP) is a cardiovascular calcification inhibitor recently associated with vascular calcification, pulse pressure, mineral metabolism markers and kidney function. Here, we examined the association between GRP serum levels and mitral and aortic valves calcification in a cohort of 80 diabetic patients with CKD stages 2-4. Mitral and aortic valves calcification were detected in 36.2% and 34.4% of the patients and associated with lower GRP levels, even after adjustments for age and gender. In this pilot study, univariate, multivariate and Poisson regression analysis, show that low levels of GRP and magnesium (Mg), and high levels of phosphate (P) are associated with mitral and aortic valves calcification. Receiver operating characteristic (ROC) curves showed that the area under the curve (AUC) values of GRP for mitral (0.762) and aortic (0.802) valves calcification were higher than those of Mg and P. These results suggest that low levels of GRP and Mg, and high levels of P, are independent and cumulative risk factors for VC in this population; the GRP diagnostic value might be potentially useful in cardiovascular risk assessment.
Collapse
Affiliation(s)
- Ana P. Silva
- Department of Nephrology, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal; (A.P.S.); (P.L.N.)
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Carla S. B. Viegas
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal;
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Patrícia Guilherme
- Department of Cardiology, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal; (P.G.); (N.T.)
| | - Nelson Tavares
- Department of Cardiology, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal; (P.G.); (N.T.)
| | - Carolina Dias
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, 8005-139 Faro, Portugal;
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Fátima Rato
- Pathology Clinic, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal; (F.R.); (N.S.); (M.F.)
| | - Nélio Santos
- Pathology Clinic, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal; (F.R.); (N.S.); (M.F.)
| | - Marília Faísca
- Pathology Clinic, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal; (F.R.); (N.S.); (M.F.)
| | - Edgar de Almeida
- Centro Cardiovascular da Universidade de Lisboa (CCUL), 1649-028 Lisboa, Portugal;
| | - Pedro L. Neves
- Department of Nephrology, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal; (A.P.S.); (P.L.N.)
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Dina C. Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal;
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
23
|
McGettrick P, Mallon PWG. Biomarkers to predict cardiovascular disease in people living with HIV. Curr Opin Infect Dis 2022; 35:15-20. [PMID: 34873078 DOI: 10.1097/qco.0000000000000802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases (CVD) is one of the leading cause of morbidity and mortality in antiretroviral treated people living with HIV (PWH) with risk score algorithms based on traditional risk factors being shown to be consistently unreliable in estimating risk in this population. This review aims to examine recent data published in last 18-24 months exploring biomarkers that may be useful in identifying PWH at risk of developing CVD. RECENT FINDINGS Ongoing research explores the association of inflammatory biomarkers with subclinical CVD with few studies examining their clinical utility in improving CVD risk prediction. Further mechanistic studies explore the role of monocyte/macrophages in CVD pathogenesis with some studies examining functional assays as better predictors of CVD risk. SUMMARY Although persistent associations with inflammatory markers and CVD are demonstrated, few biomarkers have emerged as being clinically useful. Large population studies are needed to assess their utility in improving CVD risk prediction in PWH.
Collapse
Affiliation(s)
- Padraig McGettrick
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin
| | - Patrick W G Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin
- Department of Infectious Diseases, St Vincents University Hospital, Dublin, Ireland
| |
Collapse
|
24
|
The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022; 474:281-292. [PMID: 35084563 PMCID: PMC8837506 DOI: 10.1007/s00424-022-02668-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level pointing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 in health and disease.
Collapse
|
25
|
Chen HH, Pan JY, Lu WH, Wu CJ, Tseng CJ. Prazosin improves neurogenic acute heart failure through downregulation of fibroblast growth factor 23 in rat hearts. CHINESE J PHYSIOL 2022; 65:179-186. [DOI: 10.4103/cjp.cjp_9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Kim JS, Hwang HS. Vascular Calcification in Chronic Kidney Disease: Distinct Features of Pathogenesis and Clinical Implication. Korean Circ J 2021; 51:961-982. [PMID: 34854578 PMCID: PMC8636761 DOI: 10.4070/kcj.2021.0995] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with a higher prevalence of vascular calcification (VC) and cardiovascular disease. VC in CKD patients showed different pathophysiological features from those of the general population. The pathogenesis of VC in CKD is a highly organized process, and prior studies have suggested that patients with CKD have their own specific contributors to the phenotypic change of vascular smooth muscle cells (VSMCs), including uremic toxins, CKD-mineral and bone disease (CKD-MBD), inflammation, and oxidative stress. For the diagnosis and monitoring of VC in CKD, several imaging modalities, including plain radiography, ultrasound, and computed tomography have been utilized. VC in CKD patients has distinct clinical features and implications. CKD patients revealed a more intense and more prevalent calcification on the intimal and medial layers, whereas intimal calcification is predominantly observed in the general population. While a higher VC score is clearly associated with a higher risk of all-cause mortality and cardiovascular events, a greater VC score in CKD patients does not fully reflect the burden of atherosclerosis, because they have more calcification at equal volumes of atheromatous plaques. The primary goal of VC treatment in CKD is the prevention of VC progression, and the main management is to control the biochemical components of CKD-MBD. Cinacalcet and non-calcium-containing phosphate binders are the mainstay of VC prevention in CKD-MBD management. VC in patients with CKD is an ongoing area of research and is expected to advance soon.
Collapse
Affiliation(s)
- Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
27
|
Li M, Ma H, Han F, Zhai D, Zhang B, Sun Y, Li T, Chen L, Wu C. Microbially Catalyzed Biomaterials for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104829. [PMID: 34632631 DOI: 10.1002/adma.202104829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bone is a complex mineralized tissue composed of various organic (proteins, cells) and inorganic (hydroxyapatite, calcium carbonate) substances with micro/nanoscale structures. To improve interfacial bioactivity of bone-implanted biomaterials, extensive efforts are being made to fabricate favorable biointerface via surface modification. Inspired by microbially catalyzed mineralization, a novel concept to biologically synthesize the micro/nanostructures on bioceramics, microbial-assisted catalysis, is presented. It involves three processes: bacterial adhesion on biomaterials, production of CO3 2- assisted by bacteria, and nucleation and growth of CaCO3 nanocrystals on the surface of bioceramics. The microbially catalyzed biominerals exhibit relatively uniform micro/nanostructures on the surface of both 2D and 3D α-CaSiO3 bioceramics. The topographic and chemical cues of the grown micro/nanostructures present excellent in vitro and in vivo bone-forming bioactivity. The underlying mechanism is closely related to the activation of multiple biological processes associated with bone regeneration. The study offers a microbially catalytic concept and strategy of fabricating micro/nanostructured biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuhua Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
30
|
van der Vaart A, Yeung S, van Dijk P, Bakker S, de Borst M. Phosphate and fibroblast growth factor 23 in diabetes. Clin Sci (Lond) 2021; 135:1669-1687. [PMID: 34283205 PMCID: PMC8302806 DOI: 10.1042/cs20201290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with a strongly elevated risk of cardiovascular disease, which is even more pronounced in patients with diabetic nephropathy. Currently available guideline-based efforts to correct traditional risk factors are only partly able to attenuate this risk, underlining the urge to identify novel treatment targets. Emerging data point towards a role for disturbances in phosphate metabolism in diabetes. In this review, we discuss the role of phosphate and the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) in diabetes. We address deregulations of phosphate metabolism in patients with diabetes, including diabetic ketoacidosis. Moreover, we discuss potential adverse consequences of these deregulations, including the role of deregulated phosphate and glucose as drivers of vascular calcification propensity. Finally, we highlight potential treatment options to correct abnormalities in phosphate and FGF23. While further studies are needed to more precisely assess their clinical impact, deregulations in phosphate and FGF23 are promising potential target in diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Amarens van der Vaart
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
- Department of Medicine, Division of Endocrinology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stanley M.H. Yeung
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
| | - Peter R. van Dijk
- Department of Medicine, Division of Endocrinology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stephan J.L. Bakker
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
| | - Martin H. de Borst
- Department of Medicine, Division of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen,The Netherlands
| |
Collapse
|
31
|
Tang PK, Geddes RF, Jepson RE, Elliott J. A feline-focused review of chronic kidney disease-mineral and bone disorders - Part 2: Pathophysiology of calcium disorder and extraosseous calcification. Vet J 2021; 275:105718. [PMID: 34329743 DOI: 10.1016/j.tvjl.2021.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Derangements in mineral metabolism are one of the main entities in chronic kidney disease-mineral and bone disorder (CKD-MBD). This is the second of a two-part review of the physiology and pathophysiology of calcium homeostasis in feline CKD-MBD. While dysregulation in calcium homeostasis is known to contribute to the development of vascular calcification in CKD, evidence characterising the relationship between serum calcium concentration and nephrocalcinosis and nephrolithiasis is limited. Recently, fibroblast growth factor 23 (FGF23) and α-Klotho have gained increased research interest and been shown to be important biomarkers for the prediction of CKD progression in human patients. However, conflicting evidence exists on their role in calcium homeostasis and vascular and soft tissue calcification. This review details the pathophysiology of calcium disorders associated with CKD-MBD and its implications on vascular and soft tissue mineralisation in human and feline patients. Further prospective studies investigating the clinical consequences of calcium disturbances in cats with CKD are warranted and this may provide additional insight into the pathophysiology of feline CKD-MBD.
Collapse
Affiliation(s)
- Pak-Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom.
| | - Rebecca F Geddes
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
32
|
Grzejszczak P, Kurnatowska I. Role of Vitamin K in CKD: Is Its Supplementation Advisable in CKD Patients? Kidney Blood Press Res 2021; 46:523-530. [PMID: 34247173 DOI: 10.1159/000516611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patients with CKD are at an increased risk of developing vascular calcification (VC) and bone complications which translate into a higher morbidity and mortality. The dephosphorylated and uncarboxylated matrix Gla protein (dp-ucMGP) is considered to be an indicator of vitamin K2 status and correlates with markers of VC. It is activated by γ-glutamyl carboxylase that converts inactive MGP into an active form, and vitamin K2 is a cofactor of this reaction. The active form of MGP is a known inhibitor of arterial wall calcification and plays an important role in bone turnover. Recent studies show poor vitamin K2 status in CKD patients. We aimed to review the literature for the association between vitamin K2 status and calcification and bone disease risk and the efficacy of vitamin K2 supplementation in CKD population. SUMMARY Most CKD patients, including those on renal replacement therapy, have vitamin K2 deficiency. The dp-ucMGP level, a marker of vitamin K2 status, is decreased by vitamin K2 supplementation in CKD patients, but there is no unequivocal proof that it influences arterial calcification progression and bone complications. Key Messages: CKD population are at risk of vitamin K deficiency. Supplementation of vitamin K2 is safe and improves the serum markers of its deficiency. There is lack of strong evidence that vitamin K2 supplementation slows progression of calcification or reduces the frequency of bone complications. More prospective studies are needed.
Collapse
Affiliation(s)
- Patrycja Grzejszczak
- Department of Internal Medicine and Nephrology Transplantation, 1st Chair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Ilona Kurnatowska
- Department of Internal Medicine and Nephrology Transplantation, 1st Chair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Stanczyk M, Chrul S, Wyka K, Tkaczyk M. Serum intact fibroblast growth factor 23 in healthy paediatric population. Open Med (Wars) 2021; 16:1022-1027. [PMID: 34258392 PMCID: PMC8262519 DOI: 10.1515/med-2021-0288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction It is believed that fibroblast growth factor 23 (FGF23) can become an early biomarker of chronic kidney disease progression. Data on FGF23 age dependency are inconsistent. We present the results of the cross-sectional study concerning FGF23 levels in healthy Polish children. Material and methods This study was conducted in 121 children aged 0–18 years. Kidney function and intact FGF23 levels in serum were assessed. Differences between age groups and according to gender were analysed. Results The difference in FGF23 between age groups and according to gender was statistically insignificant. In the youngest and the oldest group, a trend to higher FGF23 levels was observed. FGF23 level in girls tended to be higher than boys, apart from the age group between 1 and 4 years. There was a negative correlation between eGFR and FGF23 (r = −0.26, p < 0.05) – strong in girls (r = −0.38, p < 0.05), but not in boys. In each age group, we found no significant correlation between eGFR and FGF23. Conclusions Our study supports the evidence that the FGF23 level in paediatric population is not age or sex dependent. The results can serve as a reference point under clinical conditions and for other studies on the topic.
Collapse
Affiliation(s)
- Malgorzata Stanczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, Lodz 93-338, Poland.,Department of Pediatrics, Preventive Cardiology and Immunology of Developmental Age, Medical University of Lodz, Poland
| | - Slawomir Chrul
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz 93-338, Poland
| | - Krystyna Wyka
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz 93-338, Poland.,Department of Pediatrics, Preventive Cardiology and Immunology of Developmental Age, Medical University of Lodz, Poland
| |
Collapse
|
34
|
Discharge FGF23 level predicts one year outcome in patients admitted with acute heart failure. Int J Cardiol 2021; 336:98-104. [PMID: 34019969 DOI: 10.1016/j.ijcard.2021.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with acute heart failure (AHF) show high levels of fibroblast growth factor-23 (FGF23) on admission. We examined if plasma FGF23 changes during an episode of AHF, and if FGF23 holds prognostic significance in this setting. METHODS Consecutive AHF patients were enrolled. Blood samples were collected on admission and at discharge. Patients were then followed for all-cause death or HF hospitalization. RESULTS Patients (n = 125; median age 76 years [interquartile interval 71-83], 63% men, left ventricular ejection fraction 35% [25%-56%]) had median admission FGF23 70 ng/L (47-100), N-terminal pro-B-type natriuretic peptide (NT-proBNP) 5844 ng/L (2,503-10,468), high-sensitivity troponin T (hs-TnT) 40 ng/L (25-72), and soluble suppression of tumorigenesis-2 (sST2) 26 ng/mL (17-37). While other biomarkers decreased, FGF23 increased by 15% from admission to discharge (p = 0.033), with a significant correlation with percent changes in estimated glomerular filtration rate (rho = 0.306, p = 0.001). Over a 12-month follow-up, 64 patients (51%) experienced the endpoint. They were more often men, older, with higher systolic pulmonary artery pressure (sPAP), higher NT-proBNP, hs-TnT and discharge FGF23. The best FGF23 cut-off at discharge from receiver operating characteristics analysis was 78 ng/L. Both discharge FGF23 and the 78 ng/L cut-off independently predicted outcome in models including gender, sPAP, age, and 1) admission NT-proBNP, 2) discharge NT-proBNP, 3) admission NT-proBNP and hs-TnT, 4) discharge NT-proBNP and hs-TnT. The 78 ng/L cut-off also refined risk reclassification. CONCLUSIONS During an AHF episode, FGF23 increases from admission to discharge, and patients with higher discharge FGF23 have a higher risk of worse outcome.
Collapse
|
35
|
Zhao L, Wang S, Liu H, Du X, Bu R, Li B, Han R, Gao J, Liu Y, Hao J, Zhao J, Meng Y, Li G. The Pharmacological Effect and Mechanism of Lanthanum Hydroxide on Vascular Calcification Caused by Chronic Renal Failure Hyperphosphatemia. Front Cell Dev Biol 2021; 9:639127. [PMID: 33928079 PMCID: PMC8076751 DOI: 10.3389/fcell.2021.639127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/24/2021] [Indexed: 12/03/2022] Open
Abstract
Objective The present work aimed to explore the efficacy of lanthanum hydroxide in managing the vascular calcification induced by hyperphosphate in chronic renal failure (CRF) as well as the underlying mechanism. Methods Rats were randomly allocated to five groups: normal diet control, CKD hyperphosphatemia model, CKD model treated with lanthanum hydroxide, CKD model receiving lanthanum carbonate treatment, together with CKD model receiving calcium carbonate treatment. The serum biochemical and kidney histopathological parameters were analyzed. The aortic vessels were subjected to Von Kossa staining, CT scan and proteomic analysis. In vitro, the calcium content and ALP activity were measured, and RT-PCR (SM22α, Runx2, BMP-2, and TRAF6) and Western blot (SM22α, Runx2, BMP-2, TRAF6, and NF-κB) were performed. Results In the lanthanum hydroxide group, serum biochemical and kidney histopathological parameters were significantly improved compared with the model group, indicating the efficacy of lanthanum hydroxide in postponing CRF progression and in protecting renal function. In addition, applying lanthanum hydroxide postponed hyperphosphatemia-mediated vascular calcification in CKD. Furthermore, lanthanum hydroxide was found to mitigate vascular calcification via the NF-κB signal transduction pathway. For the cultured VSMCs, lanthanum chloride (LaCl3) alleviated phosphate-mediated calcification and suppressed the activation of NF-κB as well as osteo-/chondrogenic signal transduction. Lanthanum hydroxide evidently downregulated NF-κB, BMP-2, Runx2, and TRAF6 expression. Conclusion Lanthanum hydroxide protects against renal failure and reduces the phosphorus level in serum to postpone vascular calcification progression.
Collapse
Affiliation(s)
- Lulu Zhao
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Shengnan Wang
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Hong Liu
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Xiaoli Du
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Ren Bu
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Bing Li
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Ruilan Han
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Jie Gao
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Yang Liu
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| | - Jian Hao
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianrong Zhao
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan Meng
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Gang Li
- Department of Pharmacology, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development, Hohhot, China
| |
Collapse
|
36
|
Düsing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G, Jansen F. Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med (Berl) 2021; 99:335-348. [PMID: 33481059 PMCID: PMC7900031 DOI: 10.1007/s00109-021-02037-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of death in patients with chronic kidney disease (CKD). Both conditions are rising in incidence as well as prevalence, creating poor outcomes for patients and high healthcare costs. Recent data suggests CKD to be an independent risk factor for CVD. Accumulation of uremic toxins, chronic inflammation, and oxidative stress have been identified to act as CKD-specific alterations that increase cardiovascular risk. The association between CKD and cardiovascular mortality is markedly influenced through vascular alterations, in particular atherosclerosis and vascular calcification (VC). While numerous risk factors promote atherosclerosis by inducing endothelial dysfunction and its progress to vascular structural damage, CKD affects the medial layer of blood vessels primarily through VC. Ongoing research has identified VC to be a multifactorial, cell-mediated process in which numerous abnormalities like mineral dysregulation and especially hyperphosphatemia induce a phenotype switch of vascular smooth muscle cells to osteoblast-like cells. A combination of pro-calcifying stimuli and an impairment of inhibiting mechanisms like fetuin A and vitamin K-dependent proteins like matrix Gla protein and Gla-rich protein leads to mineralization of the extracellular matrix. In view of recent studies, intercellular communication pathways via extracellular vesicles and microRNAs represent key mechanisms in VC and thereby a promising field to a deeper understanding of the involved pathomechanisms. In this review, we provide an overview about pathophysiological mechanisms connecting CKD and CVD. Special emphasis is laid on vascular alterations and more recently discovered molecular pathways which present possible new therapeutic targets.
Collapse
Affiliation(s)
- Philip Düsing
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Zietzer
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Roger Goody
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Georg Nickenig
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
37
|
Jiang L, Yin Q, Yang M, Li M, Pan M, Han Y, Zhao Z, Wang Z, Zhu L, Wei Q, Tu Y, Gao M, Liu H, Zhang X, Liu BC, Wang B. Fibroblast Growth Factor 21 Predicts and Promotes Vascular Calcification in Haemodialysis Patients. KIDNEY DISEASES 2021; 7:227-240. [PMID: 34179118 DOI: 10.1159/000512750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/31/2020] [Indexed: 01/02/2023]
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death in haemodialysis (HD) patients. Vascular calcification (VC) is dramatically accelerated and is strongly associated with CVD events and mortality in HD patients. VC coexists with osteoporosis in many studies. Fibroblast growth factor 21 (FGF21) which is known as an adipocytokine is a new hypoglycemic strategy and is inversely related to bone mineral density. Methods To evaluate the contribution of FGF21 to VC in HD patients, we detected circulating FGF21 levels and measured the whole thoracic aorta calcification scores (TACS) and calcification scores of the 3 segments of thoracic aorta, including ascending thoracic aorta (ATACS), aortic arch (AoACS), and descending thoracic aorta (DTACS) of our HD patients in this cross-sectional study. In addition, we pre-incubated human aortic endothelial cells (HAECs) with FGF21 in the presence or absence of parathyroid hormone (PTH) in vitro. Results The median serum FGF21 level in HD patients was 11-fold higher than that in healthy controls. Ln(FGF21) was positively correlated with Ln(TACS+1), Ln(ATACS+1), Ln(AoACS+1), and Ln(DTACS+1), respectively, in HD patients. Serum FGF21 was independently associated with TACS and ATACS, AoACS, and DTACS. FGF21 which was combined with age, calcium, and intact PTH demonstrated a high area under the curve of 0.84 with optimal sensitivity (84%) and specificity (71%) for the prediction of VC in HD patients. Our vitro results showed that FGF21 enhanced the calcification effect of PTH on HAECs by increasing calcium deposition and endothelial-to-mesenchymal transition. Conclusions Circulating FGF21 was notably higher and was a potential predictor and promoter of VC in HD patients.
Collapse
Affiliation(s)
- Liqiong Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.,Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Min Li
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingming Pan
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuchen Han
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhen Zhao
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhi Wang
- Department of Radiology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lili Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qing Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan Tu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
38
|
Alshahawey M, El Borolossy R, El Wakeel L, Elsaid T, Sabri NA. The impact of cholecalciferol on markers of vascular calcification in hemodialysis patients: A randomized placebo controlled study. Nutr Metab Cardiovasc Dis 2021; 31:626-633. [PMID: 33594986 DOI: 10.1016/j.numecd.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Vascular calcification is an independent risk factor for cardiovascular diseases and all-cause mortality in end stage renal disease, and particularly in hemodialysis patients. Vitamin D deficiency has been shown to be associated with vascular calcification among this category of patients. Cholecalciferol or vitamin D3; the native inactivated 25-hydroxy vitamin D [25(OH)D], has been proposed to have a good impact on vascular calcification and vitamin D deficiency. However, clinical data is still limited. METHODS AND RESULTS A prospective, randomized, placebo-controlled study was carried out to evaluate the effect of oral cholecalciferol on vascular calcification and 25(OH)D levels in hemodialysis patients. A total of sixty eligible hemodialysis patients were randomly assigned to either a treatment group (Oral 200.000IU Cholecalciferol per month) or a placebo group, for 3 months. Serum 25-hydroxy vitamin D (25(OH)D), fetuin-A, fibroblast growth factor (FGF-23), osteoprotegerin (OPG), calcium, phosphorus, their product (CaXP) and intact parathyroid hormone (iPTH) levels, were all assessed at baseline and at the end of the study. ClinicalTrials.gov registration number: NCT03602430. Cholecalciferol significantly increased serum levels of 25(OH)D and fetuin-A in the treatment group (p-value < 0.001), while no significant difference was observed in the placebo group. Cholecalciferol administration showed no effect on either FGF-23 or OPG. None of the treatment group patients experienced any adverse effects. CONCLUSION Cholecalciferol was shown to be an effective, tolerable, inexpensive pharmacotherapeutic option to overcome vitamin D deficiency, with a possible modulating effect on fetuin-A, among hemodialysis patients. CLINICALTRIALS. GOV REGISTRATION NUMBER NCT03602430.
Collapse
Affiliation(s)
- Mona Alshahawey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Radwa El Borolossy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Lamia El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Tamer Elsaid
- Department of Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
39
|
High cut-off dialysis mitigates pro-calcific effects of plasma on vascular progenitor cells. Sci Rep 2021; 11:1144. [PMID: 33441772 PMCID: PMC7807056 DOI: 10.1038/s41598-020-80016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Mortality of patients with end-stage renal disease tremendously exceeds that of the general population due to excess cardiovascular morbidity. Large middle-sized molecules (LMM) including pro-inflammatory cytokines are major drivers of uremic cardiovascular toxicity and cannot be removed sufficiently by conventional high-flux (HFL) hemodialysis. We tested the ability of plasma from 19 hemodialysis patients participating in a trial comparing HFL with high cut-off (HCO) membranes facilitating removal of LMM to induce calcification in mesenchymal stromal cells (MSC) functioning as vascular progenitors. HCO dialysis favorably changed plasma composition resulting in reduced pro-calcific activity. LMM were removed more effectively by HCO dialysis including FGF23, a typical LMM we found to promote osteoblastic differentiation of MSC. Protein-bound uremic retention solutes with known cardiovascular toxicity but not LMM inhibited proliferation of MSC without direct toxicity in screening experiments. We could not attribute the effect of HCO dialysis on MSC calcification to distinct mediators. However, we found evidence of sustained reduced inflammation that might parallel other anti-calcifying mechanisms such as altered generation of extracellular vesicles. Our findings imply protection of MSC from dysfunctional differentiation by novel dialysis techniques targeted at removal of LMM. HCO dialysis might preserve their physiologic role in vascular regeneration and improve outcomes in dialysis patients.
Collapse
|
40
|
Jia F, Wang S, Jing Y, Zhao H, Rong P, Zhang H, Lu W, Xue Y, Sun G. Osteocalcin and Abdominal Aortic Calcification in Hemodialysis Patients: An Observational Cross-Sectional Study. Front Endocrinol (Lausanne) 2021; 12:620350. [PMID: 33815281 PMCID: PMC8018234 DOI: 10.3389/fendo.2021.620350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To investigate the serum level of osteocalcin (OC), also known as bone Gla protein, in maintenance hemodialysis (MHD) patients and its correlation with abdominal aortic calcification (AAC). METHODS From July 2017 to February 2020, we enrolled 108 adult MHD patients. Routine fasting blood laboratory tests were performed before the start of the second hemodialysis in a week. Abdominal aortic calcification score (AACs) was assessed within 1 month. Pearson correlation and Logistic regression were used to analyze the data. RESULTS The OC level was 231.56 (25.92,361.33) ng/ml, elevating significantly in this group of MHD patients. It had a positive correlation with serum phosphorus (r = 0.511, P = 0.001), intact parathyroid hormone(iPTH) (r = 0.594, P = 0.0001), fibroblast growth factor 23(FGF23) (r = 0.485, P = 0.003) and a negative correlation with age(r = -0.356, P = 0.039). Based on the AACs, patients were divided into two groups. Serum OC level were higher in patients with AACs≥5 (p=0.032). A multiple logistics regression analysis revealed that age (odds ratio [OR]1.14, P=0.005) and OC(OR=1.10, P=0.008)were risk factors for high AACs(≥5). CONCLUSION The study implicated that OC elevated significantly in this group of MHD patients.OC is positively correlated with phosphorus, iPTH, FGF23, and a negative correlation with age. OC was a risk factor for vascular calcification in this study, but this study did not classify osteocalcin as c-OC and unOC. Whether unOC is associated more directly with vascular calcification requires further study.
Collapse
Affiliation(s)
- Fengyu Jia
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Suxia Wang
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Ying Jing
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Hanhui Zhao
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Peng Rong
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Hongbin Zhang
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Wenting Lu
- Department of Nephrology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Yan Xue
- Department of Medical Imaging, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yan Xue, ; Gang Sun,
| | - Gang Sun
- Department of Medical Imaging, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
- *Correspondence: Yan Xue, ; Gang Sun,
| |
Collapse
|
41
|
Wang H, Zheng X, Zhang Y, Huang J, Zhou W, Li X, Tian H, Wang B, Xing D, Fu W, Chen T, Wang X, Zhang X, Wu A. The endocrine role of bone: Novel functions of bone-derived cytokines. Biochem Pharmacol 2020; 183:114308. [PMID: 33137323 DOI: 10.1016/j.bcp.2020.114308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Bone-derived cytokines refer to various proteins and peptides that are released from the skeleton and can distribute in organisms to regulate homeostasis by targeting many organs, such as the pancreas, brain, testicles, and kidneys. In addition to providing support and movement, many studies have disclosed the novel endocrine function of bone, and bone can modulate glucose and energy metabolism as well as phosphate metabolism by versatile bone-derived cytokines. However, this specific exoskeletonfunction of bone-derived cytokines in the regulation of homeostasis and the pathological response caused by skeletal dysfunction are still not very clear, and elucidation of the above mechanisms is of great significance for understanding the pathological processes of metabolic disorders and in the search for novel therapeutic measures for maintaining organ stability and physical fitness.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinfeng Huang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxian Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xunlin Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Haijun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Weili Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
42
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
43
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
44
|
Six I, Flissi N, Lenglet G, Louvet L, Kamel S, Gallet M, Massy ZA, Liabeuf S. Uremic Toxins and Vascular Dysfunction. Toxins (Basel) 2020; 12:toxins12060404. [PMID: 32570781 PMCID: PMC7354618 DOI: 10.3390/toxins12060404] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is an essential element found in many cardiovascular pathologies and in pathologies that have a cardiovascular impact such as chronic kidney disease (CKD). Alteration of vasomotricity is due to an imbalance between the production of relaxing and contracting factors. In addition to becoming a determining factor in pathophysiological alterations, vascular dysfunction constitutes the first step in the development of atherosclerosis plaques or vascular calcifications. In patients with CKD, alteration of vasomotricity tends to emerge as being a new, less conventional, risk factor. CKD is characterized by the accumulation of uremic toxins (UTs) such as phosphate, para-cresyl sulfate, indoxyl sulfate, and FGF23 and, consequently, the deleterious role of UTs on vascular dysfunction has been explored. This accumulation of UTs is associated with systemic alterations including inflammation, oxidative stress, and the decrease of nitric oxide production. The present review proposes to summarize our current knowledge of the mechanisms by which UTs induce vascular dysfunction.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Correspondence: ; Tel./Fax: +03-22-82-54-25
| | - Nadia Flissi
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Amiens-Picardie University Hospital, Human Biology Center, 80054 Amiens, France
| | - Marlène Gallet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Ziad A. Massy
- Service de Néphrologie et Dialyse, Assistance Publique—Hôpitaux de Paris (APHP), Hôpital Universitaire Ambroise Paré, 92100 Boulogne Billancourt, France;
- INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), Université Paris Saclay et Université Versailles Saint Quentin en Yvelines, 94800 Villejuif, France
| | - Sophie Liabeuf
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Pharmacology Department, Amiens University Hospital, 80025 Amiens, France
| |
Collapse
|
45
|
Berger SM, Griffin JS, Dent SC. Phenotypes and pathways: Working toward an integrated skeletal biology in biological anthropology. Am J Hum Biol 2020; 33:e23450. [PMID: 32511865 DOI: 10.1002/ajhb.23450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 05/17/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Steph M Berger
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacob S Griffin
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sophia C Dent
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
COBAN M, YİLMAZ U, DOLU S, ASİLTURK E, SOZER Y, EROL B, ELLİDAG HY. Intact Fibroblast Growth Factor 23 and Peripheral Vascular Complications in Patients on Hemodialysis. DICLE MEDICAL JOURNAL 2020. [DOI: 10.5798/dicletip.706013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Lacroix JS, Urena-Torres P. Potentielle application de l’axe fibroblast growth factor 23-Klotho dans la maladie rénale chronique. Nephrol Ther 2020; 16:83-92. [DOI: 10.1016/j.nephro.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022]
|
48
|
Ribeiro AL, Mendes F, Carias E, Rato F, Santos N, Neves PL, Silva AP. FGF23-klotho axis as predictive factors of fractures in type 2 diabetics with early chronic kidney disease. J Diabetes Complications 2020; 34:107476. [PMID: 31708378 DOI: 10.1016/j.jdiacomp.2019.107476] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of our study was to evaluate the relevance of FGF23-klotho axis in the predisposition for bone fractures in type 2 diabetic patients with early chronic kidney disease. METHODS In a prospective study we included 126 type 2 diabetic patients with CKD stages 2-3 (from 2010 to 2017). We used descriptive statistics, ANOVA and chi-square test. Our population was divided into two groups according to the occurrence of a bone fracture event or not, and the groups were compared considering several biological and laboratorial parameters. We employed a multiple regression model to identify risk factors for bone fracture events and hazard ratios (HR) were calculated using a backward stepwise likelihood ratio (LR) Cox regression. RESULTS Patients with a fracture event displayed higher levels of FGF-23, Phosphorus, PTH, TNF-α, OxLDL, HOMA-IR, calcium × phosphorus product and ACR and lower levels of Osteocalcin, α-Klotho, 25(OH)D3 and eGFR compared with patients without a fracture event (p < 0.001). The number of patients with a fracture event was higher than expected within inclining CKD stages (χ2, p = 0.06). The occurrence of fracture and the levels of TNF- α, klotho, 25(OH)D3 and OxLDL were found to predict patient entry into RRT (p < 0.05). Age, osteocalcin, α-Klotho and FGF-23 independently influenced the occurrence of bone fracture (p < 0.05). CONCLUSIONS α-Klotho and FGF-23 levels may have a good clinical use as biomarkers to predict the occurrence of fracture events.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers/blood
- Case-Control Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/pathology
- Disease Progression
- Female
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/blood
- Fractures, Bone/blood
- Fractures, Bone/diagnosis
- Fractures, Bone/etiology
- Glomerular Filtration Rate
- Glucuronidase/blood
- Humans
- Klotho Proteins
- Male
- Middle Aged
- Predictive Value of Tests
- Prognosis
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Ana Luísa Ribeiro
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.
| | - Filipa Mendes
- Department of Nephrology, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Eduarda Carias
- Department of Nephrology, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Fátima Rato
- Pathology Clinic, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Nélio Santos
- Pathology Clinic, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Pedro Leão Neves
- Department of Nephrology, Centro Hospitalar Universitário do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Ana Paula Silva
- Department of Nephrology, Centro Hospitalar Universitário do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
49
|
Takashi Y, Wakino S, Minakuchi H, Ishizu M, Kuroda A, Shima H, Tashiro M, Miya K, Okada K, Minakuchi J, Kawashima S, Matsuhisa M, Matsumoto T, Fukumoto S. Circulating FGF23 is not associated with cardiac dysfunction, atherosclerosis, infection or inflammation in hemodialysis patients. J Bone Miner Metab 2020; 38:70-77. [PMID: 31420749 DOI: 10.1007/s00774-019-01027-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived hormone regulating serum inorganic phosphate (Pi) concentration. FGF23 is also involved in the development of chronic kidney disease (CKD)-mineral and bone disorder. Serum FGF23 concentration begins to increase early in the progression of CKD and can be remarkably high in hemodialysis patients with end-stage renal disease. It has been reported that high FGF23 concentration is a risk factor for cardiac dysfunction, atherosclerosis, infection or systemic inflammation in CKD patients. FGF23 was also shown to induce cardiac hypertrophy directly acting on cardiomyocytes. However, it is still controversial whether high FGF23 is causing cardiac dysfunction, atherosclerosis, infection or systemic inflammation in CKD patients. In the current study, we investigated whether FGF23 concentration is associated with cardiac dysfunction, atherosclerosis, infection or systemic inflammation in Japanese hemodialysis patients. We recruited 119 hemodialysis patients and examined the association between serum FGF23 concentration and several parameters concerning mineral metabolism, cardiac dysfunction, atherosclerosis, infection, and systemic inflammation. Serum FGF23 concentration was independently associated with serum calcium and Pi concentration (β = 0.276, p < 0.001; β = 0.689, p < 0.001). However, serum FGF23 concentration was not associated with parameters of cardiac dysfunction, atherosclerosis, infection, and systemic inflammation, either. Our results do not support the hypothesis that high FGF23 in dialysis patients is the cause of cardiac dysfunction, atherosclerosis, infection or systemic inflammation.
Collapse
Affiliation(s)
- Yuichi Takashi
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Masashi Ishizu
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Akio Kuroda
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hisato Shima
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Manabu Tashiro
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Keiko Miya
- Department of Internal Medicine, Kawashima Hospital, Tokushima, Japan
| | - Kazuyoshi Okada
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Jun Minakuchi
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Shu Kawashima
- Department of Kidney Disease, Kawashima Hospital, Tokushima, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
50
|
Hyun YY, Kim H, Oh YK, Oh KH, Ahn C, Sung SA, Choi KH, Kim SW, Lee KB. High fibroblast growth factor 23 is associated with coronary calcification in patients with high adiponectin: analysis from the KoreaN cohort study for Outcome in patients With Chronic Kidney Disease (KNOW-CKD) study. Nephrol Dial Transplant 2019; 34:123-129. [PMID: 29701806 DOI: 10.1093/ndt/gfy110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 01/26/2023] Open
Abstract
Background The association between fibroblast growth factor 23 (FGF23) and coronary artery calcification (CAC) was inconclusive. Recently it was shown that adiponectin modulates renal handling of calcium and phosphorus. We hypothesized that adiponectin plays a role in the effect of FGF23 on CAC and explored whether the association between FGF23 and CAC is modified by serum adiponectin level in chronic kidney disease (CKD) patients. Methods This cross-sectional study analyzed 1435 predialysis CKD patients from the Korean Cohort Study for Outcome in Patients with CKD cohort. Participants were divided into two groups according to their serum adiponectin (upper half and lower half). Each group was further divided into three groups according to their FGF23 levels as follows: low (<5.0 RU/mL), middle (5.0-29.9 RU/mL) and high (≥30.0 RU/mL). The coronary artery calcium score (CACS) was assessed using cardiac computed tomography and CAC was defined as a CACS >100. Results The median CACS did not differ between the low and high adiponectin groups {3.2 [interquartile range (IQR) 0.0-98.1] versus 0.5 [0.0-99.5], P = 0.988}. The CACS ratio comparing high FGF23 to low FGF23 was significantly increased in the high adiponectin group, but not in the low adiponectin group [2.35 (IQR 1.14-4.85) versus 1.10 (0.60-2.03)]. The odds ratio for CAC in the high FGF23 group compared with the low group was 1.97 (IQR 1.10-3.53). The association between FGF23 and CAC was modified significantly by adiponectin level (P for interaction = 0.023). Conclusions High serum FGF23 was associated with CAC in CKD patients with high adiponectin, but not in those with low adiponectin. Further studies are warranted to verify the role of adiponectin in FGF23-related CAC.
Collapse
Affiliation(s)
- Young Youl Hyun
- Department of Internal Medicine, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| | - Hyang Kim
- Department of Internal Medicine, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Su Ah Sung
- Department of Internal Medicine, Eulji Medical Center, Eulji University, Seoul, Korea
| | - Kyu Hun Choi
- Depatment of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Kyu-Beck Lee
- Department of Internal Medicine, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|