1
|
Kag S, Kumar P, Kataria R. Potato Peel Waste as an Economic Feedstock for PHA Production by Bacillus circulans. Appl Biochem Biotechnol 2024; 196:2451-2465. [PMID: 37776440 DOI: 10.1007/s12010-023-04741-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Polymers of hydroxy alkanoates (PHA), also known as biodegradable, biocompatible plastic, are potential alternatives to petrochemical-based plastics. PHA is synthesized by microbes in their cytoplasm in the form of inclusion bodies in stress conditions such as nitrogen, oxygen, and phosphorus with excessive amounts of carbon. Sugar extracted from potato peel in the form of hydrolysate was employed as a carbon source for PHA production after acidic hydrolysis. The acid hydrolysis conditions are optimized for dilute acid concentrations and temperatures. The highest sugar-yielding condition (2% 15 min at 121 ℃) was used for submerged fermentation for PHA production by Bacillus circulans MTCC 8167. Fourier transform infrared spectroscopy, nuclear magnetic resonance, and differential scanning calorimetry were used for polymer characterization. Gas chromatography coupled with mass spectrometry confirmed the monomers such as hexadecenoic acid 3-hydroxy, methyl esters, pentadecanoic acid 14 methyl esters, and tetradecanoic acid 12- methyl esters. Crotonic acid assay was used for quantification of PHA and it was found highest (0.232 ± 0.04 g/L) at 37 °C and 36 h of incubation. Hence, potato peel waste could be a potential feedstock for waste to valuable production.
Collapse
Affiliation(s)
- Sonika Kag
- Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur Village, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur Village, Bawana Road, Delhi, 110042, India
| | - Rashmi Kataria
- Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur Village, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
2
|
Huang Z, Liang B, Wang F, Ji Y, Gu P, Fan X, Li Q. Response surface optimization of poly-β-hydroxybutyrate synthesized by Bacillus cereus L17 using acetic acid as carbon source. Int J Biol Macromol 2023; 247:125628. [PMID: 37392926 DOI: 10.1016/j.ijbiomac.2023.125628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
A strain of Bacillus that can tolerate 10 g/L acetic acid and use the volatile fatty acids produced by the hydrolysis and acidification of activated sludge to produce polyhydroxyalkanoate was screened from the activated sludge of propylene oxide saponification wastewater. The strain was identified by 16S rRNA sequencing and phylogenetic tree analysis and was named Bacillus cereus L17. Various characterization methods showed that the polymer synthesized by strain L17 is poly-β-hydroxybutyrate, which has low crystallinity, good ductility and toughness, high thermal stability and a low polydispersity coefficient. It has wide thermoplastic material operating space as well as industrial and medicinal applications. The optimal fermentation conditions were determined by single factor optimization. Then, Plackett-Burman and Box-Behnken design experiments were carried out according to the single factor optimization results, and the response surface optimization was completed. The final results were: initial pH 6.7, temperature 25 °C, and loading volume 124 mL. The verification experiment showed that the yield of poly-β-hydroxybutyrate after optimization increased by 35.2 % compared to that before optimization.
Collapse
Affiliation(s)
- Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Boya Liang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
3
|
Rodge SP, Shende KS, Patil NP. Polyhydroxyalkanoate biosynthesis and optimisation of thermophilic Geobacillus stearothermophilus strain K4E3_SPR_NPP. Extremophiles 2023; 27:13. [PMID: 37349574 DOI: 10.1007/s00792-023-01300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Polyhydroxyalkanoates (PHA) can be used to combat the challenges associated with plastic because it is biodegradable and can be produced from renewable resources. Extremophiles are considered to be potential PHA producers. An initial screening for the PHA synthesizing ability of a thermophilic bacteria Geobacillus stearothermophilus strain K4E3_SPR_NPP was carried out using Sudan black B staining. Nile red viable colony staining was used to further verify that the isolates produced PHA. Crotonic acid assays were used to determine the concentrations of PHA. The bacteria showed 31% PHA accumulation per dry cell weight (PHA/DCW) when glucose was used as a carbon source for growth. The molecule was identified to be medium chain length PHA, A copolymer of PHA containing poly(3-hydroxybutyrate)-poly(3-hydroxyvalerate)-poly(3-hydroxyhexanoate) (PHB-PHV-PHHX) using 1H-NMR. Six carbon sources and four nitrogen sources were screened for the synthesis of maximum PHA content, of which lactose and ammonium nitrate showed 45% and 53% PHA/DCW respectively. The important factors in the experiment are identified using the Plackett-Burman design, and optimization is performed using the response surface method. Response surface methodology was used to optimize the three important factors, and the maximum biomass and PHA productions were discovered. Optimal concentrations yielded a maximum of 0.48 g/l biomass and 0.32 g/l PHA, measuring 66.66% PHA accumulation. Dairy industry effluent was employed for the synthesis of PHA, yielding 0.73 g/l biomass and 0.33 g/l PHA, measuring 45% PHA accumulation. These findings add credibility to the possibility of adopting thermophilic isolates for PHA production using low-cost substrates.
Collapse
|
4
|
Hamdy SM, Danial AW, Gad El-Rab SMF, Shoreit AAM, Hesham AEL. Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiol 2022; 22:183. [PMID: 35869433 PMCID: PMC9306189 DOI: 10.1186/s12866-022-02593-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polyhydroxybutyrate (PHB) is a biopolymer formed by some microbes in response to excess carbon sources or essential nutrient depletion. PHBs are entirely biodegradable into CO2 and H2O under aerobic and anaerobic conditions. It has several applications in various fields such as medicine, pharmacy, agriculture, and food packaging due to its biocompatibility and nontoxicity nature.
Result
In the present study, PHB-producing bacterium was isolated from the Dirout channel at Assiut Governorate. This isolate was characterized phenotypically and genetically as Bacillus cereus SH-02 (OM992297). According to one-way ANOVA test, the maximum PHB content was observed after 72 h of incubation at 35 °C using glucose and peptone as carbon and nitrogen source. Response surface methodology (RSM) was used to study the interactive effects of glucose concentration, peptone concentration, and pH on PHB production. This result proved that all variables have a significant effect on PHB production either independently or in the interaction with each other. The optimized medium conditions with the constraint to maximize PHB content and concentration were 22.315 g/L glucose, and 15.625 g/L peptone at pH 7.048. The maximum PHB content and concentration were 3100.799 mg/L and 28.799% which was close to the actual value (3051 mg/l and 28.7%). The polymer was identified as PHB using FTIR, NMR, and mass spectrometry. FT-IR analysis showed a strong band at 1724 cm− 1 which attributed to the ester group’s carbonyl while NMR analysis has different peaks at 169.15, 67.6, 40.77, and 19.75 ppm that were corresponding to carbonyl, methine, methylene, and methyl resonance. Mass spectroscopy exhibited molecular weight for methyl 3- hydroxybutyric acid.
Conclusion
PHB–producing strain was identified as Bacillus cereus SH-02 (OM992297). Under optimum conditions from RSM analysis, the maximum PHB content and concentration of this strain can reach (3100.799 mg/L and 28.799%); respectively. FTIR, NMR, and Mass spectrometry were used to confirm the polymer as PHB. Our results demonstrated that optimization using RSM is one of the strategies used for reducing the production cost. RSM can determine the optimal factors to produce the polymer in a better way and in a larger quantity without consuming time.
Collapse
|
5
|
Asitok A, Ekpenyong M, Takon I, Antai S, Ogarekpe N, Antigha R, Edet P, Antai A, Essien J. A novel strain of Stenotrophomonas acidaminiphila produces thermostable alkaline peptidase on agro-industrial wastes: process optimization, kinetic modeling and scale-up. Arch Microbiol 2022; 204:400. [PMID: 35713813 DOI: 10.1007/s00203-022-03010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Bacterial alkaline peptidases, especially from Bacillus species, occupy the frontline in global enzyme market, albeit with poor production economics. Here, we report the deployment of response surface methodology approximations to optimize fermentation parameters for enhanced yield of alkaline peptidase by the non-Bacillus bacterium; Stenotrophomonas acidaminiphila. Shake flask production under optimized conditions was scaled up in a 5-L bench-scale bioreactor. Logistic and modified Gompertz models revealed significant fits for biomass formation, total protein, and substrate consumption models. Maximum specific growth rate (µmax = 0.362 h-1) of the bacterium in the optimized medium did not differ significantly from those in Luria-Bertani and trypticase soy broths. The aqueous two-phase system-purified 45.7 kDa alkaline protease retained 83% activity which improved with increasing sodium dodecyl sulfate concentration thus highlighting potential laundry application. Maximum enzyme activity occurred at 75ºC and pH 10.5 but was inhibited by 5 mM phenyl-methyl-sulfonyl fluoride suggesting a serine-protease nature.
Collapse
Affiliation(s)
- Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria.
| | - Iquo Takon
- Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Nkpa Ogarekpe
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
| | - Richard Antigha
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
| | - Philomena Edet
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Agnes Antai
- Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| | - Joseph Essien
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Sciences, University of Uyo, Uyo, Nigeria
| |
Collapse
|